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STABLE PSEUDOISOTOPY SPACES OF COMPACT
NONPOSITIVELY CURVED MANIFOLDS

F. T. FARRELL & L. E. JONES

0. Statement of results

In this section we formulate the main result of the paper (cf. Theorem
0.4), and derive from it a number of corollaries. At the end of this section
we outline very briefly the proof of our main result. Our main result states
that the space of stable pseudoisotopies .#(M) of any closed Riemannian
manifold M with sectional curvature K < 0 everywhere can be computed
in a simple way from the stable pseudoisotopy spectrum 9”*(S1) of the
circle. (More generally, a similar result is true for the stable pseudoiso-
topy spectrum % (M).) This is a new result even for the case when M
is the flat 2-torus. All the results discussed in this section have been an-
nounced in [13], and have been proven in earlier papers of the authors’ for
the special case when M has K < 0 everywhere (cf. [7], [9], [12]). The
reader is referred to [14] for an expository account of the authors’ work
to date on the stable pseudoisotopy spectrum for any compact aspherical
manifold. The formula arrived at in this paper for computing the sta-
ble pseudoisotopy spectrum %, (M) in terms of the stable pseudoisotopy

spectrum @*(Sl) involves the space of all closed geodesics in the com-
pact nonpositively curved manifold M . There is an equivalent purely
homotopic theoretic formulation of this result which involves the space of
all continuous maps S oM (cf. [14, §4]). This has motivated the au-
thors to conjecture that the stable pseudoisotopy spectrum %, (X) of any
aspherical space X with torsion free fundamental group can be computed
in a simple way from the stable pseudoisotopy spectrum %, (S 1) (cf. [14,
§4] for a precise statement of this conjecture).

Before stating our main theorem we review in §§0.1 and 0.2 the concept
of homology theory with coefficients in an Q-spectrum, and we outline in
§0.3 the structure of the set of all closed geodesics in M .
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0.1. Q-spectra. Recall that an Q-spectrum consists of a bi-infinite
sequence &, = {5”1. : j € Z} of spaces with base point, together with weak
homotopy equivalences {4 I 5’1 — 95”] +1} > called the structure maps for
the Q-spectrum, from the jth space to the loop space of the (j+1)th space.
(If the structure maps are not required to be weak homotopy equivalences,
then the %, together with its structure maps is called a spectrum.) For any
integer k the kth homotopy group of the Q-spectrum &, is denoted by
m,(<#,) and is defined to be the homotopy group =, . (5’1.) for any integer

Jj satisfying k + j > 0. A map of Q-spectra r,: &, — 5{' consists of a
collection of maps {r;: % — 5’;’} such that (Qr; ) o h; is homotopic
to h;. or; for all values of j. A map of Q-spectra r,: 7, — & is called
a weak equivalence if it induces an isomorphism on the homotopy groups
of the Q-spectra, and it is called an equivalence if there is a reverse map
of Q-spectra r,:.%, — % such that each composite map rjo r;. , r;. or;
is homotopic to the identity map.

Let X denote a manifold, possibly with nonempty boundary X . Re-
call that a pseudoisotopy of X is a homeomorphism A: X x [0, 1] = X x
[0, 1] such that the restricted map 4 | X x0 is the inclusion. We denote by
P(X) the space of all pseudoisotopies of X, equipped with the compact
open topology. For each integer n > 0 let 1" denote the n-fold Cartesian
product of the unit interval I = [0, 1] with itself. Note that there is an
“inclusion” map P(X xI") — P(X xI "“) obtained by forming the Carte-
sian product of any pseudoisotopy A: X x I" x [0, 1] = X x I" x [0, 1]
with the identity map I — I. We denote by Z(X) the direct limit space
limit, | P(X xI"), and call 2(X) the space of stable pseudoisotopies of
X . A result of A. Hatcher [17] states that Z#(X) is the zeroth space in
a Q-spectrum which is called the stable pseudoisotopy spectrum of X and
is denoted by £ (X) = {Z(X) :j € Z} (cf. §1.3). By taking the direct
limit of the Q-spectra &, (C) over all compact codimension zero subman-
ifolds C C X we get the Q-spectrum @*C(X ) of compactly supported sta-
ble pseudoisotopies of X . By appealing to semisimplicial constructions,
Z;(X) may be defined for any topological space X ; in fact %°( ) is a
homotopy functor from the category of topological spaces and continuous
maps to the category of Q-spectra and Q-spectra maps (cf. [25]).

0.2. Homotopy theory with coefficients in a spectrum. We remind the
reader that Q-spectra are the “coefficients” for generalized homology the-
ories. Let X denote a topological space, let #, denote an Q-spectrum,
and define for each integer j a space H j(X ,#,) to be the direct limit
space limit,_,  Q'(X x S /X x s

i+j)» where s, . is the base point for
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;- The collection of spaces H,(X, %) = {H;(X,%,):j€Z}is
an Q-spectrum called the homology spectrum for X with coefficients in
&, . The jth homology group for X with coefficients in .% is denoted by
H;(X,%,) and is defined to be 7 (H, (X, &)

There is a more complicated version of generalized homology theory
where the “spectrum” of coefficients is both stratified and twisted over X
(cf. [22], [25, Appendix], [14, §1]), which we will need in the formulation
of our main theorem. The following version is taken from F. Quinn’s pa-
per [25]. Let p: Y — X denote a simplicially stratified fiber bundle over
the space X (cf. Definition 1.1 for “simplicially stratified fiber bundle™).
Let K denote the first barycentric subdivision for a triangulation of X
for which p: Y — X satisfies 1.1(a), (b). For each integer j define a

space P;(p) to be the quotient space (U, Kﬁ’j(p"(A)) x A)/ ~, where

the equivalence relation ~ identifies &, (™ "(A")) x A" with its image in

9’1.(1)’1 (A)) x A under the map induced by inclusion A" — A for every pair

of simplices A’, A € K which satisfy A" c A. By taking the union of the
structure maps g"j(p'l(A)) XA — Qg’jﬂ(p_l(A)) x A we make the col-
lection P (p) = {P j(p) : j € Z} into an ex-spectrum (cf. [24, Appendix]).
Note that, in order to assure the union of structure maps %, ("' (A) xA —

Qg"j + (p_1 (A))xA is well defined, we must know that they commute point-

wise with the inclusion induced maps %, (@ '(A) xA - P, (' (A) xA.
This can be arranged in various ways. For example if Y is a countable,
locally finite simplicial complex of finite dimension and each p_l(A) is
a finite subcomplex of Y (this is the only situation which will occur in
this paper), then we choose a PL embedding ¥ C R", we choose a PL
triangulation L for R” which subdivides the given triangulation of Y,
and for any finite subcomplex C of Y we define %,(C) to be all stable
pseudoisotopies in g@J.(R") whose support lies over C' — 8C’, where C’
denotes the union of all simplices in the second barycentric subdivision
of L which intersect with C. Note also that X may be identified with
the subspace (U,cx I, x A)/ = of P;(p), where I, is the identity stable

pseudoisotopy on p_l (A) x R’ . Thus we can define for each integer j a
space ]HIj(X, P,(p)) to be the direct limit space limit, | _ Q'(Pj+i(p)/X) .
The collection of spaces H, (X, P,(p)) = {H;(X,P,(p)) : j € Z} is an
Q-spectrum called the homology spectrum for X with coefficients in the
(stratified and twisted) ex-spectrum P_(p). The jth homology group for
X with coefficients in P,(p) is denoted by H,(X, P,(p)) and is defined to
be & j(IHI*(X ,P_(p))). In the event that p: Y — X is a trivial fiber bundle
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over X having the compact manifold F for fiber we have the equalities
H,(X,P,(p)) = H,(X, Z,(F)) and H,(X,P,(p)) = H;(X, Z,(F)) for
all values of j.

The inclusion maps p_l (A) Cc Y, A€ K, induce maps gzj(p_l(A)) —
Z(Y), A€ K, the union of which yields a map y;: P;(p) — P(Y) for
all values of j. Define 4,: H,(X, P, (p)) — 9”;(Y) to be the direct limit
as i — oo of the composite maps

Q')
LN .

Q'®P,,.(p)/X) Q' (Y)) = F(Y).

The collection of all such maps, which is denoted by A4, : H (X, P (p)) —
PL(Y) and is called the assembly map, is a map of Q-spectra.

0.3. The structure of the set of closed geodesicsin M. Let M denote a
closed Riemannian manifold with sectional curvature K < 0 everywhere.
Let SM and RPM denote respectively the unit sphere bundle and the
real projective bundle associated to the tangent space for M . There is a
geodesic flow g’: SM — SM, t € R, on SM, and there is a smooth
one-dimensional foliation .¥ of RPM whose leaves are covered by the
orbits of g’ under the canonical 2-fold covering projection SM -» RPM .
Fix a Riemannian metric on RPM , and for any positive number s let
E_ denote the union of all compact leaves of # which have length less
than or equal to 5. Let p: E, — G, denote the quotient map obtained
by collapsing each closed leaf of # (contained in E|) to a point. Finally
let p: E — G denote the direct limit as s — oo of the maps p,: E, — G, .
Let f: E — M denote the direct limit as s — oo of the composite maps
E,C RPM LNy Ve

There are a couple of facts of which to take note. First we note that E
is the collection of all closed (unparametrized) geodesics in M : a typical
closed geodesic in M is the image of a fiber of p: E — G under the map
f:E— M. Thus G is the space which parametrizes the collection of all
closed geodesics in M . The second fact to note is that p: E — G is a
simplicially stratified fiber bundle having circles for fibers. This is not an
obvious fact, but is an easy consequence of Theorem 2.4.

We can now state the main result of this paper.

0.4. Theorem. Let M be a compact Riemannian manifold having sec-
tional curvature K < 0 everywhere. Let p: E — G and f: E — M be as
in §0.3. Then there is a weak equivalence of Q-spectra

e,:H(G,P(p) - L (M).
In fact we have that e, = P (f)o A,, where A,:H (G, P, (p)) — P (E)
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is the assembly map 0f §0.2, and P, (f): P, (E) — P_(M) is the image of
f under the functor F.( ).

Remark. For the special case when K < 0 holds everywhere for M,
the authors have proven a fibered-orbifold version of Theorem 0.4 (cf.
[8]). There is also such a generalized version of Theorem 0.4 when K <0
holds everywhere. The case of compact local symmetric space orbifolds
with K <0 is discussed in [15].

Caveat. Theorem 1(ii) of [8] is incorrect in the generality stated. It
is correct when the finite group action F x M — M satisfies the fol-
lowing extra condition: Let @ be any closed geodesic of M , which is
left invariant by some element g € F, then g|w is orientation preserv-
ing. Under the general assumption made in [8] there is always a map of
spectra X;°, N#(S L P,) — NP(X; p) which induces an epimorphism
on homotopy groups. A more precise conclusion is obtainable from the
techniques of [15]. The remaining results in [8] are correct.

We can now state the corollaries of Theorem 0.4. The derivation of
these corollaries from Theorem 0.4 will be obvious to the experts, so we
only briefly indicate their proofs. The reader is referred to [14] for more
detailed proofs of the corollaries.

The first of our corollaries was pointed out to us by Dieter Puppe. In this
corollary we let J denote a countable collection of nonnegative integers
(not necessarily distinct integers), and for each j € J we let &, j(Sl)

denote the Q-spectrum having for its kth space the space &, (S 1) . We
also let P icr Lt j(Sl) denote the direct limit as i — oo of the finite

Cartesian product spaces [];. J, 7 j(Sl) , where J; denotes the first i
integers in J with respect to some fixed ordering of J.

0.5. Corollary. Suppose that M is a flat m-dimensional torus where
m > 1. Then there is a weak equivalence of Q-spectra

1
e P2, (S) P (M).
j€J
Here J is a countable collection of integers which satisfy the following two
properties: if j € J then we must have 0 < j < m — 1; any integer j
which satisfies 0 < j < m — 1 must occur an infinite number of times in
J.

Proof of Corollary 0.5. Inthiscase p: E — G of §0.3 is just the disjoint
union of a countable number of copies of the standard projection T m=l
st ! , where T™ ! denotes the (m — 1)-dimensional torus. Thus
H,(G,P,(p) = @ H(T"", #,(S")). On the other hand it is well
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known that H (T""', %) = [I,cx F.,; holds for any Q-spectrum 7,
where K is the finite collection of nonnegative integers which contains
rank(H,(T'"_l , Z)) many copies of any integer r satisfying 0 <r <m-1,
and contains no other integers. Now Corollary 0.5 follows from Theorem
0.4 and the preceding facts. This completes the proof of Corollary 0.5.

0.6. Corollary. For M as in Theorem 0.4, we have that n (%, (M)) = 0
if j<0,and n(P,(M)®Z(1/N)=0 if j >0, where N =[(j+4)/2]!.
Moreover ny(Z,(M)) =15 .

Remark. A. Nicas has proven Corollary 0.6 when j > 0 and K =0
holds everywhere (cf. [22]). The authors have proven Corollary 0.6 for all
values of j assuming that K < 0 holds everywhere (cf. [9; 12, Appendix]).

Proof of Corollary 0.6. It follows from results of Anderson and Hsiang
[1], Waldhausen [28], [29], and Nicas [22], that the equalities in the first
sentence of Corollary 0.6 are true if we replace M by the circle S ' On
the other hand Quinn has shown that there is a spectral sequence with
E,zj = H,(G, nj(IP*(p))) which abuts to H,_.(G, P_(p)), where nj(]P’*(p))

1+
denotes the stratified system of groups {nj(g"’*(p_l(x))) :x € G} over

G (cf. [25, Theorem 8.7]). Finally note that each p"l(x) , XeG,isa
circle. This completes the verification of the equations in the first sentence
of Corollary 0.6.

Now we will verify that 7,(Z, (M)) = Z;° . Note that = j(g’*(Sl)) =0
(for all j < 0) implies that Quinn’s spectral sequence is a first quadrant
spectral sequence. From this we deduce:

0.6.1. 7,(Z (M))=HyG, ny(P,(p)))-

Results of Waldhausen [29] and Igusa [21, Theorem 13.1] show that
o (Z.(S = Z5° . From this we deduce:

0.6.2. 7y (P,(p)), =Z; over each point x € G.

Now the desired calculation follows from 0.6.1, 0.6.2 and from the
properties of p: E — G stated in Theorem 2.4.

This completes the proof of Corollary 0.6.

0.7. Corollary. For M as in Theorem 0.4 we have Wh(n, (M))
= 0, I?O(Z(nl(M))) = 0, K,(Z(n,(M))) = 0 for all integers i < 0,
Wh,(n,(M))® Z(1/N) = 0 for all integers i > 2, where N =[(i+2)/2]!,
and Wh,(n,(M))=0.

Remark. Farrell and Hsiang verified most of the equalities in Corollary
0.7 (all those with j < 1) in the special case where K = 0 holds every-
where (or more generally when M is any compact aspherical manifold
having a poly(finite or cyclic) fundamental group (cf. [6])). Nicas veri-
fied the higher Whitehead group equalities of 0.7 in the special case where
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K = 0 holds everywhere (cf. [23]), and F. Quinn has announced a proof
that the higher Whitehead groups vanish for any torsion free poly(finite
or cyclic) group (cf. [26]). The authors verified all the equalities of 0.7 in
the special case where K < 0 holds everywhere (cf. [7], [9]). Hu verified
most of the equalities of 0.7 (all those with j < 1) for a special class of
nonpositively curved manifolds (cf. [20]).

Proof of Corollary 0.7. Anderson and Hsiang [1] have shown that
nj(g”*(M)) equals Kj+2(Z(7t1(M))) if j < -3, equals K,(Z(n,(M))) if
Jj = -2, and equals Wh(r,(M)) if j = —1. Waldhausen [29] and Nicas
[23] have shown that 7, _,(Z,(M))®Z(1/N) = Wh,(n,(M))®Z(1/N) for
i > 2, where we must use that M is an aspherical manifold (cf. Lemma
2.1). Thus all of the equalities of 0.7, except the last, follow from 0.6 and
the preceding facts.

To verify the last equality in 0.7 it will suffice to improve our calcu-
lation of the higher Whitehead groups to Wh,(n,(M)) ® Z(1/N)y = 0,
where N' = [(i + 1)/2]!. Towards this end we let #%,( ) denote the
Q-spectra valued functor which on the space X takes the value of the
algebraic Whitehead groups spectrum for the fundamental group 7z, (X)
if X is path connected (cf. [28]). If X is not path connected we let
#%,(X) denote the direct limit of the finite product spaces [, ; #%,(X)
taken over all finite collections {X i j € J} of distinct path compo-
nents of X . Thus n,(#%,(M)) = Wh,(n,(M)) for all i > 0. There is
the homology theory H, (G, WH,(p)) for G with coefficients in the ex-
spectrum WH,_ (p) defined as in 0.2, and there is a spectral sequence with
E,::‘,j =H, (G, n;(WH,(p))) which abuts to H,, (G, WH,(p)). Note that
since each fiber of p: E — G is a circle, the stratified system of groups
n;(WH,(p)) is identically zero, and thus H, (G, WH,(p)) = 0. On the
other hand there is for each integer / a commutative diagram

Ty (PL(f)eA,)
H,_,(G,P.(p)) e n, (L, (M))

| [

n,_ (WX, _,(f)oA,)
Hi_z(Ga WH*_z(p)) - : n[-z(Wl*_z(M))

where #%,(f): #%,(E) — #%,(M) is induced by the map f: E - M,
Z*: H,(G, WH,(p)) — #%,(E) is an assembly map defined as in 0.2,
and y,, y, are the maps induced by the usual “forgetful map” £ () —
7%, ,( ) between functors (cf. [17], [29]). According to [23, 2.4] the
map Y, is onto modulo N'-torsion, and by Theorem 0.4 the map
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7,_,(PE(f)oA,) isan isomorphism. It follows that Wh,(m,(M))®Z(1/N’)
=0, as desired.

This completes the proof of Corollary 0.7.

Since Wh,(n,(M)) is defined in terms of K,(Z(n,(M))) (cf. [28]),
Corollary 0.7 implies the following calculation for K,(Z(n (M))).

0.8. Corollary. For M as in Theorem 0.4 and all integer values of n
we have that

K,(Z(n,(M)) ®Q=H,(M,Q) & (EB H,_,_ (M, Q)) :
i=1
Remark. The authors have obtained Corollary 0.8 in the special case
where M is a locally symmetric compact manifold by somewhat different
arguments in [10].
Outline of the proof of Theorem 0.4. Our first step is to replace the
assembly map A, : H (G, P (p)) — Z.(E) by a more geometric map

J,: P(p) - PL(E) (cf. 1.3 and 1.4). Quinn has shown that there is
a homotopy commutative diagram

H,(G.P,0) — Z )
4.\ .
Z.(E)
where the map ¥, is a weak equivalence of Q-spectra (cf. [25, Appendix]).
Thus to complete the proof of Theorem 0.4 it will suffice to show that
PL(f)od,: Pi(p) —» P, (M) is a weak equivalence of Q-spectra.

In §3 we show that 3{6( f) o J, induces a surjection on the homotopy
groups of the Q-spectra. We remark that this is enough to prove all the
corollaries 0.6-0.8 discussed above. §§1 and 2 contain all the topological
and geometric preliminaries that are needed to carry out the arguments in
§3. Our proof that 2. (f)oJ, is surjective on homotopy groups of the Q-
spectra is similar in spirit to the argument used in [9] to show that 93(; (o
J,, is surjective if K < 0 holds everywhere. We set N = M xR (equipped
with the product metric) and let S*N c SN denote the subbundle of all
vectors v in the unit sphere bundle of N which satisfy (v, u), > 0,
where u: N — SN is the unit length vector field pointing in the direction
of the (increasing) R-factor of N. Let ¢ : % (M) — P(STN) denote
the composite of the map £ (M) — P (N), induced by the inclusion
M x[0, 1] C N, with the “special transfer” map % (N) — P°(S*N) (cf.
§83.9 and 3.10 for the “special transfer” map). Now apply the geodesic
flow on S*N to gain foliated control of Image(z,), and next apply a
foliated control theorem (for foliations having one-dimensional leaves, cf.
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Theorem 1.5.3) to isolate the support of Image(¢,) over compact subsets
of small tubular neighborhoods for a finite number of components of the
space of all closed geodesic orbits for the geodesic flow on STN. The
result of these constructions may be viewed as a deformation retraction of
P, (M) onto Image(L.(f)oJ,). We note that the “special transfer” map
used in this paper, which boils down to the method for lifting paths from
N to STN discussed in §3.3, differs from the “asymptotic transfer” map
used in [9].

In §6 we show that 2 (f) o J, induces an injection on the homotopy
groups of the Q-spectra. §§4 and 5 contain further topological and geo-
metric results which are needed to carry out the arguments of §6. To
verify that % (f)oJ, is injective on homotopy groups we construct maps

ri: P (M) — .@z’ (pf ) for each component E; of E, and verify that the
composite 7, o P ( f;)eJ 7 is null homotopic if i # j and is a weak equiv-

alence of Q-spectra if i = j, where f, = f | E; and J] = J | Z,(0|E))
(cf. Claim 6.2). The reader will find that this is just a parametrized version
of the argument used in [9] to prove that .9’00 (f) o J, is injective on the
homotopy groups of the Q-spectra.

This completes our outline of the proof for Theorem 0.4.

1. Spaces of pseudoisotopies

In this section we review two topological control theorems for spaces of
stable pseudoisotopies. The first of these is a fibered control theorem (cf.
§1.4) which was proven by F. Quinn [25]. The second is a foliated control
theorem for foliations with one-dimensional leaves (cf. §1.5) which was
proven by the authors [11].

Let E denote a Riemannian manifold (possibly with boundary), and let
dg(, ) denote the metric for E associated with its Riemannian structure.
Let p: E — B be a continuous map to the space B, and let dy( , ) denote
a given metric on B. We assume that p: E — B is a simplicially stratified
fiber bundle map in the sense of the following definition.

1.1. Definition. The mapping p: E — B is a simplicially stratified fiber
bundle map if there is a triangulation K for B such that the following
hold.

(a) For each simplex A € K we have that p: p_l(A —0A) > A-0A is
a fiber bundle, and p"1 (A) is a finite polyhedron.

(b) For each A € K there is a neighborhood U for dA in A, and there
are deformation retractions r,: U — U, t € [0, 1], and s,: p'l(U) —
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p '(U), te]0, 1], of U and p~'(U) onto dA and p~'(8A), such that
p(s,(x)) =r,(p(x)) holds for all x € p"'(U) and all ¢t € [0, 1].

1.2. The spaces P (E), P(p), P°(E), P‘(p). The space of pseu-
doisotopies of E, denoted by P(E), consists of all homeomorphisms
h: Ex[0, 1] — Ex[0, 1] which are the identity on E x0. Note that if I*
denotes the k-fold Cartesian product of [0, 1] with itself, then there is an
“inclusion” map P(E x[ k) — P(ExI k “) obtained by forming the Carte-
sian product of each pseudoisotopy 4: E x I* x [0,1] - E x I* x [0, 1]
with the identity map I — I. Define Z(E) to be the direct limit space
limit, | P(E x I k) . The space Z(E) is called the space of stable pseu-
doisotopies of E .

Apath g: [0, 1] — E is e-controlled over B, for some number ¢ > 0, if
diameter(Image(po g)) < € holds in (B, dy( , )). A stable pseudoisotopy
h € P(E) is e-controlled over B, for some number ¢ > 0, if for every
yeEXxI * the composite function

[0,1]=yx[0,1]CExI*x[0, 1] 5 ExI*x[0, 1] 2L E

is e-controlled over B. Let Z(p; &) denote the subspace of all 4 €
P (E) which are e-controlled over B, and define Z(p) to be the space
of all mappings g: [0, co) — L (FE) such that g(¢) is (1 +1)"'-controlled
over B for all ¢t > 0. The space Z(p) is called the space of stable
pseudoisotopies of E controlled over B .

We define Z%°(E) to be the direct limit of the spaces {Z(C)}, where
C is any compact codimension zero submanifold of E, and we define
P(p) to be the direct limit of the spaces {#(ps)}, where C is any
finite subcomplex of the triangulation K of B (cf. Definition 1.1) and
pe=p1p7(C).

1.3. The Q-spectra & (E), 2, (p), # (E), #:(p). For any number
a > 0 and any integer i > 0, let &(E; a) denote the subspace of all
stable pseudoisotopies in ' (E x.R’) which are a-controlled over R’ with
respect to the projection £ x R’ — R’ and the Euclidean metric on R’.
Define %,(E) to be the direct limit space limit P(E; a).

Let p': E' — B denote the composite map E x R® 2%, £ 2, B.

a—00

Let #(p; o) denote the subspace of all functions g € ZP(p') such that
g(t) € Z(E; o) holds for all ¢t > 0. Define %,(p) to be the direct limit
space limit,_, _Z(p;a).

The following lemma is due to A. Hatcher [17] and F. Quinn [25].
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1.3.1. Lemma. For each integer i > 1 there are homotopy equivalences
of spaces QF(E) = P,_|(E) and QP,(p) = Z_,(p).

For any integer i < 0 we define #,(E), Z,(p) to be the (—i)-fold loop
spaces Q' (E), Q'Z(p) . Note that it follows from Lemma 1.3.1 that
the collection of spaces &, (E) = {#(E):i € Z} and Z,(p) = {Z,(p) :
i €Z} are Q-spectra.

We define % (E) to be the direct limit of the Q-spectra {Z.(C)},
where C is any compact codimension zero submanifold of E, and we
define %, (p) to be the direct limit of the Q-spectra {Z, (pc)} , where C
is any finite subcomplex of the triangulation K for B and where p,. =
plp ' (C).

Remark. Hatcher proved that Q(&,(E)) = %,_,(E) if E is compact
(cf. [17, Appendix II]), but his proof works without the compactness as-
sumption. Likewise Quinn proved an analogue of Q(%(p)) = %,_,(p) for
spaces of stable embeddings (cf. [25, Theorem 5.9]), but his proof (being
local in nature) also works for spaces of stable pseudoisotopies.

1.4. The fibered control theorem. Let J, : % (p) — %, (E) denote the
map of Q-spectra defined by J,(f) = f(0) for all functions f: [0, co) —
P (E) in £ (p). The following theorem is due to F. Quinn [25, Theorem
5.6].

1.4.1. Theorem. Suppose that E is compact. Then there is a number
€ >0 and amap K,: P, (p; &) = P, (p) of Q-spectra such that J, o
K, = inclusion.

1.5. The foliated control theorem. Let p': E' — E denote a fiber bun-
dle over E having a manifold for fiber, and let & denote a smooth
foliation for the pair (E, 0F); that is, the local charts for ¥ are all
smooth, and if a leaf L of ¥ intersects 0E then L C 8E. We assume
that ¥ satisfies the following properties.

1.5.1. (a) & is one-dimensional.

(b) & is of compact type (cf. Definition 1.5.2).

1.5.2. Definition. We say that E (or (E, d.( , )) is of compact type
if there is a collection {¢;: E — E} of isometries of the universal cover

E of E (where E is equipped with the Riemannian structure pulled back
from E) and a compact subset C C E such that U,- $;(C) =E. If in

addition each ¢ It E — E permutes the leaves of F , where F is the

foliation of E which covers % , then we say that the pair (E, ) is of
compact type.

We say that a path g:[0,1] — E' is (a, 6)-controlled over (E, %),
for some numbers a, § > 0, if there is another map f: [0, 11— S into a



780 F. T. FARRELL & L. E. JONES

leaf S of ¥ such that Image(f) has diameter less than or equal to « in
S, and such that d(f(¢), p' o g(t)) < 6 holds for all ¢ € [0, 1]. We say
that a stable pseudoisotopy h € g“’i(E’) is (a, 8)-controlled over (E, %)

if the following is true. For each y € E’ x R’ x I the composite map
[0,1]=yx[0,1]C E' xR xI*x[0, 1] 2 E' xR x I x [0, 1] 2% E'

must be (a, d)-controlled over (E, ¥).
For any numbers a, > 0 we let .9”,.(1/, F ; a, 0) denote the subspace
of all 4 € .97}(E') which are (a, d)-controlled over (E,.#). For any

subset U C E and any numbers «, d > 0 we let U%° denote the subset
of all z € E for which there is a point x € U, a point y € E with
dg(x,y) < J, and a smooth path f: [0, 1] — S of length less than or
equal to o in aleaf S of .# such that f startsat y and ends at z. The
next theorem is due to the authors [11, Theorem 1.11].

1.5.3. Theorem. Let (E, %) be as in 1.5.1, and suppose that the fiber
of p': E' — E is a closed ball. There is a number n > 1 which depends
only on dim(E). Given a, & > 0 there is a number § € [0, €], where &
is independent of p' but does depend on the geometry of the pair (E, F).
Given any subsets U,V C E such that U satisfies (a) below, there is
a homotopy r;: P(p', F ;a,8) > P(p', F ;na,¢e), t €[0, 1], which
satisfies (b) and (c).

(@) If x e U™, and L, is the leaf of F which contains x, then we
have that length (L,) > no.

(b) ry is the inclusion P(p’, F ;a,0) C P(p', F ;na,e); for each
he P, F;a,d) wehave that r (h) is the identity map on p'~" (U) x
R x I* x [0, 1].

(c) Suppose that h € P(p', F ; a, &) is the identity map on p'~' (V%)
xR'xI*x[0, 1], then r,(h) is the identity map on p'~' (V) xR x I* x[0, 1]
forall te[0, 1].

Remark. The authors have proven 1.5.3 in [11] under the assumption
that all relevant pseudoisotopies have compact support in the factor E .
However the same proof (being local in nature) works when the compact-
ness assumption is dropped.

2. Geometric preliminaries

In this section M will denote a complete Riemannian manifold having
sectional curvature K < 0 everywhere. We let d,,( , ) denote the metric
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on M associated to the Riemannian structure. In this section we state
various geometric results concerning M which are needed in the rest of
the paper. Most of these results are known to the experts (cf. [3], [5]).

A fundamental property of d,,( , ) is that for any pair of geodesics
f(s), g(t) in M the composite function d,,(f(s), g(¢)) is a convex func-
tion in the two real variables s, ¢. It is a simple exercise to use this con-
vexity property to prove the following three lemmas (cf. [3]).

2.0. Lemma. Suppose that M is simply connected. Then for any y €
M the exponential map exp,: TM, > M isa diffeomorphism.

2.1. Lemma. Suppose that M is simply connected and that f(s), g(t)
are two geodesics in M with f(0) = g(0). Then, for any numbers a >
b > 0, the following are satisfied.

(a) dy, (f(b), g(b)) < ba™'d,,(f(a), g(a)).

(b) Suppose that (M, d, ( , )) is of compact type (cf. 1.5.2), and
let dg,( , ) denote a Riemannian metric on the unit sphere bundle
SM such that (SM,dg,( , )) is also of compact type. Suppose also
that f(s), g(t) have unit speed. Set x = d, (f(a), g(a)) and y =
dg,(df/ds(b), dg/dt(b)). Then if a > b+1 we will have that limit,_y
=0 holds uniformly in f,g,a,b.

2.2. Lemma. Suppose that M is simply connected. Then for any y €
M and any number r > 0O the ball B(y, r) of radius r centered at y in
M is a convex subset of M (cf. §2.3).

Before formulating the main result of this section it will be useful to
collect some well-known facts about convex and locally convex subsets of
M (cf. [3], [4]).

2.3. Convex and locally convex subsets of A/ . A subset B C M is said
to be convex if for any two points x, y € B there is (up to reparametriza-
tion) a unique shortest geodesic segment in M connecting x to y and
this geodesic segment is contained in B. We say that B is locally convex
subset of M if every p € B has a neighborhood U in B such that U is
a convex subset of M . For any locally convex subset B C M we denote
by 8B the subset of all x € B for which there is a geodesic g: R - M
with g(0) = x, g(e) ¢ B, g(—¢) € B for all sufficiently small ¢ > 0.
Note that B — 0B is always a smooth submanifold of M ; and if BCc M
is a closed subset (as well as locally convex) then the pair (B, 9B) is a
topological submanifold pair of M (although, in general, not a smooth
submanifold pair of M ). Since B — 9B is a smooth submanifold of M,
the tangent bundle 7(B — &B) is a subbundle of TM | (B —9B). The
closure of T(B—9B) in TM | B is also a subbundle of TM | B (which
we denote by TB) and satisfies 7B | (B—90B)=T(B—-90B). Welet SB
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denote the unit sphere bundle for TB. A cross section V: U — SB on
the open subset U C B is said to be smooth if V | (U — dB) is smooth,
and for every x € OB there is an ¢ > 0 and a smooth extension of
V| (Unexp(TB, ,)) to V: exp(TB, ,) —» SM, where exp: ™ — M
is the exponential map at x, and TB, , is the ball of radius ¢ centered
at the origin of TB, . Any continuous cross section V': B — SB can be
approximated by a smooth cross section V': B — SB, provided that B
is a closed subset of M (as well as locally convex).

Let SM denote the unit sphere bundle for M. There is a two-fold
covering map SM — RPM onto the real projective bundle for M ; let
& denote the one-dimensional foliation of RPM which is covered by the
orbits of the geodesic flow on SM . Define a subset £ C RPM to be the
union of all compact leaves of ¥ , and let F denote the restriction of #
to E. Let F, F,, ... denote the distinct equivalence classes of leaves of
F, where the equivalence ~ is defined as follows: for two closed leaves
L,L in F we have that L ~ L' if and only if there are immersions
g:S' > L and g': S' — L’ such that the composite maps

S' & LcRPM 29, A and S' 251 c RPM 2%, M

are homotopic. Let E|, E,, ... denote the union of leavesin F,, F,, ... .
There are quotient mappings p: E — G and p;: E; — G, obtained by
collapsing each leaf of F and F; to a point. The rest of this section will
be spent proving the following theorem.

2.4. Theorem. Suppose that M is compact. Then each E, is a path
component of E ; the set {E,} is countable and nonempty. Moreover, given
any p;: E; — G, there are smooth connected compact manifolds A, B, and
a smooth fiber bundle projection q: A — B having a circle for fiber. There
are also smooth actions Gx A — A and Gx B — B, by the finite group G
which commute with the projection q: A — B; the action G x A — A is
Jfree, but the action G x B — B need not be free. The mapping p;: E;, — G,
is topologically conjugate to q/G: A/G — B/G, where q/G is the quotient
of q under the G-actions.

Before beginning the proof of Theorem 2.4 we must introduce some
terminology and notation, and state some lemmas, in the following sub-
sections.

2.5. Flat bands. A flat band in M is any mapping f: S' x [0,1] —
M (or f:Rx[0,1] - M) such that for some numbers a, b > 0 the
composite map

SEx[0, b] == 5 <0, 11 L M
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. J,xJ,
(or the composite map Rx [0, b] 2%, Rx [0, 1] Lom ) is a locally iso-
metric immersion. (Thus these immersed surfaces satisfy locally a “totally

geodesic subspace” condition.) Here S; is the circle of radius a centered

at the origin in R’ , I, is multiplication by a!in R? ,and J , J, are

multiplication in R by a’! , b,

2.5.1. Lemma. Let f: S x[0, 11— M be a map such that f: S'x0 —
M and f: S' x 1 — M are both geodesics. Then, either f:S' x 0 —
M and f: S'x1 > M are equal up to reparametrization, or there is
a homotopy f,: S' x [0,1] - M, t € [0,1], of f which satisfies the
following properties.

@) £ 18" 'x0=f|S'x0 forall telo,1].

(b) £, 18" x1=(f|S" x1)or, forall te[0, 1], where r,;: S' x 1 —
S' x 1 is a rotation.

(©) f,:8' x[0, 1] = M is a flat band.

Proof of Lemma 2.5.1. We begin by paraphrasing a result of Eberlein
and O’Neill [5, Proposition 5.1]. Let N denote any complete simply con-
nected Riemannian manifold which has sectional curvature K < 0 every-
where. Two geodesics g,: R— N, g,: R — N are said to be of bounded
distance apart if there is a number o > 0 such that d,(g,(?), £,(1)) < a
holds for all ¢ € R.

2.5.1.1. Claim (Eberlein, O’Neill). If the geodesics g,, g,: R— N are
of bounded distance apart then either we have Image(g,) = Image(g,), or
there is a mapping G: Rx [0, 1] = N which has the following properties.

(a) G: Rx [0, 1]— N is an embedded flat band.

(b) G| Rx0=g,and G|Rx1 =g oT,, where T.:R — R is
translation by some real number c.

Now we can complete the proof of 2.5.1. Let g € =, (M, f(1,0))
denote the fundamental group element represented by f | S ''x 0, and let
g: M — M also denote the corresponding deck transformation for the
universal covering space M . Choose a covering map f:Rx [0, 1] — M
for f such that the following holds.

25.1.2. f(x+1,1)=go f(x,?) forall xeR andall ¢ € [0, 1].

It follows from 2.5.1.2 that /| Rx0 and f|Rx 1 are geodesics in M
which are a bounded distance apart. Thus we may apply 2.5.1.1 (here we
are considering the case where f: S'x0— M and f: S'x1 - M are
not equal up to reparametrization) to get a mapping F: Rx [0, 1] - M
which has the following properties.
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2.5.1.3. F isanembedded flatbandin M; F |[Rx0=f|Rx0; F |
Rx1=(f|Rx1)oT,.

Note that it follows from 2.5.1.2 that F also has the following property.

2514. F(x+1,t)=goF(x,t) forall xeR andall t€ [0 1].

Now define a homotopy ft Rx|[0, 1] — M, e [0, 1], of f by the
following.

25.15. f(x,s) = r(x,s,t), where r(x,s, 1), t € [0, 1], is the
geodesic segment in M which starts at f (x,s) and ends at F(x, s).

Note that it follows from 2.5.1.2-2.5.1.5 that the homotopy f,: R x
[0,1] — ﬂ, t € [0, 1], covers a homotopy f,: S! x [0, 1] = M which
satisfies 2.5.1(a), (b), (c).

This completes the proof of Lemma 2.5.1.

2.6. The foliations F ,F. iy and the sets Fi’ Iz Recall that two unit
speed geodesics f, g: R — M are called asymptotic if d (D), &)
remains bounded as ¢ — co. A vector field V: M — SM is called an
asymptotic vector field if for every x,y € M the vectors V(x), V()
are tangent to asymptotic geodesics. Given x € M and any v € S]T/.f\x
there is a unique asymptotic vector field V': M — SM with Vix)=wv;
moreover, V isa C ! vector field on M and it and its derivative are
continuous in our choice of v (cf. [2], [18]). There is a foliation & of
SM whose leaves are just the subsets Image(V') C SM for any asymptotic
vector field ¥: M — SM. The action of 7,(M) on SM (by the deck
transformations for the covering SM — SM ) just permutes the leaves of
2 , so the quotient of " by the action of =,(M) is a foliation of SM
denoted by & . We call ,Q? & the asymptotic foliations of SM, SM .

Let F denote the foliation in SM which covers F, under the two-fold
covering pro;ecuon SM — RPM . Let F. i Fias F i3 denote the
equivalence classes for the equivalence relation ~ defined on Fl. as fol-
lows: L ~ L' fortwoleaves L, L' € Fi if there are orientation preserving
immersions g:S' — L, g': S' — L' (the leaves of F, are oriented in
the direction of the geodesic flow on SA ) such that the composite maps

S' S LcSM P M and S' 2L L csm POy
are homotopic to one another. Let Fi j denote the union of all the leaves
in F, ;i
2.6.1. Lemma. Fach of the sets Fl. jIs contained in a leaf L, i of the
asymptotic foliation &/ . Moreover, the map F[’ i~ E; (which is induced
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by the projection SM — RPM) is either a two-fold covering map or a
homeomorphism. Thus there are at most two distinct sets in the collection
{Fi’j 1j=1,2,...}.

Proof of Lemma 2.6.1. First we note that for any flat band f: S x
[0, 1] —» M ,if f': S'x[0, 1] > SM is defined at each (x, £) € S’ [0, 1]
to be the unit tangent direction of f | S' x ¢ at (x, t) ,then Image(f")
will be contained in some leaf of the asymptotic foliation .&/ .

For any vectors v, v, € Fi’j choose a map g: S x [0, 1] - M which
has the following property.

26.1.1. g | S' x 0 and g | S' x 1 are both geodesics in M which
have unit tangent directions v, and v, at (1, 0) and (1, 1) respectively.

Now apply Lemma 2.5.1 to g of 2.6.1.1 to get a homotopy g,: S' x
[0,11— M, t€][0, 1], of g which satisfies the following.

26.1.2. g, | S'x 0, & | S' x 1 are both geodesics in M which
have unit tangent directions v,, v, at (1,0), (x, 1) for some x € S L
gl:Sl x [0, 11— M is aflat band in M .

It now follows from 2.6.1.2, and from the remark made at the beginning
of this proof, that v,, v, lie in the same leaf of /. Hence Fi’ i is
contained in a leaf L, g of &7 .

To verify that E i E; is a covering projection, first note that it is a
surjective map. Next let y: SM — SM be the nontrivial deck transforma-
tion for the covering SM — RPM , and note that either y(E i j) =E; j
or y(E )n E, j = . Finally we note that each E ; is a closed subset
of SM (cf Lemma 2.7.3).

This completes the proof of Lemma 2.6.1.

2.7. The foliation ﬁ; , the space E, , and the action T, x E = E .. Note

that the composite map L; ; C SM =5 P, Af is a covering projection for

eachleaf L; | asin2.6.1. We give to L, the geometry that is pulled back
from M under the projection map L, | — M. Note that the universal
covering space projection M — M factors as M — L,— M. Let E
denote the one-dimensional foliation (of a region in M ) which covers F,‘, )
under the covering projection M- L i1 Let F F F FIREE denote
the equlvalence classes of leaves of F for the equlvalence =~ defined as
follows: L ~ L' for two leaves L, L’ € F if there are leaves L, L' €
Fi,l , orientation preserving immersions f: st - L, g: st - L ,

homotopy f,: s o L, ,,tel0,1], from f to g, and a lifting of j;,
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t €[0, 1], to a homotopy f’t: R — ﬂ, t € [0, 1], such that Image(fo) =
L and Image( f"l) =L Let Ei denote the union of all the leaves in f“ ,
and let us use the shorter notation 13:1 for 1:";.’1 . Let f‘i C 7‘1(Li, ;) denote
the subgroup of ”1(Li,1) consisting of all deck transformations on M
which leave E,. invariant.

2.7.1. Lemma. (a) Ei is a convex subset of M .

(b) Ei is isometric to the product D; x R, where D, is also a convex
subset of M . Moreover, the foliation I?l of Ei is identified with the foliation
of D; xR by the lines {y xR:y € D;} under the isometry.

(c) The action y,: 1—",. X Ei — E’i by deck transformations preserves the
product structure Ei = D,;xR. That s, for each a € Tl. there are isometries
a;:D; = D; and a,: R — R such that y,(a, (x,1)) = (a,(x), a,(?))
holds for all (x,t) € D, xR.

(d) The map Ei — Fi’l , Which is induced by SM — SM , isa covering
projection which has f‘i as its group of deck transformations.

Proof of Lemma 2.7.1. To complete the proof of 2.7.1(a)-(c) it will
suffice to show (because the action 1_"l x M — M permutes the leaves
of l?l.) that there is a continuous function r: M — R, and for any two
leaves Zo , il € ﬁl there is a mapping A: Rx [0, 1] — M , which has the
following properties. R

2.7.1.1. (a) h is an embedded flat band; Image(s | R x 0) = L, and
Image(h |Rx 1) = f,l ; Image(h) C Ei.

(b) roh(s, t)=roh(s,0) forall t€[0, 1]; (roh(s, 0)—roh(s’, 0)) =
length(A([s", s] x 0)) holds for all s, s € R satisfying s’ < s.

Towards this end we choose (using the definition of Fi,l , Fl , Ei) a

mapping f: S x [0, 11— L; | which has the following properties.
2712, f| S! x 0, f| S' x 1 are orientation preserving immersions
onto the leaves L,, L, of Fi’, which are covered by the leaves L, L, ;
there is a lifting pf fto f:Rx [0,1]— M such that Image(fl Rx0)=
L, and Image(f |Rx1)=1L,.
There will be no loss of generality in 2.7.1.2 if we assume that each of
[ s'xo0, f | S' x 1 have constant speed and are thus geodesics in L, .

So we can apply Lemma 2.5.1 to f to obtain a homotopy £ S ' [0, 1] —
L;,,te€l0,1],of f which satisfies the following.

2713, f | S! x 0, f,|S !'x 1 are immersions of constant speed onto
the leaves L, L, € Fi,l forall ¢ €0, 1]; f: S'x[0,1] = L, isa
flat band.
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Now choose h: R x [0, 1] — M to be the correct lifting of f;: S' x
[0, 1] — L, . We leave as an exercise the verification that this 4 satisfies
2.7.1.1(a).

Note that each leaf L € Fl is a directed geodesic in M , which ends at a
point u(f) on the sphere at infinity (the direction of L corresponds to the
direction of the geodesic flow on S( )) It follows from 2.7.1.1(a) that
u(LO) = u(L ) for any two leaves L0 R L € F , 1.e., Lo , L are asymptotic
geodesics when parametrized by arc length. Thus if r: A7 — R is defined
to be one of the “horofunctions” associated to the point at infinity u(i)
forany L € F,, then r and & will satisfy 2.7.1.1(b) (cf. [3, Lecture I,
§3]).

To verify 2.7.1(d) we first note that for any g € =, (L; ;) we have either
g(Ei) = Ei or g(Ei) n Ei = (J. Next we wrote that if g(Ei) n E‘i =,
then the distance from g(Ei) to Ei in M is greater than ¢, where ¢ > 0
is independent of g (cf. Lemma 2.7.3). Finally note that the composite
map |J gen,(L, )g(f ) C M LD F 0 is a covering space projection.

This complctes the proof of Lemma 2 7.1.

2.7.2. Lemma. Let I‘i x (D; xR) = D; xR be as in Lemma 2.7.1.
Suppose that for g € 1_"i and y € D; we have g(y xR) =y x R. Then
there is an integer n > 0 such that g"(z xR) =z xR forall z € D,.

Proof of Lemma 2.7.2. By Lemma 2.7.1 the isometry g: D, x R —
D, x R is a product of two isometries g,: D; — D, and g,: R — R. For
each positive integer m set U, = {y € D, : gl (y) =y}. To complete the
proof of 2.7.2 we must show that U, = D for some m.

Note that each U, is a closed convex subset of D, satistying 0U, C
oD, (cf. §2.3). If for some m we have dim(U,,) = dim(D,), then U,
must contain an open subset of D, . But since D, is convex it follows that
U,=D,.

If dlm(U ) < dim(D,), then choose y € (U, —0U,) and z €
(D,-U,,). Note that y xR, z xR cover leaves of Fi’ , Which can be pa-

rametrized by orientation preserving immersions of constant speed fy: s!
— L, and f: s' - L, ,. If z is chosen sufficiently close to y, then
there will be a homotopy 4: S' x [0,1] — Li,l from f, to fy os, for

some covering map s: S ', 8! of constant speed k > 0. It follows that
z € U,,,. Now, applying the argument of the preceding paragraph, we
see that if dim(U,,) = dim(U, ), then we must have U, = U, . Now
proceed by induction.
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This completes the proof of Lemma 2.7.2.
2.7.3. Lemma (a) Each E, ; is a closed subset of SM .

(b) If g(E)NE, =D for gen 1(L; 1), then there is € > 0 independent

of g such that the distance in M from g(El.) to Ei is greater than ¢ .

Proof of Lemma 2.7.3. We will prove part (a) by appealing to 2.7.2.
The proof of part (b), which uses 2.7.2 in a manner similar to the proof
of part (a), is left as an exercise.

Note that it follows from 2.7.2, 2.7.1(a)—(c), and the fact that the com-
posite map E cM— L, 1 D E 1 is surjective (we cannot at this point
use 2.7.1(d) because 2.7. 3 is used in the proof of 2.7.1(d)), that there is
an upper bound b; | > 0 to the lengths of leaves in F, i1 Let {x;} bea
sequence of points in E B which converge to x € SM, and let {X,} de-
note the leaves of F, that contain the points {x, } . From the existence
of the upper bound b .1 it follows that the {X,} converge to a closed
orbit X of the geodesw flow on SM . Note that for suﬂimently large k
there will exist oriented immersions f: s' o X, and g: S' - X which
are homotopic in SM . Thus from the deﬁnition of F, | and E

have X € F , and x € E . A similar argument shows that E N is a
closed subset of SM for each j>2.

This completes the proof of Lemma 2.7.3.

Proof of Theorem 2.4. 'We begin by verifying that E; has the following
properties.

2.8. (a) E; is a compact connected submanifold of RPM ; E; — OE,
is a C*-submanifold of RPM .

(b) = (E,) is a finitely presented group.

(c) The set {E;} is countable and nonempty.

Clearly 2.8(b) is a consequence of 2.8(a), and (2.8(a) follows from 2.3,
2.6.1, 2.7.1, and 2.7.3(a).

Towards verifying 2.8(c) we let, for each o > 0, {E, € I } denote all
the E; such that each leaf of F, has length less than or equal to a. Note
that for any E; there is a > 0 such that i € I (for by the proof of
2.7.3(a) there is an upper bound to the lengths of the leaves in EM , and
Ei’ ; is by 2.6.1 a one- or two-fold covering of F;). Thus to show that there
are at most countably many of the {E;} it will suffice to show that each
I, is a finite set. If I is not finite, then there is a sequence i, , i,, ... of
dlstmct elements in I and a sequence of leaves L; L ... of foliations
Fi, s Fi2 ,... such that the {L ,} converge to a leaf L, of some foliation

F, . Arguing as in the proof of 2.7.3 we can see that F, = F;, for any
J



STABLE PSEUDOISOTOPY SPACES 789

sufficiently large j, contradicting the assumption that i JFE L if j#j.
To complete the verification of 2.8(c) we note that any closed Rieman-
nian manifold with nonpositive curvature has a closed geodesic (cf. [3]).
Thus there is at least one E;, the one containing the closed unoriented
geodesic.
It follows from 2.6.1, 2.7.1 that there are only the following possibilities.
29. (a) Ei is the universal covering space for E;, n (E;) = Tl. , and
=E T or

~

(b) E, is the universal covering space for E,, Fi = Ei /Ti , and there
is a short exact sequence I nd, I, % Z, (let T, denote the group
n,(E;)) . Moreover there is a € n,(E;) such that y(a) generates Z,;

l
this o considered as a deck transformation o: E; — E; is a product of

two isometries «,: D; —» D; and a,: R — R (recall that Ei =D, xR by
2.7.1), where a,: R — R reverses orientation.

Note that in either case 2.9(a) or case 2.9(b) we have that for each
B € T, deck transformation f: E — E is a product of two isome-
tries /31 D, - D; and B,: R — R (cf. 2. 7. 1(c) and 2.9(b)). If B €T,
then B,: R — R preserves the orientation of R, because the deck trans-
formatlon B: SM — SM preserves the direction of the geodesic flow

on SM. We define 1"1 s I"I’Z, l"l’l , 1".72 to be the following groups:

{B,:BeT},{B:Bel},{BIBeT}, {B,: B eT,}. Note that
by sending each group element S to /i’ , j=1,2, we obtain group ho-
momorphisms 4, '1" - T, i and A, F — F . We let K, ],K
denote the kernels of the homomorphlsms hl o h . The following con-
ditions are satisfied by these new groups and group homomorphisms.

2.10. (a) All of the homomorphisms #; ;, #; ;, j =1, 2, are surjec-
tive; thus I',/K; . =T, ; and T /K =T :

(b) T, , acts by translations on R

Note that the following property is deduced from 2.8(b), 2.9, and
2.10(b).

2.11. f‘i, , is a finitely generated free abelian group.

Now choose f € fl. such that B,: D, — D; has a fixed point but B, #
0. By Lemma 2.7.2 there is an integer m > 0 such that ﬂlm = identity.
Note that B," # 0. For if B;' = 0 then we would have B #identity,
B™ =identity. But ', (and hence fl.) is torsion free, because by 2.7.1(a)
and 2.9, E; has a contractible universal covering space. We summarize
the results of this paragraph as follows.

l]’

i,j*
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2.12. Thereis y €T, such that y, =identity but y, # 0.

Write F pasa dlrect sum of subgroups I“l ,=S® S’, where S is a
cyclic subgroup containing y, and where y comes from 2 12 (cf. 2.11).
Let C denote the subgroup of 1",’2 which is generated by S’ and 7, We
claim that C has the following properties.

2.13. (a) The quotient group _I:l. /E; IZ(C) is a finite cyclic group.

(b) The subgroup %, ,(h; 12(C )) T, acts freely and properly discon-
tinuously on D, .

Note that 2.13(a) follows immediately from the above description of
C. To verify 2.13(b) we assume that contrary, i.e., there is a sequence
{8} in B;‘Z(C), a point x € D, and a sequence {x;} € D,, such
that the following properties hold: limit oo B j,l(x) = X; j,l(xj) #X;
for all j. Applying 2.12 we see that there is a subsequence of {,Bj}
(also denoted by { Bj} ), a positive number b, and a sequence of in-

tegers {m j}, such that the following hold: limit j_,oo(y’”f o ﬂj’.’ ) (x) =
X; limitj_,oo(y"'f ° ﬂjl.’)z(O)_ = 0. (To get b we note that the isotropy
subgroup for the action I‘i,l x D, — D, at the point x € D; is an in-

finite cyclic group T which contains y, ; thus y, = gb , where g isa

i,1,x
generator for TL | x-) Now since T, acts freely and properly discontin-
uously on Ei, we deduce that y" = g j_b for sufficiently large j. Thus
m jT = —ij , where the isometries y,, f IR% R — R are translations by
numbers T, T; respectively (cf. 2.10(b)). But then T, = a;T holds for
some integer a , because ﬂ e C. So m; = ~baj and 7Y = ﬂj for
sufficiently large Jj. (To see that 4 =B, b for suﬂiciently large j, we note
that (y% oﬂ"l) (0) =0 and hmltj_,oo(y 1o f ) (x) = x; since T, acts
freely and properly discontinuously on E it follows that y% = ,B for
sufficiently large j.) This last equality and 2.12 contradict g ,,1(" ) ;é X,
and hence the verification of 2.13 is complete.

We can now complete the proof for Theorem 2.4 in the special case
where the following hypothesis is satisfied.

2.14. Hypothesis. J0E, =Q.

Choose g: A — B to be the quotient of the projection map D, x R —
D; under the actions by A, ,(h; ( ), h; 2(C) on D,, E = D x R,
respectlvely Define finite group actlons G xA— A and G x B — B to
be the actions of I';/h; 5(C) on E,/h;5(C) and D,/h; \(h 5(C)); these
actions are well defined because 71; 12((,') is a normal subgroup of T,.
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(Note that T;/A; 5(C) acts on D,/h; ,(h; 5(C)) via the homomorphism
hi’ | -) We leave as an exercise for the reader to deduce from 2.8, 2.9, 2.13,
2.14 that g: A — B and the actions G x 4 - 4 and G x B — B satisfy
all the properties required of them in Theorem 2.4.

This completes the proof of Theorem 2.4 in the special case where Hy-
pothesis 2.14 is satisfied.

If Hypothesis 2.14 is not satisfied, then the preceding argument yields
the following weaker version of Theorem 2.4.

2.15. There are compact manifolds A, B, and a fiber bundle projection
q: A — B having a circle for fiber. There are topological group actions
GxA— A and G x B — B by the finite group G which commute with
q; the action G x A — A is free, but the action G x B — B need not be
free. The projection p;: E; — G, is topologically conjugate to q/G: A/G —
B/G.

Note that the difference between 2.4 and 2.15 is that in 2.4 we require
that A,B,q: A— B, GxA— A,and Gx B — B allbe C™, whereas
in 2.15 they are only objects in the topological category. However it is
clear from the preceding argument that the objects of 2.15 also have the
following properties.

2.16. (a) A and B are locally convex, compact subsets of a complete
Riemannian manifold having sectional curvature K < 0 everywhere.

(b) The finite group actions G x A — A and G x B — B are by
isometries.

(c) g: A—9A— B — 9B is a C*-bundle projection.

We can use these additional properties, together with smoothing theory
as described in the next subsection, to complete the proof of Theorem 2.4
as follows. Let 8B x[0, 1] C B be the G-equivariant collaring for 4B in
B given in §2.17. Set B =B —98B x [0, 1), and set 4’ =4~ '(B’). Note
that g: A' > B', GxA' — A', GxB — B’ are all C*-objects, and note
also that q/G: A'/G — B'/G is topologically conjugate to q/G: A/G —
B/G . Thus by applying 2.15 we complete the proof of Theorem 2.4.

2.17. Equivariant smoothing of locally convex sets. In this subsection
welet g: A— B, GxA— A,and G x B— B be any maps and actions
by a finite group G which satisfy 2.15 and 2.16(a)—(c).

2.17.1. Lemma. There is a G-equivariant collaring 8B x [0, 1] C B
for OB in B such that 0B x 1 is a smooth submanifold of B — 0B .

Proof of Lemma 2.17.1. We consider first the special case when G is
the one element group. By using the local convexity property for B (cf.
§2.3) we can choose a continuous map f: 9B — B — 3B which has the
following property.
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217.1.1. dy(f(x), x) <e forall x € B, where ¢ > (0 may be chosen
arbitrarily small (prior to the choice of f of course).

Define a vector field V': 0B — S(B) (cf. §2.3 for S(B)) by letting V' (x)
be the unit vector field tangent to the geodesic which starts at x and ends
at f(x). Note that if ¢ is chosen sufficiently small in 2.17.1.1 we may use
the local convexity of B to show that V: 9B — SB is well defined. Now
let U be a small neighborhood for B in B, and extend V: 0B — SB
to a vector field V: U — SB. Approximate V: U — SB by a vector field
V': U — SB which has the following properties.

2.17.1.2. (a) V' is smooth on all of U (cf. §2.3 for the definition of
a smooth vector field on closed locally convex subsets).

() V' | @B points into B, i.e., for each p € 0B we have that V'(p)
is tangent to the geodesic which connects p to a point of B —90B.

Now integrate V' to get a partial flow w: 8B x [0,0] — B
for sufficiently small 6. If J is sufficiently small then w will be an
embedding. Let s: Image(y | 9B x (0, §)) — S denote the quotient map
which identifies each segment w(b x (0, d)) to a point. Note that
Image(y | B x (0, 6)) inherits a C™-structure from B — 9B, and that
there is a unique C*-structure on S which makes s a smooth bundle
projection. Choose a smooth cross section c: .S — Image(y | 9B x (0, 9))
for 5. We can now easily obtain a collaring B x [0, 1] C B such that
B x 1 = Image(c) .

This completes the proof of Lemma 2.17.1 for the special case when G
is the one element group. To prove Lemma 2.17.1 in general we must use
an equivariant version of the preceding argument. Details are left to the
reader.

This completes the proof of Lemma 2.17.1.

3. P(f)old,: P(p) — P (M) is surjective

Let p:E—G and f:E— M be as in Theorem 0.4. Let & (f): Z.(E)
— & (M) denote the map induced by f: E — M and let J,: % (p) —
ZPL(E) denote the map of §1.4. The main result of this section is the
following proposition.

3.1. Proposition. The mapping F:(f) o J,: P (p) — P (M) of Q-
spectra induces a surjection on the homotopy groups of the Q-spectra.

Before beginning the proof of 3.1 we need to introduce more notation
and state two lemmas. This is done in the following subsections.

3.2. The northern hemisphere subbundle and geodesic flows. Recall

that M denotes the universal cover of M equipped with the Riemannian
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structure pulled back under the covering projection M — M from the
given Riemannian structure on M. Set N = M xR, N = Mx R,
where each of these products is equipped with the product Riemannian
structure. Let TXy denote the tangent space of a smooth manifold X

at a point y € X. We let u: N — TN denote the unit vector field
which points in the direction of the increasing R-factor of N. For each
point y € N, or vector v € Tﬁy ,or path r: [0, 1] — N, the splitting
N=MxR yields splittings y = y, X y,, U = U, X U,u, F =1 XTI,,
where 7,: [0, 1] — M and r,: [0, 1] — R. Let SN, SM denote the unit
sphere bundles for N, M, and set S'N = {veSN: (v, u)z > 0}. We
call S*N the northern hemisphere subbundle of SN . Let ': SN — SN,
t € R, denote the geodesig flow on SN . Note that &' leaves the subbundle
S*N invariant. We let £ denote the foliation of STN by the orbits of
the geodesic flow 2': S'N — S*N, t € R. Note that the construction
which gave the subbundle S*N c SN also applies to give a northern
hemisphere subbundle STN c SN. Let g': SN — S*N, t € R, denote
the restriction to STN of the geodesic flow on SN, and let £* denote
the foliation of STN by the orbits of g': SN — S*N, t € R. We leave
as an exercise for the reader to show that there are Riemannian structures
(, Vgrx> (s )gry on STN, S*N which have the following properties.

32.1. (a) The pairs (S*N, £") and (S*N, £") are of compact type
(cf. Definition 1.5.2) with respect to the metrics dg.5( , ) and dg:y( , )
which are associated to (, )5 and (, gy

(b) The Riemannian structure ( , )..5 is left invariant by the ac-
tion of the deck transformations associated to the covering projection
STN — S*N. Moreover the quotient of ( , ) s+5 by this action is equal
to ( . ) S*N -

(c) For any v € S'N define maps f:R — N and f:R - S'N
by f, = po f, (where p: S*N — N is the standard projection) and by
f,(t) = g'(v). Then we must have

l<_%_ ﬂ>< 4f,  df, <2<ifv_ i&_>
2 \dt(0)’ dt(0)/ — \ dt(0)’ dt(0) P dt(0)’ dt(0)/ y
Note that (df, /dt(0), df,/dt(0))y = 1.

Remark. The Riemannian structure ( , ), induces canonically a Rie-
mannian structure ( , ), (cf. [7, p. 547-548]). By pulling ( , ), and
(, )gy backto (, )5 and (, )o5 we getan explicit construction for

N
Riemannian structures which satisfy 3.2.1(a)-(c).
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3.3. The path liftings C""'#. Let r: [0, 1] = N be a given path. A
lifting of r to SN is just a continuous vector field V: [0, 1] — SN such
that V(¢) € Sﬁr(t) holds for all ¢ € [0, 1]. In this subsection we describe
a special way of lifting paths from N to SN. Such liftings are uniquely
determined by specifying the initial condition V' (0) =v.

For a fixed but arbitrary number ¢ > 0 choose a C*-function g: R —
[0, 1] which has the following properties.

33.1. (a) g(¢#)=0 forall t<o,and g(¢t)=1 forall t>20.

(b) dg/dt > 0 everywhere. Choose a number « > 0 such that x >
dg/dt everywhere.

For any path r: [0, 1] — N, any vector v € S]V,(O) , and any number

B > 0, we define a lifting A"'#:[0, 1] » SN of r to SN by Figure

3.3.2
)’w;\\ R

\\ \\N\ Mx0
Y S
A S
\ S~
Y S
\\ ‘\\
\\ ~ ~o - Ar,v,ﬁ (t)
N 4
\,\)r(t)/\
r(0)
¥, %0 0% 0 M0
- )
Y
B
FIGURE 3.3.2.

In Figure 3.3.2 we see that the unit speed geodesics in N which start at
r(0) with direction v, and which start at r(z) with direction 4" #(r),
intersect at the point y € N uniquely determined by r, v, and the equality
d (v, r,(0)) = B. Note that Lemma 2.0 assures us that the lifting 4"" A
is well defined by Figure 3.3.2 provided diameter(Image(r,)) < # in M ,
and v # +u. The product structure N = M x R leads to the factoring
AP = 40P By

We also define a lifting B”"*#: [0, 1] —» SN of r to SN by Figure
3.3.3.



STABLE PSEUDOISOTOPY SPACES 795

FIGURE 3.3.3.

In Figure 3.3.3 we see that the unit speed geodesics which start at r(0)
in the direction v, and at r(¢) in the direction B"V# (2), intersects at
a point y € N which is uniquely determined by r, v, and the equal-
ity dg(y, r(0)) = B(1 —90%)7"/>. We note again that Lemma 2.0 as-
sures us that the lifting B""”*# is well defined by Figure 3.3.3 provided
diameter(Image(r)) < B(1 —9¢7)""/? in N,and 30 < 1.

The lifting in which we are really interested is a combination of the
liftings 4"'# and B""'# , denoted by C"*"*#, and defined as follows.

334. (a)lf v,>30 (where ¢ comes from 3.3.1) thenweset C”"#(¢)
=B""F() forall t€[0, 1].

(b) If 0 < v, < 30 then we set

Cy P () = v, + g(v)(4y " () — v,)

and
P = ar P A oD - o)

for all ¢ € [0,1]. Here C""F = C["""# x C"""#u comes from the
product structure N=MxR.

Remark. Note in 3.3.4 that C""""#(¢) is well defined since 4"""# (1) =
B""’ﬂ(t) holds for any v with v, = 30 and for all ¢ € [0, 1]. Note also

that, as v, goes from ¢ to 20, C"""#(1) is a gradual tapering of the

lifting

DA = (A:’U’ﬂ(t)(lAI’v’ﬂ(t)|-1(1 _,022)1/2)) x (v,u(r(1)))
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to the lifting 4"""?(t). Clearly if v € S*N then D""?(r) € S'N
for all ¢t € [0, 1], and thus for B sufficiently large we will also have
C""P()e STN forall t€[0, 1] (cf. Lemma 3.4). This last property is
(unfortunately) not satisfied by the liftings B""" 4 (¢),, which is our reason
for introducing the more complicated liftings C rv.f (1.

We will need the following two lemmas to prove Proposition 3.1. The
proofs of these lemmas are given at the end of this section.

3.4. Lemma. (a) C"""%(¢) is continuousin r, v, B, and t.

(b) Given o and g as in 3.3.1, and a number a > 0, there exists a
number L > 0 such that the following is true. Let r: [0, 1] — N denote
any path such that dlameter(Image( )) < a, and choose B > L. Then for
any two vectors v, w € St N 0) We have

C””’ﬂ(t) — C”w’ﬂ(t) Jor some t € [0, 1]
N C"v’ﬂ(l) — C”w’ﬂ(t) Jorallte [0, 1]

and
"y, Py e STN forallte(o, 1].

3.5. Lemma. Given any numbers ¢, a > 0, there is a number y > 0.
Given a function g: R — [0, 1] which satisfies 3.3.1 for a fixed but arbitrary
o € [0, y], there is a number L'. For any choice of B> L' and for
any path r: [0, 1] —» N which satisfies Image(r) C M x [0, 0] and
diameter(Image(r)) < a, the following must hold. For all v € S+]Vr(0)
the path C™"* is (2a, &)-controlled over (SUV &%) with respect to the
projection map 2* : S*N — SYN, where 8': S*N — S*N is the geodesic
flow on S*N and where B’ = (1 —0)B (cf §1.5 for “control™).

Proof of Proposition 3.1. We will first complete the proof assuming that
Hypothesis 2.14 is satisfied for all i. (Note that 2.14 holds for all i if M
is a locally symmetric space.)

Let h: S* - Z;(M) represent an element in the (k — j)-dimensional
homotopy group of the spectrum P (M), where k, j > 0. We must show
that there is another map A': sk _,50 (p) such that 9?’ (fHod oh and
h are homotopic maps. We begin w1th the following deﬁnmon

3.6. Definition. A continuous map h: X — Z,(M) is said to be a-
simply-controlled if for each x € X and each y € M x R’ x I" each of
the composite maps

h(x)

[0, 11=yx[0, 1]C MxR xI"x[0, 1] 22 MxR/ xI"x[0, 1] 22 M
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has a lifting f: [0, 1] — M to the universal covering space M such that
diameter(Image(f)) < c.

We note that since S* is compact, any given map #: sk - <97’j(M )
satisfies the following property.

3.7. There exists a > 0 such that 4: S* — P (M) is af8-simply-
controlled (where o depends on 4 ).

By composing h: S* — (M) with the map %,(M) — %,(N), which
is induced by the inclusion M = M x0 Cc M xR = N, we obtain a
mapping n': sk - c@'j(N ) which we can arrange to have the following
properties.

3.8. (a)Foreach x € S* the support of the stable pseudoisotopy A (x)
lies over the subset M x [—o, 0] C N, where g comes from 3.5.

(b) h': sk Z,(N) is a/4-simply-controlled.

The remainder of the proof of Proposition 3.1 is contained in the fol-
lowing subsections.

3.9. Transfers. let p: 7 — X denote a disc bundle over the manifold
X,andlet A: Y — 95].(X ) be a continuous map from the CW-complex
Y . Recall that a transfer of h in the bundle 1 — X consists of a map
h:Y — () such that for each y € Y there is the following commuta-
tive diagram:

Tx (R xI"x[0,1]) 9%, ox ® xI" x[0, 1])

pxll lpxl

Xx(ijI"x[O,l]) —@L»XX(ijInx[O,l])

Note that the transfer enjoys the following properties.

39.1. (a)Forany h: Y — .@j(X) there exists a transfer 4: Y — ,97’1.(1)
of A in the bundle 7 — X .

(b) If 710, 7:1 are two transfers of 4 in the bundle T - X, then there
is a homotopy %,: Y — %,(1), t € [0, 1], from h, to h, such that each
ht is a transfer of 4 in the bundle 7 — X .

(c) Let { — t be a disc bundle over 7 such that the composite bundle
projection { — 7 — X is equivalent to the trivial bundle X x I* - X. Let
% be a transfer of 4 in the bundle t — X and let / denote a transfer of
h in the bundle { — 7. Then there is a homotopy A,: ¥ — (X x 1",
tel0,1], from h to h: Y — P(X) = P(X x Ik) such that each iz, is
a transfer of A in the trivial bundle X x I* — X .
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3.10. The special transfer h': S — P(S'N) of h' in STN - N.
We will now construct a special transfer h': sk - 93(S+ N) in the bundle
STN — N for the mapping 4' of 3.8 by using the path liftings of §3.3.
It will be more convenient to work with stable pseudoisotopies on N and
S*N. Let H': S* - %(ﬁ) denote the map such that for each y € S* the
stable pseudoisotopy H l(y) of N is obtained by pulling back the stable
pseudoisotopy hl(y) of N along the covering projection N> N. We
will first construct a transfer H : S — gzj(S“L]V ) in the bundle S*N —

N for the map H ! This transfer will have the property that for each
y € S* the stable pseudoisotopy ﬁl(y) of STN is left invariant by the
deck transformations of the covering S*N — S*N. Thus the quotient
of each H' (¥) under the deck transformations action yields the stable
pseudoisotopy Bl(y) of STN, and hence the transfer B': sk - .@j(S"LN )
in the bundle SN — N for the map A'.

Choose the integer n sufficiently large so that for each y € S* the
stable pseudoisotopy Hl(y) is a mapping Hl(y): NxR xI" x [0,1]—
N xR/ x I" x[0, 1]. For each y € S* and each z € N xR’/ x I", define
two paths p, , ,: [0, 1] — N and P, ., [0,1]— R’ x I" x [0, 1] to be
the composite maps

o~ 7 l o~ '] 1 A~
[0, 1] = zx[0, 1] € (NxR xI")x[0, 1] L2 NxR/ x1*x[0, 1] 2 ¥

and

[0,1]1=2zx[0,1]c (NxR xI")x[0, 1]
1 - . . .
HO FxR xI"x[0, 1] 2L R x 1" %[0, 1],

respectively. We note that the map H L.sk e@j(ﬁ ) can be reconstructed
from the collections of paths {py,z,i 1y € sk , Z€ N xR’ x I";i=1, 2}
by using the definitions of these paths. Likewise we may reconstruct the
desired transfer H : S* — ‘g"j(SJ']V ) for H ' from a collection of paths
{p,,,:veS, zeS'™NxR xI";i=1,2} which are defined as
follows.

3.10.1. Foreach ze STN xR’/ xI" let z' and z” denote the image
of z under projection to S*N and N xR/ x I" , respectively. Define the
mappings p, , ;: [0, 1] — S*N by B, ., = C""#  where r =D, 1>

! . .
v=2,and B > a, and where C"""# comes from §3.3 and « is as in
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3.8. Define the mapping p 22" : [0, 1] — R/ x I" x [0, 1] to be equal to
the map P, .
Now the transfer H : S* — g’j(S‘LJV ) in the bundle STN — N of the

map H ! can be defined as follows. .
3.10.2. For each y €S*, zeSTNxR xI" and t€|0, 1], set

H )z, 0= b, , (%D, , ().

Note that it follows from Lemma 3.4 that each H' (y) defined by 3.10.1,
3.10.2 is in fact a well-defined stable pseudoisotopy of S*N and that
I8 (y) depends continuously on y (see, in particular, 3.4(b)). On the other
hand, it can be deduced from Lemma 3.5 and 3.8 that the {Fl (y):ye Sk}
have the following control properties.

3.10.3. Foreach y € S* the stable pseudoisotopy " »): STN xR’ x
I"x[0, 1] = STN xR/ xI"x[0, 1] is (a/2, &)-controlled over (S*N, £7)

~ 5B ~ ~
with respect to bundle projection STN <£— S*N, where g': STN —

S*N, t R, is the geodesic flow on S*N (cf. Lemma 3.5 for 8'). Here
0 may be chosen arbitrarily small if f§ is chosen sufficiently large and if
o (of 3.5) is chosen sufficiently small.

We leave as an exercise for the reader to check that for each y € sk
the stable pseudoisotopy 178 (y) of STN is left invariant by the deck
transformations for the covering projection STN — STN. So, as was
noted at the outset of §3.10, we may define a stable pseudoisotopy fll(y)
on S*N to be the quotient of }—Il(y) by the deck transformation group
action on S*N . Thus we have the special transfer h': S — @j(S+N ) in
the bundle STN — N for the map h' of 3.8. The control properties of
3.10.3, and 3.8(a), 3.2.1 imply that the following hold.

3.10.4. (a) Each stable pseudoisotopy A'(y): S*TN xR/ xI" x [0, 1] —
STNxR/ xI"x[0, 1] is (a d)-controlled over (S*N, £*) with respect to

the projection S*N £ S*N. Here § can be chosen arbitrarily small if
B is chosen sufficiently large and if ¢ (of 3.5) is chosen sufficiently small.

(b) The support of each E‘(y) lies over M x [—a, ] with respect to
the standard projection SN — N.

3.11. Applying control theory to h'. First we note that every closed
orbit for the geodesic flow g': S'N — S*N, t € R, lies in a subset
S(M x s) ¢ S*N consisting of all vectors of S*N which are tangent to
the subspace M xs C M x R = N, for some number s € R. Thus the
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union of the closed orbits of the geodesic flow on S* N are identified with
the subset E x RC STN, where E Cc SM equals the union of all closed
orbits for the geodesic flow on SM . Let p: E — G denote the quotient
map obtained by collapsing every orbit in E to a point, andlet f: E — M
denote the composite map E ¢ SM 22 M .

There is a map J,: P (p) — P.(E) whose definition is analogous
to the definition for J in §1.4. Let & (f): #.(E) — P, (M) denote
the map induced by f: E — M . Note that the composite map 97’* (f) o
T, : PE(p) — P, (M) factors through the composite map Z; (f)oJ, : % (p)
— £ (M) . Thus, to complete the proof of Proposition 3.1 it will suffice
to show that the composite map Z(f) o J, : . (p) — P (M) induces
a surjection on the homotopy groups of the Q-spectra. In particular, it
will suffice to find #': S — P} (p) such that h and P (f)oJ ;o h' are
homotopic.

The path components of E are exactly the subsets {E ;} discussed
in §2.6 (cf. Theorem 2.4 and §2.6). Thus (by 2.4, 2.6) two closed orbits
L,L,in E are in the same path component of E if there are freely ho-
motopic orientation preserving immersions g;: S . L;,i=1,2 (where
the orbits L,, i =1, 2, are oriented in the direction of the geodesic flow
on SM). Using this criterion together with a compactness argument ( SM
is compact) it is an exercise to show that for any given number A > 0 the
following holds: there are only finitely many path components of E which
contain an orbit of length less than or equal to A.

In the special case that 4 = 5o (where n comes from 1.5.3 and where
a comes from 3.10.4) we denote by E |, .-+, E,, the components of
E which contain an orbit of length less than or equal to 4. Note that
there are closed pairwise disjoint tubular neighborhoods 7, 7,, -+, 7,
in S*N for the corresponding components E, xR, E, xR, --- , E_ xR
of E x R, such that the subset U C S™N defined by U = S'N —J; 1,
satisfies 1.5.3(a), for sufficiently small ¢ in 1.5.3(a). This fact, together
with 3.2.1 and 3.10.4, assure us that all the hypotheses are satisfied for
applying Theorem 1.5.3 to Image(le) over the subset U, if B is chosen
sufficiently large and if ¢ is chosen sufficiently small. So we apply Theo-
rem 1.5.3 to get a homotopy 71,1: sk L@j(S’LN) , t€[0, 1], of &' which
has the following properties.

3.11.1. (a) For each y € sk , t € [0, 1], the stable pseudoisotopy
h,(y) is (na, e)-controlled over (SN, £*) with respect to the bundle

5
projection SN £ S*N
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(b) For each number s > 0 and each integer i satisfying 1 < | <

m, let 7, = denote the restriction of 7, to Fi % [—s, s]. Then for each
y € S* the support of the stable pseudoisotopy 7111 (¥) lies over the subset

U;7;, C SN (with respect to the projection S™N &SN ), where
s=d(c+na+p).

Foreach i=1,2,---, m we choose a disc bundle {; — 7, such that
the composite bundle {; — 7, — E; xR is equivalent to the trivial bundle
E, xRxI* - E; xR, and for each number s > 0 we let {;  denote
the restriction of (; to T By 3.11.1(b) we obtain a map g;: sk -
@j(ti,s) by setting g;(y) equal to the restriction of 7111 () to that part of
its domain which lies over g_ﬂ '(ri’s) , where we have identified Z%(z; )
with @j(g_'g,(ti’s)) under the homeomorphism g'glz g_ﬂl(tm) =T
Let g:S° — Z,(E;) denote a transfer for g in the bundle {;, , —
T, ;» where we have identified %,(E;) with &, (E, x [-s, 5] x I*) under
the stabilization map. Note that by 3.11.1(a), each g, has the following
property.

3.11.2. For each y € S* the stable pseudoisotopy g,(y) is ¢'-con-
trolled over G, with respect to the projection p,: E;, — G,, where G, =
p(E;), p,=p|E,;,and ¢ is a positive number satisfying limit, & =0
with ¢ from 3.11.1.

By taking the disjoint union of the maps g;: sk .97’1.(Fi) we obtain a
map g: S — @]F(F) . Tt follows from 3.11.2 that g is &'-controlled over
G with respect to the bundle projection p: E — G. Thus we may apply
Theorem 1.4.1 to get a mapping 4': S* — P (p) such that T ;o h' = g.
(Actually, we apply 1.4.1 to each g; forming h,'. and 4’ is the disjoint
union of the 4;.)

In order to complete the proof of Proposition 3.1 it remains to show
that the maps h: S* — P(M) and P[(f)oJ; o n:st - (M) are
homotopic. To see this we first note that for sufficiently large s > 0
the support of each stable pseudoisotopy 71t1 (¥) in 3.11.1 lies over the
subset M x [—s, s] with respect to the standard projection STN = N
(cf. 1.5.3). From this last remark and §3.9 it follows that by transferring
h: sk Z(STN) toabundle 7 — S*N (such that the composite bundle

7 — STN — N is equivalent to the trivial bundle N x I b N ), we get
a transfer map iz} . 8K ,9*’;(N x Ib) = 9’}.(N) ; then by restricting each
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image point izll »), ye S* to that part of its domain which lies over the
subset M x [—s, 5] C N, we obtain a map h": S* — P(M x[-s,5]) =
9"’1.(M ) which is homotopic to h4: sk - .@j(M ). On the other hand,
another application of §3.9 shows that 4" and Z(f)oJ, o h' are also
homotopic. To verify this last fact the reader should consult [16; §1] to
see how the transfer construction is related to the functorality of Qf( ).
Thus, £ and .97’;( oo h' are homotopic as desired.

This completes the proof of Proposition 3.1 when Hypothesis 2.14 holds
forall i.

There are only minor modifications (in 3.11) to be made on the preced-
ing proof if Hypothesis 2.14 is not assumed to hold. Let E,, --- , E, de-
note the components of E discussed in §3.11, and let L,---,L, denote
the leaves of the asymptotic foliation & that contain the E ,--- , E,,
(cf. 2.6.1). Choose a number r > 0 sufficiently small so that the or-
thogonal projections E: — E,, 1 < i < m, are well defined, where
E,={xelL,:dx,E)<r},and d"(, ) is the metric on L, as-
sociated to the Riemannian structure pulled back from A by the cov-

ering projection L, C SM 9, M. (Note that the sectional curvature

restriction K <0 on L, and the local convexity of Fi (cf. 2.7.1) assure
us that orthogonal projection to F,. is locally well defined in L; (cf. [3,
pp. 8-10])). Choose small tubular neighborhoods {£;} for the {F:} in

S*N | Mx0; thus each ¢; is a smooth disk bundle (with corners) over f: .
Now in §3.11 set 7, =&, x R, and set T = ¢, x[-s, s] foreach s> 0.
After applying the control Theorem 1.5.3, we get that 3.11.1 is true. To
get the {g;: sk Q‘JJ (Fi)} of 3.11.2 we restrict each stable pseudoisotopy

I_z,l(y) , VE sk , to that part of its domain lying over g_ﬂ’(ti’s) (cf. 3.11.1
for s, ', k), and then (having identified P (1, ) with ﬁjF(g_ﬂl(ri,S))

via the homeomorphism gﬂ : g_ﬂ (7;5) — T; ) project it into F,. by the
composite map

proj proj 3= Pproj 4
7, =& x[~s, 5] ¢ E; E;.

The rest of §3.11 is carried out as before.

This completes the proof of Proposition 3.1.

Proof of Lemma 3.4. The proof of 3.4(a) and of the second claim in
3.4(b) follow directly from the definition of C"*"'# . The details are left
as an exercise.
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We divide the verification of the first claim in 3.4(b) into the following
three cases.

3.12. CaseI. v, > 20 and w, >20.

Let B(r (0), B) denote the closed ball of radius f centered at r,(0) in
M, and let B(r(0), B') denote the closed ball of radius A =
B(1 —96%)""/? centered at r(0) in N = M x R. Since both of the sets
B(r,(0), B) xR and B(r(0), B') are convex subsets of N (cf. Lemma
2.2), it follows that C = (B(r,(0), B) x R) N B(r(0), B') is also a convex
subset of N .

In Figure 3.12.1 we have indicated how the values of C"*"# (¢) and
crvk (¢) are obtained by focusing to boundary points of C (cf. §3.3).

The convexity of C implies that C""*#(¢) = C"*"#(¢) holds for some
t € [0, 1] if and only if v = w, provided Image(r) c (C —9C), e.g.,
provided L > «.

Mx0

FIGURE 3.12.1.

3.13. CaseIl. v,<30 and w, < 30.

If 9, # w, , then we show that C,""’ (1) # ;""" (1) forall 1€ [0, 1],
where z = z|z|”' forany z € TM. In Figure 3.13.1 we have indi-
cated how the values C;’" () and C] *:B (1) are obtained by focusing
to boundary points of the ball B(r,(0), B) (cf. §3.3).

The convexity of B(r,(0), ) implies that %) =T P (1) holds
for some ¢ € [0, 1] if and only if 0, =w, .
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FIGURE 3.13.1.

If 9, = w,, then we must have that v, # w,, assuming that v # w.
Without any loss of generality we may suppose that v, > w,. We shall
complete the verification of 3.4(b) for Case II by proving the following
claim.

3.132. Claim. C}'"%(t) > C;>*"#(t) holds for all ¢ € [0, 1], pro-
vided B is chosen sufficiently large.

First note that our present assumptions, together with 3.3.1 and Figure
3.3.2, imply the truth of the following.

3133. (a) o, =w, and v, > w,.

(b) g(v,) > g(wz) .

(©) 45" Pty > Ay™ P (1) forall £ €0, 1].

Note that Claim 3.13.2 follows easily from 3.13.3 and 3.3.4 provided
A;’”’ﬁ(t) > w, holds for all ¢ € [0, 1]. It remains to verify 3.13.2 when
the following inequality holds.

3134, w,> A;’”’ﬂ (2) for the specific ¢t € [0, 1] being considered in
3.13.2.

Note that for all v with v, < 30, all r which have diameter less than
orequalto @ in N, andall ¢ € [0, 1], the following is true.

3135, limit,__ (v, — 45""#(1)) = 0 uniformly in 7, v, and .

We note that there is a smooth real-valued function f(x, y, z) in three
real variables, which has the following properties.

3.13.6. (a) f(0,0,2z)=0.

(b) For the composite variables x = ,B_l(dﬁ(rl(t) ,¥,)—B) and y =

ﬂ_l(rz(t) —1,(0)), where y,, y are as in Figure 3.3.2, we have that
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r,v,p - o
A2 (t)—vzzf(x’y,vz)-

By using 3.13.6(a) to help compute the second order Taylor polynomial
for f(x,y,w,) - f(x,y,v,) about the point (0, 0, v,)—for fixed v,
and variables x, y, w,—we get the following equality.

3137, f(x,y,w,)—-f(x,y,v,) =ax(w,—v,)+by(w,—v,), where
a, b depend continuously on v,, w,, X, y.

The first order Taylor polynomial for g(w,) about v,—here v, is fixed
and w, is the variable—yields the following.

3.138. g(w,) = g(v,) + ¢(w, —v,), where |c| < 2x. Here k > 0
comes from 3.3.1.

Now we can complete the verification of Claim 3.13.2 when 3.13.3 and
3.13.4 hold. By combining 3.13.5, 3.13.6, 3.13.7, 3.13.8, and 3.3.4(b), we
get the following equalities.

3.139. (a) O3 (t) = w, + g(v,)(4y " #(t) —v,) + R, + R, , where

R, = c(w, - vz)(A;’w’ﬂ(t) -w,) and R, = g(v,)(ax +by)(w, —v,).

(b) limit,_ _(|R,| + |R,|)(w, —v,)™" =0 uniformly in r, v, w, ¢.

Now Claim 3.13.2 follows from 3.13.9 and 3.3.4.

314. Case III. |v, —w,|>0.

It is not difficult to deduce from 3.3 that all the limits limit,__ C;*" (1)
and limitﬂ_,oO CZ' . (t) tend to v, and w, respectively, uniformly in r,
v, w,and ¢, provided that diameter(r) < . Thus, for sufficiently large
B, Cy"P(1) # C5*F(t) holds for all ¢ € [0, 1].

This completes the proof of Lemma 3.4.

Proof of Lemma 3.5. We divide the proof into the following two cases.
3.15. Casel. wv,>30.

yeso R

/

r(0)

FIGURE 3.15.1.
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%8 are ob-

In Figure 3.15.1 we have indicated how the values of C
tained by focusing at the point y € N.

Note that the following equalities uniquely determine a one-parameter
family of unit speed geodesics f,: R— N, 1€ [0, 1] (cf. Lemma 2.0).

3.15.2.  f(0)=y; f,(B,) =r(t), where B, =d5(y, r(?)).

By definition of the geodesic flow 2': SN — S'N, ¢ € R, and by
3.15.1, 3.15.2, we also have the following.

3.15.3. gﬁ o C"”’ﬁ(t) = —df,/ds(B, —pB"), where g’ = (1-0)8, and
for each value of ¢ the map f,: R — N is a function of the variable s.

Now it follows from 3.15.2, 3.15.3, and 2.1, 3.2.1, tllxat if ¢ is chosen
small enough, and S is chosen large enough, then g” o C""F will be
(2a, &)-controlled over (S+]V , &™) for all r with diameter(r) < a. This
completes the verification of Lemma 3.5 for Case 1.

3.16. Case II. v, <30.

In Figure 3.16.1 we have indicated how the values of C"*”*# are ob-
tained by focusing at points »' € N. Note that the inequality of 3.16.2
follows from §3.3 and the hypothesis of Lemma 3.5 (used for the first time
here) that Image(r) C M x [-o, a].

03 ~~
A N S~o R
[ IR SN
\ S

~
\\ \\\ MXO

\ \‘\\ C"“"B(l‘)

\
AY
\m

r(0)
o Mx0
y,0x0 r,(0)x 0

FIGURE 3.16.1

3162, dg(0°, ") <4(va+0).

The following equalities uniquely determine a one-parameter family of
unit speed geodesics f,: R — N , te[0, 1].

3.163. f,(0)=y"; f,(B,) =r(t), where B, =d5(y', r(1)).

By the definition of the geodesic flow 2': SN — S*N, ¢ € R, and by
3.16.1 and 3.1§.3, we also have the following.

3164. g% o C""P(t)=—df jds(B,— '), where B’ = (1 —0)B.

Now it follows from 3.16.2-3.16.4 and 2.1, 3.2.1 that if ¢ is cho-
sen small enough, and # is chosen sufficiently large, then 2° o C"°"*
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will be (2a, ¢)-controlled over (SYN, £") for all paths in r in M x
[0, o] with diameter(r) < «.

This completes the proof of Lemma 3.5.

3.17. A control theorem for nonpositively curved manifolds. Before be-
ginning the next section we state a lemma which will be needed in §5.
Let M be a Riemannian manifold, and let M|, Cc M, C M; C--- be
an increasing sequence of closed subspaces of M, all of which have the
following properties.

3.17.1. (a) M is complete and of compact type (cf. 1.5.2).

(b) M has nonpositive sectional curvature everywhere.

(c) Each M, is a codimension zero submanifold of A .

(d) The radius of injectivity for M at any point g € M — M, is greater
than or equal to k.

(e) For each k, d, (M - M, ,M)— oo as m— .

For any number o > 0 and any integer j > 0 let ;@j(M ; a) be the sub-
space of all stable pseudoisotopies in (M x R’) which are a-controlled
over M x R’ with respect to the identity projection M x R’ — M x R’
(cf. §1.2). Let .9’3.1’(M ) denote the direct limit space limit _, g’j(M ;)
for any integer j > 0; and if j < O then set gajb(M) = Q"’(gaob(M)).
Hatcher’s proof of the first half of 1.3.1 works, with only minor modifica-
tions, to show that the collection of spaces .@*b(M )= {,?f(M ):J€EZ} is
a Q-spectrum called the spectrum of bounded stable pseudoisotopies on
M . Of course the same construction can be used to obtain the Q-spectrum
@f (M,) for each integer k > 0.

3.17.2. Theorem. Suppose that M andthe M, , k=1,2,3,---, sat-

isfy 3.17.1. Then the direct limit Q-spectrum limit, ___ <97’b(Mk) is weakly

*

equivalent to the Q-spectrum ,93:’ (M) via the inclusion map
limit,__ #’(M,) c P#°(M).

Proof of Theorem 3.17.2. We will show how to deform any 4 € 97’j.b(M )
through a one-parameter family of stable pseudoisotopies 4, € <9?’].b(M ),
tel0,1],to h € g’jb(Mk) for k sufficiently large. The remaining details
are left to the reader.

Roughly speaking, to get 4,, ¢ € [0, 1], we must reproduce the proof
given above for Proposition 3.1. Set N = M x R with the product metric.
Let 4’ € ﬂj.l’(N ) denote the image of 4 under the map induced by the

inclusion M =M x0C M xR=N (cf. 3.8). Let h" € #/(S*N) denote
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a suitable transfer of 4’ in the bundle S*N — N (cf. §3.10). Now by
using the geodesic flow on STN we may deform 4" by h;', tel0,1/2],
so that k|, is (2, 6)-controlled over (S'N, & *) for a suitable small &
(cf. 3.10.4). Now 3.17.1 assures us that the foliated control Theorem 1.5.3
may be applied to h;'/z over S'N | (M —M,)xR) (for suitably large k) to
get a further deformation A, , t € [1/2, 1], of h;'/z such that the support
of A lies over the subset S*N | (M, xR) of S'N (cf. §3.11). Finally we
transfer h;' € ‘@jb(SJrN), t e[0, 1], to h;" € 9";’(1), t € [0, 1], where
7 — STN is a disc bundle such that the composite bundle projection
7 — STN — N is equivalent to the trivial bundle N x I* — N . Note that
the support of each h;" , t€[0, 1], lies over the subset M x[—s,s]C N
for sufficiently large s > 0, and the support of h'l" lies over M, x[-s, s].
Thus, we may define the desired deformation 4,, ¢ € [0, 1], of & to be

the restriction of /", t € [0, 1],t0 M x [—s, s]x R/ x I" x[0, 1], where
the domain of 4" is equalto N xR’ x I" x [0, 1].
This completes the proof of Theorem 3.71.2.

4. More geometry

The purpose of this section is to introduce more notation, and to state
and prove several geometric lemmas (cf. Lemmas 4.6, 4.7, 4.11.1) which
will be used in §6 in proving that the composite map 9’:( f)od,: 97’f (p) —
Z (M) is injective on the homotopy groups of Q-spectra.

In this section and the next the following hypothesis will be assumed
true.

4.0. Hypothesis for §§4 and 5. For each component E; of E we have
that OE; = &. Equivalently, each D, (of 2.7.1) is a complete Riemannian
manifold with sectional curvature K < 0 everywhere. These two equivalent
conditions are satisfied if M is a compact locally symmetric space with
sectional curvature K < 0.

4.1. The maps g,, ¢;, L jsSis and the foliations Fl , FI i Recall that

fi: E, — M denotes the composite map E;, C RPM proi, M , where

RPM is the real projective bundle for M, and E; comes from Theorem
2.4. Note that f; is not in general an embedding, however it follows from
Lemma 2.7.1 that f; is always a smooth immersion when Hypothesis 4.0
holds. Choose, for a sufficiently large integer k > 0, a smooth embedding
8§ E, - MxI % such that the following diagram is commutative:
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E, -5 MxIF

(4.1.1) L\ /)roj
M

Since we shall be dealing with the embedding g;: E; = M xI ka lot, we
often identify E; with its image under g; and denote g, by E, C M x[ k.
Choose a tubular neighborhood T; C M x I* for E CMx I* in MxI*
with projections #;: T, — E;. Let EU,T cMxI , j=1,2,
denote all the path components of the prelmages of E,, Tl under the
universal covering projection MxI* - MxI* sandlet ¢, . T, —E

i, i,Jj
denote the bundle projections which cover the pI‘OjeCthll t;: T, — E;.
There will be no loss of generality in assuming that the {¢, } have the
following properties.

4.1.2. (a) The projection map MxI* M maps E; 0 diffeomorphi-
cally onto the subset E ; C M and maps Ti’1 onto a tubular neighborhood
S, for Ei in M (cf. 2.7.1 for the embedding Ei C ]TJ\) .

(b) The orthogonal projection s;: S; — Ei is a bundle projection (cf.
[3]). Moreover we have the following commutative diagram:

T,
|
Si

Note that there are canonical covering projections Ei — E, and E,; i

E,. We denote by 1?, the foliation for E ; which covers the foliation F; of
E; ; recall that the leaves of F; are the fibers of p;: E; — G;. We denote
by ;,; the foliation of E; i which covers the foliation F; of E;.

4.2. Stratified flat bundles. Recall that ', denotes the fundamental
group 7,(E;). Note that T'; acts on Ei via deck transformations for the
universal covering projection Ei — E;. Since Ei =D; xR, T also acts
on D; x R: in fact, it is a consequence of 2.7.1(b), (c) that the action
[, x (D, x R) — D; x R is the diagonal action for two separate actions
I' x D, — D, and I’ xR — R. It is a consequence of 2.6.1, 2.7.1, 2.9
that the bundle projection p;: E;, — G, is equal to the quotient of the
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projection D; x R — D, under the group actions I'; x (D; x R) — D, x R
and I', x D, —» D, .

A map pW: W — G, is called a stratified flat bundle over G, if there
is a group action I', x X — X on a space X such that the diagonal action
I';x(D;xX) — D;xX isafree and properly discontinuous action, and such
that pW is equal to the quotient of the standard projection D, x X — D,
under the group actions I', x D, = D, and I';, x (D; x X) - D; x X .

We have just seen that p;: E; — G, is an example of a stratified flat
bundle with X = R. Other examples can be constructed by choosing
subsets X ¢ M (or X C M x Ik) which are left invariant by the deck
transformation action T, xM — M (orby T, x (ﬂx Ik) — ﬂxlk) . Note
that such I';-invariant subsets can be obtained by starting with any subset
YcM (or Y C M x Ik) and setting X =TIY, where I';Y denotes the
orbit of Y under the I'; action. We get the following useful examples of
stratified flat bundles

4
p; A4, -G,

B
p;:B,— G,

T
PijqTijq— G
(4.2.1) P c
i,j,q — Yi»

Pijq"
s
b i+S;,i— G,

E ~
b, E — G,

by choosing X = M x Ik, A/Z, . ,T.E S, or E., respectively.
J,4q i

i i~j,q° i
We can add to this list the projection

(4.2.2) p:C,—G,,

by choosing X = D;. The projection pic is not a stratified flat bundle
projection because the diagonal action I', x (D; x D,) — D, x D, is not a

. c . . . .
free action. However, p,” will have its uses in what is to come.

4.3. Flat foliations. Let pW: W — G, be a stratified flat bundle con-
structed from the group action I', x X — X . Suppose that X is a mani-
fold. Then a foliation # for W is a flat foliation if there is a foliation
% for X whose leaves are permuted by the action T'; x X — X, and ¥
is the quotient under the diagonal action I'; x (D; x X) — D; x X of the
foliation of D; x X with leaves equalto {bx L:be D,, L€ .#}. For
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example we get the flat foliations
(4.3.1) F,, ,ofE ,  and F, ofE

by choosing (X, %) = (I"I.Ej’ .0 LiF; ) or (Ei , Fi) , respectively. Note
that each fiber of El., i and E\i,i is the union of leaves in FI i and

1?,. ; » and is thus foliated by the restrictions of these foliations.

iio

1

4.4. Flat mappings between flat bundles. Let pW: W — G, and pW :
w' - G; be two stratified flat bundles formed from the group actions
[ xX — X and T x X' - X'. A mapping g: W — W' is called a
flat mapping if there is a I'-equivariant map r: X — X " such that g
is the quotient of 1 xr: D, x X — D, x X " under the diagonal actions
I, x(D;xX)— D;xX and T, x (D, x X') - D, x X'. Using this
construction we get the following examples of flat maps:

ﬁi,i:Ei,i_'Ci’
(4.4.1) si,i:Si,i_'Ei,i’
et Tija = Bije
E ,CS,,CB, and E, , CT,  CA,

by choosing r: X — X' to be equal to p,: E, — Gi, 508, — E,,
It 0T, —TE, ,EcScM,orT,E, cI,T, CMxI*, re
spectively. Here p;: E‘i — Gi denotes the standard projection D; xR — D;

(cf. 2.7.1). Note that strictly speaking, ﬁi, ; 18 not a flat mapping since
pl.C: C; — G, is not a stratified flat bundle.

There are also the useful (nonflat) maps
(4.4.2) I'"E,~4,, I':E —B,
defined as follows. Let r: Ei — D, x (A7 x Ik) be given by r(y) =
(8;(»), &(»)) foreach y € Ei , where §;: E’i — M xI* is a fixed covering
for the map g;: E, - M x I* such that Image(g;) = E; | . Then define
II.A to be the quotient of the map r under the action I'; x El. - E ; and
the diagonal action I'; x (D; x (ﬂ x Ik)) — D; x (ﬂ X Ik); and define IiB
to be the composite map

1,-A k proj
E 2 4,=Bx1" 2% B,

Note that any flat map g: W — W' between stratified flat bundles, or
either of the maps in (4.4.2), is fiber preserving.
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4.5. Metrics on the fibers of flat bundles. For any stratified flat bundle
pW: W — G, and any point b € G, we let W, denote the fiber lying
over b. For any flat map g: W — W' between stratified flat bundles
over G;, and for any point b € G,, we denote by g,: W, — Wb' the
restriction of g to W, . For example we have, for each b € G, , the maps

Piiw Eiip = Ciops Siiwt Siio = Eiip>a0d 4 002 Ty g =
E; ; ., from (4.4.1). Likewise we let F, , , and F, ; , denote the

restrictions to E, ,, and E, ia.b of the foliations F; ; and F; i
There are metrics

df;b( , ) on the fiber 4, ,,

(4.5.1) dl,( . ) on the fiber B, ,,

a’fb( , ) on the fiber C; ,

1
defined as follows. Note that there are canonical covering projections
Ai’b — M x I* and B, , —» M via which 4, , and B, , inherit Rie-
mannian structures from M and M x I* which has the product metric.
We let df, »( » ) and d,.B »( > ) denote the metrics associated to these

inherited Riemannian structures. To get the metric dl.c »(» ) on the fiber

Ci,b we set

df ,(x, y) = minimum{d; (%, 7)}
forall x,yeC i b» Where the minimum is taken over all preimages X, y
of x, y under the canonical “covering projection” D, — Cip-
We will denote by

~

E N E T
(4'52) dj’j,b( ’ ),di,,"b( H )’di,j,q,b( ’ )’di,j,q,b( ’ )’ etc.

the restriction of dfb( , ) di’fb( , ) tothe subsets Ei,i,b,Si,i’b,Ei,j,q’b,
T; j.a.b> EtC of B, A.

We can now state and prove the main two lemmas of this section.

4.6. Lemma. Suppose that M is compact. Then forany i, any b € G,,

any j and any q, the foliation F b 0f §§4.3 and 4.5 is of compact type
E

(cf 1.5.2 for “compact type”) with respect to the metric d, iab Moreover,
ifi#j,orif i=j but q#1, then F, iiab has no compact leaves.
We will need the following notation in the next lemma. For each a > 0

and each b € G; we let 17?,. ;. denote the set of all points in B, , having

a distance, with respect to the metric a’iB »( > ), less than or equal to «
from Ef‘i b-
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4.7. Lemma. Suppose that M is compact. Then given any number
r > 0 there is a number a > 0, such that for any i, any b € G,, and
allx € B; El b the radius of injectivity for B, p at x is greater than
.

Proof of Lemma 4.6. Note that Foiab is a covering for the foliation
F; of the space E; . Since E; is compact (cf 2.4), it follows that F, ..
is of compact type

In showing that F q , has no compact leaves, we first consider the
case where I # j. Let Ny denote the isotropy subgroup for the action
I''xD; — D, atan arbitrary point b’ in the preimage under the projection
D. — D ;/T; = G; of the point b € G,. Note that I'; , is an infinite cyclic
group w1th generator which we denote by g, (cf. 2 4, 2.6.1, 2.7.1, 2.9);
thus any compact leaf L, € F g.b is in the same free homotopy class
(in 4; ,) as (gb,) for some mteger n. Under the canonical covering
projection E), PN E;, the leaf L, is mapped onto a leaf L, of F;
which is in the same free homotopy class (in M) as (g, )™ for some
integer m. On the other hand, the leaf E; , of F; has the same free
homotopy class (in M) as g,,. Now it follows from the definition for
F,, Fj, E,, Ej given in §2 (just prior to 2.4) that E, = Ej , e, I =],
which contradicts our assumption that i # j.

Now we consider the case where i = j but g # 1. For g, as in the
previous paragraph we know that any compact leaf L, € Fiiaw is in

the same free homotopy class (in 4, ,) as (bb,)" . Note that Ii"(Ei,b) is
a compact leaf of F, ;| , in the same free homotopy class (in 4, ,) as

8y (cf (4.4.2) for If). Let h: S' x [0, 11 — 4, , be a homotopy which
connects L, to a power of II.A(Ei,b), and let Tyt Ai,b — Bi’b denote
themap 4, , = Bl.,bxlk _proj, B; , . Apply Lemma 2.5.1 to ni’boh: St
[0, 1] — B, , to get a homotopy (m; yoh),: s! x[0,1]—= B, ,, t€[0, 1],
such that (7 , o h),: S x 0,11 — B, , is a flat band. There is a unique
lifting of (m, , oh),;: S' x[0, 11— B, , to H:S' x[0, 1]— 4; , which
satisfies the following properties: each H | S! x t parametrizes a leaf of
U, F, 1, ps H | S' 0 parametrizes L ; H| S'x1 parametrizes a power

b

of I J(E; ) Tt follows that g = 1, which contradicts our hypothesis that
qg#1.

This completes the proof for Lemma 4.6.

Proof of Lemma 4.7. For a given b € G, we suppose that there is no
such a > 0. Then for any given a > 0 there is an essential smooth map
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h:S' > B; , which has the followmg properties.

48. (a ) length(h) < 2r in B;

(b) The distance from A(1) to E,.’l., » 1s greater than a in B, ,

Since any essential closed loop in a compact nonpositively curved mani-
fold is homotopic to a closed geodesic (cf. [3] or [16]), from 4.8(a) and the
compactness of M it follows that there is a homotopy H: S I'x [0,1]- M
of the composite map S QLN b P, Af which has the following prop-
erties.

49. (a) H is a smooth map, and the lengths of H | S' x 1 and
H|1x][0, 1] are both less than ', where ¢ is independent of « .

(b) HIS x 1 isageodesicin M.

Choose a lifting H: S' x[0,1] = B; , of H such that H|S x0=h.
Then we deduce from 4.8, 4.9 that the followmg 1s true.

4.10. There is a closed geodesic in B, , - El"‘ 12,; , where r’ is inde-
pendent of «.

On the other hand, there is the closed geodesic I ,.B (E; p) In E, ip (cf.
(4.4.2) for II.B); note that I,.B(Ei,b) is also a compact leaf in Fi,,.yb. The
fundamental group =, (B; ) is an infinite cyclic group with generator g,
(cf. the proof of 4.6 and note that A y=B; yxI k) ; moreover any closed
path representing g, is freely homotopic to II.B(EI., p) in B; ,. The closed
geodesic of 4.10 must be freely homotopic to ( gb:)" for some integer n.
Thus by applying Lemma 2.5.1 in B, , to the homotopy which connects
the geodesic of 4.10 to a power of II.B (E; ;) we see that the geodesic of
4.10 must be a leaf of Fl b which contradicts 4.10.

We have shown that for each » € G, and each r > 0 there is an «
satisfying the conclusions of Lemma 4.7. To see that a may be chosen
independent of b € G, note that, for a fixed i, there is only a finite
number of different isometry types for the pairs (B; ,, Ei, ib)s begG,,
with respect to the metric d; , givenin (4.5.1).

This completes the proof of Lemma 4.7.
4.11. One-parameter families of homeomorphisms ¢l: B, — B, and

Y, Cl—>C,t€(0 1]. Foreach be G, let ¢, ,:B, , = B, ,, t€
[0, 1], be the unique map satisfying the followmg proper‘ues for each point
x € B, d; b(¢z p(X)5 E; ;) = td] (% E: i5)5 let g:[0,00) = B;

be the geode51c ray which starts at the point g(O) € B, , and contains
both x and ¢, ,(x). Then g meets E,., Qb perpendicularly at g(0).
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Note that each qS[ p: By — By, t€(0,1], is a homeomorphism, and
that ¢0’ b Bip — E i.p 1is the orthogonal projection onto El ip- In
order to verify that qb,’b i » — B, is a well-defined map forall ¢ €
[0, 1] we must use an equivariant version of [3, pp. 8§-10] as well as all
of the following properties: B, , is a complete Riemannian manifold
with nonpositive curvature everywhere; Ei’i, p 18 a closed and connected
locally convex subset of B; 43 the inclusion map Ei’ ib C Bi’ » induces
an isomorphism of fundamental groups.

Although C; , need not be a manifold we can still define a geodesic
in C, » tobe the images of geodesics in D, under the “canonical cover-
ing” pro_|ect10n D, — C, p- For each b € G let w, ,:C , = Cy, tE
[0, 1], be the unique map which satisfies the followmg properties for each
point x € C, ,: d (¥, ,(x), B; ;(I] (E, ,))) = td{ ,(x, B, (I} (E; ,)));
the geodesic which connects x to ﬁi,i(IiH, »(E; ) contains the point
t//,’b(x). Note that C; , is the orbit space of a finite cyclic group ac-
tion Z,  x D, — D, by isometries (cf. 2.7.1, 2.7.2 and use the fact that
”1(Ei,i, ) is an infinite cyclic group); moreover there is a fixed point
of the action Z, x D, — D; which is sent to ﬁi’i(lf (E; »)) under the
quotient map D, — D,/Z, = Cl » > thus by Hypothesis 4.0 there is for
any pomt X € C b @ unique geodesw segment in C, b connecting x
to p, ,(I; (El p)) . Note that each y, ,: C, - C,, t€(0,1],isa

homeomorphism, and that Image(y, ,) =p; I(IB (E; p))-
Now set

¢, = U ¢t,b’ v, = U Yib-

beG, beG,

4.11.1. Lemma. Forall i, b€ G;, x, x' €B,,. v, y' €Cy, and
for all t € [0, 1], the following are true.

() df ,(x, x') > df (8,(x), 6,(x)).

(b) td (v, ") 2 dS ,(w,), w,00").

. é ~
(c) Let 4 b B, ,— Cl.’b denote the composite map B, , IAILIN E .y
ﬁi,i,b
—_—

C; . Then df ,(q; ; ,(x), 4 ; ,(x)) <d7 y(x, x).

Proof of Lemma 4.11.1. To prove part (a) we use the convexity of the
distance function diB, »: B; p x B; , = [0, 00), together with the following
fact: if g, /R — B, , are two geodesics in B; , which meet Ei’i,b
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perpendicularly at g(0), f(0), then the minimal distance from Image(g)
to Image(f) is equal to df »(£(0), f(0)). This last condition is equiva-

lent to the fact that the orthogonal projection qSO, b Bip— Ei, ib is not
- distance increasing (cf. [3, pp. 8-10]).

To prove part (b) we recall that D, is a complete Riemannian manifold
having nonpositive sectional curvature everywhere (cf. Hypothesis 4.0),
and C ib is the orbit space of a finite cyclic group action Z  xD; — D, by
isometries. If the cyclic action Z, x D, — D, were trivial, then 4.11.1(b)
would follow from Lemma 2.1(a). In general there is a one-parameter
family of maps y, ,: D; — D;, t € [0, 1], which commute with the
action Z x D, — D,, such that the v, , are just the quotients of the
Y b under the Z -actlon Now 4.11.1(b) holds for the ¥, » (by 2.1(a)),
50 4.11. 1(b) must also hold for the Y -

Part (c) of this lemma follows from ‘the fact that the orthogonal projec-

tion @, ,: B, , — El ;,p satisfies dl i.5(@0 5(X), &g ,(xX) < d, »(X, x)
(cf [31), and the map 5, ; ,: . E, b — C, , satisfies d{ (B, ; ,(2),

b b(z )) <d »(Z, Z') forall z, Z' eE p (cf. 2.7.1).
"This completes the proof of Lemma 4. 11 1

5. Some equivalences of Q-spectra

In this section we introduce more stable pseudoisotopy Q-spectra. The
main results of this section state that various of these Q-spectra are equiv-
alent to one another (cf. 5.3, 5.5, 5.9).

In the rest of this paper we adhere strictly to the following convention.

5.0. Convention for §85 and 6. Any spectrum &, = {5” Jj € Z}
with structure maps {h: Ix 5’; Q&”j w1} will be zdenttﬁed with the singular
complexes of the spaces {5”]. : j € Z} and with the maps induced on the
singular complexes by the structure maps. Thus if each h % 5”1 — 95”] +
induces an isomorphism on homotopy groups, then ., is an Q-spectrum,
and also any weak equzvalence of Q-spectra is an equtvalence of Q-spectra.

5.1. The Q-spectra 9"( ) and 9” (p ). Let p7: W - G, denote
any stratified flat bundle of §4.2. For each integer j > 0 we shall denote
by ¢9”j(pW) the subspace of all stable pseudoisotopies 4 € .@j(W) which

has the following property: A(W, xR/ xI"x[0, 1]) C W, xR/ xI" [0, 1]
holds for all b € G;, where W, = @")'(b),and W xR x I" x [0, 1]
is the domain of 4.
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Each of the fibers W, of the projection pW is provided with a metric
dlfy (, ) in §4.5. For each number o > 0 and each integer j > 0 we let
5‘? (pW; a) denote the subspace of all stable pseudoisotopies # € ﬁ; (pW)
such that for all b € G; the restricted stable pseudoisotopy 4 | W, x
R’ x I" x [0, 1] is a-controlled over W, x R’ (cf. §1.2 for “control”).

We define @}’ (pW) to be the direct limit space limit PP (pW; a).

a—o00 " J

For each integer j < 0 we set é’?(pw) = Q_’(,@(;(pw)) and é?’jb(pw)
Q_j(@g(pw)). We let @:(pw) and @;b(pw) denote the collection of
spaces {.@;(pw) :j€Z} and {ﬁ(pw) 1jEZ}.

5.2. Lemma. é’:(pw) and ,@f (pW) are Q-spectra.

Proof of Lemma 5.2. Note that it follows from Theorem 2.4 and Hy-
pothesis 4.0 that there is a finite triangulation L for G; which has the
following properties.

5.2.1. (a)Let G, , denote the union of all strata in G; having dimen-
sion less than or equal to k. Then for each simplex A€ L, AN G« is
also a simplex of L.

(b) There is a piecewise smooth triangulation L of D; such that the
projection D; — G; maps each simplex of L homeomorphically onto a
simplex of L. s

We will first show that &, (pW) is a Q-spectrum. To do this it will
suffice to show that for each integer j > 0 the spaces é’;(pw) and

Q@; +1(pW) are homotopy equivalent. Note that for each subset K C G;

we can deﬁne P (pz/) asin §5.1, where pLV' W, — K denotes the restric-
tion of p” to the subset W, C W, and where We=(p W)_I(K). For
each j > 0 there is a map fK,, P, (pK ) — 1(1’1( ) defined as fol-

lows. Let i: . (1’2/) — A; +l(pz/) be induced by the inclusion [0, 1] C R.
Two null homotoples of i are obtained by translating [0, 1] to +oco and
to —oco. This defines for each h € P, (pK) the loop fK, ]( ) of stable

pseudoisotopies in P. +1(pK ).

A. Hatcher has proven in [17, Appendix II] that fK’ ; is a homotopy
equivalence if K is any point of G;. Thus we may proceed by induction
over the skeleta of L to show that Sx N is a homotopy equlvalence for
each subcomplex K C L. In more detail let K, CcK,cK;Cc---CK, =
L be subcomplexes of L such that K, | = K| UA where A is a simplex
of L such that dim(A,) > dim(K)) and BAr C Kr. For the induction
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step we consider the following commutative diagram:

15 = w Q¢r+1,j g w
Q"MF (b)) —— QF, (pg,) —5 QF,, 0k
(5.2.2) Tn“wf,,,,,» [ [

Qa,@;(p;’:’) S .@ (pK ) _—’ gbj(pKr)

The map ¢, j in (5.2.2) is obtained by restriction; in (5.2.2) the
rows are fibrations, the map fK" j is an equivalence by induction hypoth-
esis, and the map Q%( j}), _j) 1s an equivalence by Hatcher’s result, where
a, = dim(A,), and b, is the barycenter of A,. Thus, me, i is also an
equivalence (cf. Convention 5.0).

This completes the proof of Lemma 5.2 for ﬁ; (pW). The proof for
.@;b (pW) is carried out in exactly the same way.

This completes the proof of Lemma 5.2.

5.3. Lemma. There is an equivalence of Q-spectra ﬁ’f (pf) =
Nb(plTl 1), Wwhich is induced by the inclusion map T,,, C A;. Here
p 14, — G, and p, in1:T; ;. — G, are the stratified flat bundles of §4.2.

Proof of Lemma 5.3. First note that .9?’? (piA) = @f’ (pf) because pf

B

is just the composite map A4, = B, x J RN B, LN G,. We also have

an equivalence of Q-spectra 92’ ( ) = PP (p‘.g ). To verify this last

1 i1/ = * i,
equivalence we note that the inclusions E;, ; C S; ; and E;, , | C T, ; ,

induce equivalences of Q-spectra 353’ (p; E )= P (p;9 ;) and PP (p IE i) =

?’ (pl i) because S, ; is the ﬁberw15e tubular neighborhood for E

in B, and T, is the fiberwise tubular neighborhood for E ;| 1n

A;. Moreover, the restriction of the pI‘OjCCthIl A, = B; x J LR — B,

to E; ; | yields a diffeomorphism E, ; | — (cf. 4.1.2), showing that

I i

PP (pE = .@Z’ (pf [’1). Thus to complete the verification of 5.3 it will

* \Fj

suffice to show that the inclusion map S; ; € B; induces an equivalence
of Q-spectra ﬁf(pi[) = @?(pf).

Let L be a triangulation for G, asin 5.2.1. For each subcomplex K C
L the inclusion S,. ik CBi g induces maps of Q-spectra 8k . Af'(pfi,K)
—~ P07 ) where S, x = (7] D)KL B k=0 1S ks Bk =

(p”)"'(K), and pi,K =p?| Bi’K. To complete the proof of 5.3 it is
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enough to show that for each subcomplex K C L the map 8k .. is an
equivalence of Q-spectra. On the other hand the argument given in the
proof of 5.2 shows that it suffices to consider only those K which are
single vertices of L. Let b € G denote a vertex of L. For any num-

ber a > 0 we will denote by p E ; — G, the stratified flat subbundle

of p : B, — G, whose fiber E, i.x Over any point x € G, consists of
all pomts in B, . Which are at a distance less than or equal to a from

= B
E ,,in (B, ., di,x( , )). Now we apply 4.7 and 3.17.2 (see also Con-
vention 5.0) to get a deformation of .é\{b (pﬁ ») into its direct limit subspace

limit,_  Z (0}, ,).-

a— 00
Thus, to complete the proof of 5.3, it will now suffice to show that
the inclusion map é’zb (p;.g, ip) — limita_,oo@;b (pf ; ») 1s an equivalence.
To verify this we shall make the assumption that there is a sufficiently
small number ¢ > 0 such that S, = E° holds for all x € G;;

iz, l X Iz, l X
there is no loss of generality in maklng this assumption (cf. 4.1. 2) For

each a > ¢ a homotopy inverse to the inclusion 97’ (pl i b) — 9’ (p, i b)
. can be defined by sending any stable pseud01sotopy h: E b X R x I" x

[0, 1]—+E xR’xI x[0, 1] in *(pi’i’b) to the stable psqudoisotopy
(d)txld)oho(q&t_l xid) in P (p}, ,), where t=ea”", ¢,: B, , — B, ,

comes from §4.11, and id: R’ x I" x [0, 1] —» R/ x I" x [0, 1] is the
identity map. Thus 4.11.1(a) guarantees that (¢, x id)oho ((j;t"l x id) is
in P70, ).

This completes the proof of Lemma 5.3.

5.4. The Q-spectrum P ( D5 g;). Inthe remainder of this section
we let g;: Ti’i’l - C denote the composite map
P

RN

1

T, ,cA=BxI"PLpB>5s “LE
where s; ; and p, ; come from §4.4. For each integer j > 0 we define
@;(piT,. 15 4;) to be the space of all maps g: [0, o) — @}’(pf,i’l) which
have the following property.

5.4.1. There is a number a > 0 depending on g such that for all
t>0 and all b € G; the restricted stable pseudoisotopy g(t): Tl.’ ilb %

R x["x[0,1]-T, g, be’xI x [0, 1] is a(1+¢)" " -controlled over
C,; , with respect to the’ projection 4 p: T,;,x,b ib and the metrlc

dfb( , ) of §4.5 (cf. §1.2 for “control”).
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For each integer j < 0 we set 97’( l i 1,q) Q" ’97’( D154 Let
P (pT g;) denote the collection {9’ D i1549) € 7.

i,i, 1’

5.4.2. Lemma. é’Z(pZ i154;) isan Q-spectrum.

Proof of Lemma 5.4.2. The proof consists of the argument given for
the proof of Lemma 5.2 but with the following change. Where in the proof
of 5.2 we appeal to a result of Hatcher [17], we now substitute an appeal to
a result of Quinn [25, Theorem 5.9]. Recall that although Quinn’s result
is stated for spaces of stable embeddings, it also holds for spaces of stable
pseudoisotopies (cf. Lemma 1.3.1). The remaining details are left to the
reader.

This completes the proof of Lemma 5.4.2.

5.5. Lemma. The map r.: P! D 4) — *(P,-Tzi,l), which sends
each g: [0, oo)—+9a (p
ﬁf (pZ i.1)» is an equivalence of Q-spectra.

Proof of Lemma 5.5. We shall complete the proof by constructing a
homotopy inverse ri to r, in the category of Q-spectra. Let y,: C; — C;,
t € (0, 1], be the one-parameter family of homeomorphisms from §4.11.
Choose “liftings” ,: T,,,—T,;,,te(0,1],of the y,, t € (0, 1],
so that the following properties are satisfied.

551. (a) y,:T;, | — T; ;| is a homeomorphism for each value of
t € (0, 1], and is continuous i 1n t.

(b) g;°0¥, =y, 0q, holds for all ¢ € (O, 1].

Now we construct a map r ,93 (pl i ) = @*(pzi’l ; q) as follows.
For each stable pseudoisotopy 4: T} ; | x R xI"x]0, 1] - T, xR x

I" x [0, 1] in @;b(piTi ,) we define r.(h): [0, 00) — - P (pl i 1) to be
the map whose value at t € [0, o0) is equal to the stable pseud01sotopy
(¥, xid)oho (" xid) where 1d R/ xI"x[0,1]1 >R xI"x[0, 1] is
the identity map and ¢ = (1+17)”". Thus from 4.11.1(b), 5. 4.1, and 5.5.1
it follows that r is a well-defined map with range equal to 2 ( D15 4)-
The map r* is in fact a homotopy inverse to r,, as the reader can easily
check.

This completes the proof of Lemma 5.5.

5.6. Definition. A compact submanifold pair in G, consists of a pair
of subsets (X, dX) of G,, which have the following properties.

(a) X and 0X are compact subsets of G,,and X C X.

(b) Let X and X denote the preimage of X and 0X under the
projection map D, — D,/T; = G;. Then (/? , oX ) is a piecewise smooth

) of 5.4.1 to the stable pseudoisotopy g(0) €

111
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submanifold pair of D, (recall that D, is a smooth manifold by 2.7.1
and 4.0) which 1ntersects all the fixed pomt strata of the group action
I'; x D; — D; transversely.

The codimension of X in G, is defined to be the codimension of X in
D,, and 90X is called the boundary of X .

577. The Q-spectrum Z,(p! ;' , p!’ 134). Let (Z,8Z) C G, be
a compact codlmensmn-zero submamfold pair of G, such that 0Z =
0,Z U 0,Z and AZ = 8,ZN0d,Z, where (0,Z,AZ) and (8,Z,AZ)
are compact codimension-one submanifolds of G, , and AZ is a compact
codimension-two submanifold of G; without boundary. Set

T,1 T T -1
=Pl ;) (Z2-06,2Z),
T,2 T T —1
plll—llll(plll (BZ—AZ).

For each integer j > 0 we deﬁne 7 ( ;i 1 R pl 0 1 ; 4;) to be the space of
all maps g: [0, o) — 951. (p i’ i l) which satisfy the following properties.

5.7.1. (a) There is a number a > 0 depending on g such that 5.4.1
is satisfied for all 7 € [0, c0) and all b€ (Z - 9,Z).

(b) For each b € (3,Z — AZ) and all t € [0, oo), the restricted stable
pseudoisotopy g(1): T; ; | , xR/ xI"x[0, 1] — Ti’i,l,be’ xI"x[0, 1]
is the identity map.

For each integer j < 0 set

=~ T,1 T,2 |
anj(pzzl’ptzl’q) j‘ga(pztl’ ll,l’qi)’
T,1
‘@(pz i, l’pl i, 1; j —{‘-@ p; i, I,P, i, 1a ) JGZ}

The followmg lemma is proven by using the arguments contained in the
proofs of Lemmas 5.2 and 5 4. 2

57.2. Lemma. 2 (pl i l,pl i 1, q;) is an Q-spectrum.

58. The Q-spectrum &,(U,p; ;' ,p] 1 4q). Let s1(Z-9,2) —
(0, 0o) be a given continuous map. For each b € (Z-0,Z) let V,cC, ,

denote the closed ball of radius s(b) centered at the point p; i(liB (E; »)
in G ,.Set U, = ( ) » and U_Ube(z az)U

Roughly speaklng the space g (U, p, P 1, pl i 1 ; q;) 1is defined just as
IT 111 , p, P 1 ; q;) , except all relevant pseudoisotopies
have the restricted domain U xR’ x I" x [0, 1] instead of all of (plT i 1)_l

x(Z-8,Z) xR/ xI" x [0, 1] for domain, but they still have (p;; )™ x

(Z ~-0,Z) x R x I" x [0, 1] for range. In more detail, for each number

was the space 5" (p
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o > 0 and each integer j > 0 let g (U pl P 1 ; a) denote the space of all
“stable” embeddings /4: U x R’ x I x x[0, 11— (p], )"(Z-8,Z)x R’ x

1, ,1
I" x [0, 1] which have the following properties. l '

58.1. (a) (U, xR xI"x[0,1) C T, , xR x I" x [0, 1] and
h(U,ndT, ;| ,) xR xI"x[0,1]) 8T, ; | , xR xI"x[0, 1] hold
forall be(Z-0,Z).

(b) For each b € (Z —9,Z) and each y € U, x R/ x I" the composite
path

[0,1]=yx[0,1]c U, xR xI" x[0, 1]

h

AT xR xI"x[0, 11 2% T, xR

l
must have diameter less than or equal to a in A,., b X R’ , where A ib % R’
is equipped with the product of the metric d,.A, »(» ) from §4.5 and with
the Euclidean metric on R’ . '

(¢) h| U, xR xI" x 0 = inclusion; h(U, xR xI" x 1) C T} ;| , X
R/ xI"x 1 and h(Uy xR xdI"x [0, 1)) C T, ; | , xR/ xdI" x [0, 1]
hold for all b € (Z 0,Z).

Let & b(U pl i 1) denotethedlrect limit space llmlta_’oog](U,pl e a),
and é"j(U, pIT,ll , 1’1 i 1; q;) the space of all maps
g: [0, 00)—'g(U ,,1)

which satisfy properties analogous to 5.7. 1 Let g (U b 1 , pl ; 1 5 4d;)

denote the collection of spaces {g (U, p, i l, pl i 1 ; q) JjE Z} where

g,-(U,Pi,i,. ’Pi,m; g;) for j <0 is equal to Q~ ’é”O(U p,T“I ,p, ; 1, q).

The next lemma is proven by using arguments similar to those contained
in the Proofs of Lemmas 5.2 and 5.4.2.
5.8.2. Lemma. & (U, pz;}l R piT;.,zl ; q;) is an Q-spectrum.

Note that by restricting stable pseudoisotopies defined on (pZ i 1)_] X

(Z-0,Z)xR xI"x[0, l] to the subspace UijxI”x[O 1] we obtain
amap w,: 2] ;' ol 2 a) - EW. b 0] e

5.9. Lemma. The map
w ‘@(lll’plll’q)—) (U plll’pll]’q)

is an equivalence of Q-spectra.
Proof of Lemma 5.9. Each inclusion V, c C, , for b € G, is a ho-
motopy equivalence; in fact V) is a deformatlon retract of C . Thus it



STABLE PSEUDOISOTOPY SPACES 823

follows from [25, §5] that w, , is a weak equivalence of Q-spectra, where
w, , denotes w, in the special case where Z is replaced by b, and 0,Z
is empty. Thus we may argue by induction over various subcomplexes
K C L in a triangulation L for Z —9,Z and imitating the arguments in
the proof of Lemma 5.2, to show that w, g is an equivalence for every
subcomplex K C L, where w, , denotes w, in the special case where
Z isreplaced by K, and 9,Z, AZ are replaced by 0,ZNK,AZNK.
This completes the proof of Lemma 5.9.

6. P(f)oJ, :P,(p)— P,(M) is injective

Let M, p: E - G, f: E — M, be as in Theorem 0.4, and let
PLf): PUE) — P,(M) be the map of stable pseudoisotopy spectra
which is induced by f. Let J,: P (p) —» P (E) be as in §1.4. The
main result of this section is the following proposition.

6.1. Proposition. The composite map P.(f)o J,: P (p) —» P (M) of
Q-spectra induces an injection on the homotopy groups of the Q-spectra.

Proof of Proposition 6.1. We first prove 6.1 when Hypothesis 4.0 is
assumed to hold. Since 4.0 is in effect, we may use all of the results from
§84 and S in our proof of 6.1.

For integers [ > 1, j > 0 we define a map ri Pi(M) — ’ﬁ’(pB ) as
follows. Let h: M xR/ x I" x [0, 11— M x R x I" x [0, 1] represent a
point in &,(M), and let h: MxR xI"x[0, 11— M xR/ xI"x[0, 1] be
the umque hftmg of h to a stable pseudmsotopy of the universal covering
space MxR’ . By taking the product of h with the identity map D; — D,
we obtain a stable pseudoisotopy 4 € g@](Dl x M ). Note that % is left
invariant by the diagonal action I'; x (D; x M ) — D, x M, and recall
that pf : B, — G, is the quotient of the projection map D, x M- D, by
the group action of T'; on D, x M and D; (cf. §4.2). Moreover, for each
beD;, h maps the subset bx M xR’ xI"x[0, 1] into itself. Thus we may
define 7’ (h) €P (p, ) to be the quotient of # under the action I'; x (D, x

M) — D, x M. For each 1nteger j < 0 we define r T P (M) ﬂ’(pf)

to be the j-fold looping of r0 Po(M) — 9’ (p ). Then the collection of
maps {r J € Z}, which is denoted by r* P(M) — (p ), is a map
in the category of Q-spectra.

Clearly the verification of the following claim would complete the proof
of 6.1. Recall that p;: Ej — Gj ,j=1,2,3, -, denote the components
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of p: E - G. Let f] E, - M denote the restriction of f to E;,
P(f): PE;) = P,(M) the map induced by f;, and J: P (b)) —

* J * _] *
P (Ej) the restriction of J,_ to 97’*(1)].).

6.2. Claim. (a) For any map g: X — %, (pj) of a finite CW-complex
X , and for any positive integers i, j with i # j, the following composite
map is null homotopic:

(_@ ‘OJj i
D (M) L P,

* l

X 52,0,

(b) For any positive integer i the composite map

Z.(p,)

is a weak equivalence of Q-spectra.
First we will verify 6.2(a). We will need the following definition. Recall
that F] is a foliation of E i by the fibers of the projection p I E ;- G b

and T, C M x I* is defined in §4.1.
6.3. Definition. A stable pseudoisotopy #: T; x R' x I" x [0, 1] —
T, x R x I" x [0, 1] is («, O)-simply-controlled over (Ej , Fj) , with respect

2,(f)ol. . Gib, B
P P (M) 5 P (D))

to the projection 1;:T, - E; of §4.1, if the unique lifting /: T] xR x I" x

[0, 1]— TJ xR x I" x [0, 1] of & to the universal covering space T, is
(a, d)-controlled over (E Iz 171.) with respect to the projection 7;: Tj —~E i
(cf. §1.5 for “(a, d)-control”). Here Ej , I?j are the preimages of Ej , Fj
under the covering projection Tj — T;, and 3 ; is the unique lifting of ¢ i
to 7\"1 which satisfies 7, | E ; = identity..

It will be convenient to identify 2, (pj) with the space of all maps
u: [0, c0) = £ (M x Ik) which have the following properties.

6.4. (a) The support of each u(¢) lies over the subset T] cMxI*.

(b) Each u(¢) is (a, (1 + t)_l)-simply-controlled over (E;, F}) with
respect to the projection ¢ ;i T, - E; of §4.1. Here « is a positive number
depending only on u.

6.5. Remark. The identification of % (p j) with the space of maps
given in 6.4 would be routine if we allowed for a dependence of a on ¢
in 6.4(b) (as well as a dependence of u ), and if “(a, §)-simply-controlled”
were replaced by “(a, d)-controlled”. Let U, *l denote the space of all maps
given in 6.4, and Uf the larger space of all maps given by 6.4, where
in 6.4(b) we allow o to depend on both # and ¢, and “(a, d)-simply-
controlled” is replaced by “(a, d)-controlled.” Then U, *‘ is a deformation
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retract of U f , as can be seen by reviewing the arguments in [25, §4] with
the stable pseudoisotopy space example kept in mind
Note that Z (M) = P (M x IF ), and since p :A4;, = G; of §4.2 is

k _prol, B, LN G,, we also have that

j’;b(pf) = @f(pf). Thus rl: #Z (M) — ‘@f(pi ) becomes 7 :
P(M x 1Y) » P (pl), and P,(f,) 0 J): P,(p;) — P,(M) becomes
the inclusion U!(0) ¢ (M x I*), where U'(0) = {«(0) : u € U}.
Applying these substitutions and also 6.4, we see that the composite map
of 6.2(a) satisfies the following properties.

6.6. (a) Define a homotopy (Z,(f;) o J)),: Z,(p;) — P.(M), t €

[0, ), of 93’*(fj)oJ*J by (g?’*(j”j.)on)t(u) = u(t) foreach u e U: . Then
for each x € X and each ¢ > 0 the support of the stable pseudoisotopy
r,o(P(f;)e J)), 0 8(x) lies over the subset U, 7, ; , C 4;.

(b) Since X is a finite complex there is a number a > 0 such that
for all x € X, all b € G,, and all ¢ > 0, the restricted stable pseu-
doisotopy rio(gz*(fj)oJ*j)to g(x) | ((U T, ; 4p) xR xI" x [0, 1]) is
(a, (1 + t)—l)-simply-controlled over (Uq Ei,j,q,b, U, E g b) with re-
spect to the projection (U, ¢; ; , p): U, 7;, iia.b - U, E; j.q.p- Here we
assume, with no loss of generahty, that Image(g) C 9”a(p ) w1th a>0.

If ¢ in 6.6(b) is chosen sufficiently large, then we may use Theorem
1.5.3, in conjunction with 6.6 and 4.6 (for i # j), to get for each y €
G, and each x € X a one-parameter family of stable pseudoisotopies

b
hx,y’s € P, (Ai'y) , s €[0, 1], such that

just the composite map 4, = B; x [

hy ,o=1ro(@(f)oT]), o)l 4, , xR xI"x[0, 1]

and such that 4 1 = identity. Now a homotopy from the composite
map in6.2(a)toa constant map is obtained by concatenating the homotopy
r, o(g"’*(fj)oJ’) og, s €0, ], with the homotopy U, ,k, ,  , s €
[0, 1]. Note that there is some work involved in showmg that the 4

x,y,8°
s € [0, 1], can be chosen so that the union {J

Ve, h, y’s, se[0,1],isa
one-parameter family of stable pseudoisotopies in 2, (piA) continuous in
x . To see this we first choose a triangulation L for G, asin 5.2.1, and
then proceed by induction over the skeleta of L; our ( m th) induction
hypothesis assumes that the hx, y.s» SE [0, 1], have been chosen so that

the union UyEG . y s> § €[0,1], is a one-parameter family of stable

pseudoisotopies in %, (piA) which is continuous in x , that foreach x € X



826 F. T. FARRELL & L. E. JONES

and each y € G; we have A, [rio(.gf’(f)on) gx)14;, x R? x
I" x [0, 1], and that hx,y,l 1 for each x € X and each y e L™
where L™ = m-skeleton of L. Furthermore, we assume that 4 is

X,Y,S
supportedon U, T; ; , . Now for each (m+1)-simplex A € L we choose

amap h,:Ax A — A;, where b, is the barycenter of A, having the
following propertlcs. Py = pfoh 2> Where py: AxA; b, A is the standard
projection; for each y € A — A the restricted map 4,:y x 4; by, 4;,
is an isometry with respect to the metrics of §4.5; for each y € A the
restricted map h,: yxA4, , — 4, y is a local isometry and a covering space
A ,
projection; and “local trivialization” A, : A x A; b, A; for pf 14, -G,
over A is consistent with the local flat structure for pf : A; — G; given
in §4.2. For each x € X and each y € A we let hx,y,1 denote the
pullback along the covering space projection /,:y x Ai’bA - 4, of
h, , . Note that {h
family of stable pseudoisotopies in ‘@*b(Ai,bA) to which we may apply
Theorem 1.5.3 (as we applied Theorem 1.5.3 to each individual A

cy1 XEX, yE A} is a continuous (in X, y)

x,y,0
xyszxeX yeA, sell, 2]}

of stable pseudoisotopies in 9" (4;, b, ), which are continuous in x, y, s,
and satisfy h P8 h i for all x € X,all y e 0A, and all s €

[1,2]. We do this forxeach (m + 1)-simplex A in K, and then push
the results back into 4; under the {4,} to get a one-parameter family
{h, ,,:;xeX,yeL™ se[0,2;orxeX, yeG, sel0,1]}
which is continuous in x, y, s and which satisfies hx’ v = 1 for all
X € X and y € L™,
to a one-parameter family {4

above) to get a one-parameter family {it

Note that this one-parameter family extends
ys X EX, yeEG, sE [0, 2]} of

stable pseudoisotopies in the {@*b(Ai ,) :¥ € G;} which is continuous in
X, y,s; this extension can easily be chosen so that each of the 4 s has
good control properties (analogous to 6.6(b)); however A, y.2 = 1 does

not necessarily hold if y ¢ L™ Our induction step is now completed

by simply reparametrizing the one-parameter family {hx, ys i X €X,
y€G;, s€l0,2]} by s€[0, 1] instead of by s € [0, 2].

This completes the verification of 6.2(a). We turn now to the verification
of 6.2(b).

6.7. The homology functors lHIi( , ) and IHIf( , ).

6.7.1. Definition. A pair of subsets (X, Y) of G, is called an admis-

sible pair if they have the following properties.
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(a) Y C X ; moreover, X, Y ,and Z = closure(X —Y) are all compact
codimension-zero submanifolds of G, with boundaries (cf. 5.6).

(b) 0,Z =YNZ is compact codimension-one submanifold of G, with
boundary. Set 0,Z = closure(0Z — 0,Z) and AZ = 9,Z Nd,Z ; then
0,Z and AZ are also compact submanifolds of G; having codimension
one and two respectively, with 0(AZ) =J.

We define two Q-spectra valued functors lHIl( , ), Hf( , ) from ad-
missable pairs in G; as follows. For any admissible pair (X, Y) in G,,
and Z,0,Z,0,Z,AZ asin 6.7.1, we set

H,(X,Y)=2,p") (cf.§1.2),

1

H(X, V) =20 o2 a) (857,

* 10

where p|;' = p7, | 1(0], ) (Z~8,Z) (cf. §4.2 and 4.1.2 for p, ),
P =0 @], )T 0,Z-A) and b = pot,| (p01) T (2 -9,2)
(cf. §4.1for ¢;: T, — E,). If Y = then we write H.(X) for H.(X, Y).
We note that the functors ]HIi( , ) and ]H[f( , ) satisfy the usual axioms
of homology theory. This is a deep result proven by F. Quinn in [24] for
the functor ]HIi( , ), and is an easy exercise for the functor ]HIf( , ) -
6.8. A natural map w_( , ): Hl( , ) — IHIE( , ). We define a natural

map w,( , ): ]I-]Il( , ) — ]HIE( , ) between functors as follows. Let

h:((p0t) " (Z-8,Z)) xR x I" x [0, 1]
= ((p,o1) (Z-0,Z)) xR xI"x[0,1], €0, ),

be a one-parameter family of stable pseudoisotopies representing a point
{h} e Hi(X , Y). Without loss of generality we may assume that the #,,
t € [0, o0), have the following property.

6.8.1. There is a neighborhood N for 0,Z — AZ in Z — 9,Z such
that for each ¢ > 0 the restriction 4, | ((p; ° tl.)_l(N)) xR x I" x [0, 1]
is the inclusion map.

Now we choose the map s: Z — 9,Z — (0, co) of §5.8 so that the
following holds.

6.8.2. (a) There is another neighborhood N’ for 0,Z—-AZ in Z -
0,Z , such that N is also a neighborhood for N in Z - 0,Z.

(b) For each b € (Z - 9,Z — N') the distance in G, from b to G, —
Z is greater than s(b). The distance function dl.G :G; x G; = [0, 00)
which we are using here is defined as follows. For any x,y € G, set
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dG(x y) = minimum{dD X,7)}, where x, J7 are any preimage points
for x,y under the projection D, — D,;/T’; = G;, and a’iD (, ) is the
metric which D, inherits from M (cf. 2.7.1(b)).

(c) Let 8N' denote the topological boundary for N’ in Z—98,Z . Then
for each b € N’ the closed ball of radius s(b) centered at b in G, is
contained in N

Let U C (( b D 1(Z — 0,Z)) denote the subset constructed in §5.8,
where in §5.8 the function s: Z —0,Z — (0, oo) satisfies 6.8.2. Construct
from {h,} of 6.8.1 a one-parameter family of stable embeddings h;: U x
R < I"x[0, 11— (p], )7(Z-8,Z)xR* xI"x[0, 1], €0, 00), as
follows. Let W, denote the closed ball of radius s(b) centered at b in
G, . Note that it follows from 6.8.2 that for any b € (Z —8,Z — N') the
restricted family of maps 4, | ((p,ot,) " (W,))xR*xI"x[0, 11, t € [0, c0),
lifts to a unique family of embeddings 4, ,: U, x R* x I" x [0, 1] —
T; i1 X R xI" x[0, 1], t € [0, c0), satisfying

i,
h; y|(U, x R x I" x 0) = inclusion.

If b e N', then we define &, ,: Uy x R* x I" x [0, 1] = T; , | , xR x
" %[0, 1], t €[0, o0), to equal the inclusion for all > 0. Set

li i
= U n,» te[0, o).
be(Z-8,2)

Note that the construction {A,} — {h;} yields a well-defined map between
Q-spectra
w(X,Y):H(X,Y)~&WU.p/ ;'\, p 1 4) (cf. 6.82and §5.8).
We now define the map w, (X, Y): H' (X,Y) — ]HIf(X, Y) to be the
composition of u (X, Y) with the equivalence of Q-spectra
& T,1 T,2 ~ 2. T,1
g;(U,p,","lp,‘,,‘,l 5 q,’) =P (p, i, 191’, i, 1; q')
given by Lemma 5.9. If Y = &, then we write w_(X) forany w, (X, 7).
6.8.3. Lemma. In the special case where X = G, and Y = Q& we will
denote the map w, (X ,Y) by w,: %, (p, ot)—-u@(p, i.1549;). Then the
map w, is an equivalence of Q-spectra
Proof of Lemma 6.8.3. Let K denote a triangulation for G, as in
5.2.1, and K" the “dual cell complex” for K. That is, for each simplex
A € K the “dual cell” A* € K™ is defined to be the union of all simplices
e € K" in the first barycentric subdivision of K such that eNA = b(A),
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where b(A) is the barycenter of A. The “dual cells” A" € K* are always
cone spaces, but they are not always PL cells because G, is not in general
a PL manifold. Let K] c K; C --- C K, = K" denote an increasing
sequence of subcomplexes of K™ such that forall i <n, K;_, = K] UA;
for some A} € K* with dim(A]) > dim(K;) and 0A] C K; . Define an
increasing sequence of subsets S| C S, C --- C S, = G, by induction
as follows: S, +1 1s the union of S; with all simplices e € K (+2) in the
(i+2)-fold barycentric subdivision of K which intersect with K +1 - Note
that each S is a regular neighborhood for Kl.* in G;, and that each pair
(S;415S;) is an admissable pair.

We complete the proof of 6.8.3 by showing (by induction over i) that
each map w,(S,): H' (S;) — ]HIf(Sl.) is an equivalence of Q-spectra. Sup-
pose that this is true for all i < r. Consider the following commutative
diagram:

2 2
Hf(sr) _(ﬁ__’ Hi(Sr+l) —— Hi(Sr Sr)

+1°
Tw:(sr) Tw:(sn-l) Tw-(sr+l ’S_r)
1

1
H!(S) —*— H.(S,,,) —— H!(S,,,,S,)

r+12=r

The horizontal maps in this diagram, which are induced by the inclusion

maps S, C S,,, and (S,,,,9) C (S,,,,S,) are fibrations in the cate-

gory of Q-spectra (this is one of the homology axioms for ]H[l( , ) and

]HIf( , ) (cf. [25, Appendix])). Thus to complete the induction step it will

suffice to show that w,(S,,,, S,) is an equivalence of Q-spectra (recall
that Convention 5.0 is in effect).

Let Gi,,/ denote the stratum of the stratified space G; which contains
the barycenter b(A,) of A,. Let D; , C D; be a connected component of
the preimage of G, under the “covering projection” D, — D,/T’, = G,,
and choose a point b, € D, . in the preimage of b(A,). Let I cT,
be the isotropy subgroup at b, of the action I', x D; — D,. Let V, C
TD, denote the subset of all vectors in the tangent space of D, at b,
which are perpendicular to D, . at the point b, ; let I’; xV, —V, be
the action induced by I'; x D, — D,; let I;: (¥, x R) — ¥V, x R denote
the diagonal action, where F: acts on R through the homomorphism
h,,:T; - T, , of 2.10; and let p,: (V, x R)/T} — V. /T denote the
quotient of the standard projection map ¥, x R — V, under the actions
by I';. Note that the projection map p;: p; 'S, -S.,d(S S)) —

r+1 r+1 ~ Pr
(S, —S,,9(S S)) is topologically equivalent to the projection map

r+1 7" Pr
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p, xid: (V, x R)/T;) xR* x (I, 81") - (V,/T7) x R* x (I", 81") , where
id: R“x(I", 81") - R*x(I", 8I") is the identity map, v = dim(A,), and
u = (dim(G; ) — v). Thus (by 1.3.1) there is the following equivalence
of Q-spectra.

6831. H.(S, ,,S)=Z,.(p). _

Note that the projection 9, pa,)" E,.’i’l’b(A,) — Ci,b(A') (cf. §5.4) is
topologically equivalent to the projection map p, x id: ((V, x R) /l";) X
R — (V/T)) x R“*", where id: R“"" — R“"" is the identity map;
and the intersection G; , N (S, —S,,0(S,,; — S,)) is homeomorphic
to R* x (I, 81"). Thus (by 1.3.1) there is the following equivalence of
Q-spectra. :

6832 HS,,,, S) 2 Q'Z, ., (p))-

It follows from 6.8.3.1 and 6.8.3.2 that H.(S,,,, S,) and HX(S,,,, S,)
are equivalent Q-spectra. The remaining details, in verifying that

w,(S,,,,S,) is actually an equivalence of Q-spectra, are left to the reader.

This completes the proof of Lemma 6.8.3.

In light of Lemma 6.8.3 it is clear that the verification of 6.2(b) is
completed by the next lemma. .

6.9. Lemma. The composite map of 6.2(b), when restricted to any com-
pact subset C C £, (p;), is homotopic to the restriction of the following
composition of Q-spectra equivalences:

el w

"@*(p,‘) _"'*ga,.(p,' ° ti) ——‘"@
2 3
iﬁf(ﬁf,i,l)i’ﬁ( N =F 7).

* *

(lzl’q')

Here e! exists because T, is a tubular neighborhood for E;, in M x I
with projection map t;: T; — E; (cf. §4.1), ef is the equivalence of Lemma
5.5, and ef is the equivalence of Lemma 5.3.

Proof of Lemma 6.9. First, as with the verification of 6.2(a). it will be
useful to identify &, (p,) and & (p o t) with U*l of 6.5. Now we shall
construct a homotopy w, U - P (p, , 15 4;), t€[0,1], of w,, and
a homotopy (rio.?’*(fi)oJ:)t. U= Z(0]), tel0, 1],0f rloP,(f)oJ!,
such that ef oef ow, | C= (ri oL (f)o J,:)l | C, where C is a fixed

but arbitrary compact subset of U *1 . Clearly this will complete the proof
of Lemma 6.9.
To get w, ,, t € [0, 1], we define functions s5,: G; — (0, co] by

s,(b) = (1 - 1)~'s(b) for all b € G;, where 5: G, — (0, ) is the
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function given 6.8.2 when X = G, and Y = O in 6.8.2. Note that
by substituting s, for s in the construction of the map u (X, Y): U,kl -
é%(U, p,.T,;.’ll , p,.T’;.?l ; ¢;) 1n §6.8, we obtain a homotopy u, (X, Y),: U*l —
EW,.p ;'\ 075 a), tel0,1], of u (X, Y). Weset w,
the composite of u, (X, Y), with the Q-spectra equivalence

= T,1 T,2 . .o, T,1 T2
EWU,pi ;P 139) 2PWD; 15 P; 0 40)

, equal to

of 5.9.

Now we will construct the homotopy (ri o (f;) Jf)t , t€[0,1]. Let
(9"*(]2)0]:), , t € (0, ), be the homotopy of ﬁ*(fi)oJ: given in 6.6(a).
Note that the composite homotopy ri o(L(f)oJ : );» t €[0, 00), has the
following properties.

6.9.1. Foreach b€ G,,each x € U, *1 , and each ¢ > 0, the support of
the restricted stable pseudoisotopy 7’ o (Z.(f)o *’ ) (%): 4, % R’ x I" x
[0, 11— A4, , xR* x I" x [0, 1] lies over the subset U, T} ;, , , C 4, ;-

(b) Given any compact subset C C U, *l and any ¢ > 0, if the number
4 > 0 is chosen sufficiently large, then for each b € G; and each x € G
the restricted stable pseudoisotopy

(UTi,i,q,b) xR xI"x [0, 1]
q

will be (a, d)-controlled over (U, E; ; , .U, F; ; , ) Wwith respect to
the projection U, t; ; , »: U, T} i 46 — U, E; i 45> Where a depends
on C, but does not depend on ¢ .

If A in 6.9.1(b) is chosen sufficiently large (making J sufficiently small
in 6.9.1(b)), then we may use Theorem 1.5.3, in conjunction with 6.9.1(a),
(b) and 4.6 (for i = j), to find for each y € G, and each x € C a one-
parameter family of stable pseudoisotopies g, . ,: 4, yxRaxI” x[0, 1] —
A; % R xI" x [0, 1], t € [0, 1], which has the following properties.

692. (a) g, , o=r.o(P,(f)oJ),(x) |4, , xR xI"x[0, 1].

(b) Set g,(x) = UyeG_ 8y x.t for all ¢+ € [0, 1]. Then g/(x), ¢ €
[0, 1], is a one-parameter family of stable pseudoisotopies in 333’ (pf)
which depend continuously on x.

(©) &(X)| T, ; xR xI"x[0, 1]
=(r o (P,(f) oI, )X) | T; ;| xREx " x[0, 1]
holds for all 1 € [0, 1] and all x € C.

rio (P.(f) 0 I, (%)
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(d) The support of each g,(x) lies over the subset J o Tii g CAps and
the support of each g,(x) lies over T, ;-

Now the desired homotopy (r,o%,(f,)oJ,),, t € [0, 1], of r,o P, (f;)o
J! is defined to be the composite of the homotopy r, o (Z,(f;) ¢ J.),,
t € [0, A], and 6.6(a) with the homotopy g,, ¢ € [0, 1], given in 6.9.2.

This completes the proof of Lemma 6.9, and therefore also the proof
of Proposition 6.1, when Hypothesis 4.0 is assumed to be in effect.

We now discuss the modifications that must be made on the preceding
proof of 6.1 if Hypothesis 4.0 does not hold.

The guiding step in our modified proof is the replacemogt ot"/ghe maps
ri: P(M) — ﬁ;b(pf) of 6.2 by maps 7;: #,(M) — 9,-(1’5,-:1’5,-,3 s B; ;)
which are defined as follows. -

Set E? = Ei - BEi , and let pf i E?’i — G, denote the stratified flat
bundle obtained as in §4.2 from the group action I, x Eo — EO Let

~ 70
g’,(P,E,,p, ;.95 D; ;) denote the space of all maps g: [0, co) —»93 (p p)
such that for some a > 0 (a depends on g) and all ¢ € [O oo)

y € G; the stable pseudoisotopy g(?) | (E,O’l , X R x I" x [0,1]) i
a(l + t)'l-controlled over Ci’y with respect to the projection b i

E’i’i,y — Cl.’y of §4.4, and is equal to the identity map if y € 9G,. There

~ 0 70
is also an analogous space é”j(U , piE i pf‘ i 55 D; ;) for embeddings, where

U= UyeG (V )ﬂE ),and V, comes from §5.8. Finally there is the

i,i,y
space ,97’( p; ;> b; ;) of all continuous maps g: [0, c0) — ﬁ;b(pfi) such
that for some a > 0 (a depends on g) and all ¢ € [0, ), y € g;,
g | (E; ; , xR xI"x[0, 1]) is a(l + )~ '-controlled over C; , with
respect to the projection D;  E. - C

i,i,y i,
Now proceeding as in the proof of Lemma 5.3 we can argue that there

is an equivalence of Q-spectra f* : 9* (p; ) 9”* (pl.’,.) .
Proceeding as in the proof of Lemma 5.5 we can get an equivalence of
2. b
Q-spectra fk:?*( ;) —n@( p; l,pl )
There is a “restrictlon map

f Q@(”,p”)_,g’(U plt’pzla’pzl)
the construction of which is similar to the construction of “u(X, Y)” given
in §6.8.
Finally, by proceeding as in the proof of Lemma 5.9, we can get an
equivalence of Q-spectra
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Now set f;=j;'oj"j3oj”j.zoj"].lor;.
The proof of Proposition 6.1, when 4.0 is not satisfied, is completed by
showing that Claim 6.2, modified by replacing the r; by the f} is true.

The verification of 6.2(a) proceeds much as before for the r; ; clearly the
truth of 6.2(a) for the r; implies the truth of 6.2 for the #;. In verifying

that 6.2(b) is satisfied by the f]'. we use a homology argument as in §§6.7,
6.8. In carrying out the details all arguments should be made relative to
the boundary 9G,, over which all relevant stable pseudoisotopies may be
assumed to equal the identity. This requires the following changes in §§6.7,
6.8 and also in 5.6-5.9. We need in 5.6-5.9 and §§6.7, 6.8 that every sub-
manifold pair (X, dX) C G; meet the boundary 6G; “transversely,” i.e.,
that the preimage of (X, 8.X) under the projection map D, — D,/T'; = G,
must meet 0D; transversely in a piecewise smooth sense In 5 7-5.9 we
mustreplace @(p, i 1’1’, P 1; q;) and g(U p, ; ,p” ,p, i ,, q;) by

1 2 4 E°,1 2. 4
P (p R pi,,. ;p,.’i) and 8’*(U, pi,i , pi’i ;pi,i) respectively, where

E°, B, E° 1
D; i =Pi,i|(p,',,') (Z—BIZ),
E2 B, E.-1
P =01 07 )T ((B,ZU(ZN8G)) -8,Z).
~ 70 70 ~ 0
The Q-spectra ‘9”*(pfi’l,pfi’2;ﬁi,i) and &(U,pfi plEl 2,13, ;) are
defined in a fashion analogous to 5.7.1 and 5.8.1, where

uv= J @.)'W)nE, )

ye(Z—8,Z)

and the V, come from §5.8. In §§6.7 and 6.8 we let ]HIl(X, Y) be as

1 E'2. . . )
before but set H> (X, Y)= P (D, p; ;"5 b, ;) - The remaining details

i,i
in the verification of 6.2(b) for the fj'. are left to the reader to sort out.

This completes the proof of Proposition 6.1.
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