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UNCOUNTABLY MANY EXOTIC R4 'S
IN STANDARD 4-SPACE

STEFANO DEMICHELIS & MICHAEL H. FREEDMAN

Abstract

It is known that the standard (Euclidean) smooth structure on 4-space
when restricted to certain open subsets homeomorphic to R4 gives a
smooth structure which is not diffeomorphic to the standard one. This be-
havior is a consequence of Donaldson's counterexample [5] to the smooth
5-dimensional h-cobordism theorem and was noticed (in anticipation of
Donaldson's result) by A. Casson and the second named author (see [14,
Theorem 3, Chapter 14]). Taubes [24] developed a technically demand-
ing theory of the Yang-Mills equation on "asymptotically end periodic"
4-manifolds in part to verify that a known family of exotic R4 's were
mutually distinct. That family lays smoothly in S2 x S2 but not R4 .
We combine ideas from the above-mentioned papers to address a nested
family of R4 homeomorphs called "ribbon R4 's" lying in R4 stan-
dard. There are continuum many pairwise distinct smooth structures
represented within this family.

0. Introduction

Our philosophy is that any Donaldson-style invariant [5] can be de-

fined on an "end periodic" manifold and these invariants commute with

the passage between a compact manifold and such noncompact geometric

limits. In principle the Γ-invariant or "polynomial-invariant" is suitable

for this discussion; however, we carry out the analysis in detail only for

D. Kotschick's "simpler" Φ-invariant [16]. Kotschick distinguishes a cer-

tain algebraic surface, the Barlow surface B, from the rational surface

Q = CP2m~CP2 by showing that \Φ{B)\ > 4 and Φ(Q) = 0. Taubes pa-

per [24] on the self-dual Yang-Mills equation on end periodic 4-manifolds

provides much of the technical foundation for our extension.

It is known that B and Q are smoothly h-cobordant (and therefore

homeomorphic); that is, there exists (W5 B, Q) with dW5 = B II -Q,

and the inclusions B <-+ W5, Q <-• W5 are homotopy equivalences. It is,

by now, a standard idea that W5 should be analyzed with a mind toward
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pushing the proof of the smooth h-cobordism theorem as far as possible.

When this is done a "partial" diffeomorphism is found (cf. [13, Theorem

7.1c]). More precisely, an exotic R 4, R 4, is found smoothly imbedded in

B and in Q, and a compactum K c R4 is produced so that 5\inc. 1 K

and Q\inc.2K are diffeomorphic. Starting at R4\K and moving around

the diagram below in a circle give a smooth involution

i: {R4λK) ^ : B <-> B\inc. 1 K

inc. 1

R*\K c R? || ί diff

inc. 2

Using a topological radius function p on R4 , which is ί-invariant on

R4\K, we may construct a continuous nested family R 4 , 0 < t < 1, of

sub- R4 's with K cR4

0 and R j c R j for s < t.

Suppose two pairs (R4, K), (R4, K), s < t, are diffeomorphic relative

to the identity on K, (d, id^): (R4, K) -> (R4, A'). Then R4\ f)™χ d\R4)

has a "covering" action by the monoid {d, a?2, d3, } the quotient 7

is a smooth manifold. Giving Y some Riemannian metric, it is easy to

alter the Riemannian metric on B and Q so that n consecutive rings

R4\rf"(R4) cover Y isometrically. Call the results Bn and Qn. In the

limits as π \ oo we reach noncompact end periodic manifolds B^ and

Q^ which are simply Riemannian structures on 2?\inc. 1 (Π/^i dι(R4))

and Q\ι o inc. 2(f](^=ι dι(R4)). From our identifications and the inclu-
diff

sions, B^ c 5\inc. 1 K = Q\ι o inc. 2 K D Q^ the restriction gives a
diffeomorphism between B^ and Q^ . We have the contradiction

Φ(B) = Φ(Bn) = Φ(BJ = Φ(QJ = Φ{Qn) = Φ(Q),

the key step being that ΦiB^) is defined and equal to Φ{Bn) (and the
corresponding assertions when B is replaced by Q).

This contradiction shows that all pairs (R4, K), 0 < t < 1, are smooth-
ly distinct. The compactum K may be taken to be a smooth codimension
zero submanifold. For such K, it is easily proved that there are only
countably many embeddings up to isotopy in any R 4, so the set of pa-
rameter values [0,1] is partitioned into equivalence classes, each of at
most countable cardinality, according to the diffeomorphism type of the
total space R 4, t e [0, 1]. In Zermelo-Frankel set theory with choice



UNCOUNTABLY MANY EXOTIC R4 'S IN STANDARD 4-SPACE 221

(ZFC) it is easily argued that {distinct diffeomorphism types among R*,
* € [0> 1]} has the cardinality of the continuum.

The family {R* , t e [0, 1]} has a nearly explicit description (see Theo-
rem 3.2) when t lies in the standard Cantor set CS c [0, 1]. R* is diffeo-
morphic to R j t d \ ^ , where the closed subset Xt is a "Cantor set of wild
arcs" whose geometry depends on the parameter value t. These multiplic-
ities could, in principle, be worked out by studying an explicit h-cobordism
W and going through the proof (see [ 11 ] or [ 13]) of the reembedding theo-
rem to isolate an upper bound on the increase in capped-group complexity
required to achieve reembedding. This interesting project has not been
carried out.

The paper is organized as follows. § 1 gives a brief review of the Φ-
invariant in Kotschick's compact setting, and the body of the argument
that Φ commutes with geometric limits is presented in §2. In §3 the
smooth structure of simply connected 5-dimensional h-cobordisms is ex-
amined with an eye toward isolating the difference between the ends. It
is found that this difference is an involution defined near the end of an
exotic R4 regluing by this involution permutes the smooth structures rep-
resented by the ends of the n-cobordism. In §4 the outline contained in
the introduction is filled out to provide a complete statement and proof of
the main theorem.

Appendices A and B supply two important analytical details needed
to complete the arguments of §2. We expect these results to be useful
elsewhere.

The first author would like to express his deep gratitude to the second
author for unfailing advice and generous support during his stay at the
University of California at San Diego.

1. A brief review of the Φ-invariant

The canonical bundle over CP2 is a U(l) = SO(2) bundle with Euler
class χ the positive generator of H2{CP2, Z) and pχ = χ2 = 1. Form-
ing connected sums there is an SO(2) bundle E1 —• Q with χ{E') =
(1, , 1) e H2(Q, Z) and px = - 7 . According to the classification of
SO(3) bundles [4] there is an SO(3)-bundle E with "least negative charge"

f (l,' , l)eH2{Q,Z2) and px(E) = - 7 + 4 = - 3 .
The bundle E cannot have its structure group reduced to SO(2) because
any potential Euler class reduces to w2 - (1, , 1) and so must sat-
isfy χ2 = -7 (mod 8), while χ2 - px = - 3 . Thus E has no reducible
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connections. According to the deformation theory for anti-self-dual (ASD)
connections on E, the virtual dimension of the moduli space is

In the case of SO(3) bundles, ad g = E and, as a real bundle, 2?®C = EφE
so

dim^# = -2pj - 3(2) = 0.

Since there are no reducible connections, Jl will be a manifold for a
generic metric on Q [10, Proposition 3.20], in this case a collection of
points.

According to Uhlenbeck's fundamental compactness results [27], a se-
quence [A.] of gauge equivalence classes of ASD connections will always
have a subsequence which converges—but possibly on a less twisted bun-
dle. (The bundle might lose "charge" near isolated points.) For SO(3)
bundles the "charge" lost at a point comes in positive multiples of - 4 .
Since it is not possible to have an ASD connection on a bundle with pχ > 0
and p{(E) = — 3, Jί is compact.

Kotschick [16] shows that Jt(Q) = 0 by degenerating the metric along
an appropriate connected sum 3-sphere: an ASD connection over Q would
limit to an ASD connection over a summand with a moduli space of neg-
ative formal dimension.

On the other hand, the entire bundle discussion goes through for any
smooth manifold such as B which is homotopy equivalent to Q. The
corresponding moduli space over the Barlow surface is defined and a com-
putation in algebraic geometry yields exactly for ASC connections over B
each with a possible (positive) multiplicity.1

The invariant Φ is the number of points in a generic Jt counted ac-
cording to sign. To determine the sign [7] it is necessary to choose a
Spin-c structure and an orientation on H+( R). Thus Φ is integer-
valued (which are homotopy equivalent to Q) together with the above
data. In any case, the data only affect the sign of Φ, so B and Q are not
diffeomorphic; |Φ(Q)| = 0 and \Φ{B)\ > 4.

2. Φ commutes with geometric limit

Let M ~ CT 2 #8CP 2 be homotopy equivalent to Q. Let R4 be an

open subset of M homeomorphic to R 4 . Suppose there is an open sub-

manifold R4 contained in a compact submanifold of R 4, R4 C C c R 4,

After a more detailed analysis Kotschick has proved that the multiplicity is 2.
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and a diffeomorphism d: R\ -» R*. Then define R4

k = dk~ιR\. The

quotient Y = (R^\Π~i R*)/Pt = dι(pt.) has a natural smooth structure,
which can be described as C\d(C)/pt. = rf(pt.). Give Y a fixed Rieman-
nian metric. Let Mn , n = 1, 2, 3, , be a sequence of Riemannian
metrics on M so that:

(1) in the induced metric, the projection R*\R*+1 —• Y is a local
isometry and

(2) the identity Mn ^ Mm is an isometry in the complement of

min(rt+l ,m+l) *

Let M ^ be the unique metric on M\f]<^zlR
4

n so that the inclusions

M^ «--• Mn are isometries on the complement of R*+ 1.

We investigate the behavior of Φ under the limit Mn —> M^ . We find
Φ{Moo) is well defined and equal to Φ(Mn) for each n.

To do elliptic analysis on Mn , Taubes [24] suggests introducing a proper
function τ: M^ -> R+ such that τ{d(x)) = 1 + τ(x) for all x e R\. A
section s of any Riemannian or Hermitian bundle with connection V
over M can be measured according to the norms

J 1 l/p

f
where 5 is a positive real number. The weighted Sobolev spaces Lp

k δ

are the completions of C(^{Moo) with respect to these norms. The funda-
mental theorem (Proposition 4.2) of [24] guarantees that the appropriate
ASD Yang-Mills deformation complex

becomes Fredholm when completed with respect to the norm || \\LP unless
k, δ

δ belongs to a discrete set of exceptional values D(p, k) c R + . This
permits the extension of many standard arguments to the end periodic
case.

Over M^ the bundle which we are studying should clearly have w2 =
(1, , 1). The condition pχ = - 3 can be interpreted by considering
only those connections A^ = d + a, a e L2

χ ^(Ω1), where d is a trivial-
ization near infinity with respect to which p{ = - 3 , and δ is a sufficiently
small positive number. In principle Φ(Moo) will be the number of ASD
connections in the moduli space Jt^ consisting of equivalence classes
of connections A as above. However, just as in the compact case, to
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count properly a perturbation of the metric on M^ is required and then
generic solutions are counted according to sign; the perturbation can decay
arbitrarily fast toward infinity.

Theorem 2.1. Suppose M = Mo, Mχ, M2, , M^ is a sequence
of Riemannian ^-manifold as above. Define Φ(Moo) to be the number
{counted according to sign) of equivalence classes of connections A^ as
above for a generic perturbation of the metric on M^ . Then Φ(M) =
Φ(Mn), 0<n<oo.

Proof The proof is an immediate consequence of the following four
points:

Point 1. Given a sequence of ASD connections An on Qn, there is

a subsequence An such that An converges (in the C°° topology) on

compact subsets.

Point 2. Given any A^ on M^, an a > 0, and a compact subset

/ c M^ , there is an integer n(a) such that for n > n(a) there exist an

ASD An on Mn which is within a in the C norm on / .
Point?*. Suppose the metric on M^ is perturbed so that H2 (deforma-

tion complex) = 0. Let An and Λ'n both converge in C°° on compact
sets to A^ . Then for n sufficiently large An = A'n on Qn .

Point 4. The moduli space of connections on M^ has an orientation
defined up to an overall sign. The latter can be chosen so that it is com-
patible, in the limit, with the canonical orientations on the moduli spaces
of Qn and Bn given in Donaldson [7].

Proof of Point 1. Exhaust M^ by an expanding union of compact sets
/j c J2 c J3 c ••• . If i is large enough so that w2\j ^ 0, then Sed-
lacek's thesis [21] shows that An\j cannot have a subsequence converging
to a trivial connection. Since π ^ / ) —> n{(J.) is zero for j > /, AJj
cannot have a subsequence convering to any flat connection. Also, no sub-
sequence can concentrate curvature near a point. If this happened cutting
and gluing would result in a bundle over Mn , n large, with positive p{

and a connection with arbitrarily small self-dual curvature contradicting

Aπ2px = ί \\FJ2dvol- ί
JMn J

According to Uhlenbeck's compactness results ([27], [28]) the only re-
maining alternative is that An have a subsequence converging uniformly
to a nontrivial connection on J.. By taking further subsequences for
Ji+ι > J(+2 > e t c a n c * diagonalizing we find a subsequence converging on
compact subsets to a connection on M^ . By Fatou's lemma it is clear
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2that the energy of the limit fM \FA \ < 12π . Because the end is sim-
ply connected at infinity no fractional charge can be lost by limiting to a
nontrivial flat connection, so equality actually holds.

In Appendix B it is proved that the energy along the tube must decay
exponentially (this also uses the uniform simple connectivity at infinity) so
that fM \FA \2eτδ < oo for sufficiently small δ > 0. By the gauge fixing

oo limit

arguments of [27] and the bounded geometry of M^ it then follows that

Aimit m a y ^ e gauged to the desired form, A^ = d + a, a e L2 ^(Ω 1).

Modulo Appendix B, this explains Point 1.
Proof of Point 2. The proof uses ideas and techniques which are well

known in the field. The reader can find similar treatments in [8], [25], and
[19].

Let A^ — d + a, a e L2 ^(Ω1), be an ASD connection on M^ as be-

fore. We first define an approximately ASD Af

n on M^ for n sufficiently

large.

Let K(v), v > 0, be a compact subset of M^ containing all but a

(topological) product neighborhood of end(Λίoo) and so large that

(I2π2)~ι j \\FA \\2 > 1 - v. By enlarging K(u) we may also assume

||α||L2 is arbitrarily small on Moo\AΓ. For n sufficiently large, we may
define

onK(v),<•{ d + βa on Mn\K(y),

where β: βoo\A:(i/) -> [0, 1] is 1 near K(v) and 0 on κ£ . Except

on supp(/?(l - β)) the connection A'n is anti-self-dual, and | | ^ | | c * is

bounded by CQ8)||α||c*+1.

Given An our goal is to use Taubes' iteration (see [17, §§2 and 3, Chap-

ter 6] for example) in order to reach an exact solution. The results of

Taubes [23] tell us that V e 3v such that \\FA, \\ < v , and i/2(adg A! ) ^ 0
n

implies the existence of an ASD An with \An - A'n\ < ε . Given ε > 0, v
depends only on the local geometry near supp(/?(l - /?)) and the size of
the first eigenvalue λχ n of the composition

(2.1) > A'n)

where the first map is an adjoint of d+ . A definition of the adjoint metrics

is required. To obtain uniformity of the λ{ n and to achieve the || \\Li

metric on the limit M we follow Mrowka's thesis [19] and define "tent"
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FIGURE 2.1

functions τn: Mn —• R+ U 0 roughly as in Figure 2.1.

Norms || ||L2 = fM e+τ"δ\\ \\L2dvol give Hubert space completions

(which we continue to denote Ωι(M)) and the adjoint map δ above. The

exact form of τn will be specified later.
Integration by parts allows us to express δ in terms of the unweighted

adjoint (d^)* as

The composition Δ^ = d+δ is a positive elliptic operator on a compact
space. Thus Spec(ΔJ is a discrete subset of [0, +oo]. Let λχ n be the
smallest eigenvalue.

Lemma 2.1. For n large, λχ n is uniformly bounded away from zero.

Proof If not, there is a sequence φn e Ω^(adg)Λ such that

(2) IIΔAlί^Λ0-
Now fix two (large) integers / and /, and define βι -t according to

Figure 2.2.
We next prove that ||(1 - βι i)φn\\L2 \ 0. Since supp(l - β{ -^)φn is

uniformly bounded, the exponential weight does not matter. In fact, the
support of (l-βι -j)φn is concentrated in K{ j and K[ ~r The restrictions

of An and Δ^ = d*^e~τS(d+ )*eτδ to K{ 1 agree provided n is large

enough so that the cutoff (/?) used to define A'n occurs on β^~)(l).

Moreover, for a generic metric (see [24, §6]) Δ^ has lowest eigenvalue

χ

bounded away from zero:

(2.3) H Δ ^ H ^ δ > (λUoo)\\φ\\L2 φ supported in KιV
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segments 3.1

KU
Kίi

FIGURE 2.2

On K'[ j , Δn is the same as Δ = d^e τδ(dγ)*eτδ , where Γ is the trivial
connection. By [24, Proposition 5.1], the kernel of Δ is empty and Δ is
Fredholm. This implies that (2.3) holds for φ supported in K't j (but
with a different constant λx).

We conclude that

(2.4) |(1 - β)φ\Li < (Δπ(l - β)φ)/λ for some λ > 0 independent of n.

But

where T stands for terms involving first and second derivatives of β , the
value of φ and first derivatives of φ in the part in which dβ Φ 0. The
bounds on dφ follow from the Garding inequality (see [26, Theorem 36.1
and Remark 36.1]) and the derivative of β can be controlled by choosing
7 large. The result is

(2.6) 11(1-0/7)011^ <C\\(l-βn)Anφn\\L2 .

Now we need to estimate \\βι ]Φn\\L2 . This is essentially Lemma 6.7

of Mrowka's thesis [19]. We sketch his proof and indicate where we depart

from it. The sequence β{ jφn can be thought of as defined on the universal

cover Ϋ of Y. Recall from Figure 2.1 the form of the tent function τn

over this infinite tube Y (Figure 2.3, next page).

The operator An is unchanged by replacing τn by τ°n = τn - n/2.

The τ°n converge to τ° on Ϋ and An converges in the norm topology
~ + -τ°δ + * τ°δ

for operators on Y to Δ = d^e (έζΓ) e . We must prove that, for a
compactly supported section φ,

for some C > 0.(2.7) 2 >C\\φ\\Li
,δ ,δ
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nil

0

n - segments

FIGURE 2.3

This would imply \βι -{φn\ \ 0 and combined with (2.6) would finish the

proof of Lemma 2.1.
Suppose (2.7) does not hold; then 0 e Spec(Δ). But we assumed δ e

R+\D so Δ is Fredholm [23] and 0 is actually on eigenvalue of Δ, i.e.,
there is an L2

 δ section φ of norm one with Δ(φ) = 0. Taking the inner

product with φ and using the definition of adjoint, we find (d+)*eτ φ =
0, and since *φ = φ we have

(2.8) dψ = d*ψ = 0, where ψ = eτ° φ.

In the case of a product end Mrowka proves ψ = 0 by explicitly solving
the equations. In our case we reason as follows.

2 τ°δ

The section ψ belongs to L and since τ 0 < 0, e < 1, we have

(2.9) / e~τ \ψ\ dv = / e+τ \φ\ dυ < oo by definition of ψ.

Since ψ is closed we have ψ = da with a a 1-form. Moreover,

/ Hx)\2f
τo(x)<τo<τ°(x)+l J\τo\<τ°(x)+l

<ctkf \ψ\2dμ.

The actual value of k does not matter and can be computed by the reader.
The proof follows from the sheaf-theoretic proof of DeRham's theorem,
which we sketch:

First there is a Leray covering {J^} with Vt convex and 1-forms at

so that dai = ψ\v . An application of the Poincare lemma shows that
supF \aι\ < const supκ \ψ\. If V. Π V.Φ 0 we can write αz - a. = dft - df

because [ψ] = 0 in H2 . We can choose the f. so that they obey estimates
in terms of fτ<τfX\\ψ\- Writing άt = ai - dft gives a satisfying the

estimate above. Since \ψ\ is in L2 , |α| is bounded by a polynomial in

τ° . Since τ° is negative, eτ δa e L2 V5 > 0.
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So

ί\ψ\2= ί da A da = ίd(aAda)= ίd{eδ'a Λ e~τS' da) = 0.

If 0 < δ < δ/2, the last integral is equal to zero because e da =

e τδ ψ e L2 since

Thus ψ = 0, completing the proof of Lemma 2.1. q.e.d.
A uniform lower bound λ for λx n allows a Taubes' iteration to be

applied to convert A'n to an ASD An . As in the compact case threshold
conditions (depending on λ) on A*n must be satisfied. These are achieved
by making the original cutoff β sufficient far out along the end where the
a is small. This is possible since a is small in the C °̂ Π l ^ norm,
implying that it is small in any norm needed in Taubes' iteration.

Proof of Point 3. Suppose that An and A'n are sequences of connec-
tions on Mn which converge on compact sets to a connection A^ on M ^
of the type described above. That is, A^ = d + a near infinity, where d
is standard differentiation with respect to a trivialization at infinity fixing
pχ = - 3 and a e L2

χ δ . By elliptic regularity compact convergence in L2

implies compact convergence in C°° , so the hypothesis may be taken in
either sense.

If we write A'n = An + an, then an \ 0 in the C°° norm on compact
sets. Again we will consider a large compact (smooth) submanifold Kε

which contains all of M^ , except a topological product neighborhood of
infinity, and supports most of the energy of the connection:

(2.10) Λ-J^j^i-e forεX).

Since convergence An \ A^ and A'n \ A^ is C1 on Kε for n
sufficiently large, (2.10) will hold for An and A'n with 2ε replacing ε on
the right-hand side.

Uhlenbeck's [28] basic method for constructing radial gauges in the pres-
ence of small curvature may be applied inductively in patches along the
periodic tube in Mn . Because the geometry is bounded there are func-
tions C(ε), C\ε), C"(ε) which go to zero with ε so that, after a gauge
transformation,

(2.11) f \an\
2dv<C(ε)

JMn\Kε
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and then by elliptic regularity

(2.12) sup \an\<C'(ε).

By Appendix B and using τn < τ we get

(2.13) / eτ»δ\an\
2 < C"(β).

JQn

Adapting Uhlenbeck's radial gauges to periodic ends is the goal of
Lemma 10.4 [23]. In Appendix A we give a more detailed proof of this
lemma, in which the role of simple connectivity at infinity is clarified.

We wish to prove that an = 0 for n large. Our first step is to use the
continuity method to improve our radial gauge to a Hodge gauge, i.e., to
achieve

(2.14) d*Ay
nSan = 0

and still preserve

(2.15) \an\
2

co + Jeτ»δ\an\
2<ε.

Dropping the " n " from our notation, we consider the problem of find-
ing gt so that at defined by (2.16) will also satisfy (2.14) and (2.15):

(2.16) at = tgtag;ι+gtdg~ι.

When t = 0, go = O is a solution; we want a solution for t = 1.
First we check that the set t for which (2.14)—(2.16) are soluble is

closed. Since g takes values in a compact Lie group (SO(3)), a sequence
of solutions certainly will have a subsequence which converges pointwise
on a dense collection of points. However, to obtain a reasonable limit
some equicontinuity of the g 's is necessary. This can be deduced from
the equation gAf - tAg = dg. At this point elliptic regularity takes over
and implies that a limiting g is well behaved.

On the other hand, if t has a solution, then an implicit function theorem
[20] allows (2.14) and (2.16) to be solved for t' = t + v , for v sufficiently
small, but in (2.15) the right-hand side must be increased to, say, 2ε .

Some work is now required to lower 2ε to e. We claim that at, satisfies

(2.17) d\ at = {-at, Λ a%, + t{t - \)ga A ag~ιf.
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To verify this we expand:

dA a, + at, Λat> = dA (tgag~ι + gdg~ι)
n n

+ (tgag~i + gdg~ι) A (tgag~ι + gdg~ι)

= td. gag~ι + tgdA ag~ι + tgad, g~x

(2.18) " , ' , " _.
+ dAg/\dAg +gdAg hdAg

+ fga hag x + tgaλdA g
n

-tdΛ gAag'1 +dA gAg~ldA gg~l.

Since A'n = An + a is ASD, dA a+ = (-a Λ a)+ so upon taking +-self-
dual parts terms 2 and 5 above survive as desired; the others drop out.
Terms 1 and 8 cancel as do terms 3 and 7, and 4 and 9. Because An is
ASD the + part of term 5 vanishes.

We can write at, = e~τδd\ eτδω = d*ω for some ω because d\ eτδat>
t Λn An ί

— 0 and the appropriate Hι vanishes; so kerd*eτS = lme~τδdA eτδ .

Writing dA = d* we have

d+d*ω = (-d*ω Λ d*ω + t(t - \)ga Λ ag~xγ.

Now if we integrate over Mn with a weight, we have

[(eτδω,d+d*ω)= ίeτδ(ω, d*ωΛdω) + t(t-l) ίeτδ{ω, (gaΛag~ι)f.

Integrating by parts and using the Schwarts inequality we get

feτδ\d*ω\2< (ίeτδ\ω\2Y ( f eτδ(d*ω Λ d*ω)2)
(2.19) J KJ '. V J

But feτδ\d*ω\2 > λχ fe
τδ\ω\2 , where λχ is independent of n .

Dividing by J> τ < 5 |ω | 2 yields

(2.20) |ω|L2 δ < C{\d*ω Λ d*ω\Li δ + \al\ aγLi J

so |ω|L2 < C(4ε2) + ε2 < Cfε2. Elliptic regularity now gives \ω\Lp <

C"ε2 . The desired bound on sup norm follows for small ε . Thus (2.14)
and (2.15) are simultaneously achieved.



232 STEFANO DEMICHELIS & MICHAEL H. FREEDMAN

Let Dn denote the linear operator

~ Ί+ —τδ j * τδ gr^X /~\2+ _ r^O

Dn = dAn®e dAe Ωδ-+Ωs θ Ω ^

and let Hι (ad g A^) = 0 by the index theorem and the choice of generic
metric. As in the proof of Point 2,

(2.21) \Dnan\i} ^λ\an\i} for some/I > 0 .

The constant λ does not depend on n if n is large enough. But

Kllc0 <
ε s o

(2.22) KΛβJ|£#<βK||tV

If ε < λ, then (2.21) and (2.22) are contradictory. This completes the

proof of Point 3.

Proof of Point 4. The proof of Point 2 implies that if

DA = (e~τδd*Ae
τδ;dAι): Ω ^ a d ^ ) -+ Ω°(ad^/) θ Ω ^ ( a d ^ ) ,

then we have
\DAa\Li >λ\a\L2 , λ>0,

I ,δ ,δ

provided that A is anti-self-dual and / > 0 or / = oo.
Consider the spaces:

3SX n = {A\A connection on Mι with exponential decay and such that

sup|^4| on M{\K(n) < ε/l}/{Gauge transformations constant

on

Here / = 1, 2, . . . or oo and n < I.
Remark that Bι n exhaust B, and also

_ {A\A connection on M^ = trivial connection on
c>/1 {Gauge transformations constant on Λ/o

A suitable cutoff gives maps η: Bt n—> Bc n . Moreover,

— A\ < ελ.

On <%c n we have the bundles Ωι(adA) and Ω°(ad^)θΩ^(adyί), and
a real elliptic operator DA between them. As in [7, Chapter 3] this defines
a determinant line bundle Ac n .

Similarly we define determinant bundles Aι n on 3St n, compatible
with the inclusions 3Sχ n ^-> 3gχ π + 1 .

Lemma 2.2. rjAc n is isomorphic to Λz n for n, I, and I - n large.
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Proof. There are maps from (co)keτDA to (co)kεrDA and vice versa,

defined by suitable cutoff and ortogonal projections.
If n, /, and l-n are large, then all the cutoff functions β have small

dβ this and condition (*) imply that all these maps are isomorphisms.

As in [5] this gives a canonical isomorphisms Λc n> ~ Λc n ~ Λ/ n for

n, n large but much smaller than /. Assuming n meets these conditions,

we drop it from the notation.
Lemma 2.3. Ac is trivial.
Proof. We will prove that 3§c is simply connected.
First, 3SC is homotopy equivalent to 3S , the space of connections on

E —• M modulo the pointed gauge group ^ . Since SO(3) is centerless,

Thus it is sufficient to check that ^ 0 is connected. The pointed gauge
group &Q may be described as the space of base point preserving sec-
tions of the adjoint bundle Γ(AdSO(3)). The adjoint representation
lifts to SO(3) -+ Aut(SU(2)) by x »-> (g -> π~\x)g(π~\x))~ι), with
π: SU(2) -> SO(3) the two-fold cover; then AdSu(2) -* AdSO(3) is also
a two-fold cover. Since the base M is simply connected, any section of
AdSO(3) lifts to a section of AdSU(2). It is sufficient to check that
Γ(AdSu(2)) = S?Q is connected since an arc in J^ may be projected to
^ 0 . Since SU(2) is locally connected, any section can be normalized to be
the identity on a disk D containing the base point of M. But over the
complement Jt\D the bundle is trivial (since any map of a 3-complex in
BSU(2) is null homotopic) and the sections trivial at dD. The space of
such sections ^ 0 is clearly equal to maps (M, S3). By [10, Proposition
(5.12)] π o(^ o) = π 0 maps (M, S3) * 0 so π o(# o) £ 0, π o(^ o) £ 0, and

1 q.e.d.
Now det A or det At are real sections of Ac and A7 nonvanishing on

a neighborhood of self-dual connections in the Bt 's and of their images
in Bc.

Lemmas 2.2 and 2.3 give compatible identifications of the A's with R.
Since the rιAι converge to ηA^ and the sign of det A is locally constant,
this gives compatible orientations for the points in the moduli space, up
to an overall sign.

Thus

(2.23) \Φ(B)\ = | Φ ( i g | = 1 0 ( ^ ) 1 , |φ(β) | = |φ(β Λ ) | = \φ(QJ\.

According to Donaldson [7], if the data described in §1 is fixed, then
there is a canonical overall choice of orientation on the moduli spaces
permitting the absolute value signs to be removed in (2.23).
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3. Exotic R4 's and the smooth structure of 5-dimensional h-cobordisms

Let (W\ B, Q) be a compact simply connected smooth 5-dimensional
h-cobordism between closed 4-manifolds. The ends are labeled to suggest
the "Barlow" surface and the corresponding rational surface but this is
not assumed. Another interesting example is an h-cobordism from the
Dolgachev surface to a rational surface. Also, the assumption that the ends
be closed is not important provided W already has a product structure
over d{B).

It is known that W has a topological product stucture. Although W,
in general, cannot have a smooth product structure—this exists precisely
when there is a diffeomorphism b —• Q in the homotopy class determined
by W—Smale's high dimensional proof of the h-cobordism theorem may
be adapted to give a "partial product structure" on W which identifies
B and Q except over an exotic R4 imbedded in both. The reader may
wish to compare out analysis of W with the proof of Theorem 7.1c in
[13] and Kirby's sketch of Theorem 3 in [14, Chapter 14]. All objects and
morphisms will be smooth (C°°) unless otherwise specified, e.g. = means
diffeomorphic.

Theorem 3.1. W contains a compact 5-dimensional submanifold with
boundary (/; Jo, Jχ) c (W\ B, Q) and a noncompact 5-dimensional
proper h-cobordism (U; VQ, Vχ) c (W \ B, Q) so that the following hold:

(1) JoxI^7^J{xI; in particular, J0 = J{.

(2) 7uu= w.
(3) Vo and Vχ are homeomorphic but not diffeomorphic to R4 (and

therefore by the topological theory U is homeomorphic to R4 x / ) .
(4) V0<*Vχ.
(5) Combining (1), (2), and (4) gives an reimbedding end Vo ^ end Vo.

This can be chosen to be an involution.

(6) VQ (and hence Vχ) inherit their smooth structure as open subsets of

R4

Kstd

Proof Give W a handle body structure relative to B. Handles of
index 0 and 5 are cancelled outright. In the appendix of [18] Milnor ex-
plains how handles of index 1 may be cancelled at the expense of introduc-
ing new 3-handles; similarly handles of index 4 can be removed, but this
introduces new 2-handles. This leaves only 2- and 3-handles. They gener-
ate relative cellular chain groups. Since H^(W, B Z) = 0, the boundary
map is an isomorphism C3-^ C2. The Euclidean algorithm is used to con-
struct handle slides (among the 3-handles) so that the 3- and 2-handles pair
algebraically:



UNCOUNTABLY MANY EXOTIC R4 'S IN STANDARD 4-SPACE 235

(3.1) d^ = δuh
2j

(given some indexing i, j = 1, , n of the handles).

We interpret this formula in the middle level M of W, M=d((BxI)

U{hj})\B . In M we see two collections of disjointly imbedded 2-spheres:

{Aj} = co-cores or "ascending" spheres of the 2-handles {h2} and {DJ =

boundary of "descending" sphere of the 3-handles {h*}. We may assume
all intersections are transverse; equality (3.1) becomes

(3.2) DrAj= ^ (sign) =

A central observation of Casson's theory (see [2] or [14, Chapter 12])
is that there is an isotopy (called finger moves) of ]J. Dt so that, after the
isotopy,

(3.3)

This enabled Casson to find Casson handles CH in M attaching to the

boundary of a regular neighborhood JV = ^ ( U " = i ^/ u U"=i Aj) so that

γ~ = ( J Ί J C S ' S ) " is homeomorphic2 to (#"= 1(S 2 x 52)\pt.). Casson
2 2 2 21

handles are homeomorphic to open 2-handles (D2 x R 2, dD2 x R 2 ) . Af-
ter attaching them to JV we delete any remaining boundary, this is the
meaning of the "-superscript.

With an eye to achieving condition (5) we should do this part of the
construction with some care so that Y admits a smooth involution ex-
changing U"=i &i a n d \Jj=\ Aj. For this we use a handlebody description
of Y (perhaps [11] and [14] are the best general references for drawing
these pictures). Although these pictures are part of a rigorous theory, we
will proceed by example. The geometrically inclined reader should enjoy
arguing about the accuracy of our diagrams. All unlabeled 2-handle circles
are "0-framed;" all 1-handles are indicated by a circle bearing a dot.

If n = 1 and D n A = one point, then no Casson handles need be
attached and the picture is as depicted in Figure 3.1 (next page).

If n = 1 and Do A = 3 points, then we attach two Casson handles as
in Figure 3.2.

2In 1975 Casson would have said "proper homotopy equivalent;" a homeomorphism was
not available for several more years.
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D

diff.
Y = S2xS2\B4

FIGURE 3.1

CH

homeo 9 9
Y~ = S2xS2\μ

CH

FIGURE 3.2

FIGURE 3.3

Figure 3.2 is an exact representation of the more intuitive schematic
shown in Figure 3.3.

The Casson handles are labeled CH, and the central dot indicates a
vertical axis of a 180° rotational symmetry. For this symmetry to ex-
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CH
D

D,

FIGURE 3.4

ist the two Casson handles should be diffeomorphic. Casson handles are
parametrized by rooted, finitely branching trees. It is an easy observation
that CH Γ c G H Γ if Tχ is "more complicated" than To in the obvious
partial order or trees. Since any finite set of trees has a "least upper bound"
more complicated than either, any finite set of Casson handles may be re-
placed by identical sub-Casson handles. We exploit this to assume that
all Casson handles we encounter are diffeomorphic. To see that Y~ is
homeomorphic to S2 x S2\pt. in Figure 3.2 we work topologically. Let
the CH's cancel the 1-handles, then unravel the picture to get Figure 3.1.

If n — 1 and DnA = 2k+l points, then the picture is very similar
to Figure 3.2—there will be 2k CH's—we do not draw it. Now suppose
n > 1 the handlebody picture for Y should be thought of as drawn near n
horizontal levels with vertical feelers corresponding to paired intersection
Dt Π A., / φ j . Also to maintain symmetry extra intersections (via finger
moves) must be introduced to ensure that card(D/ Π Aj) = c&xάφj r\At).

In Figure 3.4 we see the handles corresponding to {D{, D 2 , Aχ, A2,
, CH1 0} . We have drawn the cases Di nAj = 2 points i Φ j ,
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A

MnJ

FIGURE 3.5. A PICTURE OF THE MIDDLE LEVEL M.

D{ n Aχ - 3 points, and D2 Π A2 = 5 points in such a way as to make the
Z 2 rotational symmetry evident.

We are now ready to describe the decomposition W = / U U. One
begins by defining U and / where they intersect the middle level M. We
set MΠU = Y~ and set MnJ equal to a compact manifold neighborhood
of M\Y~ which is small enough that ( M ί l 7 ) n Γ = 0 . Here Y= c Y~
is constructed by replacing JV by a thinner regular neighborhood ^ of
(UjLi A u U"=i Aj) and forming Γ = = {jrQ u CH 0 's)" , where the CH0 's
are sub-Casson handles compactly contained in the CH's and extended at
the attaching region to meet J^o. The subset Y= has the same formal
handle description as Y~ (except the CH0 's are parametrized by more
complicated trees) and therefore are also homeomorphic to #n S2 x »S2\pt.
(see Figure 3.5).

Given a subset of the middle level M there is a canonically determined
subset oϊ W. In the case of M Π / the canonically determined subset
/ is simply a bicollar on MnJ, which in the smooth category would be
described as the union of all gradient trajectories passing through MnJ.
For MnU the canonically determined subset U is a certain completion
of the union of trajectories through M. U is the double trace of surgery
on {Dt} "from above" and surgery on {Aj} "from below:" U may be
identified with

(MnU) x[0,l] ( J
atlevel=l t level=0

U III*?
at level=0 \j=l

where the ~ denotes dual attachment.

By construction / is a product connecting its ends Jo = JnB and J{ =

JnQ. Cancelling h] with h] (in the topological category), we see that U
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ΠOΠICO A A A

is actually a topological product (U;V0,V{) ^ (R x / R x 0, R x 1).
The smooth involution σ on Y~ interchanges {D.} with {A} and so
after surgery descends to a diffeomorphism V0=Vχ.

The smooth embedding mentioned in (5), end VQ —• end Vo , may be
identified with the restriction of σ to end(Γ~) and is therefore an invo-
lution.

Of the conclusions to Theorem 3.1 it remains only to check that Vo

is not diffeomorphic to R 4 . The starting point is the existence of two
simply connected h-cobordant manifolds distinguished by a Donaldson
type invariant (Γ, polynomial, or Φ). The original argument from this
starting point was combinatorial and used only the fact that the manifold
at the ends of the h-cobordism were different and did not inquire as to
how they were ditinguished. This argument is well described in [14, p.
101] so we will not recapitulate it here. We will give a different argument,
more in the spirit of §2 which actually provides a bit more information.

Claim. There is a compact set K c VQ so that if C c Vo is a smoothly
embedded homology 4-ball containing K, then πχ(dC) must admit non-
trivial representations into SO(3).

Proof of Claim. Initially we assume B is the Barlow surface and Q is
a rational surface. Let Σo denote the homology 3-sphere = dC. If K is
large enough, Σo c Jo . Since Σo is smoothly embedded there is a normal
product collar which can be extended by deforming the Riemannian met-
ric. This is actually a simple case of a "periodic end." As the metric is
extended we create a sequence B = J?o, B{, 2?2, —• B^ . Using Σχ c Jχ

we produce the analogous Q = Qo, Qx, Q2, -> Q^ . Because B^ is
isometric to Q^, we have ΦiB^) = ΦiQ^), contradicting \Φ(B)\ > 4
and |Φ(β)l = 0 a n d the commutation of Φ with geometric limits (§2).

In §2 we worked with simply connected ends in order to avoid noncom-
pactness resulting from the sequence {At} limiting at infinity to nontrivial
flat connections and the attendent discussions of Floer homology [9]. If
all representation ^ ( Σ Q ) -• SO(3) are trivial, there are no such limits
possible, so our discussion is applicable.

Now suppose that B and Q are arbitrary as in Theorem 3.1 (perhaps
W is even a smooth product). Recall that Y is the interesting part of the
middle level M of W. Just as any Casson handles have a "least com-
mon multiple" if Y is associated to W and Y1 is associated to W1, it
is possible to find a Y" (more complicated than either Y or Yf) which
is associated to both W and W1. We simply arrange to make our con-
structions so that VQ (Vo = y"/surgery{^7}) comes from a Y which
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FIGURE 3.6

is complicated enough to be associated with an h-cobordism between the
Barlow surface and a rational surface.

The preceding argument completes the proof of the claim and the the-
orem except for point (6). To justify point (6) it is sufficient to observe
that Casson handles CH are realtively imbedded in standard open handles.
Replacing the Casson handles in Figure 3.4 with standard handles we may
cancel all 1-handles to obtain a standard diagram in which surgery on the
D's yields R4. q.e.d.

Regarding the claim, we note that S is the only known homology 3-
sphere without a nontrivial representation into SO(3).

Next we describe VQ, which we referred to as R4 in the introduction,

as an open subset of standard with the induced smooth structure.
We begin with a "model case" for R4 based of Figure 3.2. It is simplest

but unfortunately it is not known to be associated with any nontrivial h-
cobordisms and consequently not known to be exotic. Understanding the
general case is only a small further step. Figure 3.2 is isotopic to Figure
3.6.

The dotted lassos in Figure 3.6 indicate two pairs of handle slides. Pre-
form these and notice that the equivariant hyperbolic pair separates from
the rest of the diagram and may be eliminated by passing from Y ~ to VQ.

Passage from Y~ to Vo is achieved by turning (by surgery) one of
the smooth 2-handles into a 1-handle. This cancels the two simply linked
circles in Figure 3.6 (see Figure 3.7).
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CH ί^ήK& CH

FIGURE 3.7

=L

FIGURE 3.8

The reader should note how the axis of symmetry passes through the
upper clasp in Figure 3.7. Our drawing contains a slight intentional break
of symmetry near the clasp to clarify the location of the axis.

Bob Edwards observed that the 2-components link of 1-handle curves in
Figure 3.7 has an equivalent picture (Figure 3.8) which is closely related
to Bing's famous "house with two rooms." In this picture an unrelated
symmetry is more apparent.
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It is clear from either Figure 3.7 or Figure 3.8 that the 1-handle curves
form a ribbon link L. Ribbons can be obtained from the Seifert sur-
faces in Figure 3.7 by surgering the upper-right and lower-left annuli (or
the image of these under the involution). The reader should notice that
the symmetry of the link in Figure 3.7 does not extend to symmetry of
these ribbons. The ribbons visible in both Figure 3.7 and Figure 3.8 are
isotopic. In a handle diagram 1-handles may be thought of as deleted
trivial 2-handles. These ribbons are the image under surgery and handle
cancellation of these missing 2-handle cores.

To complete our description of the "model case" recall that the simplest
(unramified) Casson handle CHj ^ (D2 xR 2, dD2 xR2)\cone(Wh), where
Wh c D2 x Sx is a Whitehead continuum [11] contained in the "missing"
boundary D 2x (circle at infinity of R2) and the cone is a linear cone to
0 x 0 c ΰ 2 x f l 2 .

In Figure 3.7 the Casson handles topologically cancel or fill in the deleted
2-handles ("ribbons") except for a regular neighborhood of L in dB .
In the smooth category the 2-handles are not entirely restored, rather a
cone(Wh) is missing from each one. Again each cone is on a Whitehead
continuum running along a component of L and the cone is linear in the
standard smooth product structure for the restored 2-handle. To obtain VQ

(= R ) in the model case remove the boundary points from the manifold
described by Figure 3.7.

To summarize, the model picture for R4 is R4 with two closed sets
deleted. Each closed set is of the form Wh x [0, oo)/(w , 0) ~ (wf, 0) for
all w e Wh. These open cones emulate from disjoint points and meet
the 3-sphere S^ at infinity in two Whitehead continua imbedded along
LcSl (FigurΓ3.9).

Next we describe how this model case can be modified to be general.
Refer to Figure 3.4, the implied drawing of the general case, to describe
R, , t e CS c [0, 1]. Notice that after surgery on the ascending spheres
{A's} the link of 1-handle curves Lf becomes a slice link. This is because
L' bounds disjoint embedded disks in S3 meeting \J"=ιD. but disjoint
from Uy=i Aj After surgery on the {A's} there is a natural radial struc-
ture on the resulting B4 . Since there are no local maxima on these disks
with respect to the radial structure, they are ribbon disks and Lf becomes
a ribbon link after surgery on the {A's}. In fact pictures similar to Figures
3.7 and 3.8 may be drawn for a general Lf.

As before, the Casson handles {CH} topologically restore the deleted
ribbons neighborhoods or 2-handles (except for some boundary material).



UNCOUNTABLY MANY EXOTIC R4 'S IN STANDARD 4-SPACE 243

FIGURE 3.9. DELETE THE BOLD LINES

TO GET R*.

u2(cone(Wh))

Smoothly the restoration is only partial, a closed set X is missing from
each 2-handle. In the model case we took the Casson handles to be un-
ramified and X = cone(Wh).

In the general case ramification seems inevitable, but some simplifica-
tion is possible. In [13, Chapters 1-4] Casson handles are generalized
(GCH) to "towers of capped groups." These differ from Casson handles
in that many surface stages are interspersed between the immersed disks
of Casson's construction. The GCH are also indexed by rooted finitely
branching objects. (There is a slight additional structure beyond that of
a tree derived from the symplectic pairing of H{ (surface stages; Z).) If
the number of surface branches grows "sufficiently fast" (the exact expo-
nential rate is calculated in [1]) the GCH is described in [13, Chapter 4]
as (D2 x R 2, 3D2 x i?2)\M(WCS -• CS). The mapping cylinder M is an
embedded family of arcs connecting a wild Cantor set WCS c D2 x Sι to a
tame Cantor set CS c interior!)2 x D2 . Thus to form a general R* , begin
with R*d and delete a finite number of closed sets X each of which is a
Cantor set worth of rays embedded near (open) ribbon disks which emerge
at S^ to form one of the links Lf constructed above. The free parameters
in the construction of R* are the complexity of l! and the complexity
of the GCH's. Let R* denote any "ribbon 4-space" as above; that is, one
obtained from a diagram such as Figure 3.3 where CH is replaced by GCH
and the number of surface stages of each GCH grows sufficiently fast.

This completes our discussion of the final point (6) mentioned in The-
orem 3.1.
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a ( g a p ) = 5 1 x l * • "VU I = S ι x N x I

FIGURE 3.10

Theorem 3.2. If R* is a ribbon 4-space and K c R4 is a compactum,

then there exists a topological radius function {polar coordinate) p:Rχ —>

[0,+oc) such that if we set t= 1-1/r and R* = p~ι{[0, r)) then K c R^

and R4 is also a ribbon 4-spacefor t belonging to the standard Cantor set

C S c [ 0 , 1].
Proof The key players in this argument are the "gaps" in the original

proof [11] of the Poincare conjecture. These are not mistakes but rather a
countable collection of closed sets in a CH which resisted direct descrip-
tion. Working with a GCH as above, the gaps still exist and GCH\{gap}
is called the design: it admits an essentially explicit foliation & by 3-
manifolds and each gap is a compact 4-manifold homotopy equivalent to
a circle with boundary <9gap = Sι x S2 = Sι x N u Sι x E u Sι x S (see
Figure 3.10).

Leaves of SF come in perpendicularly to Sι xE along Sι x longitudes;
Sι x N and Sι x S are subsets of leaves.

Although d(gap) = Sx x S2 and gap ~ Sι, it was not known at the
time of the proof that the gap was homeomorphic to Sι x ΰ 3 . Instead it
was dealt with by decomposition methods.

In fact,

i l l top i i i i i

( g a p ; S x N , S x E , S' x S) s ( 5 x D S x N , S x E , S x S).

This may be proved in two ways. One can quote [12], in which the
topological surgery sequence is established for π{ = Z, to recognize the
gap. Alternatively the fact that the gap imbeds in R4 and can itself be
partially explored by a 3-dimensional foliation permits the original proof—
including all the decomposition arguments—to be adapted to produce the
desired homeomorphism.
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exceptional

1 = 3

D2' x

1 =

=

D2' gap

- coordinate

Ξ R2

FIGURE 3.11. A TOPOLOGICAL COORDINATIZATION OF

THE DESIGN, A FOLIATED SUBSET OF GCH. THE COORDI-

NATES EMBED DESIGN C D2 X D2 . ALL SMALLER RECT-

ANGLES ARE Sl X jD3-GAPS.

GCH's

FIGURE 3.12. R* = FIGURE\BOUNDARY .

Thinking of each gap as (Sι xNxI; Sι xNx 1, Sι xdNxI, S2xNx0)
we can reparametrize the interval coordinate to be compatible with the
radial coordinate p on the co-core direction of the design. The schematic
in Figure 3.11 indicates the gaps fitting into the design with their /-product
structure matching the p levels.

If 2p'o - 1 G CS c [0, 1], then D2 x Z)J, is a "complete" D2 x Sι leaf

disjoint from the interior of any gap.
Figure 3.11 suggests the correct topological coordinatization of a GCH.

The preimage of [0, pQ) is a sub-GCH for 2p0 - 1 € CS c [0, 1].
Since R* arises from a smooth handle body H by attaching GCH's with

radius p = 1 (and then deleting the remaining boundary) and since p is
perfectly standard in a neighborhood of the attaching region, it is a simple
matter to find a topological product structure near end(Rj) whose levels
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are p levels on the GCH and agree with a previously specified product
structure near dH away from a neighborhood of the |J GCH (see Figure
3.12). The Schoenflies theorem allows this product structure near infinity
to be extended to a global radial coordinate. The further conditions of
Theorem 3.2 are now just a question of normalization, q.e.d.

We emphasize that the difference among the R* 's in the family for
t e CS c [0, 1] lies only in the details of the wild Cantor set (and therefore
the associated mapping cylinder). These wild Cantor sets are all defined by
iterated-ramified Bing and Whitehead doubling and differ only with regard
to various multiplicities.

Remark 3.1. If B and Q are as in the statement of Theorem 3.1, then
the constructed involution (5) may be thought of as changing the smooth
structure on B by cutting out R* and gluing it back with a twist (of order
2). In some ways this is analogous to the classical construction of exotic
structures, e.g., on Sn , n = 7, by cutting out a closed ball Bn and regluing
it via an exotic diffeomorphism of dBn = Sn~ι.

Remark 3.2. Donaldson's Γ- and polynomial-invariants require con-
sideration of pullbacks of (bundle, connection) to a singular surface. To
compare the pullbacks corresponding to surfaces in B and Q (as in The-
orem 3.1), notice that any singular surface Σχ <H B may be pushed out
along a topological radial coordinate on Vo and so is homotopic to a sin-
gular surface Σr

0 contained in Jo (similarly for Σx s-> Q). In fact, by
immersion theory if Σo <H B and Σ'o q+ Jo are immersed with isomorphic
normal bundles, then they are regularly homotopic. Thus singular surfaces
can always be assumed to lie in the region of diffeomorphy.

4. Main theorem

Any open subset of a Euclidean space acquires a natural smooth struc-
ture by restriction. By a topological radial function we mean a homeo-
morphism followed by the usual radius function R*d —• [0, op).

Theorem 4.1. There is a subset Rj of Euclidean 4-space R*d which is
homeomorphic but not diffeomorphic to R*d. Moreover, R4

{ has a topo-
logical system of polar coordinates with radial function p so that the open
balls of radius r are "ribbon 4-spaces" R4

t in the sense of §3 whenever
t= l-l/r belongs to the standard Cantor set CS c [0, 1]. We say t and
t' are equivalent if R* and R* are diffeomorphic. The resulting equiva-
lence classes are at most countable. Also, p restricted to [0, r] for any r
extends to a topological polar coordinate on all of R^td.



UNCOUNTABLY MANY EXOTIC R4 'S IN STANDARD 4-SPACE 247

Corollary 4.1. In Zermelo-Frankel set theory with choice (ZFC) we may
assert that there is a collection of parameter values { / } c C S c [ 0 , 1] with
card({ί'}) = "continuum" = & such that the subsets R* are pairwise
nondiffeomorphic.

Proof of Theorem 4.1. Referring to the outline in the introduction,
we need only comment on a couple of points. According to Theorem
3.1(2), W — 7 U U. This means that the end of U is contained in the
(smooth) product region / . The compact set K c Vo c B of the intro-
duction should be chosen to be a smooth codimension zero submanifold
large enough so that VQ\K c JQ c B and with dK invariant under the
involution (Theorem 3.1(5)). (Essentially explicit examples of such K
can be derived from Figure 3.4 and the handle description of the GCH's.)
Thinking of Q as formed from B by regluing R* (as in Remark 3.1) and
remembering the invariance of dK, we see that: (1) K embeds in Q, and
(2) the product structure on / induces a diffeomorphism B\K = Q\K.

Now consider the radial coordinate p of Theorem 3.2 where the com-
pact set is specified to be this same K. We depart slightly from the intro-
duction by considering where p = r, where t = 1 - \jr c CS c [0, 1].
Suppose there is a diffeomorphism

(d, id^): (R*, K) -> (Hj, K), sφteCS.

As in the introduction, this allows the construction of end periodic met-
rics: B^ isometric to Q^ . This leads via Theorem 2.1 to a contradiction
and the conclusion that if there is a diffeomorphism d: R^ —• R^, then d
restricted to K is not the identity and, in fact, not isotopic to the identity.

It is a general fact that a smooth compact manifold admits only count-
ably many smooth embeddings, up to isotopy, into any smooth metrizable
manifold. In dimension four, the equivalence of the smooth and PL cate-
gories allows an effortless argument. A PL embedding means a simplicial
embedding after k barycentric subdivisions of domain and range for some
nonnegative integer k, but the number of simplicial embeddings of a fi-
nite complex into a countable one is certainly countable. Thus there are
only countably many PL embeddings of a finite complex into a countable
complex. The analogous statement—up to isotopy—now follows in the
smooth category [15].

Combining the previous two paragraphs, we see that the subsets R^
could be mutually diffeomorphic for at most countably many parameter
values t e CS.
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The final assertion of Theorem 4.1 follows from the Schoenflies theo-
rem.

Proof of Corollary 4.1. In the presence of choice, we may well-order
the set of equivalence classes W. If we do this with least order type we will
have achieved a partition of % into a disjoint union of a set of cardinally
No: Jf = U / e r g., card(gj) = No. A typical ^ begins with a limit ordinal
and contains all its successors less than the next limit ordinal. The standard
diagonal argument shows that the cardinality of Ti = {t e CS| equivalence
class of R* lies in <̂ } is No for each /. Thus for each i we have some
bijection between Tt and Jζ . Taking the union over / e J" we have a
bijection

If the axiom of choice is not permitted, or is substantially weakened, a
correspondingly weaker conclusion about the cardinally of %? is obtained.

Appendix A: Gauges for low energy connections

Cliff Taubes informed us, early in our work, that a useful technical result
[24, Lemma 10.4] omits a necessary hypothesis on simple connectivity at
infinity. This appendix is one way to make Lemma 10.4 precise.

Lemma 10.4 [24], Let KQ c Kχ be an inclusion of compact Rieman-

nian 4-manifolds with boundary with πχ(K0) ^? πχ{Kχ) zero. Let A be

a connection on Kχ such that F^ = 0 and WA^L2(OΪIK)
 < ε> w^ere ^ e

exact choice of e depends on the inclusion KQ^-> Kχ. Then there exists a

gauge transformation g such that A8 = d + a and

(\\a\\LP)2<C(p,k,K0^Kχ) f \\F
JκQ

J2.

Proof By Uhlenbeck ([27], [28]) there are a finite convex covering
{{/α} of Kχ and gauge transformations ga on Ua such that A8a =d + aa

on Ua and (A. 1) holds when the integrals take over Ua . We want to glue
the ga into a global gauge transformation achieving (A.I).

I f 8aβ = 8«X8β on UaΠUβ, then

a 8άa8 + 8 d^

The bounds on the aa give bounds on dgaβ , hence we can write gaβ =

Kβ(ι + haβ) w i t h \haβ\l'k ^ c'I\FA\2 f o r s o m e constant c and faβ
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constant functions. Think of ~gaβ as an "average" value for gaβ . Unfor-

tunately ~gaβ is not a cocycle, however we have

Claim. There exist constants ~ga such that

( A 3 ) Wtaβ ~ ̂ aβW2 < C 0 Π S t /
Jκ2

By using (A.2) and the Sobolev embedding theorem the norm on the left

can be any Ck norm.
Proof of Claim. We use log and exp to pass between small elements of

SO(3) and its Lie algebra, this allows averages to be taken. We suppress
notational distinctions between the group near id and the Lie algebra.

Let Gι

δ denote the constant /-cochains on K{ with coefficients in the

structure group. In our case, this means Cech cochains based on {Ua}

with coefficients in SO(3)^ the δ indicates the discrete topology. The

restrictions to KQ will be denoted by r. For example, rG°δ = {ga on

Ua Π KQ} and rGι

δ - {~gaβ on Ua Π Uβ Π Ko} , etc. There is an action of

G°δ (= SO(3)order c o v e r) on G\ which is compatible with restriction and

defined by gaβ •-> g~lgaβgβ .
From the cocycle condition for {gaβ} and the smallness of haβ we

obtain

We are interested in the coboundary map rG\ -^ G\ given by δ(fgaβ) =

UγOϊltβlϊ'βγΊtaγ1) The differential of the coboundary at the identity is well
known to be

(A.5) {haβ} l~> i^aβ "*" hβγ ~ ̂ αy}

(Think of h as identified by logarithms with an element of the Lie algebra

so(3).)

The coboundary map above is a smooth map between finite dimensional

manifolds and is equivariant with respect to the action of Gδ . Further-

more, δ~ι{0)/G° is naturally isomorphic to the conjugacy classes of repre-

sentations nx(K0) -> SO(3) induced by representations πx(Kλ) -* SO(3).

By the hypothesis, πx(KQ)™ πx{Kx) so δ~\θ)/G° is a point. Put an-

other way, Hι(K{ SO(3)^) -> Hι(K0'9 SO(3)δ) is zero. Direct calculation

with (A. 5) shows that if T is an infinitesimal slice for the action of G°δ on
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rGι

δ at id, then the differential of the coboundary map d(δ) is one-to-one

on T. Thus if ~gaβ is sufficiently close to a cocycle then it may be gauged

(by ga) to {taβ} e T such that

(A.6) \\{taβ - id|| < const." | |<φα / j - id|| < const/ f \FA\
2,

where

( A 7 ) *aβ = igJ ° iS~β} = igaVβgJ'

I~lBut (A.6) and (A.7) imply \\gaβ - ga gβ\\ < const. f\FA\ , proving the
claim.

Now that ~ga has been constructed, consider a local gauge transforma-
tion

(A.8) g =gg~\

Since ~ga is constant, the associated a for ga is the same as for ga,
thus (A. 1) is satisfied over Ua for ga . Moreover, by the claim,

(A.9) \\gaβ - id|| < const, j \\FJ2, where gaβ = g~lgβ.

Thus if /H^JI2 is sufficiently small, the 1-cocycle {gaβ} is arbitrarily
close to the identity. We may employ the following

Fact. Let P be an //-principal bundle over an ^-dimensional manifold
with a cover (Ua) corresponding to a slightly thickened handle decompo-
sition. Suppose that a 1-cocycle {gaβ} for P maps entirely within a ball
of radius ε about id e H and suppose that the larger ball of radius nε is
still small enough to be contractible; then P is trivial. Furthermore {gaβ}
is the coboundary of {#α} with values in the ball of radius nε.

Proof of Fact. Set ga = id for Ua a thickened zero-handle. For Ua

a thickened 1-handle, ga is defined to be some homotopy in Ballε(id)
between the gaβ 's specified near the attaching region. Because this ho-
motopy lies in Be(id), the "new" gaβ between thickened 2-handles and
thickened handles of lower index is now the product of functions into
Bε(id) and therefore lies in B2ε. Similarly ga on thickened 2-handles is
some null homotopy of these new gaβ in -B2β(id). Continuing this way,
the thickened /c-handles are gauged by maps to Bke(id), proving the fact.

Since there is no loss of generality in choosing our {Ua} to derive from
a handle decomposition, we can use this fact to write
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( A 1 0 ) gaβ = Ch
with

| | | α - i d | | 2 < 4 c o n s t . | | | F 4 | | 2 .

Finally if we set fa = | α ga, then fa will satisfy (A.I) (with C re-
placed by a larger constant), and since {|α} and {£α} have the same
coboundary, fa = fβ on UaΠUβ. This is the desired global gauge trans-
formation.

2 2

Appendix B: L implies L δ

The proof of this fact in the case of an end isometric go S3 x [0 +00)
can be found in the book of Donaldson [8].

Let M be a smooth 4-manifold with a single and F homeomorphic
to S 3 x R . We consider a case somewhat more general than "asymp-
totically periodic." We say E has bounded geometry if there is a proper
Morse function τ: E —• [0, 00) such that the set of compact submanifolds
{τ~ [x, y]; x, y regular values of / and |x — y| < const.} is compact
in the sense that every sequence has a subsequence N. admitting (1 + j)-
quasi-isometries between all iV. and Nk for j, k > i. (For / large,
there is no loss of generality in assuming that these quasi-isometries are
diffeomorphisms [22].)

Theorem. Let A be an ASD connection on M with A = d + a on F

and fE \a\2 < 00. There exist a gauge transformation g, A8 = d + a on

E, and a δ>0, so that JEeτδ\a\2 <oo.

Proof. Let It = fτ>t\FA\
2 As in [24, Proposition 10.5] (using our

Appendix A to replace 10.4) the theorem will be proved if we show It has
exponential decay. We do this.

The other hypotheses imply: (1) (After a linear rescaling of τ) a topo-

logical factor 3-sphere lies in each segment τ~ι[i, i+ 1], and (2) there

exist constants 0 < b < c and a closed subset Δ c [0, 00) such that

b < |gradτ(x)| < c for x e τ~ι(R+ - Δ) and where the measure of Δ

intersected with any interval of length one is smaller than \ . We think of

τ - ^ R ^ Δ ) as the "far from critical" subset.
Assuming (1) above and Appendix A, we find that for N large enough,

2Sχ-ι\N-\ N+2\ \^A\2 — E "̂  ε * s s o s m a U ^ a t after a gauge transformation

over τ~ι[N-l, N + 2] the Ck norm of a on τ " 1 ^ , 7V+1] is bounded

by const. £ 1 / 2 . By "bounded geometry," the constant is uniform for TV
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large. In this local gauge we have for t0 e [N, N + 1]\Δ:

dt

(B.I) >b f

Λ- ί

\da +

tQ)\da

\da\

\da\

a Λα|2gradτύfvol

+ aΛa\ dvol3

2dγo\3-b ί i

2 rfvol3 - b const.

3

|αΛα|2ί/vol3

x 2

|i^|26?vol) .

Also if E is small enough, only the value of the final constant is affected
by the additional requirement that a be a "Hodge gauge" relative to ordi-
nary d, i.e., that the components of a are coclosed real valued 1-forms.
Because the inclusion τ~ι[N - I, N] c τ~ι[N - 2, N + I] is trivial on
π{, the restriction map on H^R( R) is zero. Thus the projection of the
components of a into harmonic forms is trivial. Thus the components of
a are perpendicular to the closed 1-forms. From this follows the estimate

- / \da\2 rfvoL > -± [
1 Jτ-\tQ) 3 Λ-

(B.2) - / \da\2 rfvoL > -± [ trace(<z Λ da) dvol3,
1 J \ 3 Λ 1

" 1where λ{ is the first nonzero eigenvalue of curl on τ " 1 ^ ) . Again by
"bounded geometry" for N large there is a uniform lower bound λ <
λχ{t^). The factor \ comes from the fact that A is ASD so that the three
curvature targets to τ " 1 ^ ) are equal in pairs to three complementary
curvatures.

Combining (B.I) and (B.2) we get, for some new constants Cχ and C2 ,
and t0 e [N - 1, N + 2]\Δ, TV large enough:

(B.3)

dJ±
dt

> C{ trace(α Λ da) dvol3

t=tQ Jτ-ι(t0)

ι[N,N+\]

Since our bundle is trivialized over the end, the Chern-Simons invari-
ant CS of (τ~\tQ), A\τ-ι,t v) is a well-defined real number and has a 3-
dimensional description very close to (B.3):

(B.4) CS = / trace(α Λ da + \a Λ a Λ a) dvol3,



UNCOUNTABLY MANY EXOTIC R4 'S IN STANDARD 4-SPACE 253

and also by Chern-Weyl theory a 4-dimensional description [3]

(B.5) CS= / \FA\
2dvol = Ir

From (B.4) we have (for N large and therefore fτ-ι[N_x N+2] \FA\
2 dvol

small),

(B.6) CS < f trace(α Λ da) dvol3 + C3[ [ \FA |
2 ) .

Jτ \t0) \Jτ_ι[N,N+l] J

Again, if the energy on τ~ι[N - I, N + 2] is small enough, combining
(B.4) with (B.3) and (B.6) gives

(B.7)
dL

>Cx{CS)-cJ[ \FA\
2dvol)

a t \Jτ-ι[N-\,N+2] )
\3/2

\3/2

(B.8) = CΛt -C4( ί \FA\
2dvol) (using (B.5)).

\Jτ-ι[NtN+l] /

Since It is strictly decreasing, (B.8) implies that on a set R+\Δ of

density > \ either the rate of decrease is > Qlt or C4(IN - IN+XY^2 >

-2L/A1+1. An elementary argument shows that any combination of these two

alternatives on R+\Δ gives at least exponential decay, hence

(B.9) It<C5e~τδ for some δ.
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