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STABLE PSEUDOISOTOPY SPACES OF COMPACT
NONPOSITIVELY CURVED MANIFOLDS

F. T. FARRELL & L. E. JONES

0. Statement of results

In this section we formulate the main result of the paper (cf. Theorem
0.4), and derive from it a number of corollaries. At the end of this section
we outline very briefly the proof of our main result. Our main result states
that the space of stable pseudoisotopies ^(M) of any closed Riemannian
manifold M with sectional curvature K < 0 everywhere can be computed
in a simple way from the stable pseudoisotopy spectrum ^(Sι) of the
circle. (More generally, a similar result is true for the stable pseudoiso-
topy spectrum ^(M).) This is a new result even for the case when M
is the flat 2-torus. All the results discussed in this section have been an-
nounced in [13], and have been proven in earlier papers of the authors' for
the special case when M has K < 0 everywhere (cf. [7], [9], [12]). The
reader is referred to [14] for an expository account of the authors' work
to date on the stable pseudoisotopy spectrum for any compact aspherical
manifold. The formula arrived at in this paper for computing the sta-
ble pseudoisotopy spectrum ^(M) in terms of the stable pseudoisotopy
spectrum &*#(Sι) involves the space of all closed geodesies in the com-
pact nonpositively curved manifold M. There is an equivalent purely
homotopic theoretic formulation of this result which involves the space of
all continuous maps Sι -> M (cf. [14, §4]). This has motivated the au-

thors to conjecture that the stable pseudoisotopy spectrum ^{X) of any
aspherical space X with torsion free fundamental group can be computed
in a simple way from the stable pseudoisotopy spectrum ^ ( S 1 ) (cf. [14,
§4] for a precise statement of this conjecture).

Before stating our main theorem we review in §§0.1 and 0.2 the concept
of homology theory with coefficients in an Ω-spectrum, and we outline in
§0.3 the structure of the set of all closed geodesies in M.

Received April 16, 1990 and, in revised form, October 19, 1990. Both authors were
supported in part by the National Science Foundation.



770 F. T. FARRELL & L. E. JONES

0.1. Ω-spectra. Recall that an Ω-spectrum consists of a bi-infinite
sequence ^ = {<9". : j e Z} of spaces with base point, together with weak
homotopy equivalences {hj: £?. -• Ω^j+ι}, called the structure maps for
the Ω-spectrum, from the 7th space to the loop space of the (7+1 )th space.
(If the structure maps are not required to be weak homotopy equivalences,
then the ^ together with its structure maps is called a spectrum) For any
integer k the kth homotopy group of the Ω-spectrum ^ is denoted by
πk(S^) and is defined to be the homotopy group πk+j(S^) for any integer
j satisfying k + j > 0. A map of Ω-spectra r^: S?% —• S?l consists of a
collection of maps {r.\ ^ -> S^'} such that (Ωr.+1) o h- is homotopic
to h'j o r. for all values of j . A map of Ω-spectra r^: ^ —• J? '̂ is called
a vrn*/: equivalence if it induces an isomorphism on the homotopy groups
of the Ω-spectra, and it is called an equivalence if there is a reverse map
of Ω-spectra r[: S?l —• S?^ such that each composite map r. o A\, r. o f\
is homotopic to the identity map.

Let X denote a manifold, possibly with nonempty boundary dX. Re-
call that a pseudoisotopy of X is a homeomorphism h: X x[0, 1] —• X x
[0,1] such that the restricted map h \ XxO is the inclusion. We denote by
P(X) the space of all pseudoisotopies of X, equipped with the compact
open topology. For each integer n > 0 let In denote the «-fold Cartesian
product of the unit interval / = [0, 1] with itself. Note that there is an
"inclusion" map P(X x /") -> P(X x In+ι) obtained by forming the Carte-
sian product of any pseudoisotopy h: X x In x[0, 1] -> X x In x [0, 1]
with the identity map / —> / . We denote by &{X) the direct limit space
l i m i t ^ ^ P(X x In), and call &(X) the space of stable pseudoisotopies of
X. A result of A. Hatcher [17] states that &>(X) is the zeroth space in
a Ω-spectrum which is called the stable pseudoisotopy spectrum of X and
is denoted by ^(X) = {^(X) : G Z} (cf. §1.3). By taking the direct
limit of the Ω-spectra ^ ( C ) over all compact codimension zero subman-
ifolds C c X we get the Ω-spectrum ^C(ΛQ of compactly supported sta-
ble pseudoisotopies of I . By appealing to semisimplicial constructions,
&1{X) may be defined for any topological space X in fact &>*( ) is a
homotopy functor from the category of topological spaces and continuous
maps to the category of Ω-spectra and Ω-spectra maps (cf. [25]).

0.2. Homotopy theory with coefficients in a spectrum. We remind the
reader that Ω-spectra are the "coefficients" for generalized homology the-
ories. Let X denote a topological space, let S^ denote an Ω-spectrum,
and define for each integer j a space Mj(X, J^) to be the direct limit
space l i m i t ^ ^ Ω\X x ^i+j/X x si+j), where si+j is the base point for
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&i+j. The collection of spaces H J J T , ^ ) = {β.{X,&J : j e Z} is

an Ω-spectrum called the homology spectrum for X with coefficients in

S^ . The 7ΪA homology group for X with coefficients in ^ is denoted by

/ / ; ( * , ^ ) and is defined to be π ^ H J X , ^ ) ) .

There is a more complicated version of generalized homology theory

where the "spectrum" of coefficients is both stratified and twisted over X

(cf. [22], [25, Appendix], [14, §1]), which we will need in the formulation

of our main theorem. The following version is taken from F. Quinn's pa-

per [25]. Let p: Y —• X denote a simplicially stratified fiber bundle over

the space X (cf. Definition 1.1 for "simplicially stratified fiber bundle").

Let K denote the first barycentric subdivision for a triangulation of X

for which p: Y —> X satisfies 1.1 (a), (b). For each integer j define a

space Vjip) to be the quotient space (\JAeK^d

j(p~l(A)) x Δ)/ « , where

the equivalence relation « identifies <S
d.(p~l(Af)) x Δ' with its image in

& (p~ (Δ)) x Δ under the map induced by inclusion Af —» Δ for every pair

of simplices Δ', Δ e K which satisfy Δ ' c A . By taking the union of the

structure maps ^j(p~ι(A)) x Δ -* Ω^j+ι{p~ι(A)) x Δ we make the col-

lection Vt(p) = {Pj(p) : j G Z} into an ex-spectrum (cf. [24, Appendix]).

Note that, in order to assure the union of structure maps £P. (p ~1 (Δ)) x Δ —•

Ω^ΰ

+i(p~ι (Δ)) xΔ is well defined, we must know that they commute point-

wise with the inclusion induced maps ^j{p~X (Δ7)) x Δ; —• ^°Ap~l (Δ)) x Δ.

This can be arranged in various ways. For example if Y is a countable,

locally finite simplicial complex of finite dimension and each p~l{A) is

a finite subcomplex of Y (this is the only situation which will occur in

this paper), then we choose a PL embedding Y c Rn , we choose a PL

triangulation L for Rn which subdivides the given triangulation of Y,

and for any finite subcomplex C of Y we define ^ ( C ) to be all stable

pseudoisotopies in «^.(RΠ) whose support lies over C' - dC', where C'

denotes the union of all simplices in the second barycentric subdivision

of L which intersect with C . Note also that X may be identified with

the subspace (UΔ<ΞΛ:̂ Δ
 x Δ ) / ^ °f P/CP) > where /Δ is the identity stable

pseudoisotopy on p~l(A) x RJ . Thus we can define for each integer j a

space Uj(X, V+(p)) to be the direct limit space l i m i t ^ ^ Ω ^ P ^ (/?)/.¥).

The collection of spaces HJΛΓ, PJ/?)) = {Hy(ΛΓ, ?,(/?)) : € Z} is an
Ω-spectrum called the homology spectrum for X with coefficients in the

(stratified and twisted) ex-spectrum V+(p). The jth homology group for

X with coefficients in P+(/?) is denoted by Hj(X, P+(p)) and is defined to

be π -(M^X, P+ (/?))). In the event that /?: 7 -> X is a trivial fiber bundle
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over X having the compact manifold F for fiber we have the equalities
H , ( * , P » ) = Hm(X,0>m(F)) and # . ( * , P » ) = Hj(X, 0>m(F)) for
all values of j .

The inclusion maps p~ι(Δ) C Γ, Δ e K, induce maps ^j{p~ι(A)) -+

^ / ( Γ ) , Δ e AT, the union of which yields a map ψj: P ;(p) -> &>j(Y) for

all values of j . Define ^ . : Uj(X, P^p)) -> ̂ ;

c ( r ) to be the direct limit

as / —• oo of the composite maps

The collection of all such maps, which is denoted by A%: B.^(X, P#(p)) —•
^(Y) and is called the assembly map, is a map of Ω-spectra.

0.3. The structure of the set of closed geodesies in M. Let M denote a
closed Riemannian manifold with sectional curvature K < 0 everywhere.
Let SM and RPM denote respectively the unit sphere bundle and the
real projective bundle associated to the tangent space for M. There is a
geodesic flow g(: SM -> SM, t e R, on 5Άf, and there is a smooth
one-dimensional foliation ^ of i?PM whose leaves are covered by the
orbits of gt under the canonical 2-fold covering projection SM —• RPM.
Fix a Riemannian metric on RPM, and for any positive number s let
Es denote the union of all compact leaves of ^ which have length less
than or equal to s. Let ps: Es —• Gs denote the quotient map obtained
by collapsing each closed leaf of ^ (contained in Es) to a point. Finally
let p: E —• G denote the direct limit as s -> oo of the maps ps: Es —> G 5 .
Let f:E->M denote the direct limit as 5 —• oo of the composite maps

There are a couple of facts of which to take note. First we note that E
is the collection of all closed (unparametrized) geodesies in M : a typical
closed geodesic in M is the image of a fiber of p: E —• G under the map
f:E-*M. Thus G is the space which parametrizes the collection of all
closed geodesies in M. The second fact to note is that p: E -> G is a
simplicially stratified fiber bundle having circles for fibers. This is not an
obvious fact, but is an easy consequence of Theorem 2.4.

We can now state the main result of this paper.
0.4. Theorem. Let M be a compact Riemannian manifold having sec-

tional curvature K < 0 everywhere. Let p: E —• G and f.E^M be as
in §0.3. Then there is a weak equivalence of Ω-spectra

In fact we have that et = ^(f) o At, where A^ . M^G, PJ/?))
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is the assembly map o/§0.2, and ^(f): &>Ϊ(E) -> ̂ ( M ) is the image of
f under the functor &>*( ).

Remark. For the special case when K < 0 holds everywhere for M,
the authors have proven a fibered-orbifold version of Theorem 0.4 (cf.
[8]). There is also such a generalized version of Theorem 0.4 when K < 0
holds everywhere. The case of compact local symmetric space orbifolds
with K < 0 is discussed in [15].

Caveat. Theorem l(ii) of [8] is incorrect in the generality stated. It
is correct when the finite group action F x M —• M satisfies the fol-
lowing extra condition: Let ω be any closed geodesic of M, which is
left invariant by some element g e F, then g\ω is orientation preserv-
ing. Under the general assumption made in [8] there is always a map of
spectra X^zXN^ΰ(Sx pω ) -> N^(X; p) which induces an epimorphism
on homotopy groups. A more precise conclusion is obtainable from the
techniques of [15]. The remaining results in [8] are correct.

We can now state the corollaries of Theorem 0.4. The derivation of
these corollaries from Theorem 0.4 will be obvious to the experts, so we
only briefly indicate their proofs. The reader is referred to [14] for more
detailed proofs of the corollaries.

The first of our corollaries was pointed out to us by Dieter Puppe. In this
corollary we let / denote a countable collection of nonnegative integers
(not necessarily distinct integers), and for each j e J we let ^ .(S1)

denote the Ω-spectrum having for its kth space the space £Pk+j(Sx). We

also let 0 j e J ^ + j { S ι ) denote the direct limit as i -> oo of the finite

Cartesian product spaces YljeJ ^+j(Sx), where Jt denotes the first /

integers in / with respect to some fixed ordering of / .
0.5. Corollary. Suppose that M is a flat m-dimensional torus where

m > 1. Then there is a weak equivalence of Ω-spectra

Here J is a countable collection of integers which satisfy the following two
properties', if j e J then we must have 0 < j < m - 1; any integer j
which satisfies 0 < j < m - 1 must occur an infinite number of times in
J.

Proof of Corollary 0.5. In this case p: E -* G of §0.3 is just the disjoint

union of a countable number of copies of the standard projection Tm~ι x

Sι _> τm~~ι, where Tm~ι denotes the (m - 1)-dimensional torus. Thus

HΦ(G, P#(p)) = @Z\ lUTf"" 1 , ^ ( S 1 ) ) On the other hand it is well
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m~lknown that W^{Tm~l, S^) = YlkeK^+k holds for any Ω-spectrum ^ ,
where K is the finite collection of nonnegative integers which contains
rank(//Γ(Γm~1, Z)) many copies of any integer r satisfying 0 < r < ra-1,
and contains no other integers. Now Corollary 0.5 follows from Theorem
0.4 and the preceding facts. This completes the proof of Corollary 0.5.

0.6. Corollary. For M as in Theorem 0.4, we have that π^J^M)) = 0

ifj<0,and nj(^(M))®Z(l/N) = 0 ifj>0, where N = [(j + 4)/2]\.

Moreover πo(&m(M)) = Z™ .
Remark. A. Nicas has proven Corollary 0.6 when j > 0 and K = 0

holds everywhere (cf. [22]). The authors have proven Corollary 0.6 for all
values of j assuming that K < 0 holds everywhere (cf. [9; 12, Appendix]).

Proof of Corollary 0.6. It follows from results of Anderson and Hsiang
[1], Waldhausen [28], [29], and Nicas [22], that the equalities in the first
sentence of Corollary 0.6 are true if we replace M by the circle Sι. On
the other hand Quinn has shown that there is a spectral sequence with
E2

ij = #.(<?, π / P » ) ) which abuts to Hi+j(G, P » ) , where π / P » )

denotes the stratified system of groups {π λ&+{p~x {x))) : x € G} over

G (cf. [25, Theorem 8.7]). Finally note that each p~\x), x 6 G, is a
circle. This completes the verification of the equations in the first sentence
of Corollary 0.6.

Now we will verify that πo(^{M)) = Z™ . Note that 7ry(^(5 r1)) = 0
(for all j < 0) implies that Quinn's spectral sequence is a first quadrant
spectral sequence. From this we deduce:

0.6.1. πo(^(M)) = H0(G, π o ( P » ) ) .
Results of Waldhausen [29] and Igusa [21, Theorem 13.1] show that

πo{^(S1)) = Z™ . From this we deduce:

0.6.2. 7co(
p*(^))χ = Z2° o v e r e a c h P ° i n t x e G -

Now the desired calculation follows from 0.6.1, 0.6.2 and from the
properties of p: E -> G stated in Theorem 2.4.

This completes the proof of Corollary 0.6.
0.7. Corollary. For M as in Theorem 0.4 we have Wh(πj(M))

= 0, KQ(Z(π{(M))) = 0, K^Zin^M))) = 0 for all integers / < 0,

Wh y(π χ(M)) ®Z(1/N) = 0 for all integers ι > 2 , where N = [(/ + 2)/2]!,

and Wh2(π1(M)) = 0.
Remark. Farrell and Hsiang verified most of the equalities in Corollary

0.7 (all those with j < 1) in the special case where K = 0 holds every-
where (or more generally when M is any compact aspherical manifold
having a poly(finite or cyclic) fundamental group (cf. [6])). Nicas veri-
fied the higher Whitehead group equalities of 0.7 in the special case where
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K = 0 holds everywhere (cf. [23]), and F. Quinn has announced a proof
that the higher Whitehead groups vanish for any torsion free poly(finite
or cyclic) group (cf. [26]). The authors verified all the equalities of 0.7 in
the special case where K < 0 holds everywhere (cf. [7], [9]). Hu verified
most of the equalities of 0.7 (all those with j < 1) for a special class of
nonpositively curved manifolds (cf. [20]).

Proof of Corollary 0.7. Anderson and Hsiang [1] have shown that
π / ^ ( M ) ) equals Kj+2{Z{πγ{M))) if < - 3 , equals k^Z{πx{M))) if
j = -2, and equals Wh(πx(M)) if j = -I. Waldhausen [29] and Nicas
[23] have shown that πi_2(&>ΛM))®Z(l/N) = Vfhi{πι(M))®Z{l/N) for
/ > 2, where we must use that M is an aspherical manifold (cf. Lemma
2.1). Thus all of the equalities of 0.7, except the last, follow from 0.6 and
the preceding facts.

To verify the last equality in 0.7 it will suffice to improve our calcu-
lation of the higher Whitehead groups to W h . ^ A f ) ) <g> Z(l/iV') = 0,
where Nf = [(i + l)/2]!. Towards this end we let ΨX^( ) denote the
Ω-spectra valued functor which on the space X takes the value of the
algebraic Whitehead groups spectrum for the fundamental group πχ(X)
if X is path connected (cf. [28]). If X is not path connected we let
WX+(X) denote the direct limit of the finite product spaces Y[jej ^ΛXj)
taken over all finite collections {X : j £ J} of distinct path compo-
nents of X. Thus n^WX^M)) = Wh^π^M)) for all i > 0. There is
the homology theory H^(G, WΈ.^{p)) for G with coefficients in the ex-
spectrum WM^(p) defined as in 0.2, and there is a spectral sequence with
E2

kj = Hk(G, πj(Wπ^(p))) which abuts to Hk+.(G9 WUJj?)). Note that
since each fiber of p: E —• G is a circle, the stratified system of groups
πjiWU^p)) is identically zero, and thus H^(G, WΆ^ip)) = 0. On the
other hand there is for each integer / a commutative diagram

Ht_2{G,

where V4JJ): WXm{E) -+ WXJ.M) is induced by the map / : E -+ M,
At: H,(G, »Ή,(p)) -• ΨX,{E) is an assembly map defined as in 0.2,
and ψx, ψ2 are the maps induced by the usual "forgetful map" 9s

t{ ) ->
^ _ 2 ( ) between functors (cf. [17], [29]). According to [23, 2.4] the
map ψ2 is onto modulo N'-torsion, and by Theorem 0.4 the map
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πi_2(^(f)oAJ is an isomorphism. It follows that Wh/(π1(M))(δ)Z(l/7V/)

= 0, as desired.
This completes the proof of Corollary 0.7.
Since Wh^π^M)) is defined in terms of K^n^M))) (cf. [28]),

Corollary 0.7 implies the following calculation for K^Zfa^M))).
0.8. Corollary. For M as in Theorem 0.4 and all integer values of n

we have that

Kn(Z(π{(M)))®Q = Hn(M9 Q) Θ \ψHn-i-4i(M> Q) 1

Remark. The authors have obtained Corollary 0.8 in the special case
where M is a locally symmetric compact manifold by somewhat different
arguments in [10].

Outline of the proof of Theorem 0.4. Our first step is to replace the
assembly map A%\ Έί^(G, ¥^(p)) -* 3°l(E) by a more geometric map
Λ : ^*(P) ~^ ̂ (E) (cf. 1.3 and 1.4). Quinn has shown that there is
a homotopy commutative diagram

K \ / K

where the map Ψ^ is a weak equivalence of Ω-spectra (cf. [25, Appendix]).
Thus to complete the proof of Theorem 0.4 it will suffice to show that
3°l(f) ° Λ '• &1(P) -+ &SM) is a weak equivalence of Ω-spectra.

In §3 we show that ^{f) o J^ induces a surjection on the homotopy
groups of the Ω-spectra. We remark that this is enough to prove all the
corollaries 0.6-0.8 discussed above. §§1 and 2 contain all the topological
and geometric preliminaries that are needed to carry out the arguments in
§3. Our proof that ^(f) o J^ is surjective on homotopy groups of the Ω-
spectra is similar in spirit to the argument used in [9] to show that ^{f) °
Jo is surjective if K < 0 holds everywhere. We set N = MxR (equipped
with the product metric) and let S+N c SN denote the subbundle of all
vectors v in the unit sphere bundle of N which satisfy (υ, u)N > 0,
where u: N -> SN is the unit length vector field pointing in the direction
of the (increasing) R-factor of N. Let ^ : ^ ( M ) -> ^(S+N) denote
the composite of the map ^(Af) —> ̂ {N), induced by the inclusion
M x [0, 1] c N, with the "special transfer" map &>f(N) -> ̂ (S+N) (cf.
§§3.9 and 3.10 for the "special transfer" map). Now apply the geodesic
flow on S+N to gain foliated control of Image(/J, and next apply a
foliated control theorem (for foliations having one-dimensional leaves, cf.
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Theorem 1.5.3) to isolate the support of Image(ίJ over compact subsets
of small tubular neighborhoods for a finite number of components of the
space of all closed geodesic orbits for the geodesic flow on S+N. The
result of these constructions may be viewed as a deformation retraction of
^ ( A f ) onto I m a g e d ( / ) o / J . We note that the "special transfer" map
used in this paper, which boils down to the method for lifting paths from
N to S+N discussed in §3.3, differs from the "asymptotic transfer" map
used in [9].

In §6 we show that ^(f) o J^ induces an injection on the homotopy

groups of the Ω-spectra. §§4 and 5 contain further topological and geo-

metric results which are needed to carry out the arguments of §6. To

verify that ^(f) o J^ is injective on homotopy groups we construct maps

r[: ^ ( M ) -»<^{pf) for each component E. of E, and verify that the

composite r\ o^{f.) o J^ is null homotopic if i Φ j and is a weak equiv-

alence of Ω-spectra if / = j , where f. — f\ E. and J^ = J \ 3°^{p\Ej)

(cf. Claim 6.2). The reader will find that this is just a parametrized version

of the argument used in [9] to prove that ^(f) o Jo is injective on the

homotopy groups of the Ω-spectra.

This completes our outline of the proof for Theorem 0.4.

1. Spaces of pseudoisotopies

In this section we review two topological control theorems for spaces of
stable pseudoisotopies. The first of these is a fibered control theorem (cf.
§1.4) which was proven by F. Quinn [25]. The second is a foliated control
theorem for foliations with one-dimensional leaves (cf. §1.5) which was
proven by the authors [11].

Let E denote a Riemannian manifold (possibly with boundary), and let
dE( , ) denote the metric for E associated with its Riemannian structure.
Let p: E —> B be a continuous map to the space B , and let dB( , ) denote
a given metric on B . We assume that p: E —• B is a simplicially stratified
fiber bundle map in the sense of the following definition.

1.1. Definition. The mapping p: E —> B is a simplicially stratified fiber

bundle map if there is a triangulation K for B such that the following
hold.

(a) For each simplex Δ e K we have that p: p~ι (Δ - dA) —• Δ - <9Δ is
a fiber bundle, and p~l{Δ) is a finite polyhedron.

(b) For each Ae K there is a neighborhood U for dA in Δ, and there
are deformation retractions rt: U -• U, t e [0, 1], and st: p~ι(U) -+
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p~\U), t e [0, 1], of U and p~\U) onto dA and p~l(dA), such that
p(st(x)) = rt(p(x)) holds for all x e p~\U) and all t e [0, 1].

1.2. The spaces ^{E), &>(p), &>C(E), 3»\p). The s/?ace of pseu-
doisotopies of £ , denoted by P(E), consists of all homeomorphisms
h:Ex[0, 1] -• Ex[0, 1] which are the identity on Ex0. Note that if 7fc

denotes the λ>fold Cartesian product of [0, 1] with itself, then there is an
"inclusion" map P(E x Ik) -> P{E x Ik+X) obtained by forming the Carte-

k k

sian product of each pseudoisotopy h: E x I x [0, 1] -> is x / x [ 0 , l ]
with the identity map / —• / . Define &(E) to be the direct limit space
l i m i t ^ ^ P(E x Ik). The space ^(E) is called the space of stable pseu-
doisotopies of E.

A path g: [0, 1 ] —> E is ε-controlled over B, for some number ε > 0, if
diameter(Image(/?og)) < e holds in (B. dB( , )). A stable pseudoisotopy
h e &(E) is ε-controlled over B, for some number ε > 0, if for every
y e E x I the composite function

[0, l ] = y x [ 0 , l ] c £ x / * x [ 0 , l ] - ^ £ x / x [ 0 , l ] - ^ £

is ε-controlled over ^ . Let &*(p\ ε) denote the subspace of all h e
^(E) which are ε-controlled over B, and define &{p) to be the space
of all mappings g: [0, c») -+&(E) such that g(t) is (1 +/)" 1 -controlled
over B for all / > 0. The space &(p) is called the space of stable
pseudoisotopies of E controlled over B.

We define &>C(E) to be the direct limit of the spaces {^(C)} , where
C is any compact codimension zero submanifold of E, and we define
^c(p) to be the direct limit of the spaces {3°{pc)}, where C is any
finite subcomplex of the triangulation K of B (cf. Definition 1.1) and
PC=P\P~\C).

1.3. The Ω-spectra ^(E), &>^(p), ^(E), ^(p). For any number

a > 0 and any integer i > 0, let ^(E; a) denote the subspace of all

stable pseudoisotopies in ^{E x R') which are α-controlled over R* with

respect to the projection E x Rz -> R* and the Euclidean metric on R'.

Define ^(E) to be the direct limit space limi^^^E; a).

Let pl: Ei -* 5 denote the composite map E x R* - ^ ^ E -^ B.

Let C^(/J; α) denote the subspace of all functions g e ^{pι) such that
g{t) e ^{E α) holds for all t > 0. Define &>.(p) to be the direct limit
space l i m i t α ^ ^ ( / ? ; α ) .

The following lemma is due to A. Hatcher [17] and F. Quinn [25].
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1.3.1. Lemma. For each integer i> 1 there are homotopy equivalences
of spaces Ω9>.{E) ** &>._χ(E) and Ω5*(p) ^^.__χ(p).

For any integer / < 0 we define ^(E), &>.(p) to be the (-ι)-fold loop
spaces Ω " f > 0 ( £ ) , Ω~\^ 0(p). Note that it follows from Lemma 1.3.1 that
the collection of spaces ^(E) = {^(E) : i e Z} and ^ ( p )
/ € Z} are Ω-spectra.

We define ^(E) to be the direct limit of the Ω-spectra ^
where C is any compact codimension zero submanifold of E, and we
define ^(p) to be the direct limit of the Ω-spectra { ^ ( p c ) } , where C
is any finite subcomplex of the triangulation K for B and where p c =

P\P~\C).
Remark. Hatcher proved that Ω(&.(E)) = ^ _ 1 ( £ ' ) if E is compact

(cf. [17, Appendix II]), but his proof works without the compactness as-
sumption. Likewise Quinn proved an analogue of Ω(^.(p)) =«^_ 1 (p) for
spaces of stable embeddings (cf. [25, Theorem 5.9]), but his proof (being
local in nature) also works for spaces of stable pseudoisotopies.

1.4. The fibered control theorem. Let J^: ^ ( p ) -> 3°J^E) denote the
map of Ω-spectra defined by /„(/) = /(0) for all functions / : [0, oo) —>
^(E) in ^ ( p ) . The following theorem is due to F. Quinn [25, Theorem
5.6].

1.4.1. Theorem. Suppose that E is compact. Then there is a number
ε > 0 and a map K^\ &%{p\ β) -+ ^ , (p) o/ ίl-spectra such that J^ o
^ = inclusion.

1.5. The foliated control theorem. Let p':Ef—>E denote a fiber bun-
dle over E having a manifold for fiber, and let & denote a smooth
foliation for the pair (E, dE) that is, the local charts for & are all
smooth, and if a leaf L of & intersects dE then L cdE. We assume
that & satisfies the following properties.

1.5.1. (a) & is one-dimensional.
(b) ^ is of compact type (cf. Definition 1.5.2).

1.5.2. Definition. We say that E (or (E, dE( , )) is of compact type

if there is a collection {φ.: E -+ E) of isometries of the universal cover

E of E (where E is equipped with the Riemannian structure pulled back

from E) and a compact subset C c E such that U/0/( c ) = ^ I f i n

addition each φ.\ E -• £ permutes the leaves of ^ , where & is the

foliation of E which covers ^ , then we say that the pair (E, &) is of

compact type.
We say that a path g: [0, I] ^ Ef is (a, δ)-controlled over (E9&~),

for some numbers a, δ > 0, if there is another map / : [0, 1] -> S into a
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leaf S of & such that Image(/) has diameter less than or equal to a in

S, and such that dE{f(t), p o g(ή) < δ holds for all t e [0, 1]. We say

that a stablepseudoisotopy h e «^(2?') is (a, δ)-controlled over (E, <F)

if the following is true. For each y e Ef xRι x Ik the composite map

[0, l ] = y x [ 0 , l ] c £ / x R I ' x / * x [ 0 , l J - i f ' x R ' x / x I O , I]J?ΞL>E'

must be (α, δ)-controlled over (E, &).
For any numbers a, δ > 0 we let ^{p , ̂  α, δ) denote the subspace

of all h e ^{E1) which are (α, ^-controlled over (E, &"). For any
subset U c E and any numbers α, δ > 0 we let C/α' denote the subset
of all z e E for which there is a point x e U, a point y e E with
rf£(jc, y) < 5, and a smooth path / : [0, 1] —• S of length less than or
equal to α in a leaf S of ^ such that / starts at y and ends at z . The
next theorem is due to the authors [11, Theorem 1.11].

1.5.3. Theorem. Let (E, &) be as in 1.5.1, and suppose that the fiber
of p : E1 -+ E is a closed ball. There is a number η > 1 which depends
only on dim(E). Given a, ε > 0 there is a number δ e [0, ε], where δ
is independent of p but does depend on the geometry of the pair (E, &).
Given any subsets U, V c E such that U satisfies (a) below, there is
a homotopy rt: &>.(p', & a, δ) -> &>.(p', <F ηa, ε) , ί e [ 0 , l ] , wAicΛ
satisfies (b) α/iί/ (c).

(a) // x € jji**'6 f ancj L^ [s fa leaf of SF which contains x, then we
have that length (Lχ) > ηa.

(b) rQ is the inclusion ^.{p1 ,<$r;a,δ)c SP^p ,^\r\a,ε)\ for each

h e ^{p 9^\a9δ) we have that rχ (h) is the identity map on p'~ι(U) x

R* xlk x [0, 1].

(c) Suppose that h e^ip 9&' α, δ) is the identity map on p'~\vηa'ε)

xRlxIkx[0, I], then rt(h) is the identity map on p'~ι(V)xRixlk x[0, 1]
for all te[0, 1].

Remark. The authors have proven 1.5.3 in [11] under the assumption
that all relevant pseudoisotopies have compact support in the factor E.
However the same proof (being local in nature) works when the compact-
ness assumption is dropped.

2. Geometric preliminaries

In this section M will denote a complete Riemannian manifold having
sectional curvature K < 0 everywhere. We let dM{ , ) denote the metric
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on M associated to the Riemannian structure. In this section we state
various geometric results concerning M which are needed in the rest of
the paper. Most of these results are known to the experts (cf. [3], [5]).

A fundamental property of dM( , ) is that for any pair of geodesies
f(s), g(t) in M the composite function dM(f(s), g(ή) is a convex func-
tion in the two real variables s, t. It is a simple exercise to use this con-
vexity property to prove the following three lemmas (cf. [3]).

2.0. Lemma. Suppose that M is simply connected. Then for any y e
M the exponential map expy: TMy —• M is a diffeomorphism.

2.1. Lemma. Suppose that M is simply connected and that f(s), g(t)
are two geodesies in M with /(0) = g(0). Then, for any numbers a >
b > 0, the following are satisfied.

(a) dM(f(b), g(b)) < ba~ιdM(f(a), g(a)).
(b) Suppose that (M,dM( , )) is of compact type (cf 1.5.2), and

let dSM( , ) denote a Riemannian metric on the unit sphere bundle
SM such that (SM, dSM( , )) is also of compact type. Suppose also
that f(s),g(t) have unit speed. Set x = dM(f(a),g(a)) and y =
dSM(df/ds(b), dg/dt(b)). Then if a>b + l we will have that l imit^^y
= 0 holds uniformly in f,g,a,b.

2.2. Lemma. Suppose that M is simply connected. Then for any y e
M and any number r > 0 the ball B(y, r) of radius r centered at y in
M is a convex subset of M (cf. §2.3).

Before formulating the main result of this section it will be useful to
collect some well-known facts about convex and locally convex subsets of
M (cf. [3], [4]).

2.3. Convex and locally convex subsets of M. A subset B c M is said
to be convex if for any two points x, y e B there is (up to reparametriza-
tion) a unique shortest geodesic segment in M connecting x to y and
this geodesic segment is contained in B . We say that B is locally convex
subset of M if every p e B has a neighborhood U in B such that U is
a convex subset of M. For any locally convex subset B c M we denote
by dB the subset of all x e B for which there is a geodesic g: R —> M
with g(0) = x, g(ε) £ B, g(-ε) e B for all sufficiently small ε > 0.
Note that B -dB is always a smooth submanifold of M and if B c M
is a closed subset (as well as locally convex) then the pair (B, dB) is a
topological submanifold pair of M (although, in general, not a smooth
submanifold pair of M). Since B -dB is a smooth submanifold of M,
the tangent bundle T(B - dB) is a subbundle of TM \ (B - dB). The
closure of T(B -dB) in TM \ B is also a subbundle of TM \ B (which
we denote by TB ) and satisfies TB\(B- dB) = T(B - dB). We let SB
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denote the unit sphere bundle for TB. A cross section V: U —• SB on
the open subset U c B is said to be smooth if V \ (U - dB) is smooth,
and for every x e dB there is an ε > 0 and a smooth extension of
V I (UΓ\exp{TBχ>β)) to Kχ: e x p ί Γ ^ ) -+ S M , where exp: TMχχ>β)) to Kχ: e x p ί Γ ^ ) + S M , where exp: TMχ > M
is the exponential map at x , and TBχ ε is the ball of radius ε centered
at the origin of TBY . Any continuous cross section V: B —• SB can be
approximated by a smooth cross section V : B ^ SB, provided that B
is a closed subset of M (as well as locally convex).

Let SM denote the unit sphere bundle for M. There is a two-fold
covering map SM —• RPM onto the real projective bundle for M let
& denote the one-dimensional foliation of RPM which is covered by the
orbits of the geodesic flow on SM. Define a subset E c RPM to be the
union of all compact leaves of &, and let F denote the restriction of &
to E. Let Fχ, F2, . . . denote the distinct equivalence classes of leaves of
F, where the equivalence ~ is defined as follows: for two closed leaves
L, Lf in i 7 we have that L ~ Lr if and only if there are immersions
g: Sι —• L and g : Sι ^ L' such that the composite maps

Sl-^LcRPM-^M and Sl -^Lf c RPM-^ M

are homotopic. Let E{, E2, ... denote the union of leaves in i^ , F 2 , . . . .
There are quotient mappings p: E -> G and /? : £• —• G( obtained by
collapsing each leaf of F and F. to a point. The rest of this section will
be spent proving the following theorem.

2.4, Theorem. Suppose that M is compact. Then each E{ is a path
component of E the set {E^ is countable and nonempty. Moreover, given
any pi: Ei -> Gi there are smooth connected compact manifolds A, B, and
a smooth fiber bundle projection q: A —• B having a circle for fiber. There
are also smooth actions GxA->A and GxB -> B, by the finite group G
which commute with the projection q: A —• B\ the action G x A —• A is
freey but the action GxB —• B need not be free. The mapping p{: Ei —• Gt

is topologically conjugate to q/G: A/G —• B/G, where q/G is the quotient
of q under the G-actions.

Before beginning the proof of Theorem 2.4 we must introduce some
terminology and notation, and state some lemmas, in the following sub-
sections.

2.5. Flat bands. Aflat band in M is any mapping / : Sι x [0, 1] —•
M (or / : R x [0, 1] —• M) such that for some numbers a, b > 0 the
composite map
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J xJ f

(or the composite map R x [0, b] ——*•+ R x [0, 1 ] -*-+ M) is a locally iso-

metric immersion. (Thus these immersed surfaces satisfy locally a "totally

geodesic subspace" condition.) Here S^ is the circle of radius a centered

at the origin in R2 , Ia is multiplication by a~ι in R2 , and Ja, Jb are

multiplication in R by a~ι, b~ι.

2.5.1. Lemma. Let f: Sι x [0, 1] -> M be a map such that f: Sι x 0 ->
M and / : S 1 x 1 —• M are both geodesies. Then, either / : Sι x 0 —>
M and f:Sιxl-+M are equal up to reparametrization, or there is
a homotopy ft: Sι x [0, 1] -> M, t e [0, 1], of f which satisfies the
following properties.

(a) ft I Sι x 0 = f0 I Sι x 0 /or all t e [0, 1].

(b) /, IS 1 x 1 = (fo\Sι x l)ort forall te[O, 1], wftere r^i^ 1 x 1 - .

5 1 x 1 w α rotation.
(c) / j : S 1 x [0, 1] -• M w αy/αί Z?α«rf.
Proof of Lemma 2.5.1. We begin by paraphrasing a result of Eberlein

and O'Neill [5, Proposition 5.1]. Let N denote any complete simply con-
nected Riemannian manifold which has sectional curvature K < 0 every-
where. Two geodesies g0: R —• iV, g{: R -> TV are said to be of bounded
distance apart if there is a number a > 0 such that dN(g0(t), #i(0) < α

holds for all ί G R.
2.5.1.1. Claim (Eberlein, O'Neill). If the geodesies gQ9 gx:R->N are

of bounded distance apart then either we have Image(g0) = Image(g1), or
there is a mapping G: R x [0, 1] —> N which has the following properties.

(a) G: R x [0, 1] -> N is an embedded flat band.
(b) G \Rx0 = g0 and G | R x l = gχ o Tc, where Tc: R -» R is

translation by some real number c.
Now we can complete the proof of 2.5.1. Let g e πχ(M, / ( 1 , 0))

denote the fundamental group element represented by f \ Sι x 0, and let
g: M —• M also denote the corresponding deck transformation for the
universal covering space M. Choose a covering map / : R x [0, 1] —> M
for / such that the following holds.

2.5.1.2. f(x+l,t) = gof(χ, t) forall x e R and all t e [0, 1]. _
It follows from 2.5.1.2 that / | R x 0 and / | R x 1 are geodesies in M

which are a bounded distance apart. Thus we may apply 2.5.1.1 (here we
are considering the case where / : Sx x 0 - > M and / : Sl x 1 -> M are
not equal up to reparametrization) to get a mapping F : R x [ 0 , 1] —> M
which has the following properties.
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2.5.1.3. F is an embedded flat band i n M ; F | R x O = / | R x O ; F |

R x l = ( / | R x l ) o Γ c .
Note that it follows from 2.5.1.2 that F also has the following property.
2.5.1.4. F(x +l,t) = go F(x, t) for all^x e R and all t e [0, 1].

Now define a homotopy ft: R x [0, 1] -> M, t e [0, 1], of / by the
following.

2.5.1.5. ft(x,s) = r(x,s,t), where r(x, s, ή , t e [0, 1], is the

geodesic segment in M which starts at f(x, s) and ends at F(x, s).

Note that it follows from 2.5.1.2-2.5.1.5 that the homotopy /,: R x

[0, 1] -+ M, t e [0, 1], covers a homotopy ft: S
ι x [0, 1] -> M which

satisfies 2.5.1 (a), (b), (c).
This completes the proof of Lemma 2.5.1.
2.6. The foliations T., F, . and the sets Έt .. Recall that two unit

speed geodesies / , g: R —• M are called asymptotic if d^(f(t), g(ή)

remains bounded as t —• oo. A vector field ^ F : Af -> SM is called an

asymptotic vector field if for every x, y e M the vectors V(x), V(y)

are tangent to asymptotic geodesies. Given x e M and any v e SMχ

there is a unique asymptotic vector field V: M —• SM with K(#) = v

moreover, F is a C 1 vector field on Λf and it and its derivative^are

continuous in our choice of υ (cf. [2], [18]). There is a foliation J / of

SM whose leaves are just the subsets Image(F) c SM for any asymptotic

vector field V: M -> SΛ/\ The action of π{(M) on 5 M (by the deck

transformations for the covering SM —• SM) just permutes the leaves of

j / , so the quotient of J / by the action of nχ(M) is a foliation of SM

denoted by si . We call sf , sf the asymptotic foliations of SΆf, SΆf.

Let F t denote the foliation in SM which covers Ft under the two-fold

covering projection SM -> RPM. Let F( l9 Ft 2, F 3, ... denote the

equivalence classes for the equivalence relation ~ defined on F t as fol-

lows: L ~ L1 for two leaves L, Lf e F t if there are orientation preserving

immersions g: Sι -• L, g': Sx —• L ; (the leaves of F / are oriented in

the direction of the geodesic flow on SM) such that the composite maps

S1-1+LCSMAM and Sl ^L'eSM-^M

are homotopic to one another. Let Et . denote the union of all the leaves

2.6.1. Lemma. Each of the sets E( . is contained in a leaf Lt . of the

asymptotic foliation si . Moreover, the map Ei . —• E. (which is induced
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by the projection SM —• RPM) is either a two-fold covering map or a
homeomorphism. Thus there are at most two distinct sets in the collection
{Έu:j=l,2,...}.

Proof of Lemma 2.6.1. First we note that for any flat band / : Sι x

[0, 1]-+M,i f ff:Slx[0, l]^SM is defined at each (x,t)eSlx[0, 1]

to be the unit tangent direction of / | Sι x t at (x, t) ,then Image(//)

will be contained in some leaf of the asymptotic foliation si .

For any vectors vQ, vχ e Ei . choose a map g: Sι x [0, 1] —• M which

has the following property.

2.6.1.1. g I Sι x 0 and g \ Sι x 1 are both geodesies in M which

have unit tangent directions υ0 and v{ at (1,0) and (1,1) respectively.

Now apply Lemma 2.5.1 to g of 2.6.1.1 to get a homotopy gt: Sι x
[0, 1] —• M, t e [0, 1], of g which satisfies the following.

2.6.1.2. gχ I Sι x 0, g{ I 5 1 x 1 are both geodesies in M which

have unit tangent directions υ0, v{ at (1,0) , (x, 1) for some x e Sι

#!: Sι x [0, 1] -> M is a flat band in M .

It now follows from 2.6.1.2, and from the remark made at the beginning
of this proof, that υ0, v{ lie in the same leaf of si . Hence Έ( is
contained in a leaf L{ . of si .

To verify that i?; —̂  Ei is a covering projection, first note that it is a

surjective map. Next let γ: SM -> SM be the nontrivial deck transforma-

tion for the covering SM —• RPM, and note that either y ^ . .) = Έi •

or y(£Γ

/ .) Π £ . j. = 0 . Finally we note that each E. . is a closed subset

of SΆf (cf. Lemma 2.7.3).
This completes the proof of Lemma 2.6.1.
2.7. The foliation F., the space E., and the action Γ. x £ f. —• E(. Note

that the composite map Lt χ c SM p r o j > M is a covering projection for

each leaf Lz j as in 2.6.1. We give to L. { the geometry that is pulled back

from M under the projection map L{ χ -> M. Note that the universal

covering space projection M —• M factors as M —• Li χ -• M . Let F.

denote the one-dimensional foliation (of a region in M ) which covers F'. {

under the covering projection M —> Lz j . Let i^ j , i7. 2 , F. 3, . . . denote

the equivalence classes of leaves of F. for the equivalence « defined as

follows: L « Z ; for two leaves L,Lfe Ft if there are leaves L, Lf e

ψ. j , orientation preserving immersions / : 5 -+ L, g: S -> L ; , a

homotopy /,: 5 1 -• L^ j , ί 6 [0, 1], from / t o g, and a lifting of /,,
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t e [0, 1], to a homotopy ft: R^M, t e [0, 1], such that Image(/0) =

L and Image(/1) = ϊ! . Let E( denote the union of all the leaves in Fi χ,

and let us use the shorter notation F. for Ft χ. Let Γ. c πι(Li χ) denote

the subgroup of nχ{Li x) consisting of all deck transformations on M

which leave E invariant.

2.7.1. Lemma, (a) Et is a convex subset of M.

(b) E. is isometric to the product D. x R, where D. is also a convex

subset of M. Moreover, the foliation Ft of Et is identified with the foliation

of Di x R by the lines {y x R : y e D J under the isometry.

(c) The action ψ.: Γf. x Et —• E. by deck transformations preserves the
product structure Et = Zλ x R. That is, for each a e Γ there are isometries
Qp Dt -• D. and a2: R -> R .ywcΛ ίAαί ^.(α, (JC, 0) = («iW» ^ W )
holds for all {x,t)eDixR.

(d) 77ze map £ f. -• ϊf z j , wA/cA w induced by SM —• »SM, is a covering

projection which has Γi as its group of deck transformations.

Proof of Lemma 2.7.1. To complete the proof of 2.7.1(a)-(c) it will

suffice to show (because the action Γj x M —> M permutes the leaves

of F.) that there is a continuous function r: M —> R, and for any two

leaves LQ, Lχ e F( there is a mapping h: R x [0, 1] —• M, which has the

following properties.

2.7.1.1. (a) h is an embedded flat band; Image(A | R x 0) = Lo and

Image(/z | R x 1) = L{ Image(A) c Et.
(b) roh(s,t) = roh(s,0) for all ί € [ 0 , 1]; (ΓOA(J, 0)-roh(s 9 0)) =

length(A([5;, s] x 0)) holds for all sf ,s eR satisfying s < s.
Towards this end we choose (using the definition of T( l9 Fi9 Et) 2L

mapping / : Sι x [0, 1] -> Li χ which has the following properties.

2.7.1.2. f \ S x 0, / I S x l are orientation preserving immersions
onto the leaves Lo, L{ of Fi { which are covered by the leaves Lo, Lχ\

there is a lifting of / to / : R x [0, 1] -• M such that Image(/ | R x 0) =
£ 0 and Image(/ | R x 1) = Lχ.

There will be no loss of generality in 2.7.1.2 if we assume that each of
/ I S 1 x 0, / I S 1 x 1 have constant speed and are thus geodesies in L( χ.

So we can apply Lemma 2.5.1 to / to obtain a homotopy ft: Sι x [0, 1] —•
Lt χ, / e [0, 1], of / which satisfies the following.

2.7.1.3. ft\S x 0, ft I S x 1 are immersions of constant speed onto

the leaves L o , Lχ e TiX for all * e [0, 1]; fχ: Sι x [0, 1] -• L,.^ is a

flat band.
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Now choose h: R x [0, 1] -+ M to be the correct lifting of / j : Sι x
[0, 1] -+ L. j . We leave as an exercise the verification that this h satisfies
2.7.1.l(a). ' _

Note that each leaf L e Ft is a directed geodesic in M, which ends at a
point u(L) on the sphere at infinity (the direction of L corresponds to the
direction of the geodesic flow on S(M)). It follows from 2.7.1.1 (a) that
u(L0) = u(Lχ) for any two leaves LQ, Lχ e Ft, i.e., Lo, Lχ are asymptotic
geodesies when parametrized by arc length. Thus if r: M —• R is defined
to be one of the "horofunctions" associated to the point at infinity u(L)
for any L e Fi9 then r and h will satisfy 2.7.1.1(b) (cf. [3, Lecture I,
§3]).

To verify 2.7.1 (d) we first note that for any g e π{ (L. χ) we have either

g(E.) = E{ or g(E.) Γ)Ei = 0 . Next we wrote that if g(E.) Π E. = 0 ,

then the distance from g(E ) to E in M is greater than ε , where ε > 0

is independent of g (cf. Lemma 2.7.3). Finally note that the composite

map \Jgeπ ( L ) g{Ej) c M -> Lt j D ^ j is a covering space projection.

This completes the proof of Lemma 2.7.1.

2.7.2. Lemma. Let Γ. x (D. x R) -> D. x R te α^ /Λ Lemma 2.7.1.
Suppose that for g e Γ. αwrf y e Zλ we Λαve g(y x R) = y x R. Then
there is an integer n > 0 swcA ίλαί gn(z xR) = z xR for all z e Dr

Proof of Lemma 2.7.2. By Lemma 2.7.1 the isometry g: D( x R ->
/),. x R is a product of two isometries g t : D^ -> D/ and g2: R -• R. For
each positive integer m set Um = {y e Di: g™(y) = y} . To complete the
proof of 2.7.2 we must show that Um = Zλ for some m .

Note that each Um is a closed convex subset of D. satisfying d Um c
9/)̂ . (cf. §2.3). If for some m we have dim(Um) = dim(Zλ), then Um

must contain an open subset of D(. But since Dt is convex it follows that

If dim(i7m) < dim(Z)/), then choose j ; e (t/^ - 9ί7w) and z €

(Z). -Um). Note that y x R , z x R cover leaves of 7. { which can be pa-

rametrized by orientation preserving immersions of constant speed f : S

—• L j and fz: Sι —> Lt: { . If z is chosen sufficiently close to y, then

there will be a homotopy A: Sι x [0, 1] -» L( { from / z to fyos, for

some covering map s: Sι —• 5 1 of constant speed /c > 0. It follows that
z G L^m. Now, applying the argument of the preceding paragraph, we
see that if dim(i7m) = dim(ί7^w), then we must have Um = Ukm . Now
proceed by induction.
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This completes the proof of Lemma 2.7.2.
2.7.3. Lemma, (a) Each Έχ . is a closed subset of SM.

(b) If g{Ei)r\Ei = 0 for g eπι(Li {), then there is ε > 0 independent

of g such that the distance in M from g(E.) to Eχ is greater than ε.
Proof of Lemma 2.7.3. We will prove part (a) by appealing to 2.7.2.

The proof of part (b), which uses 2.7.2 in a manner similar to the proof
of part (a), is left as an exercise.

Note that it follows from 2.7.2, 2.7.1(a)-(c), and the fact that the com-
posite map Ei c M —• Lχ { D Eχ. χ is surjective (we cannot at this point
use 2.7. l(d) because 2.7.3 is used in the proof of 2.7. l(d)), that there is
an upper bound bχ. χ > 0 to the lengths of leaves in Fχ { . Let {xk} be a
sequence of points in Έχ χ which converge to x e SM, and let {Xk} de-
note the leaves of F χ χ that contain the points {xk} . From the existence
of the upper bound bt x it follows that the {Xk} converge to a closed
orbit X of the geodesic flow on SM. Note that for sufficiently large k
there will exist oriented immersions f:Sι->Xk and g: Sι —• X which
are homotopic in SM. Thus from the definition of F'. { and E( { we
have X e F t { and x e Eχ, χ. A similar argument shows that Et . is a
closed subset of SM for each j > 2.

This completes the proof of Lemma 2.7.3.
Proof of Theorem 2.4. We begin by verifying that Et has the following

properties.
2.8. (a) E{ is a compact connected submanifold of RPM Eχ — dEχ.

is a C°°-submanifold of RPM.
(b) 7i{(Eχ.) is a finitely presented group.
(c) The set {E^ is countable and nonempty.
Clearly 2.8(b) is a consequence of 2.8(a), and (2.8(a) follows from 2.3,

2.6.1, 2.7.1, and 2.7.3(a).
Towards verifying 2.8(c) we let, for each a > 0, {E e / J denote all

the Eχ such that each leaf of F. has length less than or equal to a. Note
that for any E. there is a > 0 such that i e Ia (for by the proof of
2.7.3(a) there is an upper bound to the lengths of the leaves in Fχ {, and
Fχ j is by 2.6.1 a one- or two-fold covering of Ft). Thus to show that there
are at most countably many of the {ifj it will suffice to show that each
Ia is a finite set. If Ia is not finite, then there is a sequence iχ, i2, . . . of
distinct elements in / and a sequence of leaves L , L, , . . . of foliations

a ι{ ι2

Fχ , F. , . . . such that the {L. } converge to a leaf Lk of some foliation

Fk . Arguing as in the proof of 2.7.3 we can see that Fk = F. for any
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sufficiently large j , contradicting the assumption that iφ i., if j Φ f .
To complete the verification of 2.8(c) we note that any closed Rieman-

nian manifold with nonpositive curvature has a closed geodesic (cf. [3]).
Thus there is at least one E{, the one containing the closed unoriented
geodesic.

It follows from 2.6.1, 2.7.1 that there are only the following possibilities.
2.9. (a) Ei is the universal covering space for E., nx(E.) = Γ., and

Ei=Hτi; o r

(b) E. is the universal covering space for E., E. χ= EJT., and there

is a short exact sequence Γ -^-> Γ - ^ Z 2 (let Γ̂  denote the group

πλ(E.)). Moreover there is a e nx(E.) such that ψ(ά) generates Z 2

this a considered as a deck transformation a: Et —> Et is a product of

two isometries ax: Dt —> Zλ and a2: R —> R (recall that Ei = D{ x R by

2.7.1), where a2: R —• R reverses orientation.

Note that in either case 2.9(a) or case 2.9(b) we have that for each
β G Γ. deck transformation β: E. -»• Et is a product of two isome-
tries βχ:D. -> D,. and j32: R ̂  R (cf. 2.7.1(c) and 2.9(b)). If β e Tt

then β2: R —• R preserves the orientation of R, because the deck trans-
formation β: SM -> 5Λf preserves the direction of the geodesic flow
on SM. We define Ti χ, Γ.̂  2 , Γ/. 2 , Γ/ 2 to be the following groups:

{βχ : jβ G Ti)Λβ2 - β € Γ j ' , {/̂ l/? G f,.}, {jϊ2 : jS G Γf.}. Note that

by sending each group element β to β , j = 1, 2, we obtain group ho-

momorphisms A4. .: Γt -> Γ . and hi .\ Γf. —•• Γz .. We let Kt ., AΓ̂  7

denote the kernels of the homomorphisms hi , A . The following con-

ditions are satisfied by these new groups and group homomorphisms.

2.10. (a) All of the h o m o m o r p h i s m s ht p \ ̂  7 = 1 , 2 , are surjec-

tive; thus Γ,./tf,, . = Γ;, . and Γ,./Z,, . = Γ;/ ..

(b) Γ 2 acts by translations on R.
Note that the following property is deduced from 2.8(b), 2.9, and

2.10(b).
2.11. Γ 2 is a finitely generated free abelian group.
Now choose β G Γ. such that βγ: D. -> Dt has a fixed point but β2 Φ

0. By Lemma 2.7.2 there is an integer m > 0 such that -β™ = identity.
Note that β™ Φ 0. For if β2 = 0 then we would have β Φ identity,
βm = identity. But Γf. (and hence Γ.) is torsion free, because by 2.7.1 (a)
and 2.9, E has a contractible universal covering space. We summarize
the results of this paragraph as follows.
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2.12. There is γ e T. such that γχ = identity but γ2 Φ 0.

Write Γ. 2 as a direct sum of subgroups Γ. 2 = S Θ S', where S is a
cyclic subgroup containing γ2 and where γ comes from 2.12 (cf. 2.11).
Let C denote the subgroup of Γi 2 which is generated by S' and γ2 . We
claim that C has the following properties.

2.13. (a) The quotient group TJhJ^C) is a finite cyclic group.

(b) The subgroup hi x(h~\(C)) c Γf. x acts freely and properly discon-
tinuously on Dt.

Note that 2.13(a) follows immediately from the above description of

C. To verify 2.13(b) we assume that contrary, i.e., there is a sequence

{βj} in h~\(C), a point x e D., and a sequence {Xj} e D., such

that the following properties hold: limit j^^βj χ(x) = x; βjA(Xj) φ Xj

for all j . Applying 2.12 we see that there is a subsequence of {β }

(also denoted by {βj}), a positive number b, and a sequence of in-

tegers {rrij}, such that the following hold: limit; ̂ o o(yw> o βj)χ(x) =

x\ \\mi\j_^OQ{ymi o βj)2(0) = 0. (To get b we note that the isotropy

subgroup for the action Γf. x x D. —> D( at the point x e Dt is an in-

finite cyclic group Γi { χ which contains γχ thus γχ = g , where g is a

generator for Γz χ χ.) Now since Γ/ acts freely and properly discontin-

uously on E{, we deduce that y™j = β~b for sufficiently large j . Thus

m.T = —bT., where the isometries γ2, β 2 : R —> R are translations by

numbers T, T. respectively (cf. 2.10(b)). But then T. = a.T holds for

some integer a., because β. 2 e C. So m. = -ba. and γQj = β. for

sufficiently large j . (To see that γQj = β., for sufficiently large j , we note

that (yai o ̂ ' ^ ( O ) = 0 and limit^^^ίy^ o β~ι){{x) = x since Γ. acts

freely and properly discontinuously on Et it follows that yUj = β. for

sufficiently large j.) This last equality and 2.12 contradict β. χ(Xj) Φ x.,

and hence the verification of 2.13 is complete.
We can now complete the proof for Theorem 2.4 in the special case

where the following hypothesis is satisfied.
2.14. Hypothesis. dE. = 0 .

Choose q: A —• B to be the quotient of the projection map Zλ x R -»

Zλ under the actions by hi x(h~\(C)), h~ι

2(C) on D.9 E( = £>z x R,

respectively. Define finite group actions G x A ^ A and G x B —> 5 to

be the actions of ΓySΓ^C) on EJh~\(C) and Zλ/λ,.^(^"^(C)) these

actions are well defined because ί ^ ί O is a normal subgroup of Tr
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(Note that Γ./AΓ^C) acts on D./hitl(h7ι

2(C)) via the homomorphism
Λ {.) We leave as an exercise for the reader to deduce from 2.8, 2.9, 2.13,
2.14 that q: A-+B and the actions GxA^ A and G x B -> B satisfy
all the properties required of them in Theorem 2.4.

This completes the proof of Theorem 2.4 in the special case where Hy-
pothesis 2.14 is satisfied.

If Hypothesis 2.14 is not satisfied, then the preceding argument yields
the following weaker version of Theorem 2.4.

2.15. There are compact manifolds A, B, and a fiber bundle projection
q: A —• B having a circle for fiber. There are topological group actions
G x A —> A and G x B —• B by the finite group G which commute with
q the action G x A -> A is free, but the action G x B —> B need not be
free. The projection p{: Ei -> G is topologically conjugate to q/G: A/G —•
B/G.

Note that the difference between 2.4 and 2.15 is that in 2.4 we require
that A, B, q: A -* B , G x A -> A, and GxB -+B all be C°° , whereas
in 2.15 they are only objects in the topological category. However it is
clear from the preceding argument that the objects of 2.15 also have the
following properties.

2.16. (a) A and B are locally convex, compact subsets of a complete
Riemannian manifold having sectional curvature K < 0 everywhere.

(b) The finite group actions G x A —• A and G x B —> B are by
isometries.

(c) q: A-dA-±B-dB is a C°° -bundle projection.
We can use these additional properties, together with smoothing theory

as described in the next subsection, to complete the proof of Theorem 2.4
as follows. Let dB x [0, 1] c B be the G-equivariant collaring for dB in
B given in §2.17. Set B1 = B - dB x [0, 1), and set A1 = q~l{Bf). Note
that q: A' ^B', GxAf -^ Af, GxB' -> Bf are all C°°-objects, and note
also that q/G: A!jG -* B1 jG is topologically conjugate to q/G: A/G ->
2?/G. Thus by applying 2.15 we complete the proof of Theorem 2.4.

2.17. Equivariant smoothing of locally convex sets. In this subsection
we let q: A —• B, G x A —• A , and G x B ^ B be any maps and actions
by a finite group G which satisfy 2.15 and 2.16(a)-(c).

2.17.1. Lemma. There is a G-equivariant collaring dB x [0, 1] c B
for dB in B such that dB x 1 is a smooth submanifold of B - dB.

Proof of Lemma 2.17.1. We consider first the special case when G is
the one element group. By using the local convexity property for B (cf.
§2.3) we can choose a continuous map / : dB -> B - dB which has the
following property.
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2.17.1.1. dB(f{x), x) < ε for all x e B, where ε > 0 may be chosen
arbitrarily small (prior to the choice of / of course).

Define a vector field V: dB -> S(B) (cf. §2.3 for S(B)) by letting V(x)
be the unit vector field tangent to the geodesic which starts at x and ends
at f(x). Note that if ε is chosen sufficiently small in 2.17.1.1 we may use
the local convexity of B to show that V: dB -> SB is well defined. Now
let U be a small neighborhood for dB in B, and extend V: dB —• SB
to a vector field V: U -> SB. Approximate V: U -> SB by a vector field
V': U ^ SB which has the following properties.

2.17.1.2. (a) V' is smooth on all of U (cf. §2.3 for the definition of
a smooth vector field on closed locally convex subsets).

(b) V' I dB points into B, i.e., for each p e dB we have that V'(p)
is tangent to the geodesic which connects p to a point of B - dB .

Now integrate F' to get a partial flow ψ: dB x [0,δ] -> 5
for sufficiently small δ. If ί is sufficiently small then ^ will be an
embedding. Let s: Imaged | dB x (0, δ)) —> S denote the quotient map
which identifies each segment ψ(b x (0 , ί ) ) to a point. Note that
Imaged | 9 5 x (0, 5)) inherits a C°°-structure from B - dB, and that
there is a unique C°°-structure on »S which makes s a smooth bundle
projection. Choose a smooth cross section c: S —• Image(^ | <92? x (0, δ))
for s. We can now easily obtain a collaring dB x [0, I] c B such that
5 x 1 = Image(c).

This completes the proof of Lemma 2.17.1 for the special case when G
is the one element group. To prove Lemma 2.17.1 in general we must use
an equivariant version of the preceding argument. Details are left to the
reader.

This completes the proof of Lemma 2.17.1.

3. &>ϊ(f) o J^: &>C(p) -> ̂ (M) is surjective

Let p.E^G and f.E^M be as in Theorem 0.4. Let ^(f):^
denote the map induced by f.E^M and let /+: ^(p) ->

denote the map of §1.4. The main result of this section is the
following proposition.

3.1. Proposition. The mapping ^(f) o Jφ:^{p) -> ^ ( M ) of Ω-
spectra induces a surjection on the homotopy groups of the Ω-spectra.

Before beginning the proof of 3.1 we need to introduce more notation
and state two lemmas. This is done in the following subsections.

3.2^ The northern hemisphere subbundle and geodesic flows. Recall
that M denotes the universal cover of M equipped with the Riemannian
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structure pulled back under the covering projection M —> M from the
given Riemannian structure on M . Set N = M x R, N = M x R,
where each of these products is equipped with the product Riemannian
structure. Let TX denote the tangent space of a smooth manifold X

at a point y e X. We let u: N -> TN denote the unit vector field
which points in the direction of the increasing R-factor of N. For each
point y e N 9 or vector v e TNy, or path r: [0, 1] —> N, the splitting

N = M x R yields splittings y = yx * y2, v = vχ x υ2u, r = rχ x r2,

where rχ:[09 1] -* M and r2: [0, 1] -> R. Let SiV, SM denote the unit

sphere bundles for N, M, and set S+N = {v s SN : (v, w)- > 0} . We

call 5r+7V the northern hemispheresubbundle of SW. Let gι: SN ^ SN,
t e R, denote the geodesic flow on SW. Note that g' leaves the subbundle
S+iV invariant. We let §+ denote the foliation of S+JV by the orbits of
the geodesic flow g%\ S+N —> S+N, / G R . Note that the construction
which gave the subbundle S+N c 5W also applies to give a northern
h e m i s p h e r e s u b b u n d l e S+N cSN.Lel gt:S+N -+S+N, teR, d e n o t e
the restriction to S+N of the geodesic flow on SN, and let ^ + denote
the foliation of S+N by the orbits of g*: S+N -+S+N, ί e R . W e leave
as an exercise for the reader to show that there are Riemannian structures
( , )s+ft, { , )S+N on S+N,S+N which have the following properties.

3.2.1. (a) The pairs (S+N, # + ) and {S+N, &+) are of compact type
(cf. Definition 1.5.2) with respect to the metrics ds+~( , ) and ds+N( , )
which are associated to ( , ) s + ^ and ( , ) S + N .

(b) The Riemannian structure ( , ) s + ~ is left invariant by the ac-
tion of the deck transformations associated to the covering projection
S+N —• S+N. Moreover the quotient of ( , ) s + ^ by this action is equal
to ( , )S+N.

(c) For any v e S+N define maps fυ:R -> N and fυ:R -+ S+N

by fv = p o fv (where p: S+N -> N is the standard projection) and by

fv(t) = g\v). Then we must have

1/ dfυ df\<{dj^ df\ <2/AL ^LΛ
2 \dt(O)' dm) ~ \dt(O)' dt(O)/s+N ~ \dt(O)' dt(O)/N *

Note that (dfv/dt(0), dfv/dt(0))N = 1.
Remark. The Riemannian structure ( , ) N induces canonically a Rie-

mannian structure ( , ) S N (cf. [7, p. 547-548]). By pulling ( , ) N and
( , ) S N back to ( , ) - and ( , ) 5 - we get an explicit construction for
Riemannian structures which satisfy 3.2.1(a)-(c).
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3.3. The path liftings Cr'υ'β . Let r: [0, 1] -+ N be a given path. A
/(/fr'αg of r to SN is just a continuous vector field V: [0, 1] -> SW such
that K(ί) € S Λ ^ holds for all t e [0, 1]. In this subsection we describe
a special way of lifting paths from N to S JV. Such liftings are uniquely
determined by specifying the initial condition V(0) = υ .

For a fixed but arbitrary number σ > 0 choose a C°°-function g: R —•
[0,1] which has the following properties.

3.3.1. (a) g(t) = 0 for all t<σ, and g(t) = 1 for all t > 2σ .
(b) dg/dt > 0 everywhere. Choose a number K > 0 such that K >

dg/dt everywhere.
For any path r: [0, 1] —• N, any vector v e SNr^ , and any number

β > 0, we define a lifting Λ " ' ^ : [0, 1] -• SN of r to SN by Figure
3.3.2.

rj(O)xO

MxO

•MxO-

FIGURE 3.3.2.

In Figure 3.3.2 we see that the unit speed geodesies in N which start at

r(0) with direction v , and which start at r(t) with direction Ar'Viβ(t),

intersect at the point y e N uniquely determined by r, υ , and the equality

dg(yι, rχ (0)) = β . Note that Lemma 2.0 assures us that the lifting Ar'v 'β

is well defined by Figure 3.3.2 provided diameter(Image(r1)) < β in M,

and υ Φ ±u. The product structure iV = ¥ x R leads to the factoring

A 'H = Aχ'
 μ x A2' u.

We also define a lifting Br'υ*β:[0, 1] -> SN of r to 57V by Figure
3.3.3.
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R

MxO

FIGURE 3.3.3.

In Figure 3.3.3 we see that the unit speed geodesies which start at r(0)

in the direction v , and at r(t) in the direction Brv fβ(t), intersects at

a point y e N which is uniquely determined by r, v, and the equal-

ity d~{y, r(0)) = β(l - 9 σ 2 ) " 1 / 2 . We note again that Lemma 2.0 as-

sures us that the lifting βr'v is well defined by Figure 3.3.3 provided

diameter(Image(r)) < β(l - 9σ 2 )" 1 / 2 in N, and 3σ < 1.

The lifting in which we are really interested is a combination of the

liftings Ar'Vtβ and Br'v'β , denoted by Cr'v'β , and defined as follows.

3.3.4. (a) If υ2 > 3σ (where σ comes from 3.3.1) then we set Cr'υ 'β (t)

= B r > υ ' β ( t ) f o r a l l te[O,l].
(b) If 0 < υ2 < 3σ then we set

Cr

2'
v'

r,v,β
(0 - v2)

and

Γ ' V ' ' = C['v'β comes from thefor all t e [0, 1]. Here CΓ = C[ ^

product structure N = M xR.
Remark. Note in 3.3.4 that Cr'ΌtP(t) is well defined since Ar'v'β(ή =

Br'Viβ{t) holds for any v with v2 = 3σ and for all t e [0, 1]. Note also

that, as v2 goes from σ to 2σ, Cr'v'β(ή is a gradual tapering of the

lifting

Dr'v \t) = {A\'v'β{t){\A\'υ'β{t)\-\\-vlΫ12)) x (v2u(r(ή))
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to the lifting Ar'v'β{t). Clearly if v e S+N then Dr'vJ{t) e S+N

for all t e [0, 1], and thus for β sufficiently large we will also have
Cr'v'β{t) e S+N for all t e [0, 1] (cf. Lemma 3.4). This last property is
(unfortunately) not satisfied by the liftings Br'v'β(t), which is our reason
for introducing the more complicated liftings Cr'v'β(t).

We will need the following two lemmas to prove Proposition 3.1. The
proofs of these lemmas are given at the end of this section.

3.4. Lemma, (a) Cr'v'β(t) is continuous in r, υ, β, and t.
(b) Given σ and g as in 3.3.1, and a number a > 0, there exists a

number L > 0 such that the following is true. Let r:[0, 1] -• N denote
any path such that diameter(Image(r)) < a, and choose β > L. Then for
any two vectors v , w £ S+N,o, we have

Cr'v'β(t) = Cr'w'β{ή for some t e [0, 1]

and

Cr'vJ{t) = Cr'w'β(t) for all t e [0, 1]

Cr9V'β(t),CrtW'β(t)eS+N forallte[0, 1].

3.5. Lemma. Given any numbers ε, a > 0, there is a number γ > 0.
Given a function g:R^[0, 1] which satisfies 3.3.1 for a fixed but arbitrary
σ e [0, γ], there is a number l!. For any choice of β > Lf and for
any path r: [0, 1] —> TV which satisfies Image(r) c M x [—σ, σ] and
diameter(Image(r)) < a, the following must hold. For all v e S+Nr^

the path Cr'v'β is (2α, ε)-controlled over (S+N,§'+) with respect to the

projection map gβ : S+N —> S+N, where gt:S+N^>S+N is the geodesic
flow on S+N and where β' = (1 - σ)β {cf §1.5 for "control").

Proof of Proposition 3.1. We will first complete the proof assuming that
Hypothesis 2.14 is satisfied for all /. (Note that 2.14 holds for all i if M
is a locally symmetric space.)

Let h: S —• ^.(M) represent an element in the (k — j)-dimensional

homotopy group of the spectrum ^ ( Λ f ) , where k, j > 0. We must show

that there is another map h'': Sk -+ 3Pc

}(p) such that ^(f) o J. o h' and

h are homotopic maps. We begin with the following definition.
3.6. Definition. A continuous map h: X -» 3P.(M) is said to be a-

simply-controlled if for each x e X and each y e M xRj x In each of
the composite maps

[0, l ] = y χ [ 0 , l ] c M x R / x / " x [ 0 , l ] ^
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has a lifting / : [0, 1] —• M to the universal covering space M such that
diameter(Image(/)) < a.

We note that since Sk is compact, any given map h: Sk -> ^.(M)
satisfies the following property.

3.7. There exists a > 0 such that A: Sk -> 3*.(M) is α/8-simply-
controlled (where a depends on A).

By composing A: Sk -> ̂ ( M ) with the map ^.{M) -• ^.(iV), which
is induced by the inclusion M = ¥ x O c M x R = iV,we obtain a
mapping hx: Sk —• ^(N) which we can arrange to have the following
properties.

3.8. (a) For each x e S the support of the stable pseudoisotopy A1 (x)
lies over the subset M x [-σ, σ]c N, where σ comes from 3.5.

(b) A1: S* -> &>.(N) is α/4-simply-controlled.
The remainder of the proof of Proposition 3.1 is contained in the fol-

lowing subsections.
3.9. Transfers, let p: τ —• X denote a disc bundle over the manifold

X, and let A: Γ —• 3°AX) be a continuous map from the CW-complex
Y. Recall that a transfer of h in the bundle τ -> X consists of a map
h: Y —>&.(τ) such that for each y e Y there is the following commuta-
tive diagram:

τ x (Ry x /* x [0, 1]) ~^U τ x (R; x Γ x [0, 1])

X x (R; x /" x [0, 1]) - ^ - + * x (R7 x In x [0, 1])

Note that the transfer enjoys the following properties.
3.9.1. (a) For any h: Y -> ̂ -(AΓ) there exists a transfer A: 7 -> ^ . ( τ )

of A in the bundle τ —• X .
(b) If Ao, Aj are two transfers of A in the bundle τ —> X, then there

is a homotopy ht:Y -> «^ (τ), / G [0, 1], from Ao to Aj such that each
ht is a transfer of A in the bundle τ -> X.

(c) Let C -> τ be a disc bundle over τ such that the composite bundle

projection ζ —• τ -> X is equivalent to the trivial bundle X x / —• X. Let

A be a transfer of A in the bundle τ -> X and let A denote a transfer of

A in the bundle ζ -* τ . Then there is a homotopy A,: 7 - ^ ^ ( I x ή ,

ί € [0, 1], from A to A: 7 -^ &>.{X) = ^ ; ( X x Ik) such that each Af is
a transfer of A in the trivial bundle X x I —• X.
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3.10. The special transfer A1: Sk -> &>j(S+N) of hι in S+N -> N.

We will now construct a special transfer Jιι: Sk -> 3°j{S+N) in the bundle

S+TV -> TV for the mapping Λ1 of 3.8 by using the path liftings of §3.3.

It will be more convenient to work with stable pseudoisotopies on TV and

S+N. Let Hι:Sk -> ̂ (TV) denote the map such that for each y e Sk the

stable pseudoisotopy Hι(y) of TV is obtained by pulling back the stable

pseudoisotopy hι(y) of TV along the covering projection TV —• TV. We

will first construct a transfer Ήl: Sk -> ^j(S+N) in the bundle S+TV ->

TV for the map 7/1. This transfer will have the property that for each

y G Sk the stable pseudoisotopy Ή (y) of S+N is left invariant by the

deck transformations of the covering S+N -> S+N. Thus the quotient

of each Ή (y) under the deck transformations action yields the stable

pseudoisotopy hι (y) of S+N, and hence the transfer hx: Sk -> ^j{S+N)

in the bundle S+N ^ N for the map Λ1.
Choose the integer « sufficiently large so that for each y G S the

stable pseudoisotopy i f 1 ^ ) is a mapping Hι(y): N x RJ x In x [0, 1] ->
TV x R7 x /Λ x [0, 1]. For each J G ^ and each z G TV x R7 x 7W , define
two paths PytZtl: [0, 1] -^ N and p^ z 2 : [0, 1]->R7 x/" x[0, 1] to be
the composite maps

[0, 1] = zx[0, 1] C (NxRjxIn)x[0, 1] - ^ U 7VxR7x/^x[O, 1] - ^ TV

and

[0, l] = z x [ 0 , l ] c ( 7 V x R ; x / " ) x [ 0 , 1]

- Ά N x RJ x f x [0, 1] ϋ = l R7 x /Λ x [0, 1],

respectively. We note that the map ί/1: Sk -> ̂ (TV) can be reconstructed

from the collections of paths {/̂  z .:y eSk , z e N xRj x In \ i = 1, 2}

by using the definitions of these paths. Likewise we may reconstruct the
desired transfer Ήl : Sk -+ ̂ j(S+N) for Hι from a collection of paths

{Py,z,i '- y £ Sk > z € 5+7V x R 7" x / " Ϊ = 1,2} which are defined as
follows.

3.10.1. For each z G S+TV XRJ X Γ let z7 and z" denote the image

of z under projection to 5+iV and N x RJ x In , respectively. Define the

mappings^ z l : [ 0 , 1] -+ S+N by pyzΛ = Cr>v'β , where r = pyz,,^

v = z ' , and β > α, and where Cr>v>β comes from §3.3 and a is as in
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3.8. Define the mapping py z 2 : [0, 1] -> RJ x Γ x [0, 1] to be equal to
the map py z>, 2 .

Now the transfer Ήl: Sk -> &>.{S*N) in the bundle S+N -> N of the

map Z/1 can be defined as follows.

3.10.2. For each y e Sk, z e S+N x RJ' x Γ , and t e [0, 1], set

H\y){z,t)=pyzX{t)χpyz2{t).

Note that it follows from Lemma 3.4 that each Ήl (y) defined by 3.10.1,

3.10.2 is in fact a well-defined stable pseudoisotopy of S+N and that

H (y) depends continuously on y (see, in particular, 3.4(b)). On the other

hand, it can be deduced from Lemma 3.5 and 3.8 that the {HX (y) : y e Sk}

have the following control properties.

3.10.3. For each y e Sk the stable pseudoisotopy Ήl (y): S+N x Rj x

Inx[0, 1] -> S+NxRjxInx[0, 1] is {a/2, δ)-controlledover {S+N, §+)

with respect to bundle projection S+N -£—» S+N, where g*: S+N ->

S+N, t e R, is the geodesic flow on S+N (cf. Lemma 3.5 for β'). Here
δ may be chosen arbitrarily small if β is chosen sufficiently large and if
σ (of 3.5) is chosen sufficiently small.

We leave as an exercise for the reader to check that for each y e Sk

the stable pseudoisotopy H (y) of S+N is left invariant by the deck

transformations for the covering projection S+N -> S+N. So, as was

noted at the outset of §3.10, we may define a stable pseudoisotopy hX{y)

on S+N to be the quotient of H (y) by the deck transformation group

action on S+N. Thus we have the special transfer hι: Sk -• ̂ j{S+N) in

the bundle S+N -> N for the map h of 3.8. The control properties of
3.10.3, and 3.8(a), 3.2.1 imply that the following hold.

3.10.4. (a) Each stable pseudoisotopy hι(y): S+N x RJ x In x [0, 1] -•

Sr+JVxR7x/"x[0, 1] is (α, δ )-controlled over (S+N,&+) with respect to

the projection S+N ——• S~*~N. Here δ can be chosen arbitrarily small if

β is chosen sufficiently large and if σ (of 3.5) is chosen sufficiently small.

(b) The support of each hι{y) lies over M x [-σ, σ] with respect to
the standard projection S+N —• N.

3.11. Applying control theory to hι. First we note that every closed
orbit for the geodesic flow g: S+N -* S+N, / e R, lies in a subset
S(M x s) c S+N consisting of all vectors of S+N which are tangent to
the subspace MxscMxR = N,for some number s e R. Thus the
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union of the closed orbits of the geodesic flow on S+N are identified with
the subset Έ xRcS+N, where Έ c SM equals the union of all closed
orbits for the geodesic flow on SM. Let p:Έ -• G denote the quotient
map obtained by collapsing every orbit in E to a point, and let f\E-^M
denote the composite map E c SM pΓ0J > M.

There is a map 7 # : ^(p) -> ^(E) whose definition is analogous
to the definition for /„ in §1.4. Let ^(f): ^(Έ) -> ^(M) denote
the map induced by / : 2? -• Af. Note that the composite map ^{f) o
~J*: &ϊ(p) -+ ̂ ( Λ f ) factors through the composite map ^ C ( / ) ° Λ ^C(P)
—• J^(Λf). Thus, to complete the proof of Proposition 3.1 it will suffice
to show that the composite map ^{f) o 7^: ^(p) -> ^(M) induces
a surjection on the homotopy groups of the Ω-spectra. In particular, it
will suffice to find A': Sk -+ ̂ {p) such that A and 3°]{f) o 7 y o A' are
homotopic.

The path components of E are exactly the subsets {Et j} discussed
in §2.6 (cf. Theorem 2.4 and §2.6). Thus (by 2.4, 2.6) two'closed orbits
Lχ, L2 in Έ are in the same path component of Έ if there are freely ho-
motopic orientation preserving immersions g.: Sι —• Lt, / = 1, 2 (where
the orbits L., / = 1, 2, are oriented in the direction of the geodesic flow
on SM). Using this criterion together with a compactness argument (SM
is compact) it is an exercise to show that for any given number λ > 0 the
following holds: there are only finitely many path components of E which
contain an orbit of length less than or equal to λ.

In the special case that λ = ηa (where η comes from 1.5.3 and where
a comes from 3.10.4) we denote by Eχ, E2 , , Em the components of
E which contain an orbit of length less than or equal to λ. Note that
there are closed pairwise disjoint tubular neighborhoods τχ, τ 2 , , τ m

in S+N for the corresponding components £ j X R , £ 2 x R , , Έm x R
of Έ x R, such that the subset U c S+N defined by U = S+N - \J. τt

satisfies 1.5.3(a), for sufficiently small ε in 1.5.3(a). This fact, together
with 3.2.1 and 3.10.4, assure us that all the hypotheses are satisfied for
applying Theorem 1.5.3 to Image(A1) over the subset U, if β is chosen
sufficiently large and if σ is chosen sufficiently small. So we apply Theo-
rem 1.5.3 to get a homotopy h] : Sk -* &>.(S+N), t € [0, 1], of A1 which
has the following properties.

3.11.1. (a) For each y e Sk , t e [0, 1], the stable pseudoisotopy
h]{y) is {ηa, ε)-controlled over (S+N,^+) with respect to the bundle

β'

projection S+N -£—• S+N.



STABLE PSEUDOISOTOPY SPACES 801

(b) For each number s > 0 and each integer / satisfying 1 < / <
m, let τ. s denote the restriction of τ. to Έt x [s, s]. Then for each

y e Sk the support of the stable pseudoisotopy h\(y) lies over the subset
β'

\Jiτi s c S+N (with respect to the projection S+N -?—• S+N), where

s = 4(σ + ηa + β').
For each i = 1, 2, , m we choose a disc bundle ζi —> τ/ such that

the composite bundle ζ. —• τf. - » £ . x R is equivalent to the trivial bundle
fi.xRx/^^.xR, and for each number s > 0 we let ζ. s denote

the restriction of ζ. to τi s . By 3.11.1 (b) we obtain a map g(: Sk —•

^°j(τi 5) ^y setting g.{y) equal to the restriction of h\{y) to that part of

its domain which lies over g~β (T, S) , where we have identified ^°{τi s)

with &*j(g (τ- s)) under the homeomorphism g : g (τ s) -^ τχ: s.

Let g : 5 fc -^ &fPΪΪ denote a transfer for ^. in the bundle £. 5 ->

τ / j 5 , where we have identified ^(E^ with ^ ( ^ x [s, 5] x 7fl) under

the stabilization map. Note that by 3.11.1 (a), each g. has the following

property.

3.11.2. For each y e Sk the stable pseudoisotopy g.(y) is ε'-con-
trolled over Gt with respect to the projection p.: E. -> G z, where G. =
£(2?,-), Pi= P \ Et, and ε' is a positive number satisfying limit^Q ε = 0
with ε from 3.11.1.

By taking the disjoint union of the maps gt: Sk —• ̂ -(E.) we obtain a

map g: Sk ^ &J(E). It follows from 3.11.2 that ^ is ε'-controlled over

G with respect to the bundle projection p: E —• G. Thus we may apply

Theorem 1.4.1 to get a mapping ti: Sk ^ ^(p) such that 7jθhf = g.

(Actually, we apply 1.4.1 to each gt forming h[ and h' is the disjoint

union of the lrti.)

In order to complete the proof of Proposition 3.1 it remains to show

t h a t t h e m a p s h: Sk -> &>j{M) a n d &>j(f) o 1. oh':Sk -+ SP^M) a r e

homotopic. To see this we first note that for sufficiently large s > 0

the support of each stable pseudoisotopy h)(y) in 3.11.1 lies over the

subset M x [s, s] with respect to the standard projection S+N —• TV

(cf. 1.5.3). From this last remark and §3.9 it follows that by transferring

h\: Sk -* ^j(S+N) to a bundle τ -> 5+7V (such that the composite bundle

τ -+ S+N ^ N is equivalent to the trivial bundle N x I —• JV), we get

a transfer map A}: Sk -+ &>j(N x /*) = ^-(iV) then by restricting each
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image point h\(y), y e Sk to that part of its domain which lies over the
ksubset M x [s, s] c N, we obtain a map h": Sk -> &.(M x [-s, s]) =

which is homotopic to h: Sk -• ^{M). On the other hand,
j ^

another application of §3.9 shows that h" and ^ ( / ) o 7 ; o h' are also
homotopic. To verify this last fact the reader should consult [16; §1] to
see how the transfer construction is related to the functorality of &j( ) .
Thus, h and ^ c ( / ) o 7 oh' are homotopic as desired.

This completes the proof of Proposition 3.1 when Hypothesis 2.14 holds
for all /.

There are only minor modifications (in 3.11) to be made on the preced-

ing proof if Hypothesis 2.14 is not assumed to hold. Let Eχ, , Em de-

note the components of Έ discussed in §3.11, and let Lχ, , Lm denote

the leaves of the asymptotic foliation si that contain the Eχ, , Em

(cf. 2.6.1). Choose a number r > 0 sufficiently small so that the or-

thogonal projections E\ —• E.9 1 < / < m, are well defined, where

E\ = {x e L : df(x, E.) < r), and df( , ) is the metric on Lt as-

sociated to the Riemannian structure pulled back from M by the cov-

ering projection Lt c SM p r o j > M. (Note that the sectional curvature

restriction K < 0 on Lz and the local convexity of Έ. (cf. 2.7.1) assure

us that orthogonal projection to Et is locally well defined in Lt (cf. [3,

pp. 8-10])). Choose small tubular neighborhoods {^} for the {E^} in

S+N I M x 0 thus each ξt is a smooth disk bundle (with corners) over Έ\.

Now in §3.11 set τi = { . χ R , and set τ/ s = ζ. x [s, s] for each s > 0.

After applying the control Theorem 1.5.3, we get that 3.11.1 is true. To

get the {gt: Sk -> ̂ (E.)} of 3.11.2 we restrict each stable pseudoisotopy

h\{y), y e Sk , to that part of its domain lying over g~β (τ. 5) (cf. 3.11.1

for s, β', Λj), and then (having identified &>j(τis) with ^>j{g~β\τi s))

via the homeomorphism gβ : g~β (τz 5) —• τz s) project it into Έέ by the
composite map

T _ μ v r c e i ProJ . r PΓ°J . " ^ r ProJ . Έ?

The rest of §3.11 is carried out as before.
This completes the proof of Proposition 3.1.
Proof of Lemma 3.4. The proof of 3.4(a) and of the second claim in

3.4(b) follow directly from the definition of Cr'v'β . The details are left
as an exercise.
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We divide the verification of the first claim in 3.4(b) into the following
three cases.

3.12. Case I. υ2 > 2σ and w2 > 2σ .
Let 5(^(0) , β) denote the closed ball of radius β centered at rχ(G) in

M, and let B(r(0),β') denote the closed ball of radius β1 =
β(\ - 9σ2)~ι/2 centered at r(0) in N = M xR. Since both of the sets
£ ( ^ ( 0 ) , ]5)xR and £(r(0), β') are convex subsets of N (cf. Lemma
2.2), it follows that C = {B{rx(0) , j J ) x R ) n B{r(0), β') is also a convex
subset of N.

In Figure 3.12.1 we have indicated how the values of Cr'Vyβ(t) and
Cr'w (t) are obtained by focusing to boundary points of C (cf. §3.3).

The convexity of C implies that Cr'υ'β(t) = Cr'w'β{t) holds for some
t e [0, 1] if and only if υ = w, provided Image(r) c (C - dC), e.g.,
provided L > a .

R

MxO

FIGURE 3.12.1.

3.13. Case II.

If o,

v2 < 3σ and w2 < 3σ.

wχ, then we show that C['v' (t) Φ C\

~ι for any z € TM. In Figure 3.13.1 we have indi-

(0 for all ί € [ 0 , 1],

where z = z\z\ y
cated how the values C['υ'β(t) and C['w'p(t) are obtained by focusing
to boundary points of the ball £(r,(0), β) (cf. §3.3).

The convexity of 2?(r,(0), /?) implies that C ^ ^ ( ί ) = Cj> 1 0 "'(ί) holds
for some t e [0, 1] if and only if 0, = to,.



804 F. T. FARRELL & L. E. JONES

R

MxO

FIGURE 3.13.1.

If ϋj = wχ, then we must have that υ2 Φ w2, assuming that v Φ w .
Without any loss of generality we may suppose that υ2 > w2. We shall
complete the verification of 3.4(b) for Case II by proving the following
claim.

3.13.2. Claim. Cr

2

v'β(t) > Cr

2

w"β(t) holds for all t e [0, 1], pro-
vided β is chosen sufficiently large.

First note that our present assumptions, together with 3.3.1 and Figure
3.3.2, imply the truth of the following.

3.13.3. (a) vχ = w{ and v2 > w2 .
(b) g(v2) > g{w2).

(c) Ar

2

υ'β(t)>Ar

2

w>β(t) for all ί e [ 0 , l ] .
Note that Claim 3.13.2 follows easily from 3.13.3 and 3.3.4 provided

Ar

2'
υ'β(t) > w2 holds for all t e [0, 1]. It remains to verify 3.13.2 when

the following inequality holds.

3.13.4. w2 > Ar

2

v'β(t) for the specific t e [0, 1] being considered in
3.13.2.

Note that for all υ with υ2 < 3<τ , all r which have diameter less than

or equal to α in iV5 and all t e [0, 1], the following is true.
β3.13.5.
[ ]

- Ar

2*
υ'β(ή) = 0 uniformly in r, υ , and t.

We note that there is a smooth real-valued function f(x ,y,z)in three
real variables, which has the following properties.

3.13.6. (a) / ( 0 , 0 , z) = 0 .

(b) For the composite variables x = β~~ι(d~(rχ(t), yx) - β) and y =

β~X{r2^) ~~ ri(fy) 9 where yx, y are as in Figure 3.3.2, we have that
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A r

2 ' υ - -v2 = f(x,y9υ2).

By using 3.13.6(a) to help compute the second order Taylor polynomial
for f(x, y, w2) - f(x, y, v2) about the point (0 ,0 , υ2)—for fixed υ2

and variables x, y, w2—we get the following equality.
3.13.7. f(x, y, w2) - f(x, y, v2) = ax(w2 - υ2) + by(w2 - v2), where

a, b depend continuously on υ2, w2, x, y .
The first order Taylor polynomial for g(w2) about v2—here υ2 is fixed

and w2 is the variable—yields the following.
3.13.8. g(w2) = g(v2) + c(w2 - υ2), where \c\ < 2κ. Here K > 0

comes from 3.3.1.
Now we can complete the verification of Claim 3.13.2 when 3.13.3 and

3.13.4 hold. By combining 3.13.5, 3.13.6, 3.13.7, 3.13.8, and 3.3.4(b), we
get the following equalities.

3.13.9. (a) Cr

2'
w'β(t) = w2 + g(υ2)(Ar

2'
υ'β(t)-υ2)+Rι+R29 where

R{ = c(w2 - v2)(Ar

2

tWtβ(t) - w2) and R2 = g{v2)(ax + by)(w2 - υ2).

(b) l i m i U ^ ^ d ϋ J -h \R2\)(w2 - v2)~x = 0 uniformly in r,v,w,t.
Now Claim 3.13.2 follows from 3.13.9 and 3.3.4.
3.14. Case III. \v2-w2\>σ.

It is not difficult to deduce from 3.3 that all the limits limit

and limitβ

v , w , and t, provided that diameter(r) < a. Thus, for sufficiently large

β 9 Cr

2

v'β{t)φCr

2

w'β{t) h o l d s for all ί € [ 0 , l ] .
This completes the proof of Lemma 3.4.
Proof of Lemma 3.5. We divide the proof into the following two cases.

fr>v>β(*\

C2'
w'β(t) tend to v2 and w2 respectively, uniformly in r,

3.15. Case I. υ2 > 3σ.
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are ob-In Figure 3.15.1 we have indicated how the values of Cr'v'β

tained by focusing at the point y e N.
Note that the following equalities uniquely determine a one-parameter

family of unit speed geodesies ft:R—*N, t e [0, 1] (cf. Lemma 2.0).
3.15.2. ft(0) = y f t ( β t ) = r ( t ) , w h e r e β t = d~(y , r ( t ) ) .

By definition of the geodesic flow g\ S+N -* S+N, t e R, and by
3.15.1, 3.15.2, we also have the following.

3.15.3. gβ' oCr'v'β(ή = -dft/ds{βt - β'), where β' = (1 - σ)β , and
for each value of t the map ft:R^> N is a function of the variable s.

Now it follows from 3.15.2, 3.15.3, and 2.1, 3.2.1, that if σ is chosen
small enough, and β is chosen large enough, then g o CΓyV will be
(2a, ε)-controlled over (S+N, &) for all r with diameter(r) < a. This
completes the verification of Lemma 3.5 for Case I.

3.16. Case II. v2 < 3σ .

In Figure 3.16.1 we have indicated how the values of Cr'v'β are ob-
tained by focusing at points yt e N. Note that the inequality of 3.16.2
follows from §3.3 and the hypothesis of Lemma 3.5 (used for the first time
here) that Image(r) c M x [-σ, σ].

y'\

y°\K\ \\\
\\\\

\\

V>xO

w v

v ^ —
KO)r,(O)xO

FIGURE 3.

"L
MxO

^ Γ ' v.β(f)

• * — ~ ~ ~ ~ ^

'

16.1

3.16.2. d~{yΌ, / ) < 4(v2a + σ).
The following equalities uniquely determine a one-parameter family of

unit speed geodesies ft:R-^N, t G [0, 1].

3.16.3. / , ( 0 ) = y f t ( β t ) = r ( t ) , w h e r e β t ̂ ( y 1 , r ( t ) ) .

By the definition of the geodesic flow g': S+N -> S+N, t e R, and by
3.16.1 and 3.16.3, we also have the following.

3.16.4.

Now it follows from 3.16.2-3.16.4 and 2.1, 3.2.1 that if σ is cho-

sen small enough, and β is chosen sufficiently large, then gp

gβ' o Cr'υ'β(t) = -dft/ds(βt - β1), where β' = (1 - σ)β .
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will be (2a, ε)-controlled over (S+N, &) for all paths in r in M x
[—σ, σ] with diameter(r) < a.

This completes the proof of Lemma 3.5.
3.17. A control theorem for nonpositively curved manifolds. Before be-

ginning the next section we state a lemma which will be needed in §5.
Let M be a Riemannian manifold, and let Mχ c M2 c M3 c be
an increasing sequence of closed subspaces of M, all of which have the
following properties.

3.17.1. (a) M is complete and of compact type (cf. 1.5.2).
(b) M has nonpositive sectional curvature everywhere.
(c) Each Mk is a codimension zero submanifold of M.
(d) The radius of injectivity for M at any point q e M-Mk is greater

than or equal to k.
(e) For each k, dM(M - Mk+m , Mk) —• oo as m —> oo .

For any number a > 0 and any integer j > 0 let &.(M α) be the sub-

space of all stable pseudoisotopies in 3°(M x R7) which are α-controlled

over M xRJ with respect to the identity projection M x RJ —• M x R7

(cf. §1.2). Let 3Pb.{M) denote the direct limit space l i m i t ^ ^ ^ A Γ ; α)

for any integer j > 0; and if j < 0 then set &]{M) = Ω~J(^(M)).
Hatcher's proof of the first half of 1.3.1 works, with only minor modifica-
tions, to show that the collection of spaces 3D* (M) = {^(M) :jeZ} is
a Ω-spectrum called the spectrum of bounded stable pseudoisotopies on
M. Of course the same construction can be used to obtain the Ω-spectrum
3°*{Mk) for each integer k > 0.

3.17.2. Theorem. Suppose that M and the Mk, k = 1, 2, 3, , sat-

isfy 3.17.1. Then the direct limit Ω-spectrum l i m i t ^ ^ ^ ^ M ^ ) is weakly

equivalent to the Ω-spectrum £P^(M) via the inclusion map

Proof of Theorem 3.17.2. We will show how to deform any h e 9*h

} (M)

through a one-parameter family of stable pseudoisotopies ht e ^

t e [0, 1], to hχ e^jb{Mk) for k sufficiently large. The remaining details
are left to the reader.

Roughly speaking, to get ht, t e [0, 1], we must reproduce the proof

given above for Proposition 3.1. Set N = M x R with the product metric.

Let h' £ &>j(N) denote the image of h under the map induced by the

inclusion ¥ = M x 0 c ¥ x R = JV (cf. 3.8). Let h" e &>j(S+N) denote
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a suitable transfer of hf in the bundle S+N -> N (cf. §3.10). Now by

using the geodesic flow on S+N we may deform h" by h" , t e [0, 1/2],

so that h"/2 is (2α, δ)-controlled over (S+N,&+) for a suitable small δ

(cf. 3.10.4). Now 3.17.1 assures us that the foliated control Theorem 1.5.3

may be applied to /z"/2 over S+N \ ((M-Mk)xR) (for suitably large k)to

get a further deformation h", t e [1/2, 1], of h"/2 such that the support

of h" lies over the subset S+N \ (Mk x R) of S+N (cf. §3.11). Finally we

transfer h" e ^(S+N), t e [0, 1], to h"' e &]{τ), ί e [0, 1], where

τ —> S+iV is a disc bundle such that the composite bundle projection

τ —• S+N —> N is equivalent to the trivial bundle N x Ia ^ N. Note that

the support of each h"1, t e [0, 1], lies over the subset M x [s, s] c N

for sufficiently large s > 0, and the support of h'" lies over Mk x [s, 5].

Thus, we may define the desired deformation ht, t e [0, 1], of Λ to be

the restriction of A"', te[0, 1], to M x [-5, s] x R7 x In x [0, 1], where

the domain of ti" is equal to J V x R j x / " x [ 0 , 1].

This completes the proof of Theorem 3.71.2.

4. More geometry

The purpose of this section is to introduce more notation, and to state
and prove several geometric lemmas (cf. Lemmas 4.6, 4.7, 4.11.1) which
will be used in §6 in proving that the composite map ^{f) o / # : &£(p) —•
^ ( Λ f ) is injective on the homotopy groups of Ω-spectra.

In this section and the next the following hypothesis will be assumed
true.

4.0. Hypothesis for §§4 and 5. For each component Et of E we have
that dEi = 0 . Equivalently, each Di (of 2.7Λ) is a complete Riemannian
manifold with sectional curvature K < 0 everywhere. These two equivalent
conditions are satisfied if M is a compact locally symmetric space with
sectional curvature K < 0.

4.1. The maps g., t{, t{ ., s{, and the foliations Ft, Ft .. Recall that

ft: Ej —̂  M denotes the composite map Et c RPM -E2L* M ? where

RPM is the real projective bundle for M, and Ei comes from Theorem

2.4. Note that ft is not in general an embedding, however it follows from

Lemma 2.7.1 that f{ is always a smooth immersion when Hypothesis 4.0

holds. Choose, for a sufficiently large integer k > 0, a smooth embedding

gi: Et —• M x Ik such that the following diagram is commutative:
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*' Mxlk

(4.1.1)

Since we shall be dealing with the embedding g.: Et -> Mxlk a lot, we

often identify Et with its image under gέ and denote g. by Ei c Mxlk .

Choose a tubular neighborhood T C M x /* for Etc Mxlk in Λf x /*

w i t h p r o j e c t i o n s t . : Γ , - > E . . L e t E i J 9 T . j c M x I k , j = 1 , 2 , •-,

denote all the path components of the preimages of Ei, Tέ under the

universal covering projection M xlk -» M xlk , and let t. : T. —• £.

denote the bundle projections which cover the projection t{: 7̂  —> ̂  .

There will be no loss of generality in assuming that the {tt .} have the

following properties.

4.1.2. (a) The projection map Mxl —• M maps ^ j diffeomorphi-

cally onto the subset E( c Λ/ and maps T{ { onto a tubular neighborhood

Si for £f. in M (cf. 2.7.1 for the embedding E. c M ) .

(b) The orthogonal projection 5̂ : S( -• £ z is a bundle projection (cf.
[3]). Moreover we have the following commutative diagram:

1 I

Note that there are canonical covering projections Eέ —• Et and E. • ->

E.. We denote by Ft the foliation for E( which covers the foliation F. of
£ z recall that the leaves of F are the fibers of pi: E. -• Ĝ  . We denote
by Ft the foliation of £ y which covers the foliation F. of E{.

4.2. Stratified flat bundles. Recall that Γ\ denotes the fundamental
group nχ{E^). Note that Γt acts on Ei via deck transformations for the
universal covering projection E{ -* E(. Since Et = fl(xR, Γz also acts
on Di xR: in fact, it is a consequence of 2.7.l(b), (c) that the action
Γ. x (Zλ x R) —> Di x R is the diagonal action for two separate actions
Γ. x D. -> ^ and Γ. x R -> R. It is a consequence of 2.6.1, 2.7.1, 2.9
that the bundle projection pi: Ei -• G is equal to the quotient of the
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projection Z>z x R -» Di under the group actions Γ. x (D. x R) -> Z λ x R

and Γz x Zλ -> Zλ.

A map pw: W -+ Gt is called a stratified flat bundle over G if there
is a group action Γ . x I ^ I on a space X such that the diagonal action
Γ; x (D.x^) —> Zλ xX is a free and properly discontinuous action, and such
that ρw is equal to the quotient of the standard projection Zλ x Λf —• D.
under the group actions Γ. x Zλ —> Zλ and Γ. x (Zλ x X) -> Dtx X.

We have just seen that pt: £"• —• Gt is an example of a stratified flat
bundle with X = R. Other examples can be constructed by choosing
subsets X c M (or X c M x Ik) which are left invariant by the deck
transformation action YtxM -+ M (orby Γz x(Af x 7fc) —• Mxlk). Note
that such Γf-invariant subsets can be obtained by starting with any subset
Y CM (or Y c M x Ik) and setting X = Γ f T, where ΓZΎ denotes the
orbit of Y under the Γz action. We get the following useful examples of
stratified flat bundles

(4.2,)

b y choosing X = M x Ik, M ,TiTj q, Yfij q,S(, o r E(, respectively.
We can add to this list the projection

(4.2.2) pf .q-^G,,

by choosing X = Dj. The projection pf is not a stratified flat bundle

projection because the diagonal action Γf. x {Dj x Dt) —> Dj x D( is not a

free action. However, pt will have its uses in what is to come.

4.3. Flat foliations. Let pw: W -> Gi be a stratified flat bundle con-
structed from the group action Γ. x X —> X. Suppose that Λf is a mani-
fold. Then a foliation ^ for PΓ is a flat foliation if there is a foliation
^ for X whose leaves are permuted by the action Γf. x X —• X, and ^
is the quotient under the diagonal action Γz x (Dt x X) -> Di: x X of the
foliation of D( x X with leaves equal to {b x L: b e Zλ, L e ^} . For
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example we get the flat foliations

(4.3.1) FiJt9ofEiJtq and Fi§iofEi§i9

by choosing (X99') = ( Γ . J S ^ , Γ.JF^) or {E.9F.)9 respectively. Note

that each fiber of Ei and Ei f. is the union of leaves in F( and

Fi ., and is thus foliated by the restrictions of these foliations.

4.4. Flat mappings between flat bundles. Let pw: W -> Gi and pw :

W7 -+ G be two stratified flat bundles formed from the group actions

Γ. x X -> X and Γ. x X1 -> X1. A mapping g:W -* Wf is called a

flat mapping if there is a Γ^.-equivariant map r: X —> X' such that g

is the quotient of I x r: Di x X -^ D. x Xf under the diagonal actions

Γ; x (Zλ x X) -> Zλ x X and Γ, x (Di x X') -> Z). x JΓ ;. Using this

construction we get the following examples of flat maps:

(4.4.1)

by choosing r: X

spectively. Here p^: Et

(cf. 2.7.1). Note that strictly speaking, p. t is not a flat mapping since

pf: C. —• Gf. is not a stratified flat bundle.
There are also the useful (nonflat) maps

(4.4.2) if .E^A,, if .JE^B,

defined as follows. Let r: Ei -> D. x (M x Ik) be given by r{y) =

iPiiy) 9 gi(y)) f o r each y eE 9 where gt: E^ Mxlk is a fixed covering

for the map gt: Et —> M x I such that Image(gt) — Et { . Then define

if to be the quotient of the map r under the action Y. x Et -• j ^ . and

the diagonal action Y. x (Z). x (M x Ik)) -+ Dfx (M x Ik)\ and define /f

to be the composite map

Ei—>Ai = B.χI >Br

Note that any flat map g\W -^ Wf between stratified flat bundles, or
either of the maps in (4.4.2), is fiber preserving.

t

X'

->

ij,

to

Ẑ  c

f( and

^Ei,j,<>

Ei,j,<cTi,

be equal to pf. E(

:5, .cM ' 0 Γ YiEi,a

denotes the standard

J,<,CAi

cΓiTj,g C

projection

: 5,. - £,.,

Λ/ x Ik , re-
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4.5. Metrics on the fibers of flat bundles. For any stratified flat bundle
pw: W -> Gt and any point b e Gf we let Wb denote the fiber lying
over b. For any flat map g: W —• W' between stratified flat bundles
over Gt, and for any point b e G(, we denote by gb: Wb —• W'h the
restriction of g to Wh. For example we have, for each b e Gn the maps

Pi,i,b: Ei,i,b " > Ci,b> Si,i,b'' Si,i,b - * Ki,b> a i l d ti,j,q,b: Ti,j,q,b " >

E i j q b from (4.4.1). Likewise we let Fi . b and Ft . q b denote the

trictions to E. i b

There are metrics

rffj6( , ) on the fiber A. b,

(4.5.1) dfb( , ) on the fiber Bib,

di b( , ) on the fiber Ct b

defined as follows. Note that there are canonical covering projections

A. b —̂  M x / and Bi b —̂  M via which A. b and ΰ z b inherit Rie-

mannian structures from M and M x Ik which has the product metric.
We let dib( , ) and di b{ , ) denote the metrics associated to these

inherited Riemannian structures. To get the metric dt h{ , ) on the fiber
Ci b we set

^ ( • ^ > y) = minimum{rff (^, y)}

for all x , y G Cz ^ , where the minimum is taken over all preimages x, y
of x, y under the canonical "covering projection" Ẑ . —• Ci b .

We will denote by

(4.5.2) < , , , ( , ) , < „ , ( , ) , < , , , , , ( , ) , < y , β ) 6 ( , ), etc.

t h e r e s t r i c t i o n o f df b{ , ),dfb{, ) t o t h e s u b s e t s Ei . b,Si i• b,Eχ., }, q b,

We can now state and prove the main two lemmas of this section.
4.6. Lemma. Suppose that M is compact. Then for any i, any b e Gif

any j and any q, the foliation F. • q b o/§§4.3 and 4.5 is of compact type

(cf 1.5.2 for "compact type") with respect to the metric df . b . Moreover,

if iφ J' > or if i = j but q Φ 1, then Ft • q b has no compact leaves.
We will need the following notation in the next lemma. For each a > 0

and each b e Gz we let Et i b denote the set of all points in Bt b having

a distance, with respect to the metric df b( , ), less than or equal to a

fromEfib.
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4.7. Lemma. Suppose that M is compact. Then given any number
r > 0 there is a number a > 0, such that for any i, any b e Gr and
allx e Bt. h - Ef b, the radius of injectivity for Bt b at x is greater than
r.

Proof of Lemma 4.6. Note that F. .. b is a covering for the foliation
Fj of the space E.. Since E. is compact (cf. 2.4), it follows that F. . q b

is of compact type.
In showing that Ft b has no compact leaves, we first consider the

case where i φ j . Let Γf. b, denote the isotropy subgroup for the action
Γj x Dt —• Όi at an arbitrary point b' in the preimage under the projection
D. —> D./Γ. = G( of the point b e Gr Note that Γ̂  b, is an infinite cyclic
group with generator which we denote by gb> (cf. 2.4, 2.6.1, 2.7.1, 2.9);
thus any compact leaf L{ e F. . q b is in the same free homotopy class
(in A. b) as {gb>)n for some integer n. Under the canonical covering
projection Ei . q b -*• E., the leaf L{ is mapped onto a leaf L2 of F.
which is in the same free homotopy class (in M) as {gb>)m for some
integer m. On the other hand, the leaf Ei b of Fi has the same free
homotopy class (in M) as gb>. Now it follows from the definition for
F., Fj, E{, Ej given in §2 (just prior to 2.4) that E( = E., i.e., / = j ,
which contradicts our assumption that i φ j .

Now we consider the case where i = j but q Φ 1. For gb, as in the
previous paragraph we know that any compact leaf L{ e Fι: i. q b is in

the same free homotopy class (in Ai b) as (bbι)
n . Note that lf(Ei b) is

a compact leaf of F( z { b in the same free homotopy class (in A{ b) as

gb, (cf (4.4.2) for if). Let A: Sx x [0, 1] -> ^ / j 6 be a homotopy which

connects Lj to a power of lf(Ei b), and let π b: A( b -> Bt b denote

the map A. b = Bt bxlk pΓ0J > βf. ^ . Apply Lemma 2.5.1 to πz boh: Sι x

[0, l ]->5. f a to get a homotopy (πf. >ftoA)r: Sι x[0, 1 ] ^ ^ ^ , ί G [ 0 , 1],

such that (πi• b o A)j: 5 1 x [0, 1] —> 5 z ^ is a flat band. There is a unique

lifting of ( ^ o A J j S1 x [0 , l]-+Bifb to //: 5 1 x [0, l]-+Aib which

satisfies the following properties: each H \ Sι x t parametrizes a leaf of

U F( f. ^ // I 5 1 xO parametrizes Lj // | 5 1 x 1 parametrizes a power

of /f (is,- Λ) It follows that q = 1, which contradicts our hypothesis that

This completes the proof for Lemma 4.6.
Proof of Lemma 4.7. For a given b e Gi we suppose that there is no

such a > 0. Then for any given a > 0 there is an essential smooth map
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h: Sι -> Bt b which has the following properties.
4.8. (a)' length(Λ) < 2r in B{ b .

(b) The distance from A(l) to Et, t b is greater than α in Bi b .

Since any essential closed loop in a compact nonpositively curved mani-

fold is homotopic to a closed geodesic (cf. [3] or [16]), from 4.8(a) and the

compactness of M it follows that there is a homotopy H: Sι x [0, 1] -> M

of the composite map Sι - ^ Bt b

 proj> M which has the following prop-

erties.
4.9. (a) H is a smooth map, and the lengths of H \ Sι x 1 and

H I 1 x [0, 1 ] are both less than r , where r is independent of a.
(b) // I Sι x 1 is a geodesic in M.

Choose a lifting //: S 1 x [0, 1] -> 5 . ^ of # such that 7/ | Sι x 0 = h .
Then we deduce from 4.8, 4.9 that the following is true.

4.10. There is a closed geodesic in Bi b - E"~?r

b , where r is inde-
pendent of a.

On the other hand, there is the closed geodesic lf{E. b) in E( . b (cf.

(4.4.2) for if) note that lf{Eib) is also a compact leaf in F i i b . The
fundamental group nι(Bi b) is an infinite cyclic group with generator gb>

(cf. the proof of 4.6 and note that A{ b = B. b*Ik)', moreover any closed

path representing gb, is freely homotopic to 7Z {Et b) in B( b . The closed

geodesic of 4.10 must be freely homotopic to (gb>)n for some integer n .

Thus by applying Lemma 2.5.1 in B( b to the homotopy which connects

the geodesic of 4.10 to a power of lf{E( b) we see that the geodesic of

4.10 must be a leaf of F . b , which contradicts 4.10.

We have shown that for each b e Gi and each r > 0 there is an a
satisfying the conclusions of Lemma 4.7. To see that a may be chosen
independent of b e Gi note that, for a fixed /, there is only a finite
number of different isometry types for the pairs (Bi b, Et b), b e Gn

with respect to the metric df b given in (4.5.1).
This completes the proof of Lemma 4.7.
4.11. One-parameter families of homeomorphisms φt: Bι — B; and

ψt: q -+ Cn t e ( 0 , 1 ] . F o r e a c h b e Gt let φty. Bib -+ B. b, t e
[0, 1], be the unique map satisfying the following properties for each point
x € Bib: dftb(φltb(x),Eiιitb) = tdlb{x,Eiib);\tX g: [0, <x>) - Bi>b

be the geodesic ray which starts at the point #(0) e B{ b and contains

both x and φt b(x). Then g meets E i i b perpendicularly at g(0).
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Note that each φt b: B. b -+ B. b, t e (0, 1], is a homeomorphism, and

that φQ b: Bχ. b -» E. i b is the orthogonal projection onto E. . b. In

order to verify that φt b: Bt b —• Bt b is a well-defined map for all t e

[0, 1] we must use an equivariant version of [3, pp. 8-10] as well as all

of the following properties: B( b is a complete Riemannian manifold

with nonpositive curvature everywhere; Ei t b is a closed and connected
locally convex subset of B. b the inclusion map E. b c Bi b induces
an isomorphism of fundamental groups.

Although Ci b need not be a manifold we can still define a geodesic

in Ci b to be the images of geodesies in D{ under the "canonical cover-

ing" projection Di -• Cib. For each b e Gt let ψtb\ Cib -+ Cib, t e

[0, 1], be the unique map which satisfies the following properties for each

point x € Citb:d9b(ψ b(χ),p (lf(Ei>b))) = tdfιb{x,pu(lf{Eitb)));

the geodesic which connects x to pt z(/z b{Ei b)) contains the point

ψt b(x). Note that Ci b is the orbit space of a finite cyclic group ac-

tion Z m x Dt —• Dz by isometries (cf. 2.7.1, 2.7.2 and use the fact that

nι(Ei t b) is an infinite cyclic group); moreover there is a fixed point

of the action Zm x D. —• Dt which is sent to /?• i{lf{Ei b)) under the
quotient map Zλ -• DJZm = Cz ^ thus by Hypothesis 4.0 there is for
any point x e Ci b a unique geodesic segment in Cz b connecting x

to Pi9i(lf(Ei9b)). Note that each ψtb: Cϊb -> C,.^, ί G (0, 1], is a

homeomorphism, and that Image(^0 b) =p j(lf(Eitb)).
Now set

Φt=\J Φt,b> Ψt
beGi i

4.11.1. Lemma. For all i, b e Gr x, x e B{ b, y 9 y
f e C b, and

for all t e [0, 1], the following are true.

(a) d*b(x,x')>d*b(φt(x)9φt{x')).

(b) tdf9b(y9y')>df9b(ψt(y)9ψt(y')).

(c)Let qiJyb'.Bib-+Cib denote the composite map B i b - ^ E i i b

- ^ C i t b . Then dCb(qiJίb(x),qι^b(x'))<d?b(x,x').

Proof of Lemma 4.11.1. To prove part (a) we use the convexity of the

distance function df b: B( b x Bi b —• [0, oo), together with the following

fact: if g, f: R ->• Bi, b are two geodesies in Bt b which meet E . b
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perpendicularly at g(0), /(0), then the minimal distance from Image(^)

to Image(/) is equal to df b(g(0), /(0)). This last condition is equiva-

lent to the fact that the orthogonal projection φQ b: Bt b —• E{ . b is not

distance increasing (cf. [3, pp. 8-10]).

To prove part (b) we recall that Zλ is a complete Riemannian manifold
having nonpositive sectional curvature everywhere (cf. Hypothesis 4.0),
and C. b is the orbit space of a finite cyclic group action Z m x D. —• D. by
isometries. If the cyclic action Zm x Dt -• Zλ were trivial, then 4.11.1 (b)
would follow from Lemma 2.1 (a). In general there is a one-parameter
family of maps ψt b: Di —^ Di9 ί G [0,1], which commute with the
action Z m x D. —> Dt, such that the ψt b are just the quotients of the
ψt b under the Zm-action. Now 4.11.1 (bj holds for the ψt b (by 2.1 (a)),
so 4.11.1 (b) must also hold for the ψt b .

Part (c) of this lemma follows from the fact that the orthogonal projec-

tion φQy. Bib - E i i b saύsήεsjf^b(φob(x), ΦOyb(x')) < dfb(x,x)

(cf. [3]), and the map P i J i b \ E i i b -> Cib satisfies dfb(piib{z),

P i , i , b [ z ) ) < d f 9 i t b ( z , z ' ) f o r a l l z , zf e E i i b ( c f . 2 . 7 . 1 ) .
This completes the proof of Lemma 4.11.1.

5. Some equivalences of Ω-spectra

In this section we introduce more stable pseudoisotopy Ω-spectra. The
main results of this section state that various of these Ω-spectra are equiv-
alent to one another (cf. 5.3, 5.5, 5.9).

In the rest of this paper we adhere strictly to the following convention.

5.0. Convention for §§5 and 6. Any spectrum ^ = {^ : j e Z}

with structure maps {h.: S?. —> ΩJ^.+1} will be identified with the singular

complexes of the spaces {J^ : j e Z} and with the maps induced on the

singular complexes by the structure maps. Thus if each h-\ S?. —> Ω^. + 1

induces an isomorphism on homotopy groups, then ^ is an Ω-spectrum,

and also any weak equivalence of ίl-spectra is an equivalence of Ω-spectra.

5.1. The Ω-spectra &>^{pw) and &^{pw). Let pw: W -> Gt denote

any stratified flat bundle of §4.2. For each integer./ > 0 we shall denote

by £Pj{pw) the subspace of all stable pseudoisotopies h e £P.(W) which

has the following property: h{Wb xRj xln χ[0, 1]) c WbxRj xlnx[θ, 1]

holds for all beGn where Wb = (pw)~\b), and IV x Rj x Γ x [0, 1]

is the domain of h .
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Each of the fibers Wh of the projection pw is provided with a metric

d^( , ) in §4.5. For each number a > 0 and each integer j > 0 we let

^j(pw α) denote the subspace of all stable pseudoisotopies h e ^j{pW)

such that for all b e G( the restricted stable pseudoisotopy h \ Wb x

R7 x /" x [0, 1] is α-controlled over Wb x Rj (cf. §1.2 for "control").

We define &*{pW) to be the direct limit space l i m i t ^ ^ i ^ / Λ a).

For each integer j < 0 we set ^(pw) = ΩΓj(&Q(pw)) and &f(pw) =

Ω~7 '(^(/Λ)). We let &+{pw) and i^(/Λ) denote the collection of

spaces {^(pw) :j eZ} and {&f(pw) : j e Z } .

5.2. Lemma. &+{pw) and ^(pW) are Ω-spectra.
Proof of Lemma 5.2. Note that it follows from Theorem 2.4 and Hy-

pothesis 4.0 that there is a finite triangulation L for Gi which has the
following properties.

5.2.1. (a) Let Gt k denote the union of all strata in Gt having dimen-
sion less than or equal to k. Then for each simplex A e L, AπGi k is
also a simplex of L.

(b) There is a piecewise smooth triangulation L of D such that the

projection D. —• Gt maps each simplex of L homeomorphically onto a

simplex of L.

We will first show that &JφW) is a Ω-spectrum. To do this it will

suffice to show that for each integer j > 0 the spaces &>j(pw) and

Ω&>

 +ι(pw) are homotopy equivalent. Note that for each subset K c G.

we can define ^(p^) as in §5.1, where p^ :WK-^K denotes the restric-

tion of pw to the subset Wκ c JV^ and where Wκ = (pw)~\κ). For

each j > 0 there is a map fκ .\ ^{pζ) -> Ώ^j+ι(p^) defined as fol-

lows. Let /: &j(p%) ^^j+\(P^) be induced by the inclusion [0, 1] c R.

Two null homotopies of i are obtained by translating [0, 1] to +oo and

to -oo. This defines for each h e ^j(pK ) the loop fκ j(h) of stable

pseudoisotopies in 3°j+x{pκ ) -
A. Hatcher has proven in [17, Appendix II] that fκ . is a homotopy

equivalence if K is any point of Gt. Thus we may proceed by induction
over the skeleta of L to show that fκ is a homotopy equivalence for
each subcomplex K c L. In more detail let K{ c K2 c K3 c c Km =
L be subcomplexes of L such that Kr+χ = KrUAr, where Ar is a simplex
of L such that dim(Δr) > dim(A:r) and dAr c Kr. For the induction
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step we consider the following commutative diagram:

(5.2.2)

The map φr+ι in (5.2.2) is obtained by restriction; in (5.2.2) the

rows are fibrations, the map fκ is an equivalence by induction hypoth-

esis, and the map Ωar{fb ) is an equivalence by Hatcher's result, where

ar = dim(Δ r), and br is the barycenter of Ar. Thus, fκ . is also an

equivalence (cf. Convention 5.0).

This completes the proof of Lemma 5.2 for &Jφ ) . The proof for

^ (p ) is carried out in exactly the same way.
This completes the proof of Lemma 5.2.

5.3. Lemma. There is an equivalence of ζί-spectra ^ (p. ) =

^°* iPi i l ) ' which is Educed by the inclusion map Γ. . { c Ar Here

pf: A{ -• Gt and p] t χ \TiJΛ-+ Gt are the stratified flat bundles o/§4.2.

Proof of Lemma 5.3. First note that ^(pf) = &?(pf) because pf
B

is just the composite map At = Bi x Ik p r 0 J > Bi -^-> Gi. We also have

an equivalence of Ω-spectra &%(pf\ {) = <^{pf , ) To verify this last

equivalence we note that the inclusions Ei . c Si • and E x c 7) f. j

induce equivalences of Ω-spectra ^{pf i) = ̂ {pfti) and έP(pfJΛ) =

^ * (P, , i ) ' because 5/ f. is the fiberwise tubular neighborhood for E. .
in Bt, and Γz . χ is the fiberwise tubular neighborhood for E{ . χ in

Ai. Moreover, the restriction of the projection At = Bi x /Λ p r 0 J > ^ z

to ^ . j yields a diffeomorphism E. ( χ -+ Et f. (cf. 4.1.2), showing that

&?(pfti) = &ϊ!(pftitι) Thus to complete the verification of 5.3 it will
suffice to show that the inclusion map St i c B( induces an equivalence

of Ω-spectra ^ ( p f .) s &P(pf).

Let L be a triangulation for Gέ as in 5.2.1. For each subcomplex K c

L the inclusion S . κ C Bt κ induces maps of Ω-spectra gκ # : &%(pf z ̂ )

- ^ ^ % ) > where S,,,,,.' = ( ^ , . ) 1 f f ' ' '
(pf) \K), and pf ̂  = pf \ B i κ . To complete the proof of 5.3 it is
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enough to show that for each subcomplex K c L the map gκ # is an

equivalence of Ω-spectra. On the other hand the argument given in the

proof of 5.2 shows that it suffices to consider only those K which are

single vertices of L. Let b e G{ denote a vertex of L. For any num-

ber a > 0 we will denote by pf t : E?j -> Gt the stratified flat subbundle

of pf: B{ -+ G whose fiber E" f. x over any point x e G( consists of
all points in Bt χ which are at a distance less than or equal to a from

Ei i v i n (B. v , df A , )) . Now we apply 4.7 and 3.17.2 (see also Con-
l~*~h ft

vention 5.0) to get a deformation of ^ (p. b) into its direct limit subspace

Thus, to complete the proof of 5.3, it will now suffice to show that

the inclusion map ^ (p. .• b) -+ l i m i ^ ^ ^ ^ (pt . b) is an equivalence.
To verify this we shall make the assumption that there is a sufficiently
small number ε > 0 such that Sf. . χ = E] χ holds for all x e Gt.
there is no loss of generality in making this assumption (cf. 4.1.2). For

each a > ε a homotopy inverse to the inclusion 9°^ (/?. . b) —• ^ (pf. f. ft)

can be defined by sending any stable pseudoisotopy h: E" . ^ x R j x In x

[0, l ] - * ' ! ? ^ ^ x R j x / " x [ 0 , 1] in ^(pf^b) to the stable pseudoisotopy

(φt x id) o h o (071 x id) in &ϊ(pliίb), where ί = ε α " 1 , ^ : 5 / f t -, 5 / ) f t

comes from §4.11, and id: Rj x In x [0, 1] -+ R7 x In x [0, 1] is the

identity map. Thus 4.11.1 (a) guarantees that (φt x id) o h o (0" 1 x id) is

This completes the proof of Lemma 5.3.
5.4. The Ω-spectrum ^{pf ( { qt). In the remainder of this section

we let q.: T. . x -> C7 denote the composite map

TiJΛ C ^.. = 5,. x / ^P\/ ^ . > f . ^ C / ?

where s( ( and p^ f. come from §4.4. For each integer j > 0 we define

ίPjiPi i ! q() to be the space of all maps g: [0, oo) -» ^ . (/?. z ̂ ) which

have the following property.
5.4.1. There is a number a > 0 depending on # such that for all

t > 0 and all b e G{ the restricted stable pseudoisotopy g(t): T i i χ b x

Rj x In x [ 0 , 1 ] - ^ Tέ . j ^ x R y x /" x [0, 1] is α ( l 4- ί ) " 1 -controlled over
Ct b with respect to the projection qib: T i i { b -+ Cχ[b and the metric

df,b( > ) o f § 4 5 ( c f § L 2 f o r "control") .
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For each integer j < 0 we set ̂ ( / £ M ί, ) = Ω~ ;iξ(/?Γ ? 1 ?.). Let

^(Pf,i,\ ί, ) denote the collection {^{pτ

uiΛ \ qt) j € Z} .

5.4.2. Lemma. ^{PJi I » #/) Z5> ΛA2 Cl-spectrum.
Proof of Lemma 5.4.2. The proof consists of the argument given for

the proof of Lemma 5.2 but with the following change. Where in the proof
of 5.2 we appeal to a result of Hatcher [17], we now substitute an appeal to
a result of Quinn [25, Theorem 5.9]. Recall that although Quinn's result
is stated for spaces of stable embeddings, it also holds for spaces of stable
pseudoisotopies (cf. Lemma 1.3.1). The remaining details are left to the
reader.

This completes the proof of Lemma 5.4.2.
5.5. Lemma. The map r^: ̂ {pf. χ g.) -> ̂ (pj\ x), which sends

'~*~~h IT
each g: [0, oo) -> ̂  (p. . χ) of 5.4.1 to the stable pseudoisotopy g(0) e

•^—f. rj-ι

^* (Pi i l ) ' *s a n eQuivalence of Ω-spectra.
Proof of Lemma 5.5. We shall complete the proof by constructing a

homotopy inverse r^ to r^ in the category of Ω-spectra. Let ψt: C, —• C{,
t e (0, 1], be the one-parameter family of homeomorphisms from §4.11.
Choose "liftings" ψt: Tiiχ -> Tiiχ, t e (0, 1], of the ψt, te (0, 1],
so that the following properties are satisfied.

5.5.1. (a) ψt\ T. . j -^ T . j is a homeomorphism for each value of
t e (0, 1], and is continuous in t.

(b) g. o ψt = ψt o q. holds for all t e (0, 1].

Now we construct a map r/. &%(pf\ x) —> ^{pf i { g) as follows.

For each stable pseudoisotopy h: Tt . j x RJ x In x [0, 1] -> Γf. . j x R j x

/π x [0, 1] in ^MAΛ) w e define'r^Λ): [0, oo) - ^(pfj^ to be
the map whose value at t e [0, oo) is equal to the stable pseudoisotopy
{ψt,xid)oho(ψ^1 x id), where id: Ry x/" x [0, 1] -+ RJx Γ x [0, 1] is
the identity map and t' = (\ + t)~x. Thus from 4.11.l(b), 5A1, and 5.5.1
it follows that / is a well-defined map with range equal to ^(pf\ x g().
The map r^ is in fact a homotopy inverse to r+, as the reader can easily
check.

This completes the proof of Lemma 5.5.
5.6. Definition. A compact submanifold pair in Gt consists of a pair

of subsets (X, dX) of Gt, which have the following properties.
(a) X and dX are compact subsets of Gt, and ΘX c X.

(b) Let X and dX denote the preimage of X and dX under the
projection map Zλ —• D /Γ. = Gt. Then (X, dX) is a piecewise smooth
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submanifold pair of Di (recall that Di is a smooth manifold by 2.7.1
and 4.0) which intersects all the fixed point strata of the group action
Γj x D -> D transversely.

The codimension of X in Gt is defined to be the codimension of X in
D{, and dX is called the boundary of X.

5.7. The Ω-spectrum &Mj,\ > PΪfti> 9,0 L e t ( Z , β Z ) c G, be
a compact codimension-zero submanifold pair of G such that dZ =
djZ U <92Z and ΛZ = ^ Z Π <92Z , where φ Z , ΛZ) and (d2Z, ΛZ)
are compact codimension-one submanifolds of G^, and ΛZ is a compact
codimension-two submanifold of G{ without boundary. Set

For each integer j > 0 we define ^j(pj\l

x > pff\> 9f0
 t 0 ^>e t ' i e s P a c e of

all maps g: [0, oo) —• ^{pf]\) which satisfy the following properties.
5.7.1. (a) There is a number α > 0 depending on g such that 5.4.1

is satisfied for all t e [0, oo) and all b e (Z - dxZ).

(b) For each & e (d2Z - ΛZ) and all t e [0, oo), the restricted stable

pseudoisotopy g(t): TiΛ { h xΈLJ xln x [0, 1] -• T. j ^ xR^ χln x [0, 1]

is the identity map.
For each integer j < 0 set

The following lemma is proven by using the arguments contained in the
proofs of Lemmas 5̂ 2 and 5.4.2.

5.7.2. Lemma. <^*(pf]X\ > pff\» 9, ) ^ β W Ω-spectrum.

5.8. The Ω-spectrum i^{U,pj)\x, pΓ;.^ 9.). Let 5: (Z - ^ Z ) - .
(0, 00) be a given continuous map. For each b e (Z -dχZ) let ^ c C{. 4

denote the closed ball of radius s(b) centered at the point Pij{lf{Eih))

in Citb . Set Ub = q;ι(Vb), zndU = \jbe{Z_d{Z) Ub.

Roughly speaking the space ^(U, pf}ι

{, pff{ q.) is defined just as

was the space ^{pf)\ , pf^i '•> 9/)» except all relevant pseudoisotopies

have the restricted domain U xRj xln x[0, 1] instead of all of (pf j ) " 1

x (Z - djZ) x Ry x In x [0, 1] for domain, but they still have {pfJΛ)~l x

( Z - 9 1 Z ) x R i x / " x [ 0 , 1] for range. In more detail, for each number
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a > 0 and each integer j > 0 let fyu, p/V, α) denote the space of all

"stable" embeddings h: U x RJ'x I" x [0, 1] -»(p£._ ^ " ' ( Z -dχZ) x R ; x

/" x [0, 1] which have the following properties.
5.8.1. (a) h{Ub x Rj x /" x [0, 1]) c Γ ( ). , 6 x RJ x /" x [0, 1] and

h((Ub n a r ί / u ) x R ; x /" x [0, 1]) c 3Ti ,. , b x RJ x /" x [0, 1] hold
for all be(z-dxZ).

(b) For each b e (Z - dχZ) and each y e UbxRj x I" the composite
path

[0, l] = > > χ [ 0 , l ] c { y i χ R y χ / ' I x [ 0 , l ]

must have diameter less than or equal to a in Ai b x RJ, where 4̂Z ^ x R7

is equipped with the product of the metric df b( , ) from §4.5 and with

the Euclidean metric on RJ.

(c) A | ^ x R ; ' x / " x 0 = inclusion; h(Ub x R ; x / " x l ) c Γ/,/,i,z, x

Rj x /" x 1 and /z(C/̂  x R ; x dΓ x [0, 1]) c ^ . ^ x R ; x dΓ x [0, 1]

hold for all be{Z-dxZ).

Let ^ (C/, pf J j) denote the direct limit space l i m i t ^ ^ <̂  (U,pf '^ a),

and ^.(t/, pj\\ , p/Vj ^) the space of all maps

which satisfy properties analogous to 5.7.1. Let i^(U, pf}\ , P / }}5 j 9,-)

denote the collection of spaces {^(U, pf ) ι

{ , pf f { qt) : j e Z} , where

fyU'Plt > PJJΛ ίi) f o r >< 0 is equal'to Ω^^U^f^ , p ? ^ ^ ) .
The next lemma is proven by using arguments similar to those contained

in the Proofs of Lemmas 5.2 and 5.4.2.

5.8.2. Lemma. ^(U, pf}\ , pf\2\ \ 9, ) w α« Ω-spectrum.

Note that by restricting stable pseudoisotopies defined on (pi t {)~ x

(Z-d{Z) x R7 x /Λ x [0, 1] to the subspace ί / x R j x / " x [ 0 , 1] we obtain

a map ^ : ^ Γ ^ ff f ^\ f̂
5.9. Lemma. p

w α/2 equivalence of Ω-spectra.
Proof of Lemma 5.9. Each inclusion (^ c C(. ^ for 6 e Ĝ  is a ho-

motopy equivalence; in fact Vb is a deformation retract of Cf ^ . Thus it
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follows from [25, §5] that w^ b is a weak equivalence of Ω-spectra, where
w^ b denotes w^ in the special case where Z is replaced by b, and dχZ
is empty. Thus we may argue by induction over various subcomplexes
K c L in a triangulation L for Z -dχZ and imitating the arguments in
the proof of Lemma 5.2, to show that w^ κ is an equivalence for every
subcomplex K c L, where w^ κ denotes w^ in the special case where
Z is replaced by K, and dtZ , ΛZ are replaced by dtZ Π K, ΛZ n K.

This completes the proof of Lemma 5.9.

6. &>m{f) o Jφ : &Jφ) -> ̂ ( M ) is injective

Let Af, /?: E -* G, / : £ -> Af, be as in Theorem 0.4, and let
^(f): ^(E) -• ^ ( A ί ) be the map of stable pseudoisotopy spectra
which is induced by / . Let J^: ^(p) -> ^ ( J ? ) be as in §1.4. The
main result of this section is the following proposition.

6.1. Proposition. The composite map 3°l{f) o J^: ^(p) -• ̂ {M) of
Ω-spectra induces an injection on the homotopy groups of the Ω-spectra.

Proof of Proposition 6.1. We first prove 6.1 when Hypothesis 4.0 is
assumed to hold. Since 4.0 is in effect, we may use all of the results from
§§4 and 5 in our proof of 6.1.

For integers / > 1, j > 0 we define a map rι.\ ^(M) —> &*?{pf) as

follows. Let h: M xRJ x /%: [ 0 , l ] ^ M x R J x /^x [0, 1] represent a

point in ^ ( M ) , and let h: MxRJxln x[0, l ] ^ ¥ x R j x / n x [ 0 , 1] be

the unique lifting of h to a stable pseudoisotopy of the universal covering

space MxRj . By taking the product of h with the identity map D. -> D(

we obtain a stable pseudoisotopy h e ^>

j{Di x M). Note that h is left

invariant by the diagonal action Γ. x (D x M) —• D( x M, and recall

that pf: B. ~> G( is the quotient of the projection map D. x M -> D by

the group action of Γ. on Di x M and D. (cf. §4.2). Moreover, for each

beD;, h maps the subset bxMxRιxInx[0, 1] into itself. Thus we may

define r\h) e &?(pf) to be the quotient of h under the action Γf x (Dt x

M)-> D{xM. For each integer ; < 0 w e define ή: &>j(M) -+ &?(pf)

to be the -fold looping of rj: ^0(M) -+ &%(pf). Then the collection of

maps {ή : e Z} , which is denoted by r^: ^ ( A f ) ^ ^ f ( p f ) , is a map

in the category of Ω-spectra.
Clearly the verification of the following claim would complete the proof

of 6.1. Recall that p.: E. -+ G., j = 1, 2, 3, , denote the components
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of p: E -> G. Let f.: is. -> M denote the restriction of / to E.,

^ ( / . ) : 0>ΛEj) - ^ ( Λ f ) the map induced by /•, and //: ^(Pj) ->
^(Ej) the restriction of J^ to ^(Pj).

6.2. Claim, (a) For any map g: X -> ̂ ( p ; ) of a finite CW-complex
Λf, and for any positive integers /, j with i Φ j , the following composite
map is null homotopic:

(b) For any positive integer / the composite map

is a weak equivalence of Ω-spectra.
First we will verify 6.2(a). We will need the following definition. Recall

that E. is a foliation of E. by the fibers of the projection p.: E. —• G.,

and TjCMx Ik is defined in §4.1.

6.3. Definition. A stable pseudoisotopy h: T. x R* x In x [0, 1] —•

T x R* x /" x [0, 1] is (a, δ)-simply-controlled over {E., F.), with respect

to the projection M !Γ. —• 2?. of §4.1, if the unique lifting h: TxR1 xln x

[ 0 , l ] - > f . x R / x / f l x [ 0 , l ] of A to the universal covering space f. is

(α, δ)-controlled over (E., F.) with respect to the projection i.: T'. -> £

(cf. §1.5 for "(α, i)-control"). Here £ y , Fj are the preimages of E., F.

under the covering projection f. -* Γ y, and f. is the unique lifting of t.

to fj which satisfies f. | E. = identity.
It will be convenient to identify ^ . ( p ) with the space of all maps

u: [0, oo) —• ^{M x I ) which have the following properties.

6.4. (a) The support of each u(t) lies over the subset T c M x Ik .

(b) Each u(t) is (α, (1 + t)~^-simply-controlled over (Ej9 F.) with
respect to the projection *.: Tj -> Ej of §4.1. Here a is a positive number
depending only on M.

6.5. Remark. The identification of ^ ( p ) with the space of maps
given in 6.4 would be routine if we allowed for a dependence of a on t
in 6.4(b) (as well as a dependence of u), and if "(α, δ)-simply-controlled"
were replaced by "(α, J)-controlled". Let t/J denote the space of all maps
given in 6.4, and ul the larger space of all maps given by 6.4, where
in 6.4(b) we allow a to depend on both u and t, and "(α, δ)-simply-
controlled" is replaced by "(α, δ)-controlled." Then u\ is a deformation
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retract of U^ , as can be seen by reviewing the arguments in [25, §4] with

the stable pseudoisotopy space example kept in mind.

Note that ^(M) = ̂ {M x Ik), and since pf: At -> Gt of §4.2 is
B

just the composite map A. = B{ x Ik p r 0 J > B. -^-> (7., we also have that

&ί(pf) = &ί(pt). Thus rl .&^M) - &>(pf) becomes r|:
^ ( M x Ik) - ^ ( p f ) , and ^ ( / y ) o / / : ^ (/?,.) - &>^M) becomes

the inclusion C//(0) c &^(M x / * ) , where ί/^0) = {κ(0) W E ^ 1 } .

Applying these substitutions and also 6.4, we see that the composite map

of 6.2(a) satisfies the following properties.

6.6. (a) Define a homotopy ( ^ ( / y ) o / / ) , : ^ (/?,.) -+ ^ ( M ) , ί €

[0, oo), of &Sfj)oJi b y (^Λfj)oJί)t(
u) = " ( 0 for each M G t/J . Then

for each X G I and each t > 0 the support of the stable pseudoisotopy
r[ o (&>Λfj) o / / ) f o g(χ) lies over the subset \Jq T i J q c ̂ / .

(b) Since X is a finite complex there is a number α > 0 such that

for all x e X, all b e Gt, and all t > 0, the restricted stable pseu-

doisotopy r[ o ( ^ ( / . ) o J>)t o * ( * ) I (({Jq T i j q b ) x Rfl x /" x [0, 1]) is

(α, (1 + O'^-simply-controlled over {[}qEijqb,{JqFijqb) with re-

spect to the projection {{lqtijqh)\ \JqTij\q\b-+ΌqEij\q\b Here we

assume, with no loss of generality, that Image(^) c ^a{Pj) with a > 0 .

If t in 6.6(b) is chosen sufficiently large, then we may use Theorem

1.5.3, in conjunction with 6.6 and 4.6 (for i φ j), to get for each y e

Gt and each x e X a one-parameter family of stable pseudoisotopies

K,y,s
 e ^bΛAi,y), * £ [0, 1], such that

K,y,0 = it ° i&λfj) ° Jί)t ° gW] I Ai,y X R" X /" X [0, 1],y,0 = it ° i&λfj) ° Jί)t ° gW] I Ai,y

and such that hχ χ = identity. Now a homotopy from the composite

map in 6.2(a) to a constant map is obtained by concatenating the homotopy

K o {&.(/.) o jj)s og, se[O,t], w i t h t h e h o m o t o p y \Jxyhx y s , s e

[0, 1]. Note that there is some work involved in showing that the hχ s,

5G[0, 1], can be chosen so that the union \JyeG hχ s, s e [0, 1], is a

one-parameter family of stable pseudoisotopies in &%(pf) continuous in

x. To see this we first choose a triangulation L for G( as in 5.2.1, and

then proceed by induction over the skeleta of L our ( m th) induction

hypothesis assumes that the hx s , s e [0, 1], have been chosen so that

the union \JyeG hχ s, s e [0, 1], is a one-parameter family of stable

pseudoisotopies in 0°^ (p. ) which is continuous in x , that for each x e X
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and each y e f? we have hχ y 0 = [rι o (<^(/7 ) o jf)t o g(χ)] \ Aiy x Rα x

/" x [0, 1], and that h v ' = 1 for each x e X and each y e L w

where Lm = ra-skeleton of L. Furthermore, we assume that hx is

supported on UqTi . q y . Now for each (m-hi)-simplex Δ e L we choose

a map hA: Ax At \ '-+ At, where bA is the barycenter of Δ, having the

following properties: pA = pf ohA, where pA: Δx A.? ^ ^ Δ is the standard

projection; for each y E Δ - <9Δ the restricted map hA:y x A{ b -* A^y

is an isometry with respect to the metrics of §4.5; for each y e dA the

restricted map hA\yxAib -> A{ is a local isometry and a covering space

projection; and "local trivialization" hA: A x A. b -> Ai for /?z. : A{ -> Gz

over Δ is consistent with the local flat structure for pf: At -* Gi given

in §4.2. For each x e X and each y e A we let hχ γ denote the

pullback along the covering space projection hA\ y x At b -> Ai of

hχ χ. Note that {hχ y { : x e X, y e A} is a continuous (in x, y)

family of stable pseudoisotopies in ^(A. b ) to which we may apply

Theorem 1.5.3 (as we applied Theorem 1.5.3 to each individual hχ 0

above) to get a one-parameter family {hx s: x e X, y e A, s e[l, 2]}

of stable pseudoisotopies in &*(A. b ) , which are continuous in x,y9s,

and satisfy hχ s = hχ { for all x e X, all y e dA, and all s €
[1 ,2 ] . We do this for each (m + l)-simplex Δ in K{, and then push
the results back into A. under the {hA} to get a one-parameter family

ihχ,y,s : x € x> y £ Lm+X > κ [ 0 , 2 ] ; o r x e l , y e G(, s e [0, 1]}
which is continuous in x, y, s and which satisfies A 7 = 1 for all

x e X and y e L m + 1 . Note that this one-parameter family extends
to a one-parameter family {hχ y s : x e X, y e G(, ί € [ 0 , 2 ] } of

stable pseudoisotopies in the {^{A. ) : y e G } which is continuous in
* i ,y' iJ

x, y, s this extension can easily be chosen so that each of the hχ has
good control properties (analogous to 6.6(b)); however A 2 = 1 does
not necessarily hold if y ^ Lm+ι . Our induction step is now completed
by simply reparametrizing the one-parameter family {hχ : x e X,
y eGn s e [0, 2]} by s e [0, 1] instead of by se[0, 2].'

This completes the verification of 6.2(a). We turn now to the verification
of 6.2(b).

6.7. The homology functors Bt|( , ) and Eζ( , ) .
6.7.1. Definition. A pair of subsets (X, Y) of G( is called an admis-

sible pair if they have the following properties.
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(a) Y c X; moreover, X ,Y, and Z = c l o s u r e ^ - Y) are all compact
codimension-zero submanifolds of Gt with boundaries (cf. 5.6).

(b) dχZ = YΓ\Z is compact codimension-one submanifold of G. with
boundary. Set d2Z = closure(<9Z - dχZ) and ΛZ = dχZ ί)d2z\ then
d2Z and ΛZ are also compact submanifolds of Gt having codimension
one and two respectively, with d(AZ) = 0 .

We define two Ω-spectra valued functors & [ ( , ) , fiζ( , ) from ad-
missable pairs in Gt as follows. For any admissible pair (X, Y) in G ,
and Z , 9 jZ, d2Z, ΛZ as in 6.7.1, we set

n\(X9Y)=^(pfA) (cf. §1.2),

ul(X, Y)=^{PI)\ , Piti Qi) (cf. §5.7),

where p / j ^ = pf.χ \ {/iiχγ\Z-dχZ) (cf. §4.2 and 4.1.2 for pT.J,

l t l ί ] l T Λ \l t l J ί ]
(cf. §4.1 for t.: Tt ->E.).If Y = 0 then we write H^ΛΓ) for H^JΓ, Γ ) .

We note that the functors B.[( , ) and EΓJ;( , ) satisfy the usual axioms
of homology theory. This is a deep result proven by F. Quinn in [24] for
the functor H^( , ), and is an easy exercise for the functor Eζ( , ) .

6.8. A natural map w^( , ): Έί\( , ) -» EΓJ;( , ) . We define a natural

map w^( , ): H^( , ) -• fiζ( , ) between functors as follows. Let

ht: {{Pi o t.)-\z - dχZ)) x Ra x /" x [0, 1]

-> ((p. o ί.J-^Z - 8χZ)) x RΛ x 7Π x [0, 1], t e [0, oo),

be a one-parameter family of stable pseudoisotopies representing a point
{ht} eE.\(X, Y). Without loss of generality we may assume that the ht,
t e [0, oo), have the following property.

6.8.1. There is a neighborhood iV for d2Z - ΛZ in Z - dχZ such

that for each t > 0 the restriction A, | ((p. o f . ) " 1 ^ ) ) x Ra x 7Λ x [0, 1]

is the inclusion map.
Now we choose the map s: Z - dχZ -> (0, oo) of §5.8 so that the

following holds.
6.8.2. (a) There is another neighborhood Nf for d2Z - ΛZ in Z -

dχZ , such that TV is also a neighborhood for Nf in Z - dχZ .

(b) For each b e (Z - dχZ - Nf) the distance in Gz from 6 to (J^ -

Z is greater than $(6). The distance function df: Gt x (?. -> [0, oo)

which we are using here is defined as follows. For any x,y e Gt set
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df(x, y) = minimum{jf(Jc, j;)}, where x, y are any preimage points

for x, y under the projection Zλ —• Di/Ti = Gt, and di ( , ) is the

metric which Zλ inherits from M (cf. 2.7. l(b)).

(c)Let dN' denote the topological boundary for N1 in Z-dχZ . Then
for each & e dN1 the closed ball of radius s(b) centered at b in Gt is
contained in N.

Let U c ({pf. X)~\Z - dχZ)) denote the subset constructed in §5.8,

where in §5.8 the function s: Z-dχZ -» (0, oo) satisfies 6.8.2. Construct

from {ht} of 6.8.1 a one-parameter family of stable embeddings h't: U x

Raxln x [0, 1]->(*£,. 1 ) " 1 ( Z - a i Z ) x R f l x / " x [ 0 , 1], /G[0,oc),as

follows. Let Wb denote the closed ball of radius s(b) centered at b in

Gt. Note that it follows from 6.8.2 that for any b e (Z - dχZ - N1) the

restricted family of maps ht \ ( (p / oί .)" 1 (^))xR f l x/ l l x[0, 1], te[0,oo),

lifts to a unique family of embeddings h't b\ Ub x Rα x In x [0, 1] —•
Γ / , / , i ^ x R α x / " x [ 0 , 1], ^G[0, oo), satisfying

h'tb\(Ub xRa xln xθ) = inclusion.

If b e N', then we define tit b: Ub x Ra x Γ x [0, 1] -> Γz .>1>ft x Rfl x

7" x [0, 1], / G [0, oo), to equal the inclusion for all t > 0 . Set

^ = U h't,b> ί € [ 0 , o o ) .

Note that the construction {ht} -> {/*,'} yields a well-defined map between
Ω-spectra

( c f 6 8 2 a n d § 5 8 )

composition of u^(X, Y) with the equivalence of Ω-spectra
We now define the map w^X, Y): Mι(X, Y) -> H^(X, F) to be the

given by Lemma 5.9. If Y = 0 , then we write w+(.Y) for any w^(X, y ) .
6.8.3. Lemma. In the special case where X = G( and Y = 0 we will

denote the map w^(X, Y) by w^: ^{p. o t.) -> ̂ {pJtiΛ \ Qt) Then the

map w^ is an equivalence of Ω-spectra.
Proof of Lemma 6.8.3. Let K denote a triangulation for Gt as in

5.2.1, and K* the "dual cell complex" for K. That is, for each simplex
Δ e K the "dual cell" Δ* e K* is defined to be the union of all simplices
e e K^x) in the first barycentric subdivision of K such that e ΠΔ = b(A),
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where b(A) is the barycenter of Δ. The "dual cells" Δ* e K* are always
cone spaces, but they are not always PL cells because Gi is not in general
a PL manifold. Let K* c K\ c c K* = K* denote an increasing
sequence of subcomplexes of K* such that for all i < n , K*=ι = K* U Δ*
for some Δ* e K* with dim(Δ*) > dim(A:*) and dA* c K*. Define an
increasing sequence of subsets Sx c S2 c c Sn = Gt by induction
as follows: Si+ι is the union of S( with all simplices e e K^ι+2) in the
(/ + 2)-fold barycentric subdivision of K which intersect with K*+ι. Note
that each S. is a regular neighborhood for K* in G{, and that each pair
(»S/+i, Sj) is an admissable pair.

We complete the proof of 6.8.3 by showing (by induction over i) that
each map w^S^: H 1 ^ . ) -> EΓJ φ ) is an equivalence of Ω-spectra. Sup-
pose that this is true for all i < r. Consider the following commutative
diagram:

The horizontal maps in this diagram, which are induced by the inclusion

maps Sr c Sr+ι and (Sr+ι, 0) c (5 Γ + 1 , 5Γ) are fibrations in the cate-

gory of Ω-spectra (this is one of the homology axioms for H | ( , ) and

Eζ( , ) (cf. [25, Appendix])). Thus to complete the induction step it will

suffice to show that w^(Sr+l, Sr) is an equivalence of Ω-spectra (recall

that Convention 5.0 is in effect).

Let G( rι denote the stratum of the stratified space Gt which contains

the barycenter b(Ar) of Ar. Let Di r, c Di be a connected component of

the preimage of G( r> under the "covering projection" Dt -> DJTi = G.,

and choose a point br e Ό{ r, in the preimage of b{Ar). Let Γ̂  c Γ(

be the isotropy subgroup at br of the action Γ. x D{ -+ D{. Let Vr c

TD{ denote the subset of all vectors in the tangent space of Zλ at br

which are perpendicular to Di r> at the point br\ let Γ̂  x Vr -> Fr be

the action induced by Γ" x Zλ -• Di let Γ': (F. x R) -^ Vr x R denote

the diagonal action, where Γ̂  acts on R through the homomorphism
hi 2 : Γ , "^ Γ/,2 o f 2 1 0 ' a n d l e t /^r: (Fr x R ) / Γ / ^ Fr/Γ/ denote the
quotient of the standard projection map Vr x R —• Vr under the actions

by Γ". Note that the projection map pi: p~λ(Sr+ι - Sr, d(Sr+x - Sr)) -*
(5Γ + 1 - 5 Γ , d(Sr+ι - Sr)) is topologically equivalent to the projection map
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pr x id: ((Vr x R)/ΓT) xRux (f , df) -> (Vr/TT) x R" x (Γ , df), where
id: R" x (f , df) - RM x {f , df) is the identity map, v = dim(Δ r), and
u = (dim(Gi rt)-υ). Thus (by 1.3.1) there is the following equivalence
of Ω-spectra.

6.8.3.1. Hj(S Γ + 1 ,S Γ ) s^ , + i l (/> Γ ) .

Note that the projection qitb{Ar): £ M , I , * ( A , ) ~> Ci,b(Ar) ( c f § 5 4 ) i s

topologically equivalent to the projection map pr x id: ({Vr x i?)/Γ') x
R " + " -^ (F r/r;) x R M + \ where id: RM+υ - RM+V is the identity map;
and the intersection Gt r, Π (5 r + 1 - 5 r , 9(5 r + 1 - 5Γ)) is homeomorphic
to R" x (f ,df). Thus (by 1.3.1) there is the following equivalence of
Ω-spectra.

6.8.3.2. πl(Sr+ι,Sr)*Ωυ(^+u+y(pr)).

It follows from 6.8.3.1 and 6.8.3.2 that H|(S Γ + 1 , Sr) and H^(5Γ + 1, SΓ)
are equivalent Ω-spectra. The remaining details, in verifying that
wΛ^r+\' Sr) is actually an equivalence of Ω-spectra, are left to the reader.

This completes the proof of Lemma 6.8.3.
In light of Lemma 6.8.3 it is clear that the verification of 6.2(b) is

completed by the next lemma.
6.9. Lemma. The composite map o/6.2(b), when restricted to any com-

pact subset C c ^(/? . ) , is homotopic to the restriction of the following
composition of Ω.~spectra equivalences:

Here el exists because Γ. is a tubular neighborhood for E{ in M x Ik

with projection map tt: Ti^Ei (c/§4.1), e\ is the equivalence of Lemma

5.5, and e\ is the equivalence of Lemma 5.3.

Proof of Lemma 6.9. First, as with the verification of 6.2(a)r it will be

useful to identify ^(/?,-) and ^ ( p . o tt) with C/J of 6.5. Now we shall

construct a homotopy w^ t: C/J -• ^*(Pu,ι'> 9, ), ί € [0, 1], of ti;^, and
a h o m o t o p y ( r ί o ^ ϋ ί J o / ^ : U ^ ^ { j i f ) 9 t e [ 0 , l],of r[o
such that ^ 3 o e+

2 o tt;+ j I C = (r^ o ^ ( ^ .) o J^){ \ C, where C is a fixed

but arbitrary compact subset of ul. Clearly this will complete the proof
of Lemma 6.9.

To get w ^ , / G [0, 1], we define functions st: G( -• (0, oc] by

st(b) = (1 - t)~ιs(b) for all b € G/5 where 5: G/ - • (0, oo) is the
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function given 6.8.2 when X = Gt and Y = 0 in 6.8.2. Note that

by substituting st for s in the construction of the map u^(X, Y): t/J ->

K(u>pjy,i > Pff,ι ίf )
 i n §6.8, we obtain a homotopy u.{X, Y)t: ϋl -

K(ut> Pu]i'PIΪI ><!>)> ί e [ 0 , l ] , o f K(X,Y). We set w. t equal to
the composite of u^X, Y)t with the Ω-spectra equivalence

C2? / T T •• > 1 - J-̂  \ Z N-J ^τ?ί / i . 1 . / , 2 \

^ ( ^ ' Λ ,; , i 'Λ ,; , i ; ^ ) = ^ ( Λ ,; , i 'Λ ,; , i ;^)
of 5.9.

Now we will construct the homotopy (r̂  o^(f.) o /J) /, ί € [0, 1]. Let
W / i ) ° -0,> ί e (0, oo), be the homotopy of ^(./;.) o /j given in 6.6(a).
Note that the composite homotopy r[ o {^{ft) o /„'),, ί € [0, oo), has the
following properties.

6.9.1. For each b e Gn each x e ul, and each £ > 0, the support of
the restricted stable pseudoisotopy r[ o (^(yj) o /J)r(x) i ^ x R ^ x f x
[0, 1] -> ^ 6 x R f l x / " x [ 0 , l ] lies over the subset |J^ Ti,],q,b

 c Ai,b
(b) Given any compact subset C c u\ and any ί > 0, if the number

λ > 0 is chosen sufficiently large, then for each b e Gi and each x e G
the restricted stable pseudoisotopy

will be (α, δ)-controlled over (|J^Eij,q,b^qFi,i,q,b) w i t h r e s P e c t to
the projection \jqtiLqy. U ^ / , / , g , ^ ' U ^ / , / , ^ ^ ' w h e r e α depends
on C, but does not depend on δ .

If λ in 6.9. l(b) is chosen sufficiently large (making δ sufficiently small
in 6.9. l(b)), then we may use Theorem 1.5.3, in conjunction with 6.9.1 (a),
(b) and 4.6 (for / = j), to find for each y e Gt and each x e C a one-
parameter family of stable pseudoisotopies ^ J t ) ί : ^ y x R f l x / Λ x [ 0 , 1 ] —•
Ai x Ra x In x [0, 1], t E [0, 1], which has the following properties.

6.9.2. (a) gy χ 0 = r[ o (^(yj) o /j)A(χ) M ί y χ R f l x / " x [ 0 , l ] .

(b) Set gt{x)'= \JyeG.Sy9χ,t f 0 Γ a 1 1 ^ G I 0 , 1]. Then ft(x), t e
1 ' '—h Λ

[0, 1], is a one-parameter family of stable pseudoisotopies in ^ (p. )
which depend continuously on x .

(c) g , ( x ) | Γ M 5 l x R f l x / " x [ 0 , l ]

= (<o (^(f.) o J[)λ_λt){x) I T i i Λ x Rfl x In x [0, 1]

holds for all ί G [0, 1] and all x e C.



832 F. T. FARRELL & L. E. JONES

(d) The support of each gt(x) lies over the subset \J T. . q C A., and
the support of each gx(x) lies over T. . { .

Now the desired homotopy (r[o^(f.)ojl)t, te[O, l],of r | o ^ φ o

/J is defined to be the composite of the homotopy r[ o ( ^ (./]•) c /J),,

ί G [0, λ], and 6.6(a) with the homotopy gt, te[O, 1], given in 6.9.2.
This completes the proof of Lemma 6.9, and therefore also the proof

of Proposition 6.1, when Hypothesis 4.0 is assumed to be in effect.
We now discuss the modifications that must be made on the preceding

proof of 6.1 if Hypothesis 4.0 does not hold.
The guiding step in our modified proof is the replacement of the maps

^ > ^ f ( p f ) of 6.2 by maps ή: <?.(λί) -> &.(p&i9 pfid p t J )
which are defined as follows.

Set 2?? = Et - dEt, and let pf.: 2?? . -> G denote the stratified flat

bundle obtained as in §4.2 from the group action Γ. x 2?? -> E®. Let

&MΪ9i,pT9i9d\Pi9i) denote the space of all maps g: [0, oo) -, ^{pfj)

such that for some a > 0 (a depends on g) and all t e [0, oo),

y € G. the stable pseudoisotopy g(t) \ (E^ . y x R7 x / " x [0, 1]) is
α(l + ί)~x-controlled over Cz with respect to the projection p. .:

Ei . y-+ C{ y of §4.4, and is equal to the identity map if y e dGt. There

is also an analogous space 2t.{ZJ, pf f., pffitd \ Pt , ) for embeddings, where

C/ = Uy€G.(Pι~! ( ^ ) n ^ / ) , ι , y ) ' a n d ^ comes from §5.8. Finally there is the

space &>j(pf . p. .) of all continuous maps g: [0, oo) —• &?(pf,-) such

that for some α > 0 (α depends on ^ ) and all ί G [0, oo), y € ^ ,
^(0 I Φi i y x R7 x /" x [0, 1]) is α(l + 0"1-controlled over C, y with

respect to the projection p. .: ^ i y~
¥Ci .

Now proceeding as in the proof of Lemma 5.3 we can argue that there

is an equivalence of Ω-spectra f% : ^ (/7z ) -• ̂  (p. .).
Proceeding as in the proof of Lemma 5.5 we can get an equivalence of

Ω-spectra fl: ^(pfj - i^>* ; . βu).
There is a "restriction" map

the construction of which is similar to the construction of uu(X, Γ)" given
in §6.8.

Finally, by proceeding as in the proof of Lemma 5.9, we can get an
equivalence of Ω-spectra
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Now set ή = ^oj]ojfoήor).
The proof of Proposition 6.1, when 4.0 is not satisfied, is completed by

showing that Claim 6.2, modified by replacing the rι. by the fι. is true.

The verification of 6.2(a) proceeds much as before for the r\ clearly the

truth of 6.2(a) for the τ\ implies the truth of 6.2 for the rι.. In verifying

that 6.2(b) is satisfied by the f\ we use a homology argument as in §§6.7,
6.8. In carrying out the details all arguments should be made relative to
the boundary dGt, over which all relevant stable pseudoisotopies may be
assumed to equal the identity. This requires the following changes in §§6.7,
6.8 and also in 5.6-5.9. We need in 5.6-5.9 and §§6.7, 6.8 that every sub-
manifold pair (X, dX) c Gt meet the boundary dGt "transversely," i.e.,
that the preimage of (X, dX) under the projection map Dt -> DJTi = G{

must meet dD transversely in a piecewise smooth sense. In 5.7-5.9 we
must replace ^(pf^ , pffA ?,.) and ^(U, pT? , pff, pffx q.) by

&.iP?/>pΐ/\Piti) and %(U, pf/ , pf/\ pt A) respectively, where

go i go g° _ i

pf.i =pf.ι\ipf.i) \z-dxz),

p?f = p?,i I ipf,d~\(d2z u ( z π dGi)) - dιz) •
The Ω-spectra ^{pf/,pf/\Piti) and WJJJ, pf/ , pf/, p t i ) are
defined in a fashion analogous to 5.7.1 and 5.8.1, where

and the Vy come from §5.8. In §§6.7 and 6.8 we let Έ\(X, Y) be as

before but set E^(X, Y) = &+{pft{ *, pf{2 A*,/) τ h e remaining details

in the verification of 6.2(b) for the fι. are left to the reader to sort out.

This completes the proof of Proposition 6.1.

References

[1] D. R. Anderson & W.-C. Hsiang, The functors K_t and pseudoisotopies ofpolyhedra,
Ann. of Math. (2) 105 (1977) 201-223.

[2] W. Ballmann, M. Brin & P. Eberlein, Structure of manifolds of non-positive curvature. I,
Ann. of Math. (2) 122 (1985) 171-203.

[3] W. Ballmann, M. Gromov & V. Schroeder, Manifolds of non-positive curvature, Birk-
hauser, Boston, 1985.



834 F. T. FARRELL & L. E. JONES

[4] J. Cheeger & D. Ebin, Comparison theorems in Riemannian geometry, North-Holland,
Amsterdam, 1975.

[5] P. Eberlein & B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-110.
[6] F.T. Farrell & W.-C. Hsiang, Whitehead groups of poly-(finite or cyclic) groups, J. London

Math. Soc. 24 (1981) 308-324.
[7] F. T. Farrell & L. E. Jones, K-theory and dynamics. I, Ann. of Math. 124 (1986) 531-

569.
[8] , Algebraic K-theory of spaces and stratified fibered over hyperbolic orbifolds, Proc.

nat. Acad. Sci. U.S.A. 83 (1986) 5364-5366.
[9] , K-theory and dynamics. II, Ann. of Math. (2) 126 (1987) 451-493.

[10] , Algebraic K-theory of discrete subgroups of Lie groups, Proc. Nat. Acad. Sci. U.S.A.
84 (1987) 3095-3096.

[11] , Foliated control theory. I, ^-Theory 2 (1988) 357-399.
[12] , A toplogical analogue ofMostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989)

257-370.
[13] , Rigidity and other topological aspects of compact non-positively curved manifolds,

Bull. Amer. Math. Soc. (N.S.) 22 (1990) 59-64.
[14] , Computations of stable pseudoisotopy spaces for compact aspherical manifolds,

Proc. Internat. Conf. on Algebraic Topology (Poznan, Poland, June, 1989), to appear.
[15] , Isomorphism conjectures in algebraic K-theory, in preparation.
[16] P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967) 673-687.
[17] A. Hatcher, Concordance spaces, higher simple homotopy theory, and applications, Proc.

Sympos. Pure Math., Vol. 32, Amer. Math. Soc, Providence, RI, 1978, 3-21.
[18] A.E. Hatcher & J. B. Wagoner, Pseudoisotopies of compact manifolds, Asterisque 6

(1973).
[19] E. Heintz & H.C. ImHof, Geometry of horospheres, J. Differential Geometry 12 (1977)

481-491.
[20] B. Hu, H-cobordisms over certain non-positively curved manifolds, Thesis, State Univer-

sity of New York at Stony Brook, 1989.
[21] K. Igusa, On the algebraic K-theory of A^-ring spaces, Lecture Notes in Math., Vol.

967, Springer, Berlin, 1982, 146-194.
[22] I.M. James, Ex-homotopy theory, Illinois J. Math. 15 (1971) 324-338.
[23] A. J. Nicas, On the higher Whitehead groups of a Bieberbach group, Trans. Amer. Math.

Soc. 287(1985) 853-859.
[24] D. Quillen, Higher algebraic K-theory. I, Algebraic A^-theory. I, Lecture Notes in Math.,

Vol. 341, Springer, Berlin, 1973, 85-147.
[25] F. Quinn, Ends of maps. II, Invent. Math. 68 (1982) 353-424.
[26] , Algebraic K-theory of poly-ifinite or cyclic) groups, Bull. Amer. Math. Soc. (N.S.)

12 (1985) 221-226.
[27] I. A. Volodin, Generalized Whitehead groups and pseudoisotopies, Uspekhi Mat. Nauk

27(1972)229-230.
[28] F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. (2) 108

(1978)135-256.
[29] , Algebraic K-theory of topological spaces. I, Proc. Sympos. Pure Math., Vol. 32,

Amer. Math. Soc, Providence, RI, 1978, 35-60.

COLUMBIA UNIVERSITY

STATE UNIVERSITY OF NEW YORK, BINGHAMTON

STATE UNIVERSITY OF NEW YORK, STONY BROOK




