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0. Introduction

A beautiful construction of A. Casson on the representation spaces cor-
responding to a Heegard splitting of an oriented homology 3-sphere M
gives rise to an integer invariant λ(M) of M. This invariant general-
izes the Rohlin invariant and gives stricking corollaries in low-dimensional
topology. Defined as an intersection number of appropriate subspaces, this
invariant λ(M) can be roughly thought of as the number of conjugacy
classes of irreducible representations of nχ{M) into SU2 counted with
signs. A detailed discussion of this invariant can be found in an expose
by S. Akbulut and J. McCarthy [1]. Further works on Casson's invariant
include the generalizations by K. Walker as well as S. Boyer and A. Nicas
to rational homology 3-spheres [14], [3] and by S. Cappell, R. Lee, and
E. Miller to representations into SUn [4]. The works of C. Taubes [13]
and A. Flore [6] interpret Casson's invariant as the Euler number of the
instanton homology (or Flore homology) of M.

In this paper, analogous to Casson's original construction, we will de-
fine an intersection number of the representation spaces corresponding to
a braid representative of a knot K in S . This intersection number turns
out to be an integer knot invariant (see Theorem 1.8). The representa-
tions of the knot group π{(S \K) used in our construction seem to be
mysterious. They are representations of π{(S3\K) into SU2 such that
all meridians of K are represented by trace-zero matrices. Call such a
representation of the knot group a trace-free representation. Then, roughly
speaking, our knot invariant h(K) is the number of conjugacy classes of
irreducible trace-free representations of π{(S3\K) counted with signs.

Our knot invariant h(K) can be computed via knot diagrams. It turns
out that our algorithm of computing h(K) by using the skein model is the
same as the algorithm of computing ^sgn(K) given by J. H. Conway [5],
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where sgn(K) is the signature of K. Thus, we have

h(K) = ^sgn(K)

(see Theorem 2.9 and Corollary 2.10).
Notice that sgn(A:) is an invariant of (unoriented) knots and is always

an even integer. It also seems to be mysterious why these two quantities
with apparently different algebraic-geometric contents should ever be the
same. The significance of the equality of these two knot invariants is yet
to be explored.

The original idea of considering the space of all trace-free representa-
tions of a knot group came from the study of a paper by W. Magnus [11]
where he proved the faithfulness of a representation of braid groups in the
automorphism groups of the rings generated by the character functions on
free groups. In Magnus' proof, the generators of a free group were chosen
to be represented by trace-zero matrices, and this simplified the outcome
of some complicated trace computations. We do not know whether the
trace-free representations of knot groups have any geometric meanings.

As pointed out to us first by D. Ruberman, the work presented here
can be generalized to representations of knot groups with the trace of
the meridians fixed (not necessarily zero). We will discuss this and some
other generalizations at another time and are content at present with the
argument here for trace-free representations.

We divide the body of this paper into two parts. The first part (§1)
concerns the definition of our knot invariant h(K), and the second part
(§2) the computation of h(K).

1. The definition of h (K)

Let 3§n be the braid group of rank n with the standard generators
σι > * * J Qn-\ Let Fn be the free group of rank n generated by xx, ,
xn . Then 3Sn can be faithfully represented by a subgroup of the automor-
phism group of Fn . In particular, the automorphism of Fn representing
σμ is given by (still denote it by σμ)

If σ e 3§n , then the automorphism of Fn representing σ (still denoted
by σ) maps each xμ to a conjugation of some xv and preserves the
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product xι -xn. Moreover, these two conditions are also sufficient for
an automorphism of Fn to be a braid automorphism (see [2]).

Consider the Lie group

and its Lie algebra

su2 =

where / = \/-T. As a vector space, su2 can be decomposed as the direct
sum of a real subspace consisting of matrices (" _°5), s e R, and a
complex subspace consisting of matrices (_°?

 z

0), z e C. The adjoint
action of the diagonal element (J §) G SU 2 , \a\ = 1, on su2 leaves this
decomposition invariant. Moreover, its restriction on the real subspace is
the identity, and on the complex subspace is the scale multiplication by
a2.

Let Rn = Hom(Fn, SU 2 ). Since Fn is a free group, Rn can be identi-
fied with the product of n copies of SU2 . For any σ e 3Bn , by applying
the Horn functor, we get an induced diffeomorphism (still denoted by σ)
of Rn . In terms of the identification Rn = (SU2)

n , the induced diffeo-
morphism, say σx, is given by

(XXX X ) - (X X X~l X X ••• X)

with X e SU 2 for μ = 1, , n. In general, we denote the action of

the diffeomorphism of Rn induced by ( J G ^ by

σ(Xl9... ,Xn) = {σ(Xι)9.. 9σ(Xn))

with Xμ £ SU2 for μ = 1, , n .

Let

Then a is a fixed point for any σ G 3§n (thought of as a diffeomorphism

of Rn). Let

We have a linear map

Γaσ = TJίL- o σ o L J : (su2)" -+ (su2)".

Here Z^ and LΛ are left multiplications on Rn by a and a, respectively,

and we identify TeRn with (su2)
n .
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We can decompose (su2)
π into the direct sum of an «-dimensional real

subspace and an ^-dimensional complex subspace canonically. Then, the
linear map TΛσ leaves this decomposition invariant. Moreover, under
the standard basis, the matrix of TΛσ restricted on the real subspace is
the permutation matrix of σ, and the matrix of TΛσ restricted on the
complex subspace is the Burau matrix of σ with parameter a1. Notice
that a fixes the whole diagonal

{ ( Z , . . ,X)eRn\ XeSV2}

of Rn . Consequently, TΛσ fixes the whole diagonal of (su2)
n . Modulo

this invariant subspace, the complex part of TΛσ gives us the reduced

Burau matrix of σ with parameter a (see [9]).

Let σ e 38n . The closure of a, denoted by σΛ , is a link in S . A

result of J. Alexander asserts that any tame link is isotopic to the closure of

a certain braid. On the other hand, two braids a e Bn and β e Bm have

isotopic closures iff one braid can be changed to another by a sequence of

finitely many Markov moves. A Markov move of type I changes a e Bn

to ζ~laξ e Bn for any ξ e Bn , and a Markov move of type II changes

a e Bn to σ*ιa e Bn+ι, or the inverse of this operation (see [2]).

For a braid σ e Bn , an easy application of van Kampen's theorem gives

us a presentation of π 1(5' 3\σΛ):

(1.1) π ι { S \ σ A ) = ( x ι , . . . , x n x μ = σ ( x μ ) , μ = l , , n ) .

Here each x is represented by a meridian of σΛ . So we have the follow-
ing lemma.

Lemma 1.2. Let σ e 38n. Then the fixed pint set of the dijfeomor-
phism of Rn induced by σ can be identified with the representation space
Hom(π 1 (5 3 \(j Λ ),SU 2 ).

Proof. Using the presentation (1.1) of 7r1(5'3\σΛ), we see that a

representation of π1(5'3\σΛ) into SU2 is determined by n matrices Xχ,
• ,Xn in SU2 or (X{, , Xn) e Rn which satisfy the relation Xμ =

σ(Xμ), μ= 1 , . , / ! , or σ{Xχ, , Xn) = (Xχ, . , Xn). So we can

identify Fix(cr) with Hom(π 1 (5 3 \σ Λ ), SU 2 ). q.e.d.

Let σ £ 3§n . Suppose σA = K is a knot (a link with one compo-

nent). Let R(K) be the space of conjugacy classes of representations of

πj(53\σΛ) into SU 2 , i.e., the quotient space of Hom(π 1 (5 3 \σ Λ ), SU2)

by SU2-conjugation. Notice that reducible representations of π1(5 f 3\σΛ)

are conjugate to diagonal representations for which each generator X of
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π(S3\σA) is represented by (g 2) for a certain a e C with |α| = 1.

Moreover, (*» £ ) is conjugate to Q | ) iff α2 = aχ. Thus, the subset of

R{K) consisting of all conjugacy classes of reducible representations can

be identified with the upper half unit circle {a = eιθ 0 < θ < π} in the

complex plane.
Let Δκ(t) be the normalized Alexander polynomial of K = σA, and

let ψt{σ) be the reduced Burau matrix of σ with parameter t. Then

(1.3) Aκ(t)

where e is the exponent sum of σ (see [8]). In the case that K = σA is
a knot, e - n + 1 is an even integer and Δκ(t) is a Laurent polynomial in
t with integer coefficients. Since Δ^(l) = ± 1 , we have Δκ(-l) φθ.

Lemma 1.4. For a0 = ew°, 0 < ΘQ < π, if Δκ{a\) Φ 0, then there is a
neighborhood of a0 in R(K) consisting of only reducible representations.

Proof This is a more or less well-known fact (see, for example, [10]).
Here we present an elementary argument.

Consider a subset ^ of Rn x Rn given by

which is a manifold of dimension 6n - 3 diffeomorphic to ( S U 2 ) 2 Λ ι .
Let

be the diagonal of Rnx Rn, and let

Γσ = {(*,, - , Xn,σ{Xχ), - , a(XJ) G Rn x Rn}

be the graph of the induced diffeomorphism σ:Rn ^ Rn. Then both An

and Γn are 3«-dimensional manifolds of ^ .

Noticing that the conclusion of Lemma 1.4 is about the space R{K),

we are free to choose an appropriate n by changing σ by type II Markov

moves so that ΔK(OQ) implies det(l - ψai{σ)) Φ 0. Thus, the intersection

of Γa x a An and TΛ χ Γσ in T' <%"n is of the minimal dimension 3,

where

So, in a neighborhood of a0 x a0 in ^ , Λπ n Γσ is a 3-dimensional
manifold.

On the other hand, reducible representations of π1(5'3\A^) can be iden-

tified with the diagonal of Rn, which is diffeomorphic to SU2 = S3.



342 XIAO-SONG LIN

Thus, there is a neighborhood of the representation corresponding to a0 in

H o m ^ (S3\K), SU2) consisting of only reducible representations, q.e.d.

The subset of SU2 consisting of all trace-zero matrices is a manifold

diffeomorphic to S2 . The tangent space of this manifold at (ι

0 J°/) is the

image of the complex subspace of su2 under the left multiplication by

(< ^ . D e f i n e

Qn = {(Xl9 . ,Xn)eRn

Then Qn is diffeomorphic to the product of n copies of S2 's.
Let σ e Bn. Since σ maps each Xμ to a conjugation of some Xυ,

it leaves Qn invariant and gives rise to a diffeomorphism of Qn . The
fixed point set of σ\Qn can be identified with the set of all representa-
tions of π1(5'3\σΛ) into SU2 such that each generator of πχ(S3\σA) is
represented by a trace-zero matrix. We call such representations trace-free
representations.

Using the notation in the proof of Lemma 1.4, we define

"„ = *ί n β, x β.
= { ( X 1 , ,XntYχ,...,Yn)eQΛxQΛ',Xχ...Xκ = Yλ...Yn}.

Notice that Hn is no longer a manifold.
A point (X{, , Xn, Yλ, , Yn) e Rn x Rn is called reducible if

there is a matrix A e SU2 such that A~ιXμA and A~ιY A are all diag-
onal matrices for μ = 1, , n . Let Sn be the subset of Hn consisting
of all reducible points in Hn .

Lemma 1.5. Hn\Sn is an open manifold of dimension An - 3.
Proof Consider the map / : Qn x Qn -> SU2 defined by

We will show that the tangent map of / is onto at an irreducible point
in Qn x Qn whose image in SU2 is (ι

0 °). Since Hn = f~ι(C0 ?)), this
implies Lemma 1.5.

Without loss of generality, we only need to consider the map

Suppose X = (X{, , Xm) is an irreducible point such that /(X) =

(Q \). Also without loss of generality, we may assume that



A KNOT INVARIANT VIA REPRESENTATION SPACES 343

with s2 + vv = 1 and v Φ 0. Then

•ft?)
and

Xt Xm , = { -1"
1 rn—1 \ /jj

Let
t fiVl-t2 -t \ . γt ( is ve"u\
\ — \ . I 7 a n c * X™ = — it . I •
1 V t -ivl-rj m \-ve -is)

Then

and

dt\
Λl Λm

x')\ -(ivlJ ~sv\

This shows that Tχf is onto, q.e.d.
We will still use An and Γσ to denote the diagonal of Qn x Qn and

the graph of σ in Qn x Qn , i.e.,

and
Γσ = {{Xl9. . 9Xn9σ{Xx)9. . ,σ(Xn))eQnxQn}.

Then we have An c /ί^ and Γσ c Hn , and we can identify Λn n Γσ with
the set of trace-free representations of π1(53\σΛ).

Lemma 1.6. If σΛ is a knot, then

is a compact subset of Hn\Sn .

Proof We have Δ^(-l)
Lemma 1.4, there is a neighborhood U of the point

Proof We have Δ^(-l) / 0 for any knot K. Since i2 = - 1 , by

such that U Π Fix(σ) consists of only reducible representations of
π1(5'3\σΛ). This proves Lemma 1.6. q.e.d.

Notice that AΠ\AΠ Π Sn and Γσ\Γσ n Sn are 2«-dimensional open
submanifolds of Hn\Sn , and also that SU2 acts freely by conjugation on
"n\Sn - KW n Sn, and Γσ\Γσ n 5,. Let

£> _ Hn\Sn λ _ W\nSn f _ Γ.\Γ.nS,
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where ~ denotes the quotient by the SU2-action. Then Hn is an open

manifold of dimension An - 6, An and f σ are open submanifolds of di-

mension 2n - 3, and An nΓ σ is compact in Hn . To define an intersection

number, we need to consider the orientations of these manifolds.

The standard basis

gives us an orientation of su2 , which induces an orientation on SU2 . We
have an inner product on su2 given by

(U, V) = itrace(ί7FT), *7, K e *u2,

which yields a natural Riemannian metric on su2 . Let S(0, f) be the 2-
sphere of radius § centered at 0 in $u2 . Then S2 = exp(S(0, f)) is the 2-
sphere of trace-zero matrices in SU 2 . By noticing that the injective radius
of exp is π, the standard orientation of S(0, f) gives us an orientation
of S2.

Since An £ (S2)n and Γσ ^ (S2)n , Λπ and Γσ are naturally oriented

with separate product orientations and also Qn x Qn is naturally oriented.

Recall Hn = ^ ( ( J ?)), where / : β n χ β n - SU2 is given by

for(X,Y) = ( I p , ^ , r p . . , Yn) e QnxQn . Wecan orient Hn\Sn

so that for each point (X, Y) € Hn\Sn C β π x Qn , we have

as oriented vector spaces.

Noticing that the adjoint action of SU2 on su2 is orientation preserv-

ing, we get Hn,An, and fσ as oriented manifolds.

Definition 1.7. Isotopy Γσ to Γσ with compact support so that An ά\

fσ. Define

h(σ) = #Sn(AnnΓσ).

Here # - is the algebraic intersection number in Hn .

It is obvious that h(σ) does not depend on the perturbation of Tσ . So
we will simply denote

h(σ) = (λn,fσ).
Theorem 1.8. Let ae&n and β e ^ m SMCΛ ίΛαί αΛ = βA as knots.

Then h(a) = h(β).
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So h(-) is a knot invariant. We will denote h(K) = h(σ) if K = σA .
Proof. We only need to show that for α e ^ with σA being a knot,

the Markov moves of type I and type II on σ do not effect the intersection
number h(σ).

Suppose we change a to ξ~ισξ for some ξ e &n . The induced dif-
feomorphism ξ: Qn —• Qn is orientation preserving. Consider

This diffeomorphism commutes with the SU2-action and we have

({ x ζ)(Hn\Sn) = Hn\Sn , (ζjc ξ)(\) = \ , and « x ζ)Γξ->σξ = Γσ as

oriented manifolds. Let Ξ: Hn -+ Hn be the quotient diffeomorphism of

ξ x ξ. Then it is orientation preserving and Ξ(AΠ) = An and Ξ(Γ^-i^) =

Γσ as oriented manifolds. So

h(ξ-ισξ) = (λn, fζ-lσξ) = (Ξ(ΛJ, Ξ ( f r V ) > = (AB, fσ) = h(σ).

Next, let us change a to σnσ, where σ € &n+x is given by

σ

n ( Λ J = ̂ n ^ + 1 ^ 1 » σn(Xn+l) = Xn'

Consider the imbedding g: QnxQn-> Qn+λ x Qn+ι given by

g{Xχ,.. ,Xn,Yχ,- - , Y n ) = {Xx,--- ,Xn,Yn,Y,,.. , Y n , Y n ) .

It commutes with the SU2-action and g(Hn) c Hn+ι, and therefore re-

duces to an imbedding g: Hn -> Hn+ι. Thus we have

g(λn)cλn+ι, g(rσ)crσnσ, g(Knrσ) = λnnΓσnσ.

We first perturb Γσ to Γσ with compact support in Hn so that An ά\

Tσ. By the standard isotopy extension argument, we can subsequently

perturb Tσ σ to Γσ σ with compact support in Hn+ι so that An+ι ά) Γσ σ

and

rw n

To conclude that the intersection numbers (An, Γσ) and (Λπ+1 , Γ f f σ )
are the same, we need to consider the orientations of various manifolds
involved.

Let X = (X{, , Xn) eQn be a fixed point of σ\Qn . We have
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as oriented vector spaces. Here ^ and *V are oriented vector spaces of
the forms

W s* {(u, u, 0) u e Tχ S
2}, T * {(v, 0, v) t; € Γ χ S

2 },

and also,

r g ( X i X ) ( ( 2 Λ + 1 x β n + 1 ) = ̂ ( ^ ( β . x β j ) Θ W

as oriented vector spaces, where

W s {(i/ + 1 ; , w, v) w, t; G 7^S 2 } ̂  ^ Θ 2^

as oriented vector spaces.

These decompositions pass down to the tangent spaces of g(Hn) c

Hn+ι, £(AΠ) c Aw + 1, and g(Tσ) c f^σ at the corresponding points.

Thus, assuming the intersection number of Aw+1 and Γσ σ at £(X, X) is

1, we have

T ίf — T ΛffiT F
-'^(X.XJ^ii+l — Ig(XiXy\+l ® l g{X,X)λ σnσ

) θ ί/f (Γ ( X ) X ) f σ ) θ ̂  Φ

as oriented vector spaces. On the other hand,

as oriented vector spaces. Thus

as oriented vector spaces, and this implies that the intersection number

of An and Γσ at (X, X) is also 1. Thus h{σ) = h(σnσ). We can prove

similarly that h(σ) = h(σ~ισ).
We have showed that h(σ) is invariant under Markov moves. If a e S3

and β e 3§m have the same closure as knots, then β can be obtained
from a by a sequence of Markov moves. So h(a) = h(β) and this proves
Theorem 1.8.

2. The computation of h(K)

In this section, we derive a way to compute the knot invariant h(K)
via knot diagrams. This computation also identifies h(K) with one half
of the knot signature of K.
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We first study the space H2 , which is a 2-dimensional open manifold.
Lemma 2.1. H2 is a 2-sphere with four cone points deleted.
See Figure 2.1; it is called by some authors a "pillowcase."
Proof. Recall

H2 = {(Xχ ,X29YX, Y2) e Q2 x β 2 ; XχX2 = YJ2}.

Up to conjugation, we can assume that

x (icosθ sinU // 0\ o<θι<π.
-ιcosθ{j

 2 \0 -iJ - l -

We have Y2 = Yχ

 ιXχX2. The condition that Yχ

 lXχX2 is of trace zero
implies

icosθ2 sinfl,,
\ - s i n θ 2 -icosθ2 ' π.

So, parameterized by θx and θ 2 , H2 is a "pillowcase" as shown in Figure
2.1. The four deleted points are A ~ ( + , + , + , + ) , Λ; ~ ( + , + , - , - ) ,
5 ~ (+ 5 - ? - 9 +) ? and 5 ' ~ ( + , - , + , - ) , where + and - stand for
the matrices

\0 -i)>

respectively, q.e.d.
Notice that the cone point A corresponds to the origin of the (θx, Θ2)

plane modulo the involution (θχ, θ2) *-+ (-θχ, -θ2). The orientation of

H2 is given by the usual orientation of the (θχ, 02)-plane.
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FIGURE 2.2

Consider the 1-dimensional submanifolds Λ2 and Γσ3 in H2 (see Fig-

ure 2.2). These two submanifolds intersect transversally at a single point,

and the intersection number at this point is 1. So h(σ{) = 1, or our knot

invariant for the right-handed trefoil knot is 1.
In general, let us consider the space

,XH,Yιt = 3, .,n}.

Then

is an oriented submanifold of Hn whose dimension is 2n — 2.

Suppose σ e &n such that σA is a knot. Then (σf σ)Λ is also a knot.

We want to consider the difference h(σ\σ) - h(σ):

h{a\o) - h(σ) = (A,, f σ ? σ ) - (Λπ , fσ>

= <f f f- ί ffσ)-<AII,f ι r) = <fσΓl-Aϊ,,f f f).

Noticing that the "difference cycle" Tσ-i - Λn is carried by Vn , we can

use the picture of H2 to analyze the intersection of Γσ-2 - An and f σ .

Let us first perturb Γσ to Γ^ with compact support so that

and then extend the isotopy so that Vn ά\ Γσ. Thus VnπTσ is a 1-

dimensional manifold. Notice that this is possible because Vn and fσ

are real algebraic sets.
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We orient Vn n fσ in the following way. Suppose (X, Y) € Vn Π fσ .

Then there is an oriented subspace & c T,χ γ ) f σ of codimension 1 such

that
1 (X, Y)*1/! ~ Λ (X, Y) Vn w ^

as oriented vector spaces. We orient Vn Π Γσ so that

as oriented vector spaces.
Lemma 2.2. <f,-, - A,, f σ ) = (f f f f ϊ - A,, Fπ n f σ > n ,

wΛer̂  ( )- w ίΛe intersection number in Vn .
n

Proof. Let (X, X) € ΛΛ n f σ , and assume the intersection number of

λn and fσ at (X, X) is 1. Then

since dim^ 9 = 2« — 4 is even. Thus

^(X,X)\ Θ T{X,X)(Vn Π Γ(τ) = ^(X.XJ^Λ >

and therefore the intersection number of An and FΛ n fσ at (X, X) in

Vn is also 1. This shows that

Similarly, we have

which proves Lemma 2.2. q.e.d.
Let /?: K̂  -• H2 be the map induced by the projection

p(Xγ , X2, X$, " ' 5 Xn ? l j J ^2 ' 3 ' ' ' ' ' /l) = V X\ 9 X2 ' M

Lemma 2.3. (fσ-2 - ΛB, fβ) = (f f f f l - Λ2, ^(Kn n f J ) ^ .

/ Letting (X, X) e Λπ Π fσ , we have

and
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as oriented vector spaces. Here dim J?^ = 2n - 4 . Suppose the intersection

number of λn and Vn n f σ at (X, X) in Vn is 1. Then

T V — T Λ m T (V n f Ί
i(X,X)K« ~ i(X,X)yY« ^ i(X,X)vK« M 1 σ>

^ [ ( ^ ( x , X ) 2 ) p{XiX)p(n n f

So

or the intersection number of Λ2 and p(Vn Π Γσ) at p(X, X) in H2 is
also 1. Similarly, we can get the same conclusion about the intersection of
fσ-i a n d j 5 ( ^ n f σ ) in H2. This finishes the proof of Lemma 2.3. q.e.d.

Thus, we are led to study the intersection of Γσ-2 — Λ2 with p{Vn ΠΓσ)

in H2. For this purpose, we need to understand the set p{VnΐλTσ),
especially its limiting behavior near the cone point A .

We picture H2 in a different way. In Figure 2.3, we see a rectangle

{0 < θ{ < π, -π < θ2 < π} with six points deleted. Identifying three

pairs of edges with the end points having the same labels, we get H2 . Also,

we see the "difference cycle" Γσ-2 - Λ2 in Figure 2.3.

Suppose c(t), -oo < t < oo, is a smooth curve in H2 such that

lim c(t) = A.
/-•-oo

Let the θ{ 2-parameter of c(ή be θx 2(i), and further assume that

are finite numbers and (θ\, θ2) # ( 0 , 0 ) . Then the slope of the curve c
at A is defined to be

{ oc if θ\ = 0.

For example, the slope of Λ2 at A is 1 and the slope of fσ-2 at A is

Lemma 2.4. Let n be odd. In a neighborhood of A on H2, p(Vnnfσ)
is a curve approaching A. Moreover, the slope of p(Vn Π f σ) at A is not
equal to ± 1 .

Proof Consider the submanifold

l *2>*3> ,Xn,Yl9Y2,X39 ,Xn)eQn*Qn}
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FIGURE 2.3

of β n x 2 n , whose dimension is In + 4. So the minimal dimension of

is 4, where

Γ (i, i ) A » n Γ (i, i ) Γ *

Claim, dim Γ(l I}A^ Π Γ ( i ? | }Γσ = 4.

With this claim, we see that in a neighborhood of i, Af

nΠ Γσ is a man-

ifold of dimension 4. Modulo the SU2-action, we get the first statement

of Lemma 2.4.
Proof of the Claim. At i, the tangent map of σ\Qn under the standard

basis is given by the Burau matrix of σ with parameter equal to - 1 .
Denote this matrix by Ψ . It is a real matrix of rank n , so acts naturally
on Rn. Decompose Ψ as

Ά ]
D
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where D is an (n - 2) x (n - 2) matrix. Then, our claim amounts to
saying that the real solutions of the equation

(2.5) Όj

"V
v2

•Vn-

*

*

-Vn-
are of dimension 2. To prove this, we need the following two properties
of the matrix Ψ .

(1) The vectors fixed by Ψ are a subspace of dimension 1 spanned by

( i . > i ) τ .
(2) For a vector v = (v{, , υn)

τ , let

Then we have {Ψ v} = {v} for any vector v.
The first property comes from the facts that Aκ(-l) φθ for any knot

K and that σ\Qn leaves the whole diagonal of Qn fixed. Notice that
n has been chosen to be odd so that Δ^(-l) Φ 0 for K = σA implies
det(l - ψ_{{σ)) Φ 0 by (1.3), where ψ_{{σ) is the reduced Burau matrix
of σ with parameter - 1 . The second property can be derived from the
fact that σ preserves the product Xx---Xn for any (X{, , Xn) e Qn .

We now consider the following two cases.

Case 1. det(l - D) / 0. In this case, solutions of (2.5) are given by

^(l-DΓ'ch

Combined with property (1), it is easy to see that the real solutions of (2.5)
are a subspace of dimension 2.

Notice that in this case, we can take

and get

Ψ

• l •

0
V3

•Vn-

=

s- 1
V3

- Vn -
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"0"
0
V

=

•fc"
k
V

where s is the slope of p(Vn Π Γσ) at A.

Case 2. det( 1 - D) = 0. In this case, there is a nonzero vector v =

(υ3, -" ,vn)
τ such that

Ψ

for some k φ 0. If there are two such v 's, say v and V, which are
linearly independent, then

Ψ

which contradicts property (1).

Now suppose for some vector w = (w3, , wn)
τ , we have

Ψ

Since [six] and [£] are linearly independent, there are some real numbers
a and b such that

:--.H[ίHί;
Then

0
0

V — TTV

=

k
k

k

F

k
k

fV

=

' 0 "
0

V — TTV

" Γ
0
w

= 5 - 1

w

a

Ψ
a
0 = α Ψ

= a 5 -

0
w

- 1
W

+ b-Ψ

+ b-
'k'
k

"0"
0
V

=

1

0
aw + b\

By property (2) we must have a = 1, which contradicts property (1). This
shows that the only nontrivial solution in this case is

"0"
0
v

Thus, the real solutions of (3.5) in this case are also of dimension 2. Notice

that the slope of p(Vn Π Tσ) at A is oo in this case.
We have finished the proof of our claim.
As for the second statement of Lemma 2.4, from the discussion of Case

1 above we first observe that if the slope of p(Vn Π Γσ) at A is 1, then
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property (1) will be contradicted. Next, since the Burau matrix of σ\ with

parameter - 1 is (\ ~o

ι) and

we conclude that if the slope of p(Vn Π Γσ) at A is - 1 , then the slope

of p(VnΠΓσ2σ) at A is 1. This is impossible since (σfσ)Λ is also a knot.

This finishes the proof of Lemma 2.4. q.e.d.
Denote by sσ the slope of p(Vn Πf σ ) at A . By Lemma 2.4, sσΦ±\.

Lemma 2.6. h{σ\σ) - h{σ) = ε, where ε = 1 or 0 depending on
whether \sσ\ is greater or less than 1.

Proof. Since σA is a knot, we claim that there is a neighborhood of
B\A') on H2 such that p(Vn Π f σ ) is disjoint with that neighborhood.
Suppose this is not true for B1. Then, by taking the limit, we will get a
reducible fixed point (X{, , Xn) e Qn for σ\Qn such that (Xχ, X2) ~
(+, - ) . This is impossible since the permutation induced by σ among
the Xμ 's has no nontrivial subcycle. As for A1, our claim is even true

without the assumption that σΛ is a knot.
By a small perturbation relative to a neighborhood of A on H2 chang-

ing Γσ to Γσ , we get p(Vn Π Γσ) as a 1-submanifold of H2 . In a neigh-
borhood of A, it is a curve approaching A with the slope sσ . The other
end of that curve must approach B. Since

h{a\σ) - h(σ) = <f,_2, - Λ2, flξ n fσ)>^ ,

by using Lemma 2.3, the topology of the space H2 , and the fact that the

slopes of Λ2 and Tσ-2σ are ±1 respectively, we can easily derive the

conclusion of Lemma 2.6. q.e.d.
The proof of Lemma 2.4 shows that the slope sσ depends on the Burau

matrix of σ with parameter - 1 . Let us make this fact more precise.
Lemma 2.7. We have

(2 8) ^ — L

Here, if sσ = oc, //ẑ  /ς/? Λίfe of (2.8) w defined to be 1.
Use the notation in the proof of Lemma 2.4. The Burau matri-

\ces of σ and a\a with parameter - 1 are

2)
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respectively, where I is the (n - 2) x (n - 2) identity matrix and G =

(l ~o) * W e first a s s u m e d e t ( ! - D) Φ 0 I n this case, similar to the proof
of Lemma 2.4, let

Then

So we can denote

" V Λ " 1 b)

for some real numbers a and b. Let T = (Q °t). Then

= det(T - [A + B(l - D ) " ^ ] ) det(l - D)

- * * ( ! : £ ΓΛ)det<'-D'
For t = 1, we must have

Since sσ Φ 0, we get α = b - 1 and

Thus,

Similarly,

det(l - ψ^tfσ)) = (1 -5 σ f σ )det ( l - D ) .

Notice that
2

(ϊ-.i)[^-.]-te:ϊ]
So sσiσ = sσ + 2. This proves Lemma 2.7 in the case that det(l - D) Φ 0.

We can use a limiting argument to deal with the case det(l - D) = 0.
Since it is similar to the argument in the case det(l - D) φ 0, we omit the
details here.

Theorem 2.9. Let K+ = {σ\σγ and K_ = σA be two knots. Then

h(K+)-h(K_) = ε,
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where ε = 0 or 1 depending on whether Δ^ (-1) and Δ^ (-1) have the
+ —

same sign or not.
Proof Assume n is odd again. Since the difference of the exponent

sums of σ\σ and σ is 2, by formulas (1.3) and (2.8), we get

S°~ > 0 iff Δ^ (-

and

^ — - < 0 iff Δ^ (-
sσ + 1 κ+

On the other hand,

^ — — > 0 iff \sσ\ > 1

and

^ - — < 0 iff |5σ | < 1.

Thus, from Lemma 2.6 it follows our theorem, q.e.d.
Recall the signature of a knot is an integer invariant of (unoriented)

knots. It is defined in the following way. Let K be an oriented knot.
Suppose S is a compact, connected, and oriented surface imbedded in S3

such that dS = K, i.e., S is a Seifert surface of K. Let lχ and l2 be two
oriented simple loops on S. Define

where lk( , ) is the linking number in S3, and l\ is the push-off of /2

away from S along its positive normal direction. Then q( , ) induces a
bilinear form on Hχ (S Z). Suppose Q is the matrix of this bilinear form
under some basis. Then, the signature sgn(K) of the knot K is defined
to be the signature of the symmetric matrix Q + Qτ (see [12]).

The signature of a knot K is always an even integer. We have

sgn(uO = 0 (mod 4) if Δ^(-l) > 0

and
sgn{K) = 2 (mod 4) if Δ^(-l) < 0.

On the other hand, for the knots K+ and K_ in Theorem 2.9,

0<sgn(ϋΓ + )-sgn(iί:_)<2,

(see [5] as well as [7]). Thus, we get the following corollary of Theorem
2.9.

Corollary 2.10. For a knot K, we have h(K) =
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