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POLYCYCLIC GROUPS AND
TRANSVERSELY AFFINE FOLIATIONS

J. F. PLANTE

Introduction

A foliation is called transversely aίfine if coordinates can be chosen so
that the holonomy maps are all affine [3]. It is known that there is a close
relation between complete affinely flat manifolds and polycyclic groups.
Specifically, all polycyclic groups occur as the fundamental group of such
a manifold [10] and it is conjectured that the converse is virtually true.
Here we consider foliations of codimension one of manifolds with poly-
cyclic fundamental group and show that in certain natural situations the
foliation must have a transverse affine structure. For example, when the
manifold is compact with polycyclic fundamental group, any real analytic
foliation with exponential growth (of all leaves) is transversely affine (The-
orem 4.1). For foliations with less differentiability analogous results are
obtained by making additional topological hypotheses on the foliation.
These results may be thought of as generalizations of results from [4] and
[17] for manifolds of dimension three. In contrast, examples from [8] are
described which show that these results do not hold when the fundamental
group is merely assumed solvable. The results for foliations are based on
a study of smooth actions by polycyclic groups on the real line which, us-
ing the main result in [23], yields sharper conclusions than similar results
obtained in [18] for actions by more general solvable groups.

1. Polycyclic groups of diffeomorphisms of R

Denote by Diff*(R) the group of ^k diffeomorphisms of the real line,
where A: is a positive integer, oc , or ω (real analytic). We will denote by
Aff(R) the subgroup of Diff^(R) consisting of affine maps (x *-+ ax+b for
some fl/0,ίGl). Of particular interest to us will be diffeomorphism
groups which are polycyclic and have exponential growth. For abstract
groups of this type the basis reference is Wolf [22].
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A finitely generated group Γ is said to be polycyclic if there is a finite
sequence of subgroups

such that for each / = 1 ,•••,«, T. is normal in Γz_j and Ti_JTi

is finite or infinite cyclic. The following result from [22] gives several
equivalent conditions which will be useful.

(1.1) Proposition. For a solvable group Γ the following conditions are
equivalent:

(1) Γ is polycyclic.
(2) Every subgroup of Γ is finitely generated.
(3) Γ has a subgroup Γ* of finite index whose commutator subgroup

[Γ*, Γ*] is finitely generated and nilpotent, and Γ*/[Γ*, Γ*] is finitely
generated free abelian.

It will be convenient to extend this notion somewhat by saying that a
group Γ is virtually polycyclic if it has a polycyclic subgroup of finite index.

A finitely generated group Γ is said to have exponential growth if, for
some (or any) finite generating set, the number g{n) of elements in Γ
which can be expressed as a word of length < n in the generators satisfies

On the other hand, Γ has polynomial growth if g(n) < p(n) for all n e
Z + , where p(x) is a polynomial. The following is also proved in [22].

(1.2) Theorem. If Γ is virtually polycyclic then either
(i) Γ has nilpotent subgroup of finite index and has polynomial growth,

or
(ii) Γ has exponential growth.
Throughout the rest of this section Γ will denote a virtually polycyclic

group of diffeomorphisms of the real line. Note that if Γ c Aff(R), then
[Γ, Γ] consists of translations. In this case we define the translation num-
ber homomorphism T: [Γ, Γ] —• R as follows: If γ(x) = x + b, then
T(γ) = b.

(1.3) Lemma. If Γ c Aff(R) is a polycyclic subgroup of exponential
growth, then [Γ, Γ] contains two elements whose translation numbers have
quotient equal to an irrational algebraic number. In particular, [Γ, Γ] is
a finitely generated subgroup of rank > 2 which is dense in the translation
subgroup of Aff(R).

Proof Since Γ is polycyclic, [Γ, Γ] is finitely generated as an abstract
group. Since Γ has exponential growth it is not abelian, so both [Γ, Γ]
and Γ/[Γ, Γ] must be nontrivial. We claim that [Γ, Γ] has rank > 2. If
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not, [Γ, Γ] would be infinite cyclic generated by some γ0 . For γ e Γ we
would have γγoy~ equal to γ0 or γ^ . Passing to a subgroup of index
< 2 in Γ we could assume γγoγ~l = γ0 for all γ e Γ which would imply
that γ0 is a central element and further (since Γ/[Γ, Γ] is abelian) that
Γ is nilpotent. This contradicts the assumption that Γ has exponential
growth. So [Γ, Γ] has rank > 2, and by rescaling we may assume that
T(γ) = 1 for some γ e [Γ, Γ]. If Γ([Γ, Γ]) c Q it would follow that
rank[Γ, Γ] = 1, so there is a γ e Γ such that T(y) is irrational. It
remains to be shown that all T(γ) are algebraic. Regard T as an element
of Hom([Γ, Γ]; R) ^ R^ (where d = rank[Γ, Γ]). The action of Γ on
[Γ, Γ] by inner automorphisms induces an action of Γ on the vector space
Hom([Γ, Γ] R). For γ e Γ we denote the corresponding automorphism
by γ^. For any basis of [Γ, Γ], γ^ will have an integer matrix with respect
to the dual basis of Hom([Γ, Γ]; R). Since Γ has exponential growth
there is no Γ-invariant measure but Lebesgue measure is the unique (up
to rescaling) quasi-invariant measure in the sense of [18, §4]. In particular,
for each γ e Γ, there is a nonzero real number c(γ) such that γ+(T) =
c(γ)T and, furthermore, T spans the one-dimensional eigenspace of γ^
for the eigenvalue c(γ). Since γ^ has integer matrix the eigenvalues c(γ)
are algebraic. When T is scaled so that one of its coordinates is one,
it follows that the other coordinates of T must also be in the field of
algebraic numbers. This completes the proof of (1.3).

We now consider finitely generated subgroups of Difffc(R) for k > 2.
For ΓcDiff*(R) and JCGR the orbit of x under Γ is the set {γ(x)\γ e Γ}
which we denote by Γ(x). Γ(x) is said to have exponential growth if,
for some (or any) fixed finite generating set for Γ, the cardinality of the
set {7(x)|y has minimum word length < n} grows exponentially in n.
According to (1.3) of [18], Γ has a nontrivial invariant Borel measure
which is finite on compact sets if, and only if, some orbit does not have an
exponential growth. Note that if Γ(x) has exponential growth for some
x, then Γ has exponential growth as an abstract group. The group Γ is
said to be minimal if every orbit is dense in R.

(1.4) Lemma. Suppose Γ c Diff*(R) (k > 2) is a virtually polycyclic
group such that every orbit has exponential growth. For such groups the
following are equivalent:

(1) There is a subgroup Γ* of finite index in Γ such that the center of
[Γ*, Γ*] contains an element without fixed points.

(2) Γ is minimal.
(3) Γ is conjugate (by a homeomorphism) to a subgroup of Aff(R).
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Proof. (1) =• (2). Assume that condition (1) is satisfied and let γ e
Z([Γ*,Γ*]) be a diffeomorphism without fixed points. The quotient space
R/JC ~ γ(x) is diffeomorphic to the circle and the action of Z([Γ*, Γ*])
on R induces an action by the quotient group Z([Γ*, Γ*])/(y) on the
circle. It is proved in [18] that Γ has a quasi-invariant measure (that is,
each element of Γ either preserves the measure or multiplies it by a con-
stant) which is finite on compact sets. Since orbits of Γ* have exponential
growth the measure is not Γ*-invariant. However, the measure is invari-
ant for the subgroup [Γ*, Γ*], and by suitable rescaling we may assume
that the induced invariant measure on the circle has total measure 1. The
translation numbers [18] of the elements of [Γ*, Γ*] when reduced mod
1 become the rotation numbers [15] for the induced action on the circle.
Since the original measure is not Γ* -invariant, the action of Γ* by inner
automorphisms on the translation numbers of [Γ*, Γ*] determines a sub-
group of Aff(R) which has exponential growth. By (1.3) it follows that at
least one of the rotation numbers for the action induced on the circle is
irrational. A classical theorem of Denjoy (since k > 2) implies that the
action on the circle is minimal and, therefore, so is the action by Γ.

That (2) => (3) follows from (4.6) of [18] and (3) => (1) is obvious, so
(1.4) is proved.

(1.5) Lemma. / / Γ c Diff°(R) is virtually poly cyclic and such that every
orbit has exponential growth, then Γ satisfies the equivalent conditions of
(1.4).

Proof By (1.1) we may assume, by passing to a subgroup of finite index,
that [Γ, Γ] is nilpotent. Let γ be a nontrivial element in the center of
[Γ, Γ]. Either γ has no fixed points, or its translation number with respect
to a Γ-quasi-invariant measure is zero [18], in which case the support of
the measure is contained in the fixed point set of γ . Since γ is real analytic
its fixed point set is discrete, which means that the support of the measure
consists of atoms. This would imply that the group of translation numbers
of [Γ, Γ] is infinite cyclic. By an argument similar to that in the proof
of (1.3) the action induced by Γ on the support set of the measure would
have polynomial growth, contradicting the hypothesis that all orbits of Γ
have exponential growth. Therefore, γ has no fixed points, and condition
(1) of (1.4) is satisfied. This proves (1.5).

(1.6) Lemma. Suppose that every orbit of Γ c Diff^(R) (k > 2) has
exponential growth and that Γ has a subgroup Γ* of finite index such
that [Γ*, Γ*] is a finitely generated abelian group. Then Γ satisfies the
equivalent conditions of (1.4).
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Proof. Clearly Γ is virtually polycyclic. As before there is a nontriv-
ial Γ* -quasi-invariant measure which is invariant under [Γ*, Γ*]. We
claim that some element of [Γ*, Γ*] has nonzero translation number and,
therefore, no fixed points. If all translation numbers of [Γ*, Γ*] were zero,
then the support of the measure would be pointwise fixed by every element
of [Γ*, Γ*]. In this case Γ* would induce an action of Γ*/[Γ*, Γ*] on
the support of the measure, but this quotient group (abelian) has polyno-
mial growth contradicting the fact that every orbit of Γ* has exponential
growth. So the claim is proved, and (1) of (1.4) follows since [Γ*, Γ*] is
abelian.

2. Differentiable conjugacy to affine subgroups

(2.1) Theorem. // Γ c Diff*(R) (k > 2) is virtually polycyclic, mini-
mal, and has exponential growth (as an abstract group), then Γ is equivalent
by a & change of coordinates to a subgroup of Aff(R).

Proof By (4.6) of [ 18] there is a continuous change of coordinates taking
Γ into Aff(R). By (1.4) and its proof we see that [Γ, Γ]/(y) acts on the
circle where γ is any nontrivial element of [Γ, Γ]. By (1.3) we conclude
that one of the rotation numbers of this action is an irrational algebraic
number and, consequently, satisfies the Roth condition (cf. [19]). By the
main result of Yoccoz [23], the map which conjugates the action on the
circle to a group of rotations must be at least of class Wk~2 . The lift of
this map to R is a change of coordinates taking Γ into Aff(R).

Remark. When k = oo or ω there is no loss of differentiability, that
is, the conjugacy takes place in the group Din (R).

(2.2) Corollary. If Γ c Diffy(R) is virtually polycyclic and every or-
bit of Γ has exponential growth, then Γ is conjugate by a real analytic
diffeomorphism to a subgroup of Aff(R).

Proof (2.2) follows from (2.1) and (1.5).

(2.3) Corollary. If every orbit ofΓc Difϊ*(R) (k > 2) has exponential
growth and Γ has a subgroup Γ* of finite index such that [Γ*, Γ*] is a
finitely generated abelian group, then Γ is equivalent by a (S>k~1 change
of coordinates to a subgroup of Aff(R).

Proof (2.3) follows from (2.1) and (1.6).
Remark. The conclusions of (2.1), (2.2), and (2.3) imply that Γ is

actually polycyclic and that [Γ, Γ] is abelian.
The essential nature of the hypothesis that Γ is polycyclic is illustrated

by examples in Hirsch [8]. If / : Sι -• Sx is a covering map of degree
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n > 1, let G: R -» R be a covering transformation which generates the
fundamental group of Sι and let F: R -• R be a lift of / . Then F
and (J satisfy the relation FGF~X = G" and generate an action by a
solvable group Γ on R. When n = 1 the group is abelian, but when
n > 1 the group is /wί polycyclic. To see this, consider the special case
f{t) = w φ n o d l ) , F(t) = nt, G(ή = t + 1. The group generated by
F and G in this case lies in Aff(R). It is clear for n > 1 that the
commutator subgroup of Γ is not finitely generated. For example, when
n = 2, [Γ, Γ] corresponds to the group of translations by dyadic rational
numbers. Also note, for n > 1, that Γ has no invariant measure, so
every orbit, as well as Γ itself, has exponential growth. A covering map
/ : Sι -• Sι is said to be an expanding map if f(t) > 1 for all t e Sι.
It is proved in [20] that if / is any expanding map of degree n > 1 on
the circle, then it is conjugate by a (unique) homeomorphism to the map
t »-• «ί(mod 1). This conjugacy lifts to R, so we conclude that whenever
/ is an expanding map the corresponding action of Γ on R is equivalent
by a continuous change of coordinates to a subgroup of Aff(R). On the
other hand, the change of coordinates is not usually differentiable. For
example, when the conjugating map is differentiable at the (unique) fixed
point s of / it must be the case that f(s) = n. This situation can be
avoided by a f 1 small perturbation of / . This shows that (2.1) and
(2.2) above do not hold for solvable groups which are not polycyclic and
that (2.3) is not valid without the assumption that [Γ*, Γ*] is finitely
generated. Actually, as observed in [8], when Γ is not polycyclic it can
fail to be equivalent to a subgroup of Aff(R) even by a continuous change
of coordinates. To see this, let / be a covering of degree n > 1 obtained
by composing the map t \-> nt(modl) with a diffeomorphism h (even real
analytic) of the circle such that 0 < Λ'(0) < \/n . The resulting covering
map is no longer an expanding map and the action of Γ on R is not
minimal. This implies that Γ is not even continuously conjugate to a
subgroup of AfF(R). It is true, however, that such Γ are semiconjugate to
a subgroup of Aff(R) [18]. This amounts to saying that the original map
is semiconjugate to the map t *-> nt(mod 1). Finally, the essential nature
of the hypothesis of exponential growth may be seen by considering the
case n = 1. Since Γ is abelian of rank 2 in this case, it has polynomial
growth. There are diffeomorphisms of the circle (which are even real
analytic) which are continuously but not differentiably conjugate to an
irrational rotation [23]. (In such cases the rotation number will not be
algebraic.) The corresponding Γ is equivalent by a continuous change of
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coordinates to a subgroup of Aff(R), but the change of coordinates cannot
be as smooth as the conclusions of (2.1), (2.2), and (2.3) require.

3. Transversely affine foliations of codimension one

Suppose M is a connected manifold and 9" is a foliation of M. & is
transversely affine if M is covered by a collection of ^-distinguished open
sets % (that is, the restriction of 9" to each Ua in % is a standard prod-
uct foliation) such that the submersions πa: ί/Q —> R^ (# = codimension
of 9") which define 9'\Ua have the property that the transition func-
tions τaβ = π^ o π " 1 are affine maps between open subsets of R* . For
codimension-one foliations (q = 1) which are transversely oriented and
sufficiently smooth to be determined by a differentiable one-form ω (tan-
gent bundle of 9' = kernel ω) the condition becomes dω = θ Λ ω, where
θ is a closed one-form. That the existence of such ω and θ is equiva-
lent to 9' being transversely oriented and affine is shown in [3]. On the
other hand, if ω is any other one-form which also determines the trans-
versely oriented foliation 9~, then ω = fω, where / : M —• R+ . A short
computation shows that dω = θ Λ ω, where 0 = 0 + rf(log/). Thus, θ

determines an element of Hι {M R) which does not depend on the choice
of ω. Furthermore, this cohomology class is trivial if, and only if, 9" is
determined by a closed one-form. If dω = 0 we can take θ = 0. Con-
versely, if θ = dg, then take / = e~g to get θ = 0. When ω is closed
it determines an ^-invariant measure in the sense of [15], [16]. We will
be interested in foliations without (nontrivial) invariant measures; when
such foliations are transversely affine, the cohomology class determined by
θ is nontrivial.

Example. Let G be a simply connected Lie group and H c G a closed
subgroup of codimension one. If Γ c G is a discrete subgroup, then
H acts on G/Γ by left translations. Let 9" be the (codimension-one)
orbit foliation determined by this action on M = G/Γ. The universal
covering space of M is M = G and the induced foliation 9" on M
has as its leaf space the one-dimensional manifold H\G, which must be
diffeomorphic to R since G is simply connected. Thus, the action of
Γ on H\G determines the subgroup of Diff(R) (which is defined up
to conjugacy) called the (global) holonomy group of 9". Since G acts
transitively on R (that is, on H\G by right translations) the action is
effectively equivalent, by a classical result of Lie, to one of three types:
translations by R, the standard action by Aff(R), or by an action by
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the universal cover of SL(2, R). If the group G is amenable (that is,
a compact extension of a solvable group [10]), then the third possibility
cannot occur and & will have a transverse affine structure. When G is
amenable, Γ must be virtually polycyclic [10], so when & does not have
an invariant measure the fact that it has a transverse affine structure follows
also from (2.2). Suppose that Γ is uniform (G/Γ = M is compact). This
implies that G is unimodular. It follows from a result in [6, p. 90] that
the action of G on H\G has an invariant measure if, and only if H is
unimodular. Since Γ is uniform, there is a G-invariant measure if, and
only if, there is a Γ-invariant measure. Therefore, when M is compact
& has an invariant measure if, and only if, H is unimodular. When
G is semisimple with each factor of noncompact type and Γ c G is a
uniform discrete subgroup we claim that the foliation & cannot have a
transverse affine structure. If H were unimodular there would be an «̂ "-
invariant measure, so G would act on H\G by translations and, if H
were not unimodular, G would act effectively as Aff(R), neither of which
can happen since effectively G must act as the universal cover of SL(2, R)
(cf. Lemma 2.3 of [10]).

Suppose & is an arbitrary codimension-one foliation of a connected
manifold M. We say that & is covered by a product foliation if the foli-
ation 9" induced on the universal covering space of M is diffeomorphic
to a product foliation L x R, with leaves L x {t}, t e R. The examples
considered above have this property. For such foliations it is clear that
the leaf space of & is diffeomorphic to R. However, the converse is not
always true even for transversely affine foliations. For example, it is ob-
served in [3] that the standard Reeb foliation of Sn x Sι has a transverse
affine structure. For n > 2 the universal covering of this foliation has
leaf space diffeomorphic to R, but is not a product foliation (one leaf is
Sn~ι x R, the rest are R π ) . There are some situations where the converse
is valid. The foliation & is said to be minimal if every leaf of & is
dense in M.

(3.1) Proposition. Suppose that !F is a transversely affine foliation of
a connected compact manifold M. Assume also that SF satisfies at least
one of the following conditions.

(i) 9~ is determined by a closed one-form ([θ] = 0 in Hι(M;R)).

(ii) & is minimal and SF has leaf space diffeomorphic to R.
Then SF is covered by a product foliation.

Proof Assume that & satisfies (i), that is, & is determined by a closed
one-form ω. Let X be a vector field on M such that ω(X) = 1. Then
since ω is closed and diχω = 0, it follows that Lχω = 0, so the X-flow
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preserves &. Lifting the X-flow to M we obtain a flow transverse to &
which takes leaves into leaves. The orbit of a single leaf under the lifted
flow is both open and closed in M, so & has a product structure. Assume
now that &" satisfies (ii). The action of nx{M) on M induces an action

on the leaf space of &. Since & is minimal and transversely affine, this
action must be minimal and affine. Let M be the covering space of M
corresponding to the subgroup of πχ(M) which determines translations.
The induced foliation F o n M clearly has an invariant volume, that is,
it is determined by a closed one-form ω. Let X be a vector field on M
which is perpendicular to & for some metric induced from M and such
that ω(X) = 1. Now proceed as before. This proves (3.1).

The following result of Duminy gives a useful condition for a foliation
of a compact manifold to be minimal. A detailed exposition is given
in Cantwell and Conlon [2], Recall that every foliation of a compact
manifold has a (nonempty) minimal set (which coincides with M when
& is minimal).

(3.2) Theorem. If & is a foliation of class &k (k > 2) of a compact
manifold M such that every leaf has finitely many ends, then every minimal
set of & is either a compact leaf or all of M.

The examples described in the previous section do occur as global holon-
omy groups for the universal covering of a foliation of a compact manifold
[8]. As before, let / : Sι —> Sι be a covering map of degree n > 1. Start
with the product foliation of Dn x S (Dn = «-disk) determined by pro-
jection to S . Assuming n > 2 there is an embedded circle transverse
to this foliation which wraps around the S factor n times. Removing
a tubular neighborhood of the embedded circle results in a manifold of
dimension n + 1 having two boundary components, each diffeomorphic
to Sn~ι x Sι. Identify these boundary components via a map which pre-
serves the codimension-one foliation of the boundary and projects to / ,
thus obtaining a codimension one foliation & of a manifold M without
boundary. The foliation & is covered by a product foliation and has
global holonomy group Γ (generated by a lift F of / and generator G
of the deck group of Sx). If f(t) - nt (mod 1), & has a transverse
affine structure of class ^ ω . When / is an arbitrary expanding map of
degree n, & has a continuous transverse affine structure. When / is
not conjugate to any expanding map, the foliation & is not minimal. In
every case, each leaf of & is noncompact and has infinitely many ends.
Also, when n > 3, π{(M) is isomorphic to Γ and the fundamental group
of each leaf is trivial or infinite cyclic.
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4. From polycyclic to transversely affine

In this section we will consider codimension-one foliations & of class
%>k (k > 2) of a connected manifold M. When & is not transversely
orientable we may pass to a two-fold covering space such that the lifted
foliation is transversely orientable. In the transversely oriented case &
is determined by a one-form ω. An immersed circle c: S -> M is
transverse to & if ω(c(ή) > 0 for all t. A subset S c M is ^-saturated
if it is a union of leaves of &. Standard arguments show that if L is a
leaf of & which is not closed, then there is a circle transverse to & which
intersects L. ^ is said to have compact leaf space if every open cover
of M by open ^-saturated sets has a finite subcover. When & has no
closed leaves this means that every leaf of & meets one of finitely many
transverse circles, indeed there will exist a single transverse circle which
meets every leaf. To see this, suppose cx, , cn are transverse circles
with ^-saturations Sx, , Sn . Since M is connected, St nSj φθ for
some i φ j . This means that there is a path lying in a single leaf of &
with an endpoint in each of the images of c( and c.. Using this path it
is easy to construct an immersed circle c* whose saturation is Si U S .
Replacing ct and c. by c* reduces the number of transverse circles by
one. Repeating this process we eventually obtain a transverse circle whose
^-saturation is all of M. Novikov [11] would say that such & have a
single component.

(4.1) Theorem. Suppose &~ is a real analytic foliation which has a
compact leaf space. If πx(M) is virtually polycyclic and & does not have
any invariant measures, then & is minimal and transversely affine. If in
addition, M is compact, then SF is covered by a product foliation.

Proof. Since & has no invariant measures it does not, in particular,
have any closed leaves. Furthermore, when M is compact, nonexistence
of invariant measures is equivalent to saying that every leaf of & has
exponential growth [16]. Since & has a single Novikov component and
n{(M) does not contain a free subgroup on two generators, it follows
from Solodov [21, Theorem 2.1] that the universal covering space M of
M contains an embedded line which is transverse to the lifted foliation
& and meets every leaf. We claim that this transverse line meets every
leaf of & exactly once. If some transverse segment has endpoints in the
same leaf of SF, then there would be a null-homotopic loop of the form
a * β with a tangent to & and β transverse. This could be homotoped
to a null-homotopic transverse circle. However this cannot happen for real
analytic foliations by a result of Haefliger [5]. The claim follows, that is,
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the leaf space of & is ^ ω diffeomorphic to R. The global holonomy
group of & is virtually polycyclic, and every orbit has exponential growth
since & has no invariant measures. It follows from (1.5) and (2.2) that
& is minimal and transversely affine. The conclusion when M is compact
follows from (1.5) and (3.1), and the proof is complete.

For foliations which are not real analytic it is necessary to make addi-
tional topological hypotheses on & and M.

(4.2) Theorem. Suppose SF is ^k (k > 2) and has compact leaf
space but does not have any invariant measures or null-homotopic transverse
circles. If πχ (M) has a subgroup of finite index whose commutator subgroup
is finitely generated and abelian, then & is minimal and has a transverse
affine structure of class Ή ~2 . If M is also compact, & is covered by a
product foliation.

Proof. The theorem follows from (1.6), (2.3), and (3.1) by the argument

used to prove (4.1).

(4.3) Theorem. Suppose & is Ψk (k > 2) and is minimal but does

not have any invariant measures or null-homotopic transverse circles. If

nx(M) is virtually polycyclic, then & has a transverse affine structure of

class %>k~1. If M is also compact, & is covered by a product foliation.
Proof. Since & is minimal it has compact leaf space, so the result

follows from (2.1) and (3.1) by the argument used to prove (4.1).
In the results which follow we will always assume that M is compact.

In this case there is a notion of growth type for the leaves of & [ 13]-
[16]. We say that & has exponential growth if every leaf of & has
exponential growth. This is equivalent to the assertion that & has no
invariant measures for codimension one foliations of compact manifolds.

The following result gives a condition on the leaves of a foliation which
is useful in proving minimiality.

(4.4) Lemma. Suppose SF is a codimension-one foliation of class Ή?
(k > 2) of a compact manifold of dimension n. Assume that every leaf L
of 3F satisfies the following.

(1) π{(L) is virtually polycyclic.
(2) The universal covering space of L has finite-dimensional rational

homology.
Then every minimal set of £F is either a compact leaf or all of M.

Proof Pass to a finite covering space to assume that the tangent bundle
of & is orientable. If & has a minimal set which is neither a compact
leaf nor all of M, it follows from (3.2) that some leaf L of & has
infinitely many ends. In particular, the space H\{L\ Q) = Hn 2{L\ Q)



532 J. F. PLANTE

will be infinite dimensional. It follows from [9, p. 343] and [7, proof
of Lemma 6] that the universal covering space of L would have infinite-
dimensional rational homology. This proves (4.4).

Remark. If & is the orbit foliation of a codimension-one locally free
action on a connected manifold by an amenable Lie group, then & sat-
isfies the conditions of (4.4) [10]. On the other hand, the conclusion of
(4.4) is not valid for actions by arbitrary Lie groups [14].

If L is a leaf of a foliation F o f M , then any element in the kernel of
the induced map nχ{L) —• πχ(M) is called a vanishing cycle. Many types
of codimension-one foliations do not have vanishing cyclies, for example,
real analytic foliations [5], [11], foliations determined by locally free Lie
group actions [13], and Anosov foliations. It is shown in [11] that the
existence of a null-homotopic transverse circle implies the existence of a
vanishing cycle.

(4.5) Theorem. Suppose ^ is a codimension-one foliation of class &
(k > 2) of a compact manifold M. Assume that & has exponential
growth, no vanishing cycles, and that the universal cover of every leaf has
finite-dimensional rational homology. Ifπx(M) is virtually poly cyclic, then
& is minimal, has a transverse affine structure of class (S>k~1, and is cov-
ered by a product foliation.

Proof. Since &~ has no vanishing cycles, nχ{L) is virtually polycyclic
for every leaf L. From (4.4) it follows that & is minimal and the rest
of the conclusion follows from (4.3).

A group is said to be virtually solvable if it has a solvable subgroup of
finite index.

(4.6) Corollary. Suppose & is a &00 codimension-one foliation of a
compact manifold M of dimension n. Assume that SF has exponential
growth, no vanishing cycles, and that the universal cover of every leaf is
diffeomorphic to Rn~ι. Assume also that nχ(M) is virtually solvable. Then
nχ(M) is virtually polycyclic; & is minimal, has a Ψ°° transverse affine
structure, and is covered by a product foliation.

Proof Denote by & the lifting of & to the universal covering space
M of M. & has no vanishing cycles, so every leaf of & is diffeomorphic
to R"" 1 . By a result of Palmeira [12, Corollary 3], M is diffeomorphic
to Rn . In particular, M is an Eilenberg-Mac Lane space with virtually
solvable fundamental group. It follows from (3.3) of [1] that π(M) is
virtually polycyclic. The rest of the conclusion now follows from (4.5).

Denote by 5? the class of virtually solvable groups Γ for which there
is a series
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such that for each / = 1, ••• , n, Γf. is normal in Γi_ι and there is
a finitely generated subgroup Hχ C T.^/Γ. which has nonexponential
growth, and for every g e Ti_ι/Γi there is a natural number m such that
gm e Hi. Clearly S? includes all virtually polycyclic groups as well as
the example Γ considered in §§2 and 3. In [18] an example is given of a
finitely generated solvable group which is not in 5?. (The author does not
know of such an example which is finitely presented.) It is shown in [18]
that a minimal action on R by any group Γ e ^ must be ^ conjugate
to a subgroup of Aff(R). The example of §2 shows that the smoothness
cannot be improved without additional hypotheses.

(4.7) Corollary. Suppose M is compact with nχ(M) e S? and that
& is a Ψk (k > 2) codimension-one foliation of M having exponential
growth and no null-homotopic transverse circles. Assume that every leaf L
of & is a K(π, 1) with nχ{L) virtually polycyclic. Then & is minimal
has a (S>k~~1 transverse affine structure, and is covered by a product foliation.
Furthermore, πχ(M) is virtually polycyclic.

Proof. From (4.4) it follows that & is minimal. By the argument
used to prove (4.3) it follows that & has a ^° transverse affine structure
and is covered by a product foliation. In particular, M has the same
homotopy type as the universal cover of a leaf (contractible), i.e., M is a
K(π, 1). By (3.3) of [1], π{(M) must be virtually polycyclic. The result
now actually follows from (4.3).

Remarks. (1) The topological hypotheses on &" in (4.5) (respectively,
(4.6) and (4.7)) are satisfied if &" is the orbit foliation of a locally free
action by an amenable (respectively, solvable) Lie group.

(2) The result from [12] cited in the proof of (4.6) is valid for ^k

(k > 2) foliations if the leaves are ^°° . One concludes in that case that
the foliation has a Ψk~2 transverse affine structure.

(3) In (4.7), the hypothesis on L may be weakened to (2) of (4.4)
with the weakened conclusion that the foliation has a ^° transverse affine
structure.

(4) It may be true that the hypothesis on πx(M) in (4.2) may be weak-
ened to virtually polycyclic, in which case (4.5) would be redundant. Vir-
tually polycyclic groups have the property that any coset space has finitely
many ends; this follows, for example, from Lemma 6 of [7]. On the other
hand, this is not true of solvable groups such as the example Γ from
§2. A technical problem is that the holonomy of & is determined by a
pseudogroup but not by a group action.
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