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WEIL-PETERSSON VOLUMES

R. C. PENNER

Abstract

An explicit method of integration of top-dimensional differential forms
over the moduli spaces of punctured Riemann surfaces is presented. This
method is applied to the computation of Weil-Petersson volumes of mod-
uli spaces, and we find that the volume for the twice-punctured torus is
π4/8 and that, for large g , the volume for the once-punctured surface
of genus g is at least g~2c~2g(2g)\, where c < .15 is a constant inde-
pendent of g . Our methods depend upon a certain bundle (introduced
earlier) over the classical Teichmuller space of punctured surfaces, and
some of our computations rely on standard techniques from quantum
field theory.

1. Introduction

In [11] and [13] we proposed an explicit method of integration of top-

dimensional differential forms over the moduli space Jίs of the surface

Fs of genus g with s > 0 punctures, and one purpose of this paper is to

present a complete exposition of this integration scheme. We also gave in

[11] an expression of the Weil-Petersson Kahler two-form in coordinates

reasonably well suited to our method of integration and put forward the

computation of the various Weil-Petersson volumes μs

g of Jίs as test

cases for the utility of our techniques.

We have had some success on these test cases, and this is also reported

herein. Specifically, we have computed that the Weil-Petersson volume μ\

is π /8. Furthermore, we derive an asymptotic expression for μ to the

effect that, for large g, μι

g > g~2c~2g(2g)\, where c < .15 is a constant
independent of g. This latter estimate has found physical significance in
[15] and agrees with predications from two-dimensional quantum gravity
(see [18]).

Little is known beyond these new results about Weil-Petersson volumes.
(Added in proof: There has been much progress on this recently; see [19]
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and [25].) Scott Wolpert proved [23] that μ\ = π2/6 (and we give a
quick proof of this herein) and also [22] that μs is a rational multiple

o

of π

6g-6+2s. On the other hand, recent developments in two-dimensional
quantum gravity suggest a general method of computing integrals of mono-
mials of certain "visible" Chern classes over the Deligne-Mumford com-
pactification of moduli space (see [18]). These Chern classes are closely
related to the Miller-Morita-Mumford classes (see [7]-[9]), and this ties in
with the computation here (over uncompactified moduli space) in that the
first Miller-Morita-Mumford class is (pointwise) a constant multiple of the
Weil-Petersson Kahler two-form (see [24]). We expect that the techniques
of [18] (perhaps in concert with our approach) will lead to many further
explicit computations, and we will comment further on this below.

The basic approach (from [10]) of the integration scheme is to pass to a

certain principal Rs. -bundle ίΓ* over the usual Teichmϋller space ZFS of

F*. (This bundle comes equipped with a canonical section.) The action

of the mapping class group MC* of Fs on ZΓS lifts to an action on
S o o

ZΓ*. Furthermore, ΣΓS is endowed with good global coordinates as well

as an MCs

g-invariant cell decomposition, which is analogous to the Harer-
Mumford-Thurston decomposition [2] of ZΓ*. The decomposition of 9~*
is well suited to the matrix-model techniques of quantum field theory, and
certain cohomology invariants of Jtι\ have been computed by exploiting
this (see [3] and [12]).

Our method of integration is as follows. Given a top-dimensional dif-
ferential form ω on Jίs

g , we pull the form back to ZΓ* in coordinates,
integrate over (the intersection of the canonical section with) one cell in
each MC*-orbit of top-dimensional cell in the decomposition, and weight

o

the contribution to f^ω by the inverse of the order of the ΛfC^-isotropy

group of the cell. In this way, we solve the problem of specifying a funda-

mental domain for the action of MCs on ^ s .
One requirement for this procedure is that the form ω pull backjo

something reasonable (i.e., computable) in the natural coordinates on 3^ .
The Weil-Petersson Kahler two-form pulls back nicely, and the volume
form is in principle easily derived. For completeness and because of the
reliance of our other results on this formula, the derivation of the expres-
sion of the Weil-Petersson Kahler two-form in our basic coordinates (only
sketched in [11]) is given in Appendix A.

Another requirement is that the various domains of integration cor-

responding to the top-dimensional cells in t7~s must be tractable, and
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unfortunately, they are quite bad in our basic coordinates. New "simpli-
cial coordinates" are introduced which render each domain of integration
a straight simplex, but we cannot in general compute our basic coordi-
nates from these simplicial coordinates. Indeed, this leads to a family of
arithmetic problems (which amount to inverting a collection of coupled
quadric equations), one problem for each trivalent graph. (A general the-
orem from [10] shows that each such system is invertible, but the proof is
nonconstructive.) We have solved roughly ten of these arithmetic problems
using symbolic manipulation on the computer, and the results are most re-
markable. Whereas one would expect iterated square-roots in the solution,
in fact, the solution is essentially rational. Furthermore, the numerators
and denominators in the rational expressions derived factor into products
which arise from certain closed edge-paths on the underlying graph.

Though there are five Λ/cf-orbits of top-dimensional cells in &^~, it
turns out that only one is relevant for the computation of μ{, and we solve
the arithmetic problem corresponding to the associated graph herein. This
leads to an expression of μ[ as the integral of a certain rational function
over a four-dimensional simplex. Using some computational techniques
from quantum field theory, we evaluate this integral in closed form.

Our asymptotic estimates on μι

g involve two ingredients: a lower bound

to the volume of a single top-dimensional cell in &~ and an asymptotic

formula for the number of such cells in ^ . The latter estimate follows
from standard matrix-model calculations. For the former estimate, we
avoid the arithmetic problems mentioned above by a simple but effective
estimate on the associated Jacobian determinant. Of course, we must also
take a large exterior power of the Kahler two-form to find the volume form,
and it turns out that the volume form admits a simple expression which is
entirely independent of the choice of basis for the coordinate system. (In
contrast, the two-form does depend on the choice of basis.)

We finally discuss the prospects for further applications of these tech-
niques. The unique obstruction in principle to computing any particular
Weil-Petersson volume is the solution of some finite subcollection of the
arithmetic problems discussed before; we think, in any case, that these
arithmetic problems warrent further study in their own right. Further-
more, assuming a satisfactory solution to the arithmetic problems, it is
not, we think, unrealistic to expect to apply the matrix-model in conjunc-
tion with the integration scheme and compute, as it were, all of the μs

g

at once in a generating function. Such an approach would presumably tie
in with the developments in two-dimensional quantum gravity mentioned
above.
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More generally, we mention that a recent geometric interpretation of
the simplicial coordinates has led to explicit differential forms in these
coordinates which represent Witten's visible classes on a certain compact-
ification of moduli space; the computation (using the techniques of [12])
of a generating function for the integrals of monomials in these forms
looks promising. (Further computations or a further analysis of the com-
pactification is required, though, to give these integrals geometric and/or
physical significance.) This material will be taken up elsewhere. (Added
in proof: There has been dramatic progress on this recently; see [5] and
[20].)

This paper is organized as follows. §2 establishes some notations and

conventions. §3 quickly treats most of the relevant background material

from [10] and [12] as well as introducing new related material; in partic-

ular, §3.4 develops the simplicial coordinates, and §3.5 is dedicated to the

arithmetic problems. §4 treats the surface F*, and §5 treats the surface

F^ indeed, we derive the expression for μ\ as the integral of a rational

function over a simplex in §5.1 and evaluate this integral in §5.2. In §6.1

the Weil-Petersson volume form is computed for any once-punctured sur-

face, and in §6.2 we pull together various results to give our asymptotic

estimate on μι

g. Finally, Appendix A gives the derivation of the Weil-

Petersson two-form in our coordinates (the starting point is Wolpert's for-

mula in terms of the hyperbolic geometry of the underlying surface), and

Appendix B derives a standard matrix-model estimate (explained to us by

Steve Shenker) on the number of MC -orbits of top-dimensional cells in

There have been helpful discussions with Itzhak Bars, Dennis Estes,
Eric DΉoker, Ravi Kulkarni, H. S. La, Vipul Periwal, Bruce Palka, Osmo
Pekonen, Steve Shenker, and Ed Witten. We also thank Scott Wolpert for
his encouragement on the computations of Weil-Petersson volumes and
Jurg Frόhlich for his encouragement on the general integration scheme.
Finally, it is a pleasure to acknowledge the warm hospitality of Harvard
University and Institut Mittag-Leffler during the Fall and Winter of 1989.

2. Notation and conventions

We establish here some definitions which will hold throughout this pa-
per.

Suppose that g > 0 and s > 1 are integers satisfying the condition
that 2g - 2 + s > 0, and let Fs denote a fixed smooth surface of genus
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g with s unlabeled punctures; thus, Fs has negative Euler characteristic

and at least one puncture. Let Jίs and ίΓ* denote the moduli space and
o o

Teichmuller space, respectively, of surfaces diffeomorphic to Fs. The

mapping class group of Fs is denoted MCί , so MCs

σ acts on ίΓ* with

quotient Jί . By a "differential form" on Jίs we mean a differential

form on ZΓS which is invariant under the action of MCS.

In [10], we introduced a principal R^-bundle ΣΓ* over ΣΓ*, called the

"decorated Teichmuller space" of Fs

g , which is defined as follows. The

fiber over a point of ZΓ* is the collection of all (not necessarily simple or

disjoint) s-tuples of horocycles about the punctures of Fs, one horocycle

about each puncture; the specification of these distinguished horocycles is

called a "decoration" on the underlying marked conformal surface, and

the distinguished horocycles are called the "decorated" horocycles. The

ordered s-tuple of hyperbolic lengths of the horocycles give coordinates

on the fibers. Of course, since £Γ* is homeomorphic to an open ball of

dimension 6g - 6 + 2s, it follows that !J~* is homeomorphic to an open

ball of dimension 6g - 6 + 3s. Furthermore, the action of MC* on ZΓS

lifts to an action of MCS on ZΓ* in the natural way, where this action
permutes the decorated horocycles and their lengths.

Suppose that G is a one-dimensional CW complex. A "hook" of G is
simply an edge of the first barycentric subdivision of G. Thus, an edge e
of G gives rise to exactly two hooks, and we usually denote a hook of G
contained in e by e . We say that a hook e is "incident" on a vertex υ
of G if v lies in the closure of e. The "valence" of a vertex υ of G is
the number of distinct hooks incident on it. A "loop" is an edge e of G
so that both of the hooks of G contained in e are incident on a common
vertex of G.

We define a "graph" to be a one-dimensional CW complex so that each
vertex has valence at least three. In particular, we emphasize that G may
have loops, and an edge of G is not necessarily determined by its end-
points. We say simply that the graph G is "trivalent" if each of its vertices
has valence three. Finally, given an edge e of G connecting distinct end-
points, we may collapse e to a point to produce another graph, which is
said to arise from G by "contracting" the edge e.

3. Integration over moduli space

Suppose that ω is a top-dimensional differential form on Jίs

g . We

describe in this section a method of computing f^s ω. In practice, the
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method depends on a specification of coordinates on ίΓ*, and we will spe-
cialize our method to particular coordinatizations in subsequent sections.

In order to formulate our method, we first briefly recall some construc-
tions from [10] and [12].

3.1. Fatgraphs. Further details on most of the material in this subsec-
tion can be found in [12, §1].

A "fatgraph" G is a graph (in the sense of §2) together with a cyclic
order on the hooks about each vertex. Given a graph, the specification of
cyclic order on the hooks about each vertex is called a "fattening" of the
graph. A morphism of fatgraphs is a morphism between the underlying
graphs which respects cyclic orders, and we let [G] denote the isomor-
phism class and Aut(G) denote the automorphism group of G.

Notice that if φ e Aut(G) fixes an oriented edge e of G, then φ must
also fix the edge clockwise from the terminal point of e continuing in
this way, one concludes that if φ e Aut(G) fixes an oriented edge of a
connected fatgraph G, then φ is the identity.

Associated with the fatgraph G is a punctured surface F(G) which
contains G as its spine. To construct F(G), embed G in M3 in such a
way that a neighborhood of the vertices lies in some oriented plane Π c l
and the cyclic orders on the hooks about the vertices of G agree with the
counter-clockwise sense in Π. Choose a neighborhood U in Π of the set
of vertices, and extend U to a surface F\G) with boundary embedded
in R3 by adjoining one band to U for each component of G - U in
such a way that G c Ff(G) and each band respects the orientation on
Π. Finally, define an abstract punctured surface F(G) D Ff{G) D G by
adjoining one punctured disk to each boundary component of Ff(G). Let
s(G) denote the number of punctures of F(G), or, in other words, the
number of boundary components of F'(G).

A "marking" on G is defined to be a marking (in the usual sense of
Riemann surfaces) on the surface F(G). (Thus, a marking on G can be
regarded as an equivalence class of homeomorphisms F -> F(G) from a
base surface F, where two such homeomorphisms hχ, h2 are regarded as
equivalent if there is some homeomorphism g: F(G) —• F(G) isotopic to
the identity so that g o h{ is isotopic to h2 .) Contraction of edges (which
are not allowed to be loops) defines a partial order on

&g = {marked isomorphism classes of fatgraphs G : F(G)

is homeomorphic to F*},
o

and we have



WEIL-PETERSSON VOLUMES 565

Theorem 3.1.1 [10, Theorem 5.5] and [12, §1]. The geometric real-
ization of the poset &l is naturally isomorphic to the dual of an MCS-

invariant cell decomposition of ZΓ*. Aut(G) is naturally isomorphic to the

isotropy subgroup in MCs

g of any cell in the decomposition corresponding

to G. _

Remark. This is the analogue on F* of the Harer-Mumford-Thurston

cell decomposition [2] on &*.

An unmarked fatgraph G can be compactly described by a pair of per-
mutations as follows. Suppose that G has vk > 0 fc-valent vertices for
k > 3, and let K denote the largest valence of the vertices of G. Thus,
G has N = Σκ>k>3 ^vk - ° (2) h o o k s L e t ^ be a permutation on N
letters of type {3υHv* - KVκ}9 and label the hooks of G by elements of
{1, 2, , N} in the natural way so that each cycle of σ corresponds to
the hooks incident on some vertex. Thus, σ permutes the labels on hooks
incident on a vertex. We define another permutation T on JV letters of
type {2N^2}, where τ has one transposition for each edge of G, and each
transposition permutes the pair of labels associated with the hooks of a
single edge of G. The pair of permutations (σ, τ) uniquely determines
the fatgraph G.

Using this formalism, it is straightforward to enumerate the set {[G] :
G e &s

g} on the computer, at least for 2g -2 + s reasonably small. For
later use, Table 1 (next page) records the results of this enumeration for
the surface F^ we computed with Think C (version 2) [16] on a MacII.
(We emphasize that the relevant data from this table can easily be checked
by hand; cf. the remark following Corollary 3.3.2.) Each permutation is
given as a tuple whose /th entry is the image of i under the permutation.
The permutation σ is followed by a collection of associated permutations
τ , and the number in brackets following each permutation τ is the order
of the corresponding fatgraph automorphism group.

To give some examples and for later application, we draw the five triva-
lent fatgraphs of Table 1 in Figure 1 (p. 567). (The letters next to the
edges will be explained and used later.)

To close this section, we give a construction (from [14]) of certain triva-
lent fatgraphs G so that F(G) is homeomorphic to Fg . These fatgraphs
are the starting point for the computation of Weil-Petersson volume forms
for once-punctured surfaces; in effect, we perform explicit computations
(in §6.1) for the fatgraphs constructed here and use the fact (proved here)
that these fatgraphs correspond to once-punctured surfaces.
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F o r σ - ( 2 , 3 , 4 , 5 , 6 , 1 ) , there are three fatgraphs:

( 2 , 1 , 5 , 6 , 3 , 4 ) [ 1 ] ( 3 , 5 , 1 , 6 , 2 , 4 ) [ 2 ] ( 4 , 5 , 6 , 1 , 2 , 3 ) [ 6 ]

F o r σ = ( 2 , 3 , 4 , 1 , 6 , 7 , 8 , 5 ) , there are four fatgraphs:

( 2 , 1 , 5 , 7 , 3 , 8 , 4 , 6 ) [ 1 ] ( 3 , 5 , 1 , 7 , 2 , 8 , 4 , 6 ) [ 4 ]

( 5 , 6 , 7 , 8 , 1 , 2 , 3 , 4 ) [ 8 ] ( 5 , 6 , 8 , 7 , 1 , 2 , 4 , 3 ) [ 2 ]

F o r σ = ( 2 , 3 , 4 , 5 , 1 , 7 , 8 , 6 ) , there are four fatgraphs:

( 2 , 1 , 6 , 7 , 8 , 3 , 4 , 5 ) [ 1 ] ( 3 , 4 , 1 , 2 , 6 , 5 , 8 , 7 ) [ 1 ]

( 3 , 6 , 1 , 7 , 8 , 2 , 4 , 5 ) [ 1 ] ( 3 , 6 , 1 , 8 , 7 , 2 , 5 , 4 ) [ 1 ]

F o r σ = ( 2 , 3 , 4 , 1 , 6 , 7 , 5 , 9 , 1 0 , 8 ) , there are e ight fatgraphs:

( 2 , 1 , 5 , 8 , 3 , 9 , 1 0 , 4 , 6 , 7 ) [ l ] ( 3 , 5 , 1 , 6 , 2 , 4 , 8 , 7 , 1 0 , 9 ) [ 1 ]

( 3 , 5 , 1 , 8 , 2 , 9 , 1 0 , 4 , 6 , 7 ) [ 2 ] ( 3 , 5 , 1 , 8 , 2 , 1 0 , 9 , 4 , 7 , 6 ) [ 2 ]

( 5 , 6 , 7 , 8 , 1 , 2 , 3 , 4 , 1 0 , 9 ) [ 1 ] ( 5 , 6 , 8 , 9 , 1 , 2 , 1 0 , 3 , 4 , 7 ) [ 2 ]

( 5 , 6 , 8 , 1 0 , 1 , 2 , 9 , 3 , 7 , 4 ) [ 1 ] ( 5 , 8 , 6 , 9 , 1 , 3 , 1 0 , 2 , 4 , 7 ) [ l ]

F o r σ = ( 2 , 3 , 1 , 5 , 6 , 4 , 8 , 9 , 7 , 1 1 , 1 2 , 1 0 ) , there are five fatgraphs:

( 2 , 1 , 4 , 3 , 7 , 1 0 , 5 , 1 1 , 1 2 , 6 , 8 , 9 ) [ 1 ] ( 4 , 5 , 7 , 1 , 2 , 1 0 , 3 , 1 1 , 1 2 , 6 , 8 , 9 ) [ 4 ]

( 4 , 5 , 7 , 1 , 2 , 1 0 , 3 , 1 2 , 1 1 , 6 , 9 , 8 ) [ 2 ] ( 4 , 7 , 1 0 , 1 , 8 , 1 1 , 2 , 5 , 1 2 , 3 , 6 , 9 ) [ 4 ]

( 4 , 7 , 1 0 , 1 , 8 , 1 2 , 2 , 5 , 1 1 , 3 , 9 , 6 ) [ 3 ]

TABLE 1. The fatgraph complex for F*

Consider the CW complex illustrated in Figure 2 (p. 568), together
with the indicated cyclic orders on the hooks about the trivalent ver-
tices, and adopt the indicated notation for the hooks corresponding to
the univalent vertices. We describe a collection of fatgraphs containing
this CW complex as follows. Connect the hook en+ι to some hook e\

among {e[, e'2, , e'n}, and then connect the hook ex to some hook

e\ among {e[, e2, , en+ι} - {e\ } . Continue in this way, inductively

connecting the hook e. to some hook e\ among {e[, e2, , en+ι) -

{e\ ,e\ , ,e[} for j = 1, 2, , n . Let &{n) denote the family of

fatgraphs so constructed for n > 1. By construction, each G e 2?(n) has
a unique cycle of length two.
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(2,1,4,3,7,10,5,11,12,6,8,9) (4,5,7,1,2,10,3,11,12,6,8,9) (4,5,7,1,2,10,3,12,11,6,9,8)

4 5

(4,7,10,1,8,11,2,5,12,3,6,9) (4,7,10,1,8,12,2,5,11,3,9,6)

FIGURE 1

Proposition 3.1.2. IfGe &(n), then F(G) is homeomorphic to F*+ι,
and # A u t ( G ) < 2 .

Proof. Suppose that G e &(ή). Inspection of Figure 2 shows that
s{G) agrees with s(G'), where Gf c G and G - G1 consists of those
edges disjoint from the hooks e[ and en+ι. Further inspection shows that
s(G) = s(G') = 1, so

whence F{G) is indeed homeomoφhic to F^+ι. If φ e Aut(G), then
φ must fix the unique cycle in G of length two. Since a fatgraph au-
tomorphism fixing an oriented edge must be trivial, we conclude that
# Aut(G) < 2, as was claimed.

Remark. In fact, arguing as above, one can show that
2 for each G e &(ή), so

A much better estimate on this quantity will be derived in Appendix B.
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3.2. The integration scheme. Consider the functions pt: ZΓ* —• R+ ,

where />Z(Γ) is the hyperbolic length of the zth decorated horocycle with

respect to the decorated conformal type f e &~g

s for i = 1, , s. Level

sets of the function p — X *=1 p.: έfg -» R^ define a codimension-s1 fo-

liation of U~g , and the action of MCs on SΓg obviously preserves this

foliation. The leaf corresponding to p = X J=1 1 is invariant under the

MC*-action and provides a canonical section S: ΣΓ* -> &* for the deco-
o S o

rated bundle Fg -> <Γ*.
ig

Our general integration scheme is provided by
T

then

Theorem 3.2.1. If ω is a top-dimensional differential form on Jί*,

where the index set (*) in the sum is the set of all (unmarked) isomorphism
classes [G] of trivalent fatgraphs so that F(G) is homeomorphic to Fg,

φ*(ω) denotes the pull-back of ω by the forgetful map φ: ZΓg —• JKs,

and 2(G) c ZΓ* is the intersection of the image of the section S: £ΓS —>

ZΓg with the interior of any cell in the cell-decomposition of ϊΓg which
corresponds to G.

Remark. Let us emphasize that the index set (*) in the sum is fi-
nite, though the number of summands grows super-exponentially with the
topological type of the surface (cf. the remark following Proposition 3.1.2
and Theorem B in Appendix B). Furthermore, our computer enumeration
of fatgraph complexes (mentioned before) is of obvious relevance to the
implementation of the integration scheme.

In order to prove the theorem, we require the technical
Lemma 3.2.2. The image of the section S meets transversely each face

of the cell-decomposition of ^g . Furthermore, for each trivalent fatgraph
G, the projection 3f(G) —• φ(3ί(G)) is # Aut(G)-to-one except over a locus
in J(g of zero measure.

The proof of the lemma is postponed until the next subsection, where
e introduce coc

we can give the

Proof of Theorem 3.2.1. Let & c S(&£) c ίfg be a fundamen-

tal domain for the action of MCs

σ on S(ZΓ*). Of course, Γ^ ω =
6 O g

fpφ*(co) by naturality of integration. Since ^ meets the cells of the

we introduce coordinates on ϊΓs. Assuming the lemma for the time being,
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cell-decomposition of ZΓ* transversely (by the first part of the technical

lemma), we conclude that \J(m)MCs

g(3f{G)) has full measure in *

(where the index set (*) has the same meaning as above) and find

Φ\ω).

The second assertion in the technical lemma guarantees that

9T\MCs

g{β{G)) fFAut(G) J

proving the theorem, q.e.d.
We remark that the successful application of our integration scheme

depends on finding coordinates on !J~* with two attributes: the form ω
of interest must pull-back to something reasonable in the coordinates, and
the region 3{G) of integration must admit a tractable expression in the
coordinates. In the next subsection, we will describe coordinates with the
first attribute for the Weil-Peterson volume forms.

3.3. Coordinates on decorated Teichmuller space. We will require sev-
eral coordinatizations of έΓs in the sequel. To begin this subsection we
quickly recall that the relevant constructions; full details can be found in
[9, §3]. The basic coordinates (with respect to which our other coordi-
nates are defined) are called "λ-lengths" and defined as follows. Fix some
Γ e ZΓ* and suppose that c is (the isotopy class of) a simple arc in Fs

g

connecting (not necessarily distinct) punctures; let us call such an arc c
an "ideal arc" in Fs. The Fuchsian group underlying f determines an
identification of the universal cover of Fs with the Poincare disk D, and
we may choose a lift c to D of a geodesic representative for c. Insofar as
c connects punctures of Fs, Γ determines a horocycle centered at each
of the ideal endpoints of c. Let δ be the (signed) hyperbolic length along
c between these horocycles, taken with a positive sign if and only if the
horocycles are disjoint. Finally, the A-length of c with respect to Γ is
defined to be

Now, let Δ be (the isotopy class of) a collection of disjointly embedded
ideal arcs so that each component of Fs - A is an ideal triangle in Fs

o o

let us call such a collection Δ an "ideal triangulation" of F*.
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A.

(a) (b)

FIGURE 3

The Poincare dual of an ideal triangulation Δ of Fs is a fatgraph G
embedded as a spine of Fs

g , where the cyclic order on the hooks about a
vertex is induced by the orientation of the surface. By definition, F(G)
is homeomorphic to Fs , and a marking on F* induces a marking on
G and conversely. It is convenient to translate A-lengths into the setting
of fatgraphs, where the A-length λ(e Γ) of an edge e of G is defined
to be the A-length of its dual ideal arc. If e is a hook of G, we may
write λ(e Γ) for the A-length of the edge of G containing e, and if the
decorated conformal type Γ is fixed or understood and x is an ideal arc,
an edge of G, or a hook of G, we may write simply λ(x) = λ(x f ) .

Our basic coordinatization of £Γ* is described in

Theorem 3.3.1 [10, Theorem 3.1]. Fix a marked trivalent fatgraph G
so that F(G) is homeomorphic to Fs. The assignment of λ-lengths to the

o

edges of G establishes a homeomorphism between ZΓ* and the collection
of all Revalued functions defined on the set of edges of G.

For later application, we briefly discuss the dependence of A-length co-
ordinates on the choice of trivalent fatgraph G. To this end, suppose that
eχ and e2 are the hooks of some edge e of G with distinct endpoints v{

and υ2, and let et, f., gt be the hooks of G incident on vt occurring
in this cyclic order for / = 1, 2 (see Figure 3(a)). We may alter G by a
"Whitehead move" along e to produce another trivalent fatgraph G as in
Figure 3(b). Identify the edges of G1 with the edges of G in the natural
way, where the edge of G1 arising from e is denoted e as in Figure 3(b).
Of course, a marking on G gives rise to a marking on G'.

Corollary 3.3.2. Fix g and s. The collection of finite compositions
of Whitehead moves act transitively on the collection of marked trivalent
fatgraphs in &s

g .
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Proof. Since ZΓ* is connected and two top-dimensional cells in the cell-

decomposition of !Γ* differ by a Whitehead move (cf. [10, Proposition
7.1]), this follows easily from Theorem 3.1.1.

Remark. One can use this result to check that Table 1 accurately enu-
merates the trivalent fatgraphs associated to F\ simply check that the
asserted family is closed under Whitehead moves.

The effect of a Whitehead move on λ-lengths is given by
Lemma 3.3.3 (Lemma A. la of Appendix A). With the notation above,

the λ-length of each edge of G1 agrees with the λ-length of its corresponding
edge of G, except that

λ [ e ) ~

We call such an algebraic transformation of ^-lengths a "Ptolemy trans-
formation." (See Appendix A for the explanation of this terminology.)

Corollary 3.3.2 and Lemma 3.3.3 together give
Theorem 3.3.4 [10, Proposition 7.3]. Fix a marked trivalent fatgraph

G with F(G) homeomorphic to Fs

g. The action of MCg on λ-lengths
with respect to G is given by compositions of Ptolemy transformations. In
particular, the action of MCg is by tuples of rational maps.

Proof. In light of the previous two results, the theorem follows imme-
diately from naturality of λ-lengths under the action of MCg .

Remark. In fact, one can give explicit formulas for this representation
of MCS [10, §7 and the Addendum], but we will not need this material
here.

Closely related to these coordinates on &~s are certain parameters,

called "λ-lengths," defined as follows. Fix Γ e ZΓ* and some ideal tri-
angulation Δ of Fg . There is a unique family Δ* of ideal arcs repre-
senting Δ which are geodesic for the Poincare metric underlying Γ. If
h is a horocycle in Fg corresponding to the decoration of f, then Δ11

decomposes h into a collection of arcs, and we refer to each such arc as
a "(Δ-)horocyclic segment." Notice that there is a natural bijective cor-
respondence between the horocyclic segments and the hooks of the cor-
responding fatgraph, where we assign to a horocyclic segment the hook
opposite it at the vertex.

Suppose that Δ is an ideal triangulation of Fg with corresponding
trivalent fatgraph G. We define a "sector" of G to be the region between
two consecutive hooks of G which are incident on a common vertex. One
identifies each sector with its corresponding Δ-horocyclic segment, which,
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in turn, is identified (as above) with a hook of G. If e is a hook of G
incident on the vertex υ, then we shall denote the sector opposite to e
at v by (v9e). In particular, there are exactly three sectors associated to
each vertex of G, so if G has N edges, then G has 2N sectors.

We define the λ-length a(υ ,e,T) of (υ, e) with respect to f to
be one-half the Poincare length of the corresponding horocyclic segment;
when the decorated conformal type Γ is fixed or understood, we write
simply a(v , e) = a(v , e Γ).

Now, suppose that Γ e έf*, and let (v, e), (v, / ) , and (v, g) be
three distinct sectors of C. An elementary computation in hyperbolic
geometry [10, Proposition 2.8] shows that the A-lengths of the sectors are
given by

a(v,e)= ? w , a(υ,f)= " " ' a{v,g) = -λ{^

Thus, for instance, λ(^) = [a(v, f)a(υ, g)]~1^2, and it follows from
Theorem 3.3.1 that the collection of A-lengths of sectors of a marked
trivalent fatgraph G uniquely determines the corresponding decorated
conformal type. Moreover, if ex, e2 are distinct hooks of a common
edge e of G, and (υx, ex), (v{, /j), (Vj, gχ) are distinct sectors and
(v2, ^ 2 ) , (v2, f 2 ) , (v2, g2) are distinct sectors (perhaps with vχ = v 2 ),
then the quadric "coupling equation"

a(υχ, fx)a(vχ, ^ ) = a(υ2, / 2)α(t; 2, g2)

holds among the Λ-lengths. We summarize with
Corollary 3.3.5 [10, Proposition 3.5]. Fix a marked trivalent fatgraph

G so that F(G) is homeomorphic to Fs. The assignment of h-lengths

to the sectors of G establishes a homeomorphism between ZΓ* and the
collection of Revalued functions defined on the collection of sectors of G
which satisfy the coupling equations.

Thus, we may identify ZΓ* with the quadric variety determined by the
coupling equations.

We next explain the description of the regions 3f(G) of integration of

our integration scheme in λ-lengthsjmd Λ-lengths, and we begin with a

discussion of the section S: £7~* —> &*.

Suppose that G is a trivalent fatgraph and recall the surface F'(G)
(which arose in the construction of the punctured surface F(G) from
the fatgraph G) with s = s(G) boundary components, say {<9J*. Each
boundary component di gives rise to a closed edge-path on G in the
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natural way, and if a closed edge-path consecutively traverses hooks /
and g incident on the vertex υ with incident hooks e, f, and g, then
we say that the edge-path "traverses" the sector (v, e). By definition of
/z-lengths, if f e 5Γ*, we find that the hyperbolic length of the horocycle

in Fs corresponding to d is

where the sum is over all sectors (υ, e) of G traversed by the closed
edge-path corresponding to the boundary component dt of F'(G). Thus,
the canonical section S is affine in the Λ-length parameters.

In order to finally describe 3f{G), we briefly recall [9, §§4 and 5] the
idea of the proof of Theorem 3.1.1. Affine duality establishes a homeo-
morphism between the (open) forward light-cont L + in Minkowski three
space M and the bundle of horocycles over the circle at infinity in the
hyperbolic plane (as in the Appendix). Using this identification, a point
Γ of ZΓ* gives rise to a group Γ < SO+(1, 2) as well as a discrete set

o

38 c L+ which arises from the decoration. The closed convex hull H
of 38 in M is a Γ-invariant convex body in M, and extremal edges of
H give rise in the natural way to a collection of geodesies Δ(Γ) c Fs.

The collection Δ(Γ) is genetically an ideal triangulation of Fs, and the

(open top-dimensional) cell in ^ corresponding to an arbitrary ideal

triangulation Δ of Fs is

: Δ(Γ) is isotopic to Δ} .{ΓeT

The condition that f e ^ lie in ^(Δ) for some ideal triangulation
Δ is therefore the requirement that the lift to M of each ideal arc (as a
segment connecting distinct points of L+) in Δ be extremal in the convex
hull H. Each ideal arc in Δ separates two ideal triangles in Fs, and it
is in fact sufficient that the lift to M of each ideal arc in Δ be extremal
in the hull of the lift to M of these two ideal triangles. Membership in
^(Δ) is therefore guaranteed by a collection of coupled conditions, one
such "face condition" for each ideal arc in Δ, where the face condition
corresponding to an ideal arc in Δ is the constraint that the associated
simplex in M have positive volume. Thus, a point Γ e !T* lies in the
cell corresponding to G if and only if each face condition holds for the
λ-lengths (with respect to Γ) of edges of G.

In fact, each face condition can be expressed in terms of A-lengths as
follows. Let G be a trivalent fatgraph with distinct hooks ex, e2 of a
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common edge e of G, and let (υx, eχ), (υχ, fχ)9 (vχ, gχ) be distinct

sectors and (υ2, e2), (v2, f 2 ) , (υ2, g2) be distinct sectors (perhaps with

υx =v2)\ assume moreover that the hooks incident on vertex υt occur in

the cyclic order e{, f., g. for / = 1, 2. The face condition corresponding

to the edge e of G is

ι = l

so the face conditions are linear in Λ-lengths. One imagines 3f{β) in
Λ-length space, therefore, as an affine slice of the intersection of a quadric
variety with a finite collection of half-spaces.

Proof of Lemma 3.2.2. Since the coordinate transformations on λ-
lengths associated with changes of underlying marked fatgraphs are dif-
feomorphisms (indeed, they are rational; cf. the last assertion of Theorem
3.4.4), we may choose any convenient fatgraph to prove transversality. Let
G be a trivalent fatgraph with F(G) homeomorphic to Fs, where G has

s - 1 loops (i.e., cycles of length one), say {/J*"1, where /. has endpoint

υ( for / = 1, , s - 1. There is a distinct puncture of F* associated

with each I., and we let pt be the hyperbolic length of the corresponding

horocycle, ps the hyperbolic length of the remaining horocycle of Fs,

i <£ lt the hook of G incident on vJ., and tt the edge of G containing i.

for / = 1, , s - ^ 1 .

Now, identify ^ s with the quadric determined by the coupling equa-

tions and let {α,-}^ denote the various Λ-lengths, where G has TV edges.

We may assume that ai = a(υi, it), so that p{ = 2a. for / = 1, , s-1,

and ps = 2 J2*N ai As observed before, the face condition associated to

an edge e of G is determined by the positivity of a certain function Xe,

which is linear in the Λ-lengths, and membership in a face of codimension-

p in the cell-decomposition of ^ s corresponds to the vanishing of p

distinct functions among {Xe :e is an edge of G} .

We prove transversality by showing that the gradients

{Vpi: i = 1, , s] U {VXe : e lies in a proper subset

of the set of edges of G}

are linearly independent in R2N . In fact, the only functions among {Xe : e
is an edge of G} with nontrivial dependence on at are XL = 2αz and
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Xt for / = 1, , s - 1, so we may project out the subspace spanned by

{ }

Now, suppose that v £ {v^1 is a vertex of G, say with inci-

dent hooks e, / , g contained, respectively, in the edges e, f, g. Only

VXe, VXf, and VX among {VXχ : x is an edge of G} have a nonzero
projection into the subspace Σ spanned by the vectors Va(υ, e),
Va(v, / ) , and Vα(v, g) (taken, in this order, as a basis for Σ), and
these projections are given by ( - 1 , 1, 1), (1, - 1 , 1), and ( 1 , 1 , - 1 ) ,
respectively; of course, jVps has projection (1, 1, 1) into Σ. Thus, if
the projection into Σ of aVXe + bVXf + c^Xg + dVps vanishes, then we
must have

O=b+c+d-a=a+c+d-b=a+b+d-c,

so a = b = c = -d.
Finally, a face of the cell-decomposition of ^ s is determined by the

vanishing of a proper collection of functions among {Xχ : x is an edge of
G} , and the first assertion of the lemma follows easily.

For the second assertion, suppose that Γ e ^ G ) , say with the corre-

sponding λ-length coordinates λ: {edges of G} -+ R+ . Each ψ e Aut(G)

induces a permutation π on {edges of G} , and MCsJΓ)n3f(G) corre-

sponds to the assignments

{λoπψ : ψe Aut(G)}

of A-lengths. Thus, the projection 3f{G) -^ φ(β{G)) is #Aut(G)-to-one
unless there is a nontrivial ψ e Aut(G) so that λ o πψ = λ. If there is an
unoriented edge e of G which is not fixed by π , then this imposes the

restriction that λ(e) = λ(π (e)), so λ lies in a hyperplane and φ(T) lies
in a locus of measure zero in φ{2ί{G)), as asserted. If every unoriented
edge of G is fixed by π , where ψ e Aut(G) is nontrivial, then an
elementary argument (which we omit) shows that g = s — 1 and ψ is the
hyperelliptic involution; in this case, simply repeat the argument above on
the quotient of the decorated bundle by the hyperelliptic involution.

Remark. Notice that we have in fact proved that each level set {/̂ -(f)
= r. for / = 1, , s} for any rχ, , rs e R+ meets transversely each

cell in the cell-decomposition of y 5 .
To close this subsection, we recall the expression in Λ-lengths for the

pullback of the Kahler two-form of the Weil-Petersson metric on ZΓ*.

Theorem 3.3.6 (Theorem A.2 of Appendix A). Fix a trivalent fatgraph

G so that F(G) is homeomorphic to F*. The pullback to J* of the
o o
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Weil-Petersson Kάhler two-form on EΓS is given by

where the sum is over all vertices of G with incident hooks in the order
e 5 /\ 8 {where the order is consistent with the fattening).

Thus, ^.-lengths satisfy only one^of the restrictions mentioned before
on a suitable coordinatization of ϊΓ* namely, the form of interest (essen-
tially an exterior power of the two-form above) is reasonable in λ-lengths.
To render the integration scheme usable for computing Weil-Petersson vol-
umes, we will introduce certain further coordinates on each region 2J{G)
in the next subsection.

3.4. Coordinates on regions of integration. Fix a marked trivalent fat-
graph G, where F(G) is homeomorphic to Fs, so that G has N —
6g - 6 + 3s edges. We refer to each function

defined in the previous subsection for each edge e of G as a "simplicial
coordinate" on G. It is convenient to combine these simplicial coordinates
into a vector X(f) e RN whose entries are indexed by the edges of G.
Let us emphasize that whereas A-lengths are the restriction of a pairing
{ideal arcs in F*} x ZΓS -> R+ , the simplicial coordinates depend as well
on the underlying fatgraph G.

Recall the following theorem.
Theorem 3.4.1 [10, Theorem 5.4]. If X e R+ is a vector whose entries

are indexed by the edges of G, then there is a unique Γ e &ls so that
o

- Λ.

Remark. The proof involves an energy functional on R ^ (whose gra-
dient limits on the variety determined by the coupling equation) and is
unfortunately nonconstructive. Actually, there is a stronger version of the
theorem which allows simplicial coordinates to vanish on an appropri-
ate collection of edges of G, but we will not require this stronger result
(since we are interested here in integrating only top-dimensional forms
over JtSy).

It follows that simplicial coordinates establish a homeomorphism be-
tween the interior of any cell in the decomposition of ΣΓ* corresponding
to G and the collection of Revalued functions defined on the set of edges
of G. It is natural to consider the expression in simplicial coordinates for
the restriction of the section S: 3ΓS —• ^ s , and we have

o o
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Lemma 3.4.2. If 3° is a closed edge-path on G, then we have the equal-
ity

where each sum is over all sectors (v, e) traversed by 3° {counted with
multiplicity), {υ, e), (v, f), (υ, g) are the sectors of G incident on υ,
and f {and g, respectively) is the edge of G containing f {and g).

Proof Consider a (not necessarily closed) edge-path on G of length
two through the (not necessarily distinct) vertices vl9v9v2 (in this order),
where e' , f[, g[ are the hooks incident on υ. and ei9 e\ are the hooks
of a common edge e{ of G for i = 1,2, and eχ, / , e2 are the hooks
incident on υ . Of course,

X€χ + Xei = a{f) + a{eχ) - a{e2) + a{f) - a{e{)

2

ί = l

2

= 2α(/) + 53α(/)) + α(g ) - α(<? ),
ι = l

and the result follows easily, q.e.d.

In case 3P is a closed edge-path on G and f e £FS, we define J f ( ^ Γ)
= X(&) = 2Σ(*{v

 9 e) 5 where the sum is over all sectors (v, e) (counted
with unsigned multiplicity) traversed by 3°, and we have

Corollary 3.4.3. Fix a marked trivalent fatgraph G. In simplicial coor-
dinates on 9f{G), the region 2{G) of integration is given by the straight
simplex

{X:Xe> Ofor each edge e ofG and X{&>.) = lfori=l,- 9s}9

where &. is the closed edge-path on G corresponding to the ith puncture

Proof The previous lemma gives that p({f) — X{^t f) for i =

1, , s and each f e ^ s the result then follows immediately from

Theorem 3.4.1. q.e.d.
Thus, simplicial coordinates satisfy the second provision of our integra-

tion scheme since the regions of integration are pleasant in these coordi-
nates. Clearly, if we could compute A-lengths in terms of simplicial coor-
dinates on G for each trivalent fatgraph G, then the integration scheme
would provide an effective means of computing Weil-Petersson volumes.
It is to this purpose that the next subsection is dedicated; we will achieve
only limited success but sufficient for our applications below.
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3.5. The arithmetic problems. Our considerations of the previous sub-
sections have led to a collection of arithmetic problems (to be restated
below for the convenience of the reader) which must be solved for the
systematic application of our integration scheme to the computation of
Weil-Petersson volumes. Indeed, there is one such problem to be solved
for each trivalent fatgraph; namely, we must compute /Ulengths from sim-
plicial coordinates. The fattening of the graph evidently plays no role in
the arithmetic problems, and we must solve the following

Arithmetic problem. Suppose that G is a trivalent graph, say with
edges {et}f=l, and associate to the edge ex a real-valued variable A (the
"λ-length") for i = 1, , N. Suppose that e) and e] are the hooks of
G contained in e{ and incident on the (not necessarily distinct) vertices
v and w , respectively. Suppose that e-, ek, e) (and et, em, ef , respec-
tively) are the hooks of G incident on υ (and w) and that e. 9€k9eι,em

are contained in the (not necessarily distinct) edges e., ek, eι, em , respec-
tively. Define the "simplicial coordinate"

= λj + K - λj λι + λm - λ.

Associate to the edge ex of G is simplicial coordinate X. in this way for
i = 1, , N, and denote this system of coupled nonlinear equations by

(*G)

We ask for a solution to (*G) in the following sense: suppose that the
λt > 0 for / = 1, , N are chosen in a range so that X. > 0 for
i = 1, , N we must express λ. = λj(Xχ, , XN) as a function of
{Xi}ΐ=ι f o r e a c h j = 1 , , N .

Remark. For applications to once-punctured surfaces, one needs only
compute the volume form Hf=idlogλi in terms of {Xi}f=ι (see §6.2).

It follows from Theorem 3.4.1 that the system (*G) admits a unique
solution for each trivalent graph G. For later application, we next give
some examples.

Example 3.5.1. Suppose that G is the fatgraph whose corresponding
permutations are

σ = (2, 3, 1 ,5,6,4) and τ = (4, 5, 6, 1, 2, 3)

(in the notation of §3.1), and let a,b,c denote the A-lengths of G with
corresponding simplicial coordinates A, B, C, respectively. Thus, we
have

4 ,b + ca ^a + cb
abc abc abc

b2 - c2
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SO

2 16 2 16 2 16

{A + B)(A + C]

solving the system (*G).
Example 3.5.2. Let G denote the fatgraph illustrated in Figure 4, and

adopt the notation indicated there for the edges of G. (The Greek letters
in the figure denote the associated Λ-lengths and will be used below.) We
abuse notation slightly and let a, b, - , / denote the λ-lengths of the
corresponding edges and let A, B, , F, respectively, denote the sim-
plicial coordinates of the edges a, b, , / . As before, associated with a
closed edge-path of G, we consider the sum of the simplicial coordinates
(counted with unsigned multiplicity) of the edges traversed, and define the
quantities

(1)

(2)

(3)

(4,

(5)
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(6, Q6 = E + F=2-ψl,

m

We cannot give any motivation for the particular choice of edge-paths
above other than to say that they arise naturally in our computations. It
follows easily from (2) and (5) (and (3) and (4), respectively) that

02 = 57fis a n d 04 = 5703.

SO

(aΫ-Q& and (f\-
-Q-Q a n d V) -

Substituting these into (6) gives

SO

(f\2_n2( /
\a) \a) \e

From (1) and (2), then, we have

in
so

cd-1

that is,

aά = Q2Q4'
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Now, from (8) and (9), dQ9 = cQs, and therefore

(dγ=Q1Q2Q1 a n d / c ) 2 = ^ A
W Q2Q4Q9 \aJ Q2Q4QS

Finally, using (1) again, we have

Thus, if

then

i K ,2 K

,2

2 K μ K
e = f =

solving the system (* σ ) .
Remark. In fact, this computation was first performed on the computer

using [6] on a MacII. Indeed, many trivalent graphs have been similarly
handled, and the phenomena of the examples above are typical. Specifi-
cally, for each graph G, there is a collection {Pj}f=χ of closed edge-paths
on G so that the associated "Λ-lengths" (derived from the A-lengths as
before) are rational functions of {^(Λ)} 7 = 1, where X(P) denotes the
sum of the simplicial coordinates of edges traversed by P as in §3.4. It is
tempting to conjecture that this is always the case; notice that this conjec-
ture implies, in particular, that each Weil-Petersson volume is in integral
of a certain rational function over a straight simplex.

Crucial for our asymptotic estimates of Weil-Petersson volumes is
Proposition 3.5.3. Fix a trivalent fatgraph G with edges {e,-}^ , let λi

and Xt, respectively, denote the λ-length and simplicial coordinate of et

for i = 1, , N, and let p denote the sum of all h-lengths of sectors of
G. Then X. = -dp/dlogλif and \άeίH\ < (3ρ/N)N, where H is the
hessian of p as a function of f
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Proof. If we adopt the notation in the statement of the Arithmetic
Problem for the edges of G near ei, then

dp d

βlogλ,.

proving the first part.
For the second part, we suppose first that G has no loops, and define

a matrix ANX2N as follows. The rows of A are indexed by the edges,
and the columns of A are indexed by the sectors of G. If the /th sector
of G lies between the hooks e. and ek and is opposite the hook e ,
where e(, e , ek are contained in the (distinct) edges ei, e , ek of G,
respectively, then we define

_ Au — Aj[ — A
kl

and Aml = 0 if m {i,j,k}.

Ajl — -2, while ifIn case G has loops and j = k, then Λj7 = 1 and
/ = j (for instance), then Aa = 0 and Akl = - 1 .

As an example, consider the fatgraph G in Figure 4, where the λ-
lengths and Λ-lengths are as indicated and will be taken in their respective
alphabetic orders. With this notation, the matrix A associated to G is

given by

/ - I
- 1
+ 1
0
0

1 0

+ 1
- 1
- 1
0
0
0

- 1
+ 1
- 1
0
0
0

0
0

+ 1
0

- 1
- 1

0
0

- 1
0

- 1
+ 1

0
0

- 1
0

+ 1
- 1

- 1
- 1
0

+ 1
0
0

- 1
+ 1
0

- 1
0
0

+ 1
- 1
0

- 1
0
0

0
0
0

+ 1
- 1
- 1

0
0
0

- 1
- 1
+ 1

0
0
0

- 1
+ 1
_ i

If we adopt the notation

^ ) ^ , then by definition

f,.)^ and EXP(χ.)f=ι =

where the superscript t denotes the transpose, so by the chain rule

H = ADAX,

D being the diagonal matrix with entries given by the A-lengths. In par-
ticular, if X. is given linearly in /z-lengths by

x-
λμk v m
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as above, then one finds that

λ,

Finally, since the determinant is the product and the trace the sum of

the eigenvalues, by the dominance of geometric over arithmetic mean, we

have
N

as was asserted.

4. The once-punctured torus

For completeness and to explain a small subtlety, we include here the
computation of the Weil-Petersson volume μ\ of Jt*.

It is an easy exercise (using Corollary 3.3.2) to check that there is a
unique isomorphism class of unmarked trivalent fatgraph G whose associ-
ated surface is homeomorphic to Fχ namely, the fatgraph G of Example
3.5.1.

The subtlety here arises from the hyperelliptic involution, which is man-
ifested as a fatgraph automorphism i e Aut(G) which leaves invariant
each (unoriented) edge of G. Of course, according to Theorem 3.3.1, if
we specify a marking on G, then tuples of A-lengths on the edges of G
give coordinates on ZΓχ . On the other hand, ordered triples of positive

real numbers determine only a point of &^/ι.
Remark. This observation corrects our discussion of the representation

of MC\ (cf. Theorem 3.3.4) in [10, §7]. More generally, suppose that G is
a trivalent fatgraph whose associated surface is homeomorphic to Fs

g with
gs Φ 1. Given an ordered triple of edges of G, there is at most one vertex
of G on which the edges are incident. Thus, aside from Fs = Fχ , we

may identify &~s with E ^ " 6 + 3 5 , and the corresponding action of MCs

σ

on R**~6+3ί g i v e s a faithful representation.

4.1. Computation for the once-punctured torus. Let G be the fatgraph

of Example 3.5.1, and adopt the notation there for the λ-lengths and sim-
plicial coordinates of the edges of G we assume, moreover, that the fat-
tening on G is compatible with the ordering a, b, c on the Λ-lengths.

By Theorem 3.3.6, the Weil-Petersson Kahler two-form (which is the
volume form in this case) pulls back to
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ω = 4(d Yoga Λ d \ogb + d \ogb Λ d logc + d logc Λ d logα)

_ 2(CdA ΛdB + AdB AdC + BdC ΛdA)
(B + C)(C + A)(A + B)

where the second equality follows from Example 3.5.1. Of course, the
horocycle has hyperbolic length 2(A + B + C) by Lemma 3.4.2, so the
canonical section S: t7[ι —> ^ is determined by the condition that C =
\- A- B. Thus, we find that the volume form is given by

dAΛdB
ω = -—

One checks easily that #Aut(G) = 6, so it follows from Theorem 3.2.1
that

μj = - / ω.

In light of the remarks above, we find from Corollary 3.4.3 that 3f{G)/i
is coordinatized by

so
dAΛdB

_ 4 ίι dxlogx _ π2

and we have
Theorem 4.1.1. The Weil-Petersson volume of J^l is π2/6.

Remark. As in [22], it follows that the Weil-Petersson volume of

is π 2 / 3 .

5. The twice-punctured torus

In this section, we compute the Weil-Petersson volume μ\ of the moduli
space of the twice-punctured torus. In the first part we derive an expression
for μ[ as an explicit integral over a four-dimensional simplex, and in the
second part we evaluate this integral in closed form.
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5.1. Derivation of the integral expression. To begin, we show that only
one of the trivalent fatgraphs in Table 1 contributes to the integral. To
this end, recall that we have illustrated these fatgraphs in Figure 1, and
adopt the notation there, where an upper case letter next to an edge denotes
the corresponding simplicial coordinate. In light of Lemma 3.4.2, we can
compute the hyperbolic length of each of the horocycles in terms of the
simplicial coordinates, and these expressions are given in Table 2.

The Permutation τ The hyperbolic lengths of horocycles

(2, 1,4, 3, 7, 10, 5, 11, 12, 6, 8, 9) F, F+ 2(A +B+ C+ D + E)

(4, 5, 7, 1 , 2 , 10, 3, 11, 12, 6, 8, 9) 2C + Λ + 5 + £ + F , 2 Z ) + Λ + £ + £ + F

(4, 5, 7, 1 ,2 , 10, 3 , 12, 11, 6, 9, 8) E + F, E + F + 2(Λ + B + C + D)

( 4 , 7 , 10, 1 , 8 , 1 1 , 2 , 5, 12, 3 , 6 , 9 ) 2(A + D) + £ + C + E + F, B + C + E + F

( 4 , 7 , 10, 1 , 8 , 12, 2 , 5 , 1 1 , 3 , 9, 6) A + B + C,A + B + C

TABLE 2. Hyperbolic lengths of horocycles on F{

It follows by inspection of the expressions in Table 2 that if the two
horocycles are required to have the same hyperbolic length, then some
simplicial coordinate must vanish except in the case of the fatgraph corre-
sponding to τ = (4, 5 , 7 , 1 , 2, 10, 3, 11, 12, 6, 8, 9). For the remain-
der of this section, we shall let G denote this fatgraph and adopt simplicial
coordinates on the edges of G as indicated in Figure 4.

We summarize with
Corollary 5.1.1. If ω is a four-form on the moduli space Jί^, then

ί ω=\l Φ\<»)
JJt} 4 J3iG\3f(G)

(where, recall, φ: &[ -> Λίj\ is the natural map). Furthermore, with re-
spect to the simplicial coordinates A, B, E, F on the edges of G, the
domain of integration is given by the unit simplex

Proof. It follows from the discussion given above that the image of the
canonical section S:^[2 -^^ is contained in the closure of MC\{β(G)),
and the expression for the integral follows directly from Corollary 3.4.3
since #Aut(G) = 4 from Table 1. Furthermore, the canonical section S
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is given in simplicial coordinates by the conditions

C = D= \{\-A-B-E-F),

so we may take the simplicial coordinates A, B, E, F as coordinates on
2{G) subject only to the stated restrictions, q.e.d.

As before, we let a, b, -- , / , respectively, denote the λ-length of the
edge of G with associated simplicial coordinate A, B, , F. Further-
more, let a = dloga, b = d\ogb, ••• , / = dlogf. For convenience,
we will often drop the symbol Λ in an exterior product and write, for
instance, simply ah for a Λ b.

According to Theorem 3.3.6, the Weil-Petersson Kahler two-form pulls
back to

ωχ = - 2(άc + cb + bά + άd + db + ec + cf + fe + fe + ed + df)

so the Weil-Petersson volume form pulls back to

ω = I ω J = S(fe + bά)[fe + bά + (c + d){b + f-ά-e)]

- b)(e - b)(ά - b)(c -b) + (f- b)(e -b)(ά- b)(d - b)]

where the third equality is easily verified directly.

Recall the expressions {Q;}\ which arose in the solution of (*G) in

Example 3.5.2, and adopt the convention, as above, that Q. = j
for j = 1, , 9. Using the solution to (*G), we can express ω in terms
of {Qj} as

ω = (Q{ + Q2 - Q5 - Q6)(Q{ + QA-Q3- Q6)

x (β2 + Q4 - β 3 - GsHGi + Q7-Q3- Qs)

Finally, on the image of the section S, we find

Qi =A + B, Q2=l-A-F,

Q3=\-B-F, Q4=l-A-E,

Q5=l-B-E Q6=E + F,

QΊ=2-A-B-E-F, Qs=Q9=l,

and we set q. = Q~ι for / = 1, ,9 for convenience. A short compu-
tation gives that

ω = (det Af) dAΛ dB Λ dE Λ dF,
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where

M =

/HH01-02

+01 " 04
- 0 2 - «4

\H
/C

1
1

H0! - 0 7

) 1 1

0 1

1 0

> 0 0

f ~03

V 01 - 0 7
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+0,+
+01 +
+03 +

01 + 03 + ί
OΛ (q%qΛ

0
0
1 )

0
0

V o
+Q
+Q
+Q

01 - 0 3 +

«5

«3
05

? 5 - 0 7

0

0205

0
0

4

2

6

05 " 0 7

+ 0 5 -
" 0 4 "

+ 0 5 -
+ 0 5 -

0
0

0106
0

- β 3

+<22

- δ i
05 ~ ί

06

«6

#4

«7

Oλ
0

0

1 /

?7

+03"
+ 0 3 -
+ 0 3 -

+Q4

-Qι
03-^7

Routine matrix manipulations (using the fact that Q7 = Q3 + Q4 = Q2 +
Q5) allow the final computation of detM, and one finds that the Weil-
Petersson volume form pulls back to

ω =
(2,(22(23(242526

dAhdB KdEKdF.

Our main result for this section then follows from Corollary 5.1.1:

Proposition 5.1.2. The Weil-Petersson volume μ[ of J?l is

wΛ r̂e /Δ denotes the integral over the simplex {xt > 0 ybr / = 1, 2, 3, 4 :

Σ/=i -̂jf < 5} W ί "^ respect to the Euclidean volume element.
Proof This expression arises from that derived above by a homothetic

change of variables.
Remark. The integrand admits an eight-fold symmetry group whereas

#Aut((7) = 4; the "extra" symmetry arises from a change of orientation
on if.

5.2. Evaluation of the integral. This subsection is dedicated to the
computation of μ\ in closed form, and our starting point is the integral
expression in Proposition 5.1.2. Our general computational scheme is in
the category of folklore in quantum field theory (and was learned by the
author in bits and pieces from Itzhak Bars, Eric DΉoker, and H. S. La).

Recall that if x > 0, then £ = /0°° dσtxρ{-σx} , and σ is called the
"Schwinger parameter" associated to £ . Introducing Schwinger parame-
ters a, β, , φ, respectively, for the factors (x{ + x2), (x3 + x4), ,
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(j - x2 - x4) in the denominator of the integrand in Proposition 5.1.2, we
find

where

and f# denotes the integral over the orthant

(9 = <9{μ, β, - , φ ) = {0<a<oo,0<β<oo,- , 0 < φ < 0 0 }

with respect to dadβ... dφ. Since the integrand is nonnegative, conver-
gence is equivalent to absolute convergence (and we henceforth omit such
routine justifications), so

Now, we apply the standard formula

where A(s) denotes the ^-simplex {y. > 0 for i = 1 ,•••,«:

< s}, and Γ is any contour {t + V^Λξ : ξ e R} so that t >

Thus,

2 f ( h\ f ι/1 , , / t „ [ dzeiφ(λz)

and we may take the contour Γ = {z = / + V^T^ : ξ € K} , where t>h>
ΛJ^. Since the contour is chosen independently of the variables a
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and β , we find

-1/2

R. C. PENNER

*f
= L

z)

dλ(l-λ)

dz exp(Λz). z -€ -φ t z -δ - φ
ip=r^ log — ^ log ,

r 2 π λ / Γ T °z-γ-δ "z-γ-e

where log denotes the principal value of logarithm with branch cut the
negative real axis. To justify this, we must check that the arguments of
log avoid the branch cut; we compute

(t-€-φ)(t-γ-δ) + ξ2

+ ξ2
{t-y-δf + ξ

since t > h, and similarly for (z - δ - φ)/{z — γ — e).
Furthermore, we claim that

> 0

2z-h

2k-l

and the convergence is absolute. To see this, we observe that

so the claim follows provided

1 >
(z-e-φ)/(z-γ-δ)-l
(z-e-φ)/(z-γ-δ)

γ+δ-e-φ

2z-h

_ (γ + δ - e - φf

and this holds because of the condition that t > h. There is a similar
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expression for log(z - δ - φ)/(z - γ - e), and we find

•1/2

μ] = A dλ(l-λ)
Jo

x f exp (-*\
V 2

dz exp(ylz)

A standard argument with contours (see, for instance, the discussion of
the Cauchy discontinuous factor in [17]) shows

dz exp(2z) exp(λh/2) _ Γexp{λ(z - A/2)}1

2 2 f c + 2 / " 2

Λ2fe+2/-3 exp(λ/E/2)

2 / _ 3 ) , '

where Res denotes the residue. We conclude that

λ2k+2I-3[X2k_2al_2({l-λ)/2)]

where

xi j = ̂  /W = / [exp(-τΛ)](y + 5 - 6 - fl'fr + c - 5 -
^ ' y J<r{γ,δ,c,φ)

for i,j>0.
To compute Jf. , we define the quantities

= f {exp[-τ(δ + e + φ)]}(δ-e-φy(e-δ-φ)j,
J&{δ ,e,φ)

z i j = z i /M = / \ i+j

' 7 9j J<?(δ,e)

Integrating by parts, we find
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where any expression with a negative subscript is taken to vanish. Of

course, the standard formula

y

(where Γ( ) denotes the gamma function) allows us to compute

f | * + 2 , if i + j is even

otherwise.

Straightforward inductive arguments show that Ytj = Y^t and Xt =

X. ., and furthermore

0, if / is odd and j is odd;

if / is odd and j is even;

7 + 7 + 2)!
— - , if i is even and j is even,

and so

•2)!
— ...,Λ , if / is even and j is even;

Λ. • { (/ +
^

2(i+l)(j
0, otherwise.

Substituting this into our previous expression for μ[, we find that

2 o ^ 2k+ 21-2 fl/2 2k+2l-3,. *Λ-2k-2l
//, = 8 > ~ T / α/l/l (1 — Λ)

1

 fc^,(2A:-l)2(2/-l)2Λ
Of course,

Γl/2
2k+2l-3M «Λ-2k-2l

(1 λ)Γ rfAΛΛ+2|-3(l-A)
./o

where 2Fχ denotes the hypergeometric function. Thus,

1 Λ ^ 1 « 1

ky=ι{2k-\γ{2l-\γ fr{ (2k - \γ ̂  (2/ -
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and we have shown
Theorem 5.2.1. The Weil-Petersson volume of J?2 is π 4 /8 .

6. Asymptotic divergence

We shall show in this section that the Weil-Petersson volume μι of

J?g grows at least as fast as g~2c~2g(2g)\ for some constant c < .15 in-

dependent of g. The estimate is derived by bounding below the volume

of a single cell in the decomposition of !Γ together with a matrix-model
•

estimate (given in Appendix B) on the number of such cells. The next
section is dedicated to computing the Weil-Petersson volume form from
the Kahler two-form, and some work is involved. The final section pulls
together the results necessary for our estimate on μι

g . We remark paren-
thetically that our lower bound on the volume of single cell in fact diverges
with g.

6.1. Computation of volume forms for once-punctured surfaces. To be-

gin, we compute the volume form explicitly (in terms of A-lengths with re-
spect to G G S?{n)), and a compact expression is given which is moreover
independent of the particular element G e 2?(n). Using this computation,
we then give the expression for the volume form in λ-lengths with respect
to any fatgraph whose associated surface is once-punctured.

We adopt the notation of Figure 2 for the edges of G e 2?(n), setting
fn+{ = en+ι for convenience, and, as before, identify an edge with its λ-
length, set x = dlogx for each edge x of G, and often suppress the
symbol Λ in an exterior product. By Theorem 3.3.6, the Weil-Petersson
Kahler two-form pulls back to

where

ω0 = ω ' o = έ[ά0 + 2ά0b0 + bQe[ + f{ά0 + bjλ

= [e[ +f{~ (ά0 + bo)]{άo - bQ)

and

ω j = bjάj + άjfj + fjbj + άje'Hl + e'.J. + d.a.

+ Zjfj+i + fj+Jj + djdj + bjij + e.c. + djbj
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with

1, = \[ej+x -fj+ ij + fJ+ί - 2dj][dj -άj- bj + cβ,

for j = 1, , n , where one checks these equalities of two-forms directly.
Furthermore, one computes directly that

- fyV&faά + Ψj},
where

Our overall goal in this subsection is to compute ω = (ωγn+ι/(3n + 1)!,
and insofar as

7=1

is a sum of (3n + 1) two-forms, we are led to consider a monomial

in the (6« + 3) variables {a0, , /,} . Notice that none of ζ. >Y\;Λ
contain any terms of degree greater than one in a , b , c , d , while none
of ζ{, ^ z, Cf for i Φ j have any dependence on these variables (and nei-
ther does ω 0 ) . Thus, a nonvanishing monomial of degree (6n + 2) in the
(6n + 3) variables must have et = 1 for all /, and we conclude that

/\3Λ+1 n n

) 3 1 r \ / ^v3/1+1

Λ ) ( 2 )
Π ω,.

where Π"=i #/ denotes the exterior product Θ{Λ -Λθn of forms {^,}π

=1

in this order. Substituting in the expressions computed above for ω., we

find that

= (-2γn+ιω'oγ[{(e'j-fj)(fj+ι-fj)}
7=1

7=1 7=1

where : denotes the omission.
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We define

7=1

Vl=2co'0xl[(ajbjcjdj),
7=1

V2 = ωΌχ Σ ψj
7=1

SO

we will compute the quantities Vχ and V2 separately below.
First, let us compute

7=1 k=\

k=\

= F 1 - / C Λ+1

7=0 7=0

where F = Π"=ι fk and E = Π"=ί ^7

One now easily computes Vχ as

Vι=2f[άjbjcjdj[2ά0b0 + (b
7=1

χi(π-l)/2(h -« 0

In order to compute V2 , we must introduce the three-forms
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for j = 1, ••• , n, a n d define t h e f u n c t i o n τ : { 2 , . . . , « + l } - > { l , . . . , n}9

where τ(l) = j & e'j+ι = eι. Thus,

^fn-XVly 2 h A F
l - / c / ϊ + l

7=0

1-7 * c /z+l

7=0

.7=0

Σ<
7=0

(n-\
£(^ΣΛ+i^

7=0

7=1

We have arrived at
Lemma 6.1.1. Suppose that G e &(n), set N = 6n + 3, αm/ feί

Xj, x2, 9xN, respectively, denote the λ-length of the edge aQ, b0, a{,
bi>Cι>dι> ~ > ^ Λ > ^ Λ > / i > >fn>ei>'~ >en+i- Vwset xt =
dlogXj for i = 1, , N, then the Weil-Petersson volume form on F^+ι

pulls back to
N

Proof Simply substitute the expressions for Vχ and V2 into the ex-
pression for ω and expand in terms of the A-lengths. q.e.d.

In fact, much more is true:
Theorem 6.1.2. Suppose that G is any trivalent fatgraph with F(G)

homeomorphic to Fx

g , let N = 6g - 3, and let xx, , xN denote the
respective λ-lengths of the edges of G. The Weil-Petersson volume form
pulls back to

ω = ±2
4g~2

Λ Adlogxi Λ Λ dlogxN.
7=1

Proof First notice that the expression ω above agrees with the pull-

back of the Kahler two-form on ^ j 1 (see §4), so, by Lemma 6.1.1, the for-

mula holds for at least one trivalent fatgraph in the complex & for each
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g > 1. We show that the expression ω is invariant under Ptolemy trans-
formations, and the result then follows from Corollary 3.3.2 and Lemma
3.3.3.

To this end, suppose that e is an edge of the trivalent fatgraph G
with distinct endpoints, and adopt the notation of Figure 3(a) for the
hooks of G near e, and let a, b, c9d9 respectively, denote the (not
necessarily distinct) edges of G containing the hooks fχ, gχ, f2, g2. As
before, perform a Whitehead collapse on e to produce a trivalent fatgraph
G', identify each edge of G' with its corresponding edge of G1, and let
e be the edge of G1 corresponding to e. Again, we identify an edge with
its λ-length, adopt the notation that x = dlogx, and omit the symbol Λ
from exterior products.

It follows from Lemma 3.3.3 that

e = a c + bdl
ac(ά + c) + bd(b + d)] - e,

and we compute

άbde - άbce + άbi

bdb

bcde - άcde + άbde - άbce + άbcd

+ άbd(

ac + bd

ace

—ac — bd — ac — b d „ ? „ 7 ~r ~ Ί 7~ Ί~ ~~ 7~ ~7i~ ~ ? ~ ~
= =-= abed + abed - bcde + acde - abde + abce

ac-\-bd

= - (bcde - άcde + άbde - άbce + άbcd),

as desired.
Remark. The reader may wonder why, in light of Theorem 6.1.2, we

treat each element of &(n) in Lemma 6.1.1 instead of just a single ele-
ment; the answer is that the computation in Lemma 6.1.1 for any particular
element is no easier than the general case.

6.2. A lower bound on volumes for once-punctured surfaces. We finally

apply some of the previous material to derive a lower bound on the Weil-
Petersson volume μ\ of Jί] . To this end, fix some fatgraph G e 2?(n),
set N = 6/2 + 3, and consider J^ ( G ) Φ*(<o) 9 where ω is the Weil-Petersson

volume form on Λf1 and φ: &^+ι —• ^ + 1 is the forgetful map. By

Corollary 3.4.3, the region Sf(G) of integration is expressed in simplicial

coordinates {ΛQJIj on the edges of G as the simplex

3f(G) = {Xt > 0 for each i = 1, , N, and p = p(Xχ, , XN) = \],
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where p = Σ?=\ Xt is half the hyperbolic length of the horocycle, or, in
other words, p is the sum of all the Λ-lengths of sectors of G by Lemma
3.4.2.

Observe from Theorem 3.3.6 that the pullback of the Weil-Petersson
Kahler two-form to &^ χ is invariant under homothety of A-lengths, so
φ*(ω) is similarly invariant under homothety. Since simplicial coordinates
are homogeneous functions of 2-lengths, a standard application of Stokes'
Theorem shows that

b*(ω) = 2 / dpΛφ*(ω),
JA(G)

where Δ(G) is the region

Δ(G) = {Xt > 0 for each i = 1, , N and 0 < p < ±}.

On the other hand, by the first part of Proposition 3.5.3 and Theorem
6.1.2 (or Lemma 6.1.1), if { λ j ^ denotes the corresponding λ-lengths of
edges of G, then we find that

N - \

dpΛφ*{ω)= ±2 4 n + 2 ( X ^ I ; ) Λ [Σi-iyλ; Λ - Aλ; Λ - - ΛλN 1

N

where, as usual, λ denotes dlogλ. It follows that

By the second part of Proposition 3.5.3, the Jacobian determinant of the
transformation from {Xj}f=1 to {logλ } ^ is bounded below by (N/3p)N,
and a change of variables gives the estimate

We have, therefore, derived the following general estimate.
Theorem 6.2.1. Suppose that G is a trivalent fatgraph whose associated

surface is homeomorphίc to Fι, let N = 6g - 3, and let ω be the Weil-

Petersson volume form on Jί^ . Then we have the estimate

/ φ (ω) > —7τ I — H



WEIL-PETERSSON VOLUMES 599

Now, according to Theorem B, the number n of distinct MCQ-orbits
—l

of top-dimensional cells in ίΓ is asymptotically

* 6g-3V6>

Furthermore, since an automorphism of a fatgraph G with s(G) = 1 must
preserve the single boundary component of the fattened graph, Axxt(G) is
cyclic with order at most the number (12g - 12) of sectors of G. Pulling
together our estimates, we find

Theorem 6.2.2. An asymptotic lower bound to the Weil-Petersson vol-
ume μι

g of "x

is

where c < . 15 is a constant independent of g.

Appendix A. The Weil-Petersson Kahler two-form

The purpose of this appendix is to prove Theorem 3.3.6, which gives
the pullback to 3^ of the Weil-Petersson Kahler two-form in terms of
A-lengths; this argument was sketched in [11, §5] and is included here for
completeness.

To begin, we derive some useful identities involving A-lengths and must

first establish some notation. Fix horocycles {h^ in D with distinct cen-

ters {Cj}* , and consider the corresponding "decorated ideal quadrilateral"

with as its ideal vertices, as in Figure Al.

FIGURE Al
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Given a geodesic x in D connecting ζ. to ζ., with i, j e {1, 2, 3, 4},

define the "λ-length" of x (as before) to be y/2exp{δ} , where δ denotes

the signed hyperbolic distance between h{ and h. δ is to be taken with

a positive sign if and only if hi Π hj. = 0 .
We adopt the notation of Figure Al, identifying each geodesic with its

λ-length, and give the geodesies e and e* the indicated orientations.
Lemma A.l. With the notation as above, we have

(a) ee* =ac + bd,
(b) The cosine of the angle from e to e* is γ — {ac- bd)/(ac + bd).

Proof Let M denote Minkowski three-space with the pairing

(x, y, z) (x , y , z) = -xx - yy + zz ,

and let

H = {v = (x,y, z) eMiϋ'V = 1 and z > 0},

L+ = {υ = (x, y, z) eM : ΰ - v = 0 and z > 0},

so that H is isometric to D. As shown in [10, §1], affine duality

establishes an isomorphism between L + and the collection of all horo-
cycles in H, and furthermore, if u, v e L+, then the A-length of the
geodesic connecting the centers of h(u) and h(v) is simply y/u-υ.

Let ut e L + correspond, as above, to the horocycle h , respectively, for
1 = 1 , 2 , 3 , 4 . Thus, the identity in part (a) of the lemma is equivalent
to

(a)

and part (b) of the lemma asserts that

J(uχ U2)(U3 U4) - J{Uχ U4)(U2

( b ) γ = y y

χ U2)(U3 U4) + yj{uχ - U4){U2 U3)

Observe that each of (a) and (b') is invariant under scaling each ui

independently, so we may assume that each ui lies in the horizontal plane
Π = { ( x , y , z ) e M : z = 1 } f o r i = 1 , 2 , 3 , 4 .

Of course, the Minkowski pairing restricts to Λ/2 times the usual Eu-
clidean metric on Π c R 3 « M 5 s o that Π π L + is a round circle in the
induces structure; furthermore, if u, v e ΠnL+ , then the A-length Vu v
is simply Λ/2 times the Euclidean length of the chord with endpoints u
and v.
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Thus, (a) and (br) follow from their corresponding Euclidean ana-
logues: (a) is Ptolemy's Theorem on quadrilaterals which inscribe in a
circle, (bf) is an easy consequence of the Euclidean law of cosines, and
the proof is complete.

Remark. Another formula (proved in the same way) gives the cross
ratio in terms of λ-lengths; namely, with the notation as above,

CR{ζ2tζ3.ζ4;ζι) = ~ ,

where CR(x, y, u\v) is the image of υ under the Mόbius transforma-
tion taking x, y, and u, respectively, to 0, 1, and oo.

The theorem we shall prove here (which is equivalent to Theorem 3.3.6)
is

Theorem A.2. Suppose that Δ is an ideal triangulation of Fs, and

consider λ-length coordinates on ZΓ* with respect to A. The Weil-Peterssonn J^

Kahler two-form pulls back to

dlogb + dlogbΛ dlogc + dlogcΛ dloga),

where the sum is over all triangles T in Fg-A whose edges have λ-lengths
a, b, c in an order compatible with that determined by the orientation of
F< on T.

Proof Our strategy is as follows. Let H denote Fg with small horo-
ball neighborhoods of the punctures removed. Double H along its bound-
ary to produce a closed topological surface F with Teichmuller space 5Γ,
and let C denote the curves in F arising from the boundary of H. We
consider limits in y as the geodesic representative Γ of C is pinched
to a point. By [22], the Weil-Petersson Kahler two-form on &~ extends in
the limit to the Weil-Petersson Kahler two-form on ZΓg

s.

In order to relate A-lengths of ideal arcs in Fg to hyperbolic lengths of
closed geodesies in F, we observe that in pinching Γ, nearby hypercycles
of Γ (i.e., curves in F equidistant to Γ) limit to horocycles in the induced
structure on Fs. (To see this, simply consider the collection of geodesies
in F which are orthogonal to Γ these must limit on geodesies tending to
the punctures of Fs.)

Now, suppose that Γ is sufficiently small and consider the annular
neighborhood A of Γ in F bounded by the hypercycles HL, HR so that
each annular component of F-(ΓuHL sup HR) has hyperbolic area unity.
If c is a closed geodesic in F, say with hyperbolic length /, meeting Γ
in two points, then c Π (F - A) consists of two arcs with endpoints in
Hχ for X = L, R, and we let lL and lR denote the respective lengths of
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these arcs. We define "generalized λ-lengths"

for X e {R, L) , so that

dl = dlR + dlL = 2(d logλΛ + d log/lL).

Finally, in light of the remarks above, d\ogλχ limits on the exterior
derivative of the log of the /l-length (with respect to the horocycles about
the punctures corresponding to the limiting hypercycles above) of the ideal
arc in the pinched surface corresponding to cχ for X e {R, L} .

To recognize the Weil-Petersson Kahler two-form ω on £Γ, we recall
Wolpert's Theorem (Theorem 3.3 and Lemma 4.5 of [21]). If the geo-

desic length functions {/.}" of geodesic curves {c.}" give local coordinates
on EΓ, then

ωtj = ω{dlt, dlj) = ^ cosα^,

where ap is the angle between c and c. at the point p. Furthermore, if
ij \= (ωijy\then

ω=

To apply this, suppose that Δ is an ideal triangulation oϊ F = Fs

g .

F inherits a pants decomposition {cf }f from (H, HnA) in the natural
way, where N = 6g - 6 + 3s . Furthermore, if e e A and e* is the ideal
arc in F* derived from e (and Δ) as in Figure Al, then (H, H Π e*)
similarly gives rise to a closed curve in F . If ci c F arises from e e A,
then we let c* c F denote the curve so derived from e*, and set β =
{cι., c*}f . Using Fenchel-Nielsen coordinates on & with respect to the
pants decomposition {c,}f and convexity of hyperbolic length functions
under Fenchel-Nielsen deformations [4] (together with the fact that cz Π
c*j = 0 unless i = j), we conclude that the hyperbolic lengths of curves in
ά give local coordinates a.e. on F, so Wolpert's Theorem is applicable.

If x and y are oriented geodesies in F or oriented ideal arcs in F*,
then we let

() Σ cos

pexny

By the first part of Wolpert's Theorem, the matrix {ωlV}?^=1 of Kahler

pairings has the form (_HD%)9 where oNxN denotes the zero matrix,
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DNxN is the diagonal matrix with entries Du = y(cn c*), and ANxN

has entries A{. = γ(c*, c*). The inverse of (ωJ..) is given by

(D~ιAD-1 -D~ι\
V D~ι 0 ) '

so by the second part of Wolpert's Theorem we find that the Kahler two-
form ω on y is given by

(t) ω - , Λ dc. - y^ — 5ΓT dc- Λ dc*
J fχy(ci>ci)

where we have identified a closed curve on F with its hyperbolic length
for convenience.

As before, the geodesic Γ separates each c E £? into a left half cL and
a right half cΛ , and we now pinch Γ, retaining the notation cL and cR

for the corresponding ideal arcs. Of course, if c, d e &, then γ(c, d)
limits on γ(cR, dR) + y(cL, rfj .

Now, suppose that ex = {cR9cL:c e &} for I G { Λ , I } , adopt the
notation of Figure A2(a) for the ideal arcs near ex , and identify an ideal
arc with its ^-length for convenience. By Lemma Al(a),

dlogex

(tt)
-h d log c)

bd

ac + bd

in the obvious notation. Of course, since ω limits on the Weil-Petersson
Kahler two-form ω of F*, the coefficient of deχΛdfγ in ω must vanish
whenever e, d e& and {X, Y} = {R, L} see the remark following this
proof. Furthermore, notice that c*Πc. = 0 unless / = j , and c* Γ\c* = 0

unless c7 and Cj lie in the frontier of a common component of F - {c }f .
Inspection of (f) and (ft) then shows that the coefficient of dex Λ dfχ

in ω must vanish unless ex and fχ lie in the frontier of a common
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triangle complementary to Δ in F5, and indeed, there is a contribution

to ω from each such triangle.
Continuing to employ the notation of Figure A2(a) with X — R, we

find from (f) that the contribution to -\ω from the triangle T has the
following projection into the subspace spanned by d\ogaR Λ d\ogeR :

= γ(a\em) _ 1 / ef \

y(^Or(^O y(*,<0 \ef+bg)

+ γ(e

It follows from Lemma A. 1 (b) that

R1 ί ac

,e*) \ac + b

, *N (bg-ef\ • (ac-bd\
v * ' Λ ; \bg + efJR' /κ R' RJ \ac + bdJR'

and we claim that

v(n* *x _ Γ/ggg ~ <*bcg - bdbg - bdefλ
na*>e*> [ {ac + bd){bg + ef) \R

To see this, consider the "Whitehead moves" indicated in Figure A2(b),
(c), and adopt the notation indicated there. According to Lemma A.I (a),

, fad + cg\ 1 Γ deR=[ — M =-\cg + -
/ R R

Thus, by Lemma A.l(b), we find

cj -be \

Cf+be>)
' R

and the claim follows upon clearing denominators.
Define

ζx = (ac + bd)χ and ηχ = (bg + ef)x for X e {R, L},

and identify F* with the limit of the right side of F (making, in this way,
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a global sign convention). Thus, for instance,

1 1

γ(e ,e*)~ γ(eR, eR) + γ(eL, e*L)

1

[(bg - ef)/(bg + ef)]R - [(bg - ef)/(bg + ef)]L

Similarly,

1
γ(a, a*) 2 bLdLaRcR - bRdRaLcL '

]
ζη\R

Finally, plugging these into (ftt). w e compute 2χ = v/δ, where

δ - (bLdLaRcR - bRdRaLcL){eLfLbRgR - eRfRbLgL)

and

v = ηLξL{face)R - ηRξR(face)L - (ef)RηL(bLdLaRcR - bRdRaLcL)

= (face)R[ζη - bd(bg + ef) - bg(ac + bd)]L

- (face)L[ξη - bdef - abcg]R

+ (bdef)R(abcg)L + (bdef)L(abcg)R

= - (face)L(bdbg)R - (face)R(bdbg)L

+ {bdef)R{abcg)L + (bdef)L(abcg)R

= δ,

so that χ = \ .

Since the pair a, e was arbitrary (with this ordering induced from the

orientation of Fs

g on the triangle T as in Figure A2(a)) and since χ was

defined to be the coefficient in -\ω of d\ogaR Λ dlogeR, the theorem

follows.
Remark. For peace of mind, one can compute directly as above that

the coefficient of dex Λ dfY in ω must vanish if {X, Y} = {R, L) as
was asserted before.
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Appendix B. An estimate on the number of cells

This appendix is dedicated to the proof of
Theorem B. For g sufficiently large, we have the estimate

The argument closely follows the computation in [1, §6] due to J. M.
Drouffe and was shown to the author by Steve Shenker.

Proof. Adopting the notation of §3.1 for fatgraphs as pairs of permu-

tations, a fatgraph in &] corresponds to a pair of type σ e {3 } and

τ e {2 m} , where k = 2m = 2(2g - 1) is the number of trivalent vertices,
and σ oτ e {3k} .

As in [1, A.6.8], we evidently have

where δ denotes a delta function (and our n differs from nh in [1,

Appendix 6] by the factor 3~*). Let χ^ denote the character of Σ3k for
the representation r, and let v,, denote the number of elements in the
conjugacy class of π e Σ3k . According to the completeness relation

we have

g~
n

g~ 3kk\(3k)\
where dr denotes the dimension of the irreducible representation indexed
by r as in [1, A.6.13]. Furthermore, the only representations r for which
*{3fc} ̂  0 a r e °f t n e form (3k -p, \p) for p — 1, , 3k-1. Moreover,
for these representations (indexed by p), one finds

d -

A2] , up/2/3m-l\ [2]. n(f-i)/2/3m-l\

"} = ^>o(-D \ p,2 )-δpΛ{-X) \(p-W)

where δ^q has value zero or unity and vanishes unless p = q modulo s.
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Now, as k —• oo, the terms dominating the sum over p (that is, over r)
in (f) correspond to p = 0, 3k - 1, and both of these terms have positive
sign since m = 2g - 1 is odd. Thus, as k —• oo, we find

where x ~ }> if x = }>[1 + #(£)] . Plugging in

(6m)! A (3k)\
{2 } 23 m(3m)! {3k} 3k

we find that

(6m)!

*
(2g)! /£N -2*

g - 3 \6/~ 72m(3m)(2m)! (3m)!

as was asserted.
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