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COMPACTNESS THEOREMS FOR KAHLER-
EINSTEIN MANIFOLDS OF DIMENSION 3 AND UP

GANG TIAN

There has been increasing interest lately in compactness theorems of
Riemannian manifolds under various geometric assumptions (see, among
others, [3], [10], [1], [7], and [19]). More recently, it has been found that
the boundedness condition on the curvature as in [3] and [10] can be re-
placed by some integral norms of the curvature tensor. One of those often
used is the L^-norm on the curvature tensor, where n is the real dimen-
sion of the underlying manifold. For instance, in [1] and [19], the authors
show that if {(Mi, gt)} is a sequence of Einstein manifolds of real dimen-
sion 2/i satisfying: (i) d i a m ^ . , g() < μ; (ii) / M WRm^g^dV^ < μ;
and (iii) Vol(M., g.) > ~ , where μ is a uniform constant, then the subse-
quence of {(Mi, gz)} converges to an Einstein orbifold with finitely many
isolated singular points. Also see [20] for the case of Kahler-Einstein sur-
faces. The case that the limit is an orbifold does occur in dimension four
(cf. [15], [20]). However, in this paper, we show that it cannot occur for
Kahler-Einstein manifolds of higher dimension and nonzero scalar curva-
ture. In order to give our main theorem precisely, we need to introduce
some notation first. For any fixed constant μ > 0 and positive inte-
ger n > 0, denote by K(μ, n) the set of all Kahler-Einstein manifolds
(M, g) of complex dimension n satisfying:

(0.1) d i a m ( M , g ) < μ ,

(0.2) j \Rm(g)\n

gdVg<μ,

(0.3) Volg{M)>l/μ,

where Rm(g) denotes the curvature tensor of g. Let K+(μ9 n) (resp.
K-(β> n)) b e t h e subset of all (AT, g) in K(μ, n) with Ric(g) = ωg

(resp. Ric(g) = -co ) , where ωg is the associated Kahler form of g.
We should point out that the diameters of the manifolds in K+ (μ,n) are
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bounded from above by a constant depending only on n .
Our first main theorem is stated as follows:
T h e o r e m 1. K ( μ , n) (resp. K_(μ, n) is compact for n>3.
A related problem is the classification of complete Ricci-flat Kahler man-

ifolds with bounded Z^-norm of the curvature tensor. The examples of
such manifolds can be constructed in the following way (cf. [21], [25]).
Let Γ c SU(Λ) be a finite group acting on Cn with the origin as its
unique fixed point. We further assume that Cn/Γ admits a resolution
M such that the push-down of dzχ Λ Λ dzn on Cn can be extended
nonvanishingly across the exceptional divisor, in other words, the canoni-
cal line bundle KM is trivial. Note that this assumption is automatically
true in the case n < 3. Then M has a complete Ricci-flat Kahler metric
with bounded L"-norm of the curvature. In the case n = 2, it was proved
before by Hitchin and P. Kronheimer using a different method ([13], [17]).

Theorem 2. Let (M, g) be a complete Ricci-flat Kahler manifold with
the Ln-norm of its curvature tensor bounded. Then M is a resolution of
Cn/Γ for some Γ c S U ( « ) with KM trivial

The organization of this paper is as follows. In §1, we recall that for any
sequence of Kahler-Einstein manifolds in either K+(μ, n) or K_(μ, n),
a subsequence of it converges to a Kahler-Einstein orbifold in the sense
of Cheeger-Gromov (cf. Theorem 1.1). We include an outlined proof
of it here following the arguments in §3 of [20]. In §2, we prove the
continuity of the dimensions of plurianticanonical or pluricanonical di-
visors under the convergence of Kahler-Einstein manifolds in Cheeger-
Gromov's sense. The basic analytic tool is Hόrmander's //-estimate for
d-operators. We will also discuss some corollaries of this continuity result.
In §3, using Kohn's estimate for 9^-operators on strongly pseudoconvex
CR-manifolds, we study the local structure of the Kahler-Einstein orbifold
M^ being the limit of Kahler-Einstein manifolds. In particular, we prove
that M^ is in fact a manifold. §4 contains the proof of Theorem 2. In
§5, we complete the proof of Theorem 1 based on the discussions in the
previous sections.

The key idea of this paper occurred to the author during his attendance
in Professor J. Kohn's class in Princeton University when he was visiting
there. The author would like to express his gratitude to both the institute
and Professor Kohn.

1. Convergence to Kahler orbifolds

An «-dimensional complex orbifold M is a topological space satisfying:
(1) each point x in M admits an open neighborhood Uγ homeomorphic
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to Dn/Γχ , where Dn is the unit disc in Cn , and Γχ c U(n) is a finite
group; and (2) those Uχ are patched together by biholomorphic transition
functions. Any point x with Γ^ trivial is called a regular point of M.
In particular, M is a manifold near such a regular point. Denote by Λfre

the set of all regular points. All other points are singular points of M,
i.e., Sing(Aί) = M\M r e g . We will confine ourselves to the special case
that Sing(Af) consists of isolated points, although it is not necessary for
the following discussions. A Kahler metric is just the one on M r e g such
that for each x in Sing(M), if ψχ: Dn -> Uχ is the local uniformization,
then ψ*g can be extended across the origin.

Now suppose g be a Kahler orbifold metric on M. In the case
= λωg on M for some constant λ, we call (M, g) a Kahler-Einstein
orbifold metric.

Theorem 1.1. Let {(Mιr, gt)} be a sequence of Kahler-Einstein mani-
folds in either K+(μ, n) or K_(μ, ή). By taking a subsequence of it, we
may assume that (Mi9 gt) converges to KάhlerΈinstein orbifold (M^, g^)
in Cheeger-Gromov's sense, that is, there are finitely many points xn , ,
xiN in M{, and xool, , x ^ ^ in M^, where N is a positive integer de-
pending only on n, μ such that, for any r > 0, there are diffeomorphisms
φt from M.\ UjU Br(xiβ, g.) into M^ with Kr = M^ [JN

β=ι B5r(Xooβ , g.)
in the image and satisfying-.

(1) in the C5-topology, (φ~1)*gt converges to g^ uniformly on Kr\

(2) in the C5-topology, φ^ o Jt o (φj1)^ converges to J^ uniformly on
Kr, where Ji, J^ are the almost complex structures of Mt, M^, respec-
tively.

Theorem 1.1 can be derived from the compactness theorem stated in [1]
or [19] (see also [20] for the special case of Kahler-Einstein surface). But
for the reader's convenience, we outline a proof of it here. For simplicity,
we may assume (M.9 g.) so in K+(μ, n) for all i. The key analytic tool is
Uhlenbeck's Yang-Mills estimate for curvatures of Yang-Mills connections.

Lemma 1.1. Let (M., gt) be a Kahler-Einstein manifold given as in

Theorem 1.1. Then there are uniform constants C', C", depending only

on the upper bound of n and μ, such that for any f in Cι(Mi, R)

-c" ί i/i
I 1 \ \ J M ' I J M:

X

where V/ denotes the gradient of f.
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Proof. This follows from a combination of results in C. Croke [5] and
P. Li [18].

Lemma 1.2. Let N be the integer [μ/(C')n] + 1, where C' is the
Sobolev constant given in (1.1), and [a] denotes the integer part of the
real number a. Then there is a universal constant C > 0, such that for
any r e {0, 1) and any Kάhler-Einstein manifold (M., g^ as in Theorem
1.1, there are finitely many points xr

n , , x\n in λf. such that for any

(1.2) \\R(i)h(x)<- / \\R(i)\\](x)dV} ,

where Br(xr

iβ, g.) is the geodesic ball with radius r and center at x\β, and

||i?(z)||^ is the norm of R(i) with respect to gt.

Proof A straightforward computation shows

(1.3) -Ag(\\R(i)\\g)< \\R(i)\\g+C(n)(\\R(i)\\g)
2,

where Δ is the laplacian of g., and C(n) is a positive constant depend-

ing only on n, whose actual value is not important to us. Define

(1.4) E. = Le Mt U \\R{ΐ)tgi dVgi > ε\ .

Then by the well-known covering lemma, Ez can be covered by N geodesic

balls of radius \ . Take xr

n , •• , xr

iN to be the centers of these balls. Then

for any x€M.\\fβ_χBr{xr

iβ, g.)9

(1.5) jf ^ \\R(i)\\n

gidVgi<ε.

Let η: Rx

+ -> Rι

+ = {t e Rι\t > 0} be a cut-off function satisfying η = 1

for t < 1, and η = 0 for t > 2 and \η\t)\ < 1.

For any x e M.\ U^= 1 Br(xr

iβ , gt), denote by pχ( ) the distance func-
tion on Mt from x.

Put / = \\R(i)\\gi. Multiplying η2(8px/r)f on both sides of (1.3) and

then integrating by parts, one obtains

Mηf)\2dv

< ί n2f2dVg + ί \Vη\2f2dVg + / A/ 2 / 3 ^^
^M, ^ 7 ^ 8i JMi

 8i
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By Lemma 1.1 and Holder's inequality,

IM

(«-!)/«

Therefore, for some constant C > 0 depending only on n, we have
(1.8)

(ί \f\2n/{"-ι)dvX~i)/n < _ - £ - — f \f\2dvg.

Similarly, by multiplying η

2f{n+l)/{n ι)

 O n both sides of (1.3) and pro-
cessing as above, we have

f
(1.9) VBr/U,Br/U,(X>8,)

ly^/Ci-D^^^

Let ε <((n- l)/4n)2k(Cf)2 and choose fc satisfying (n/(n - l))k > n

Continuing the above processes k times, we obtain

Then (1.2) follows from Moser's iteration as in the proof of Theorem 8.17

in [16]. q.e.d.

We further observe that we may take the set {xr/{

4, , xr/χ} contained

in the union of the balls Br(xr

iβ , gt). Let {^}7>1 be a decreasing sequence

of positive numbers such that rχ < \ , r. < r _xIA. If we write xjβ as χr/β
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and define

N

then

n\ C Ω { + 1 i^ψ^j a n d ( J Ω^ = Mi\{xn ,••• , xiN}..

where x,» = l i m ^ ^ xL , and for any 1 < β < N,

{ { y f ) > ε}.
The following lemma is essentially a special case of the famous Gromov's
compactness theorem (cf. [10], [12]).

Lemma 1.3. Let {(Xi9 ht)} be a sequence of n-dimensional Kάhler-
Einstein manifolds {maybe noncompact), and Ω̂  a sequence of domains
in X{ with boundary dΩr Suppose the following for all i:

(i) The norm ||i?(Λ )||Λ (x) of the bisectional curvatures R(ht) are uni-

formly bounded for x in Ωz-.
(ii) InjRad(x) > c{ for x e Ωz and for some constant depending only

on i.
(iii) 0 < C' < VolΛ (Ωz.) < C" for some uniform constants C', C" .

Then given any ε > 0, there is a subsequence {Ω. (ε), hi }k>ι ofKάhler-

Einstein manifolds {Ωz.(ε), hi}i>ι, where Ωz(ε) = {x e Ω.| distΛ (x, dQt)

> ε}, and a Kάhler-Einstein manifold (Ωo o(ε), Λ^) such that for the com-

pact subset K c Ωo o(ε), there is an ε > ε such that for k sufficiently

large, there are diffeomorphisms φk o/Ωz- (ε) into Ω ^ ε ) satisfying:

(1) K c φk(Ωik(ε)) for any k > 1,

(2) (φk

l)*hi converges uniformly to h^ on K,

(3) ( W * 0 ^ - 0 ^ 1 ) * converges uniformly to J^ on K, where / z , J^
are the almost complex structures of Ω z, Ωo o(ε), respectively.

Proof By some standard computations and the assumption that the
(Xt, Λz) are Kahler-Einstein manifolds, the bisectional curvature tensor
R(ht) satisfies a quasi-linear elliptic system. The assumptions (i), (ii),
and (iii) imply that the Sobolev inequalities hold on Ωz(ε) with uniform
Sobolev constants. It follows from some well-known elliptic estimates (cf.
[27]) that
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(1.12) wrfRίh^WKCV), / = 1 , 2 , - . . , o o 5

where D R{h.) denotes the /th covariant derivative of R(h.) on Ω , and
the C(/) are uniform constants depending only on /. Then by Gromov's
compactness theorem ([10], [12]), there is a subsequence {(Ω,. (ε), A )}
and a Riemannian manifold ( Ω ^ ε ) , A^) such that the above (1) and
(2) hold. Let K be any compact subset in Ωo o(ε), and φk defined as in
the statement of this proposition. For the almost complex structure Jt on
Ωz , it is clear that (φk)+ o J. o (φk

ι)+ is almost complex on K. By taking

the subsequence of {ik}, we may assume that {Φk)ili

oJi °(Φk

l) converges

on K. Since K is arbitrary, we obtain an almost complex structure J^

on Ω o o(ε). It is easy to check that this J^ is integrable, and A^ is a

Kahler-Einstein metric with respect to this J^ . q.e.d.

Since diam(Λf., g.) < μ and Vol(λf., gt) > ± for all i, by an estimate

on the injectivity radius in [4], one can prove that assumptions (i)-(iii) in

Lemma 1.3 are fulfilled by (Ωj, gt), i, j > 1. Therefore, we have a

sequence of open Kahler-Einstein manifolds ( Ω ^ , g^). Furthermore,

one can identify Ω^ naturally with a subdomain in Ω ^ 1 such that the

restriction of gJ^1 to Ω ^ coincides with g^. Therefore the {(Ω^, g ^)}

can be glued together to be a Kahler-Einstein manifold (M^, g^). By

Fatou's lemma,

WRm(sJ\\n

goodVgoo<μ.

Also, it follows from the Volume Comparison Theorem [2] that M^
has only finitely many connected components.

Let pt be the distance function on Mt x Mt induced by gt, and let p^
be the limit of pt. Obviously, p^ is Lipschitz on M^ = M ^ . According
to [10], one may attach finitely many points xool, , Λ ^ to M^ such
that M^ = M^ U {xool, , X^N} becomes a compact length space with
length function p^ extending that p^ on M^ x M^ . We need to give
a Kahler orbifold structure on M^ .

Lemma 1.4. There is a decreasing positive function ε(r), satisfying
l i m ^ ^ ε(r) = 0 such that for any point x in M^, we have

where r(x) = minip^ix^j, x)\ί < j < N].
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This is simply a corollary of Lemma 1.2. Using the trick of blowing

up and the curvature estimate in Lemma 1.4, one can endow M^ with a

topological orbifold structure at x^β (1 < β < N). Precisely, for each

β, there is an open neighborhood Uβ of x^β such that each connected

component Uβ. (1 < j < L) of Uβ Π M^ is covered by a smooth man-

ifold Uβj diffeomorphic to the punctured ball D* in Cn . The covering

group Γβ. is isomorphic to a finite group in U(n). Moreover, let φβj

be the diffeomorphism from D* onto Uβj and let π^.: Uβj —> ί/̂ . be

the covering map. Then φ*βj o n^jg^ extends to be a C -metric on Dn

r ,

where Dn

r = {x\3Cn, |JC| < r}, D* = D"\{0}. We refer readers to §3 in

[20] for the details of its proof.

In order to obtain a Kahler orbifold structure on M^ , we have to prove
that the curvature tensor Rm(goo) is in fact bounded. From Lemma 1.4
follow the topological orbifold structure of Λf̂  and the analogy of Uh-
lenbeck's removable singularity theorem [27]. In §4 of [20], this bound-
edness of Rm(goo) is proved for surfaces, i.e., for n = 2. However,
the whole argument can be generalized to higher dimensions without sub-
stantial change. Next, as the author did in Lemma 4.4 and 4.5 of [20],
one can construct a diffeomorphism ψ from Z>* into itself such that
ψ* °Φ*βj°n

if

βjgoo extends smoothly across the origin, where 0 . and πβj

are the same as in last paragraph. Therefore, (M^, g^) is a Kahler-
Einstein orbifold with R i c ^ ^ ) = ωg .

Note that M^ is in fact connected (cf. [20]). However, we do not need
this fact in the following arguments, and the sketched proof of Theorem
1.1 is finished.

2. Convergence of pluricanonical or plurianticanonical divisors

Let {(Mi, gi)}i>ι be a sequence of Kahler-Einstein manifolds in ei-

ther K+(μ,n) oτ~K_(μ, n). By Theorem 1.1, we may assume that

(M., g.) converges to a Kahler-Einstein orbifold (M^, g^) in the sense

of Cheeger-Gromov. In this section we will apply the zΛestimate for 9

operators to show the convergence of ^{M^K^1) to ^(M^, K^m)

for any integer m as (Af/5 g.) approaches (Af^, 'g^). Recall that M^

is a Kahler orbifold with only isolated quotient singularities.

A line bundle L on M^ is a line bundle on the regular part M^

such that for each local uniformization π : V„ —> M of a singular
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- 1 /point x, the pullback π*χL on Ux\π (x) can be extended to the whole

Ux. The natural line bundles on M^ are pluricanonical and plurianti-

canonical ones K^ (m e Z). A global section of K^ is an element

in H (Mf , K^ ) , which can be extended across the singular set in the
oo

above sense. Then H°(M , K™ ) is just the linear space of all the global
oo

sections of K^ . Note that the metric g^ induces natural hermitian

orbifold metrics on KZ .

Lemma 2.1. Let {(Mi9 gt)} be the sequence of Kάhler-Einstein mani-

folds given at the beginning of this section and let Sι be a global holomor-

phic section in H°(Mi9 K^™) with fM \\Sι\\2

g dVg = 1, where m is a fixed

positive integer. Then there is a subsequence {ik} of {i} such that the sec-

tions Slk converge to a global holomorphic section S°° in H°(M , K^m).
oo

In particular, if {Sβ}0<β<N is an orthogonal basis of H°{Mi, K^m) with

respect to the induced inner product by gt, then by taking a subsequence,

we may assume that {Sβ}0<β<N converges to an orthonormal basis of a

subspace in H°(M , KTΪ"), where N + 1 = dinv ^{M., K~m).

Remark. Before we prove this lemma, we should justify the meaning
of the convergence of {S1} in the above lemma since these sections are no
longer on the same Kahler manifold. Recall that for any compact subset
K c Λ/oo\ Sing(Moo), there are diffeomorphisms φt from compact subsets
Kt c M. onto K such that (φ~1)*gt and φ.. o J. o (φ~l)+ converge to
g^ and J^ o n ^ , respectively. Now with φ. as above, we can push the
sections S* down to the sections φr(Si) of ® w (Λ"(ΓM o o θ TM^)) on
K. The convergence in Lemma 2.1 means that for any compact subset K
of Moo\Sing(Moo) and φ. as above, the sections φt +(Slk) converge to a
section S°° of K~m on K in the C°°-topology. Note that the limit S°°

oo

is automatically holomorphic.
Proof of Lemma 2.1. Let Δ̂  be the laplacian of the metric gi. Then

by a direct computation, we have
(2.1) . ^ ^ J ^ ^
where D. is the covariant derivative with respect to gt. Since

fM \\Sι\\2 (x)dV = 1, by Lemma 1.1 and applying Moser's iteration to

(2.1), there is a constant C(n, m) depending only on m such that

(2.2) ^ J
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Let K be a compact subset in Moo\Sing(Λ/oo), and φ. the diffeomor-
phism from K( onto K as in the above remark. To prove the lemma, it
suffices to show

(*): for any integer / > 0, the /th covariant derivatives of φ^(Sι)
with respect to g^ are bounded in K by a constant C\ depending only
on / and K.

There is an r > 0, depending only on K, such that for any point
x in K., the geodesic ball Br(x, g.) is uniformly biholomorphic to an
open subset in Cn. On each Br(x, g.), the section Si is represented
by a holomorphic function f. χ . By (2.1), the function f. χ is uni-
formly bounded. Therefore, by the well-known Cauchy integral formula,
one can easily prove that at x the /th covariant derivative of Sι is uni-
formly bounded by a constant depending only on /, K. (*) follows since
(ΦJ1)*Si uniformly converges to g^ in AT. Hence the lemma is proved,
q.e.d.

The following proposition can be easily proved by modifying the proof
of [14, p. 92, Theorem 4.4.1] with the use of the Bochner-Kodaira Lapla-
cian formula (see, e.g., [16]).

Proposition 2.1. Suppose that (X, g) is a complete Kάhler orbifold of
complex dimension n, L a line bundle on X with the hermitian orbifold
metric h, and ψ a function on X which can be approximated by a decreas-
ing sequence of smooth functions {Ψι)χ<ι<+oo If, for any tangent vector v
of type (1,0) at any point of X and for each I,

(2.3)

where C is a constant independent of I, and ( , ) g is the inner product

induced by g, then for any C°° L-valued (0, Vj-form w on X with

dw = 0 and Jχ ||tί;||2^~^ dVg finite, there exists a C°° L-valued function

u on X such that l)u = w and

(2.4) j ||W|| V dVg<±J^ \\w\\2e-ψ dVg,

where || || is the norm induced by h and g.

Lemma 2.2. Any section S in /^(Af^, K^m) is the limit of some

sequence {S1} with Sι in H°-(Mi9 K^m). In particular, this implies that

the dimension of ^(M^, K^m) is the same as that of H°(Mi, K^m),

that is, plurianticanonical dimensions are invariant under the degeneration

ofKάhler-Einstein manifolds in either K+(μ, n) or K_(μ, n).
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Proof. We may assume that / „ ||S]P (x)dVr = 1. Let {r} be a

sequence of positive numbers with lim r. = 0 such that for each i, there

is a diffeomorphism φ. from Mi\\J1^=ιBr(x β9 g ) into Λ/£\Sing(Λ/oo)

as given in Theorem 1.1, where TV is defined in Lemma 1.2, and xiβ are

defined in (1.3). Then φ. satisfies the following facts:
(1) l i m . ^ I m ^ . ) ) is just Mo o\Sing(Mo o),

(2) {φ^ι)*gi uniformly converges to g^ on any compact subset of
Λfoo\Sing(Afoo) in the C°°-topology,

(3) φu o J. o (φ~l)+ converges to J^ , where J., J^ are the almost
complex structures on M{, M^ , respectively.

Define a cut-off function η: Rι —• Rι

+ satisfying η(t) = 0 for t < 1,

and η(t) = 1 for t > 2 and \η'\ < 1. Also let π be the natural projec-

tion from the bundle ®m{Kn{TMi θ T 3 ζ ) ) onto ^ m = (g)m(Λ/IΓM/).

For each /, we have a smooth section υ. = η(pi(x)/2ri)-πi((φ~ι)itcS) of

K^P on Λ/ , where p{(x) is a Lipschitz function defined by pt(x) =

min1<o<ΛΓ{dist (x, x ^ ) } . Then by facts (2) and (3) above, there is a

decreasing function ε3(r) on r with limr_^oε3(r) = 0 such that

Λ/
<

(2.7)

4rt

^ , g.) \ < e3(rt),

where dt is the corresponding 5- operator on Mt.
By (2.5), we have

sup
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As in the proof of Lemma 2.1, one may bound supM (||5Ί|^ (x)) by

the constant C(n, m) in (2.2). Thus by (2.7), the Volume Comparison

Theorem, and the convergence of (φ~1)*gt in fact (2) above, there is a

constant C independent of i such that

(2.8) JMiAϊgt

Now applying Proposition 2.1, i.e., the //-estimate of d-operators, we
have a C°°-smooth Λ^m-valued function w. such that

(2.9)

ί \\ui\\l( ί
(2 10)

< Γ(r, +e(r.)).
- m+ l v ' v ιΠ

By (2.9), for each /, the norm function \u$ satisfies the elliptic equation

(2.Π) W > n ,

= WD^wlμ) - nmWutf^x) + 2Re(AJί
fl(«|., β ' β ^ J W ,

where 9* is the adjoint operator of 9Z on a Λ^w-valued function with

respect to g.. As in (2.5), we also have

(2.12) supiWdJd^f^lx e M^B,^, g.)} - 0 as/^oo.

Using (2.9), (2.10), (2.11), and (2.12), we see that MJ. converges uniformly
to zero in the sense of the remark after Lemma 2.1 as / goes to infinity.
Put

(2.13) 5V) = W-"(*))

Then {5'} is the required sequence.

Lemma 2.3. Let {{Mt, g.)} and (M^, g^) be given as in Theorem

1.1. For each integer m > 0, we have orthonormal bases {S'mβ}0<β<N

(resp. {S~β}) of^{MifK^) {resp. H°(M^, K^)). Then

l (x) \ I > inf I Y \\S°°J\l(2.14) lim [ inf i V \\SLjl (x) \ I > inf I Y \\S°°J\l (x)
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Proof. By direct computations, we have

(2.15) ^^ ^ ί X J
where Ai (resp. Dt) is the laplacian (resp. covariant derivative) with re-
spect to g.. Then by (2.1), Lemma 1.1, and a standard Moser's iteration,
there is a constant Cf(n, m) depending only on n, m such that

(2.16) s u p ί l l / ) ^ ll^xJIO <β<Nm, xeMt}< C\n, m).

Combining this with (2.2), we conclude that the first derivatives of

Σβ2o\\Sl

mβ\\2g(x>) a r e uniformly bounded independent of i. Then (2.14)

follows from this and Lemmas 2.1 and 2.2.
Theorem 2.1. There exist a universal integer m0 > 0 and a universal

constant C > 0 such that for any Kάhler-Einstein surface {M1, g) in
either K+(μ, n) or K_(μ, n), we have

(2.17)

where Nm+l is the complex dimension of H°(Mf, K^?0), and {S'β}0<β<N

is an orthonormal basis of H°(Mf, K^T0) with respect to the inner product

induced by g .
Proof It suffices to prove that for any sequence of a Kahler-Einstein

surface {(Mi9 g^} converging to a Kahler-Einstein orbifold (M^, g^)
in the sense of Theorem 1.1, there exist m0 > 0 and C > 0 such that
(2.17) holds for these (Aff., g.). By Lemma 2.3, it is sufficient to find a
large m such that

(2.18)

where {S™γ} and Nm are given as in Lemma 2.3. This is equivalent to the

fact that for any point x in M^, there is a holomorphic global section

S in ^(M^IKM™) such that S(x) φ 0. The latter can be achieved

by the application of an //-estimate (Proposition 2.1) as follows. Let

xool, , x^x be the singular points of M^ . There is a small positive

number r independent of β such that for any x^β in M^ , the closure of

each connected component in B^x^β, <?OO)\{^OO)S} is locally uniformized

by a neighborhood Uβj (I < j < lβ) of the origin o in C n with finite
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uniformization group Γβ. Let πβ : Uβ -> B (x β9 g ) be the natural
P Pj Pj P

projection with πβj(o) = x^ and q = Πι<β<N(Πi<j<Rβ Qβj) > w h e r e

qβj is the order of the finite group Γβj . Let m = pq. We will choose

p later. We may take r to be sufficiently small such that the function

pβ — dist( , JCOOJ.) is smooth on Br{x(yoβ, goc^)\{xooβ\ for any β. Now

fix an x ^ and C/ .̂.

Let (z{, . . . , zπ) be a coordinate system on ΪJβ., and define a ^-antica-

nonical section ί; by

By the definition of ^ , we have v(o) ^ 0. Let //: i?1 —• Rι

+ be a cut-off

function such that η(t) = 1 for ί < 1, and η{t) = 0 for ί > 2 and

1^(01 < ! τ h e n ^ = n{^Pβl^){^βj)SvP) i s a C°°-global section of the

line bundle AΓ^m . Choose a large /? depending only on r such that for

tangent vector v of type (1 ,0) ,

(2.19) (a* ^Λnη

Applying Proposition 2.1, we obtain a C°° smooth KTΓ -valued function

u satisfying du = dw and

ί \\u\
oo

< [ \\dw\\l e-4nηlog{p*/r) dVp < + o o .

It follows that the pullback πt M of u vanishes up to order 2 at the origin

in Uβj c C" . Put

(2.20) 5

ooo βoo '

then S^eH^M^^Zj and inf^ . { ^ I I ^ H^ (x)} > 0. By the same

arguments as in the proof of Lemma 2.3, one can bound the first deriva-

tives of these Sβj by a uniform constant. So if r is taken sufficiently



COMPACTNESS THEOREMS FOR KAHLER-EINSTEIN MANIFOLDS 549

small, we have

i n f

{7=0

^ \ 2

Sβj\\g
x) xeπβj(Uβj), l<β<Nm , l<j<

N
For any point x in M^ \JN

β=χ B^x^ , gj , define pχ = dist( , x).

As above, by applying Proposition 2.1 to K^m -valued d-equation with

the weight function 4nη(4pl/r2)log(pl/r2), one can easily construct a

holomorphic section S^ in /^(AΓ^, AΓ^m) such that ^ ( J C ) # 0. Thus

the inequality (2.18) is proved, and so is Theorem 2.1.

Corollary 2.1. The Kάhler-Einstein orbifold (M^, g^) is irreducible.
Since we do not need this result, we omit its proof here and refer readers

to Proposition 5.2 in [20].

3. Application of Kohn's estimates of CR-manifolds

Let {(M , gt)} be the sequence of Kahler-Einstein manifolds in either

K+(μ, n) or K_(μ9 ή) as in §1. By Theorem 1.1 and Corollary 2.1, these

(Λ/ , g.) converge to a Kahler-Einstein orbifold (A/^, ^ o o ) . Precisely,

there are points xiχ, , xiN in M and JCOO1 , , x ^ ^ in M^ satis-

fying: for r > 0, there are diffeomorphisms φ*g. and φ* o J. o (0" 1)*

converging to g^ and / ^ , respectively, in C5-norms. The purpose of

this section is to study the holomorphic structure of Br(xiβ , g.) for suf-

ficiently small r and large i. The main analytic tool is Kohn's estimate

for D^-operators.

Let p^i' 9 •) be the distance function on M^ x M^. For simplic-

ity, we may assume that N = 1 and write x{ for xn , and x^ for

xool. For each sufficiently small r > 0, the level surface dB^x^, g^)
θ f Pooi ' ' ^oo) i S S m θ θ t h T h e L e V i f θ Γ m 0 Π 55r(XC5O ' ^Oθ) i S t h e n a t U Γ a l

hermitian form on the (n-l)-dimensional space Γ(10)A/ooΠ(ΓΛίΓoor(8)C)

given by

where i/o o r denotes the level surface dB^x^, g^).
It is easy to see that this form is positive definite for r small. In fact,

/^oo^oo' *) i s c o n v e x n e a r *oo * Therefore, each H^ is a strongly pseu-
doconvex CR-manifold. Similarly, if we define Hir to be the level surface
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then the Hir are also smooth strongly pseudoconvex CR-manifolds.

Define the following for r > 0:

(Lv L2)ir = l(dd(

?/^ , L n I

I Λ

VL

I2) VL,

Lemma 3.1. As r goes to zero, {Hoor,

(S2n-ι/Γ, ds2, ( - , . ) , ) , "here Γ c U(n)
metric with constant curvature +1, and ( ,

1
= τ<

r

,L2(

•). *

l 0 )Λ/ o on(rΛ// o o r®C),

' (•' Ooor) converges to

finite group, ds2 is the

s induced by the standard

Levi-form on the unit sphere.
Proof. It follows trivially from the boundedness of the curvature tensor

Lemma 3.2. There is a subsequence {/} such that there are diffeomor-

phisms ψj from S2n~ι onto Ht r , where r^ = l/j, satisfying:

(!) \\ΨjSijrj ~ d^Wc'iS2"-1) ^ €U)> and

where ε(j) —> 0 as jr —»• oo.

In other words, (Hir9gir,{ 9 >). r) converges to {S2n~ι, ds2, ( , -s))

as j tends to infinity.

Proof Because of the convergence of (Mi, gέ) to (M^ , ^ o o ) , for each

j there is a diffeomorphism 0 from Moo\Br /^(x^, ^OQ) into M{ for

some /. satisfying:

(3) ||0* J. - JcaWcSfM ) < j , where /. and J^ are almost complex

structures on M. and M , respectively.
j °°

By Lemma 3.1, there are diffeomorphisms θ. from 5 2 " " 1 onto Hoor

such that
i l l 11^ f^ /v ? II s ? i ^^ /̂  i 7 1 flΠfi



COMPACTNESS THEOREMS FOR KAHLER-EINSTEIN MANIFOLDS 551

where ε(j) -> o as j —• oo. Now our ψ. are just the compositions of φ.
with θj. q.e.d.

Given a complex manifold X with strongly pseudoconvex boundary
Y, we define &p'q(Y) to be the space of smooth sections of the vector
bundle ΩF'9(X) ΠAp'q(TχY® C) on Y. The d-operator of X induces
the ^-operator from SSp*q{J) into &pf9+ι(Y), explicitly, dbφ is the
projection of ~dφ onto &PiQ+x(Y). Let d^ be the adjoint operator of
db on Y with respect to the induced metric on Y from X and the Levi
form.

Since Ή = 0, it follows that ~dh = 0, so we have the boundary complex

Then the cohomology of the above boundary complex is called the
Kohn-Rossi cohomology and is denoted by Hp 'q{β). We recall the fol-
lowing proposition.

Proposition 3.1. Let X, Y be as above. Then for 1 < q < n-2, the co-
homology Hp'q{β) is finite dimensional and the range of db: 3§p'q~x —•
38PΛ is closed in the C°°-topology.

Let H be the universal covering of Hi r then they are diffeomorphic

to S2n~ι. In fact, ψ. induces these diffeomorphisms from S2n~ι onto

Hj , still denoted by ψ..
Lemma 3.3. Let n>3. There is a uniform constant C > 0 such that

for j sufficiently large,

for any u in 38 yl(H.), where || | | 2 denotes the L -norm induced by the

metric g. r and Levi form ( , •).• r .

Proof Let λ. be the smallest eigenvalue of the operator of D^ =

dbd* + d*db on &°'ι(Hj). Then (3.1) is equivalent to λj > c> 0.
Suppose that the lemma is false. Then we may assume that λj —• 0 as

j -* oo . By Proposition 3.1, the eigenspace of λj is of finite dimension.
Pick up an eigenfunction Uj for λj with ||M7 | |2 = 1. Then

Since (Hj9gijrj9(., •),.,.) converges to (S2n~ι, ds2, ( , •),) inthe C5-

topology, by Kohn's estimate for Πb, these Uj converge to u^ in

38*Λ{β2n-χ) satisfying

Hw IL = 1 and D,w_ = 0.
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In particular, u^ gives a nontrivial cohomological class in H°Λ (&(S2n~1)).

However, it follows from Theorem A in [26] that H°'\&(S2n~1)) = 0 for

n > 3, a contradiction. Therefore, (3.1) holds.
Lemma 3.4. There exist embeddings ι.: H -> Cn such that the ij{Hj)

converge to S2n~ι as submanifolds in Cn in the CA-topology.

Proof. Let z p , zn be the standard coordinates in &n. The re-

strictions of these to S2n~ι are CR-functions denoted by the same letters

for simplicity. Define
- 1

Zji = z

x ° Ψj > 1 < / < « , . / » 0 .

Then supι^i^n{\\db(zi o V y) | |C4 (£ }} < Cε(j), where C is a uniform con-

stant, and ε(j) -»• 0 as j —• oo .
By Lemma 3.3, there are v|.. solving

with
it rΛ | | L | | c\ *

Define z l 7 = z o ψ. 1 - d*bυ.j then dbztj = 0.

Using Kohn's estimate for the d.-operator, we have

The required maps 1. assign JC in ^ to (z..(x), ••• , ^Λ, (JC)) in C Λ .

Since dbzu = 0 and (Hj9 gijFj9 {. , •),.,.) converge to (S2n~l, ds2,

( , )s) through ^Λ, these 1. are CR-embeddings of H. such that the

images approach S2n~ι. Hence the lemma is proved, q.e.d.

Choose a large m such that the basis {j~,..., S™ } of /^(Λ/^, AΓ^m)
/M OO

gives a Kodaira's embedding of M^ into C P ^ W , where Nm =

dim c ^(M^, A^ m ) - 1. Moreover, we may arrange these ST such that

S^ix^) φ 0, and ^ ( t j = 0 for β > 1. By Theorem 2.3 in the previ-

ous section, there are bases {Si} of H°(Mi , K^m) converging to {S^}.

In particular, for 7 sufficiently large, these bases {Sj

β} give embeddings

of Mz into CP^m . Fix a small r > 0; then for j large we have local

embeddings
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Denote by w{, , wN the coordinate functions. Let π : H -> H be

the covering maps. Then the compositions wβ o π. (1 < β < Nm) are

CR-functions on H.. Now by the previous lemma, H bound strongly

pseudo-convex domains B in Cn . Moreover, these B. converge to the

unit ball in Cn as j approaches infinity.
Lemma 3.5. Each Wβ o %. can be extended to be a holomorphic function

Proof. Since B. is a domain in Cn , there is a nonconstant holomor-
phic function on B.. This lemma then follows from Theorem 5.3.2 in [6].
q.e.d.

Define

Then τ. coincides with τ^ o π^ on H., so by the analytic unique con-
tinuation, the image ij{Bj) coincides with part of τ^B^x^)). It follows

that there are holomorphic maps τ~ of. from B onto the domain in

Br(χ.j) enclosed by H{ , in particular, τ~ o τ immersions near H. and

finite maps on B.. For simplicity, denote τ~ of by π..

Lemma 3.6. Let Γ be the fundamental group of Htj. Then Γ acts on

H. as a CR-isomorphism group, and can be extended to be automorphisms

of B . In particular, Γ c U(n).

Proof It is clear that each σ eΓ preserves the CR-structure of H as
a deck transformation. Therefore, the CR-f unctions z{oσ, - , zn°σ can
be extended to be holomorphic ones in B (cf. proof of Lemma 3.5), that
is, σ extends to be a holomorphic map from Bj into itself. The extension
must be an automorphism since σ has degree one near H.. q.e.d.

As a finite group in U(n), Γ has at least a fixed point in B. if it is
nontrivial. This implies that 38. jY is singular, contradicting to the fact
that Br(xi) is smooth for each j . Therefore, Γ = {id}, and M^ is in

fact smooth.
Summarizing the above, we have
Theorem 3.1. Let {{M.9 gt)} be a sequence of Kάhler-Einstein mani-

folds in K+(μ9 ή) {resp. K_(μ, n)). Then either (A/., g.) converges to a

KάhlerΈinstein manifold in the C5-topology, or there is a smooth Kάhler-

Einstein manifold (Af^, g^) in K+(μ, n) {resp. K_(μ, n)) such that a

subsequence of {(Mi, g.)}, say {(Mi, g()} itself, converges to (M^, g^)
i

outside finitely many points in the C -topology.



554 GANG TIAN

4. Proof of Theorem 2

In this section, we classify all complete Ricci-flat Kahler manifolds
(X, g) with euclidean volume growth and fχ \Rm{g)\n dVg < oo, where
n = dim c X. Let us fix one of them, say (X, g).

Lemma 4.1. There is a decreasing positive function ε(r) with
l i m ^ ^ ε(r) = 0 such that

(4.1) \\R

where r(x) is the distance function from some fixed points.
Proof Choose ε(r) to be a decreasing positive function such that

= 0 and

\\Rm(g)\\n

g dVg < έ(r) for x c dB2r(x0).

Now for each fixed x in dB2r(x0), define a new metric gχ = g/r2 then
g has vanishing Ricci curvature, and

/.
\\Rm{gx)\\" dV <

On the other hand, since (X, g) has the euclidean volume growth, there
is a constant C', independent of r, such that

so by the Volume Comparison Theorem [2],

Volg(Bχ(X9 g)) > ^Volg(B4r(X, g))

It follows that Vol^ (Bx(x, gx)) = Volg(Br{x, gx))/r2 is not less than

a uniform positive constant Cf/42n . So we can apply Lemma 1.2 to
(B{(x,gx),gx) and obtain

(4.2) \\Rm(gχ)\\gχ<Cέ(r),

where C is a constant independent of x . Take ε(r) = Cέ(r). Then (4.1)
is nothing else but (4.2), and the lemma is proved, q.e.d.
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Consider a sequence of complete Ricci-flat Kahler manifolds (Xt, gt) =
(X,g/i2). By Lemma 4.1, ||i?m(g,)|L are bounded by ε(i)/δ out-
side Bδ(x0, g.) for any δ > 0. Therefore, we can proceed as in §1
to show that (Xi, g.), by taking subsequences, converges to a complete
Kahler orbifold {X^, ^ o o ) . In fact, the proof in this case is much sim-
ilar, and {X^, g^) is flat because of Lemma 4.1. Therefore, X^ =
Cn/Γ with unique singular point o in U(n). In particular, there are
smooth diffeomorphisms ψ. from Xi\Bι,2(x0, g) into ^oo\Bι,4(0, g^)

such that Wiψf^gi - ^ o o l l c 5 ^ , ^ ) = °(ι>> a s i S o e s t 0 i n f i n i t y P u t

Σz = ψ~ι(dB{(0, g^)), and let Σ. be its universal covering. Then the Σi

are strongly pseudoconvex CR-manifolds and converge to S2n~ι in Cn .

Thus by Lemma 3.4, for i sufficiently large, these Σz can be holomor-

phically embedded into Cn and bound domains B* there. Moreover, Γ

acts on Bn

{ by holomorphic transformations.

On the other hand, if we denote by p2 the square of the euclidean dis-
tance function from o in C"/Γ, then the ψ* p2 are convex functions near
Γ.. So by Grauert's theorem [8], for each large /, there is a holomorphic
map υ.: E{ -• CNi which is actually an embedding near Γ. = dEχ., where
Ei is the bounded domain enclosed by Σ(.

Lemma 4.2. For each fixed i,ifwl9- , wN are coordinate functions

of CNi, then the CR-functions w. o πt: Σ. -• CNi can be extended to be

holomorphic ones in B" , where π{: Σf. -> Σ;. are natural projections.

We omit its proof (cf. Lemma 3.5).
It follows that there are holomorphic maps φ{\ B^jY —> v^E^ , which

are embeddings in the neighborhoods of Σ^.
Lemma 4.3. For each i, there is a holomorphic map pt: Ei -• B"/Γ

such that υt = φop..

Proof It is easy to see that φ~ (x) contains exactly one point in B"/Γ
for x in v.(E.). Let D{9 -- , DH e E. be analytic subvarieties such that

~ιv~ι ovi(Di.) contains more than one point. Then the v (D.j) are isolated

~lpoints. Define p( = φ~l o υi outside these Dn9-- , Da then p\ is a

holomorphic map from ^ Λ U ^ i ^ i n t 0 &" s i n c e 5 " is bounded,
the map pt can be extended across Diβ . In particular, this implies that
/j = 1, i.e., there is only one connected component, and v/(£/) has only
one singular point, so vf (/?,-) = B* /Γ. q.e.d.

It follows that X is the resolution of Cn/Γ. Hence Theorem 2 is
proved.
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5. Proof of Theorem 1

In this section, we will finish the proof of Theorem 1.

Let {(Λ/p gt)} be a sequence of Kahler-Einstein manifolds either in

K+(β> n) or K_(μ, n). By Theorem 3.1, (Mf, g.) converges to a smooth

Kahler-Einstein manifold (M^, g^) outside finitely many points. Pre-

cisely, there are xn , , xiN satisfying: for each r > 0, there are diffeo-

morphisms φir from M^U^B^x^, g^) into Λf. containing
Mi\\Jβ=ιB2r(χiβ > 8i) such that φ*rg. converges to g^ in the C5-topology.

Each B^x^β, g^) with small r is a smooth ball in Cn . So 5 r (x^, g.)

are smooth balls in Cn , too.

We need to show that the Rm(gi) are uniformly bounded in

Uj=i BiλxiβSi) - Suppose it is not true. Then by taking the subsequence,

we may assume that μf = |lΛ m(#/)lls .(y,-)-**0 0 forsome y. in 5 r ( x . p ^ . ) ,

where lim . ^ ^ r. = 0. Define new metrics on M. by

Then the pointed manifolds (Br(xn , ^ ) , Λ̂ , y.) converge to a complete
Ricci-flat Kahler manifold (X, h) with fχ \\Rm(h)\\n

hdVh < oo, where r
is a fixed small positive number.

Lemma 5.1. X is a Stein manifold.
Proof. Let (M., g.) be in K+(μ, n) for all /. The proof of the other

case is identical.
Fix an m > 0 such that the basis of ^{M^, K^m) gives an embed-

ding of M^ into some projective space. In particular, there is a positive
constant C satisfying

where N = dim c ^(M^, ^ m ) , and {S^} is an orthonormal basis of

77° ( M ^ , A : ^ ) with respect to g^ .

By Theorem 2.1, for i sufficiently large,

where the {^} are orthonormal bases of H°(M., KM

m) with respect to
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. Let 5. be the section of K^m satisfying:

(2) l l ^ l l ^ ) = sup{||5||^(y )| /M/ \\S\\2

gι gi

Then for / sufficiently large and r sufficiently small,

(5.2) min (||5 ||) > C > 0.
B λ x 8 )

Define u.{x) = -logdlίjl W/H^H (y,.)). Then the w. are uniformly

bounded smooth functions in Br(xn , gt) satisfying:

u.(y.)= min u. = 0.

Therefore, ωh = \/-\d'd{μ1

iui)l{2π), and μ]ui converge to a smooth

function u in X such that ωh = yf^lddu/ln. This implies that X is
Stein, and hence the lemma is proved, q.e.d.

By Theorem 2, X is a smooth resolution of some Cn/Γ. Therefore,
X has to be C"/Γ, and Γ is trivial since X is Stein.

Thus (X, h) must be flat, contradicting that max .̂ ||i?m(Λ)||Λ = 1. This
finishes the proof of Theorem 1.
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