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ON THE GAUSS MAP OF MINIMAL
SURFACES IMMERSED IN Rn

MINRU

Abstract

In this paper, we prove that the Gauss map of a nonflat complete minimal
surface immersed in a Euclidean w-space Rn can omit at most /z(«+l)/2
hyperplanes in a complex projective (n - 1)-space CPn~ι located in
general position.

1. Introduction

Let M be a smooth oriented two-manifold without boundary. Take

an immersion / : M —• Rn . The metric on M induced from the stan-

dard metric ds2

E on R" by / is denoted by ds2. Let Δ denote the

Laplace-Beltrami operator of (M, ds2). The local coordinates (x, y) on

(M, ds2) are called isothermal if ds2 = h(dx2 + rfy2) for some local

function h > 0. Make Λf into a Riemann surface by decreeing that the

1-form dx + idy is of type (1,0) , where (x, y) are any isothermal co-

ordinates. In terms of the holomorphic coordinate z = x + iy, we can

write

. - 4 a 2

h dzdz*
We say that / is minimal if Δ/ = 0, i.e., an immersion into Rn is
minimal if and only if it is harmonic relative to the induced metric.

The Gauss map of / is defined to be

G:M-+CPn-\ G(z) = [(df/dz)],

where [(•)] denotes the complex line in Cn through the origin and (•).
By the assumption of minimality of M, G is a holomorphic map of M
into CPn~ι.

In 1981, F. Xavier showed that the Gauss map of a nonflat complete
minimal surface in R3 cannot omit seven points of the sphere [15]. In
1988, Fujimoto reduced seven to five, which is sharp [6]. For the n > 3
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case, Fujimoto [7] proved that the Gauss map G of a complete minimal
surface M in Rn can omit at most n(n + l)/2 hyperplanes in general
position, provided G is nondegenerate, i.e., G(M) is not contained in
any hyperplane in CPn~ι.

In this paper, we will remove Fujimoto's "nondegenerate" condition.
The map G is called k-nondegenerate if G(M) is contained in a fc-dimen-
sional linear subspace of CPn~ι, but none of lower dimension. We shall
give the following theorem.

Theorem 1. Let M be a nonflat complete minimal surface immersed
in Rn and assume that the Gauss map G of M is k-nondegenerate (0 <
k<n-\). Then G can omit at most (k+l)(n-k/2-l) + n hyperplanes
in CPn~ι located in general position.

In particular, we have
Corollary. Let M be a nonflat complete minimal surface immersed in

Rn. Then the Gauss map G can omit at most n(n + l)/2 hyperplanes in
CPn~ι located in general position.

Proof. We can assume G is fc-nondegenerate (0 < k < n-1), because
for 0 < k < n - 1, we have:

n(n + l)/2 > {k + \){n -

Thus the theorem implies the corollary.

2. Basic concepts of holomorphic curves into projective spaces

In this section, we shall recall some known results in the theory of holo-

morphic curves in CPn.

(A) Associated curve. Let / be a fc-nondegenerate holomorphic map

of AR := {z\ \z\ < R} (c C) into CPn, where 0 < R < +oo. Since

f(ΔR) is contained in a fc-dimensional subspace of CPn, we may as-

sume that /(ΔΛ) is contained in CPk, so that f:AR^> CPk is non-

degenerate. Take a reduced representation / = [Zo : : Zk], where

Z = (Z o , , Zk): AR -+ CM - {0} is a holomorphic map. Denote ZU)

the j th derivative of Z and define

for 0<j<k. Evidently Ak+l = 0.
Denote

P : /y C

k+X - {0} -> P
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where Nj — (*+|) - 1 , and P is the natural projection. A, projects down
to a curve

/. = P ( Λ . ) : Δ ^ C i ^ , 0<j<k9

called the jth associated curve of / . Let ω. be the Fubini-Study form

on CPNJ, and

(2.1) Ω. = / / ω , 0<j<k,

be the pullback via the j'th associated curve. It is well known [4] (see also
[12]) that, in terms of the homogeneous coordinates,

(2.2) Ω. = //ω, = ^!^f!^ί.| ^

for 0 < j <k, and by convention A_{ = 1. Note that Ωfc = 0. It follows
that

. Ω J _ 1 + Ω J + 1 2 Ω r

(B) Projective distance. For integers 1 < q < p < n + 1, the interior

product of vectors ζ e /\p+ι Ck+ι and a € /\9+ι Ck+ι' is denned by

for any β e ΛP~9 Ck+ι". For x e P(/\p+ι Ck+ι) and a e P(Λ ί + 1 Cfc+1*)
the projective distance | |x, a\\ is defined by

IIJC q\\= I ^ L Q I

where ί e ΛP+1 C f e + 1 - {0} and a e Λ ί + 1 Cfc+1* - {0} P({) = x and

For a hyperplane a of C.P , denote

,/fc+Λ
(2.4) / ; Lα ^ y

P(Aj) = fj, P{a) = a,

and

(2.5) φj(a) = \\fj,a\\2.

Note that 0 < φ^a) < φj+x{a) < 1 for 0 < < k, and 9>fc(a) = 1.
We need the following well-known lemma (see [4], [12], or [14]).
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Lemma 2.1. Let a be a hyperplane in CPk . Then for any constant

N > 1 and 0<p <k-l,

(2.6)

(C) Nochka weight and product to sum estimate. Let Hχ, , Hq be

the hyperplanes in CPn in general position. Then H{ can be considered

as a point in CP"*, where CPn* is the dual space of CPn . Let /: CPk ->

CPn be the inclusion map. Then the dual map Γ: CPn* -> CPk* is

surjective. Let at = /*(//,-). According to Chen [2], we define the concept

of n-subgeneral position here.

Definition 2.1. The hyperplanes aχ, , α^ in C i ^ are called in n-

subgeneral position iff for every injective map λ: Z[0, n] —• Z [ l , ^f], there

are aλ{i) e C + -{0} such that αA(/) = P(aλ(i)) for / = 0, 1, , n and

such that the vectors α λ ( 0 ) , , αλ ( / l ) generate C f c + 1 .

It is easy to check that if Hχ, , H are in general position in CPn ,

then Λj, , a are in «-subgeneral position in CPk .

We have the following lemma.

Lemma 2.2 (See Chen [2, Theorem 6.16], also Nochka [8]). Let ax,

• , aq be hyperplanes in CPk in n-subgeneral position. Then there exist

a function ω : Q —• i?(0, 1] and a number θ > 0 w/Yλ the following

properties:

( l ) O < ω ( ; ) 0 < 1 forall jeQ.

(3) 1 < (Λ + \)l(k +l)<θ<(2n-k+ l)/(k + 1).

We will call ω the Nochka weight for hyperplanes {α.} .
We also have the product-to-sum estimate as follows:
Lemma 2.3 (See Chen [2, Theorem 7.3]). Suppose the above assump-

tions are true, and take p e Z[0, k - 1]. Then for any constant N > 1,
1/q <λp < l/(k-p), there exists a positive constant Cp > 0 which only
depends on p and the given hyperplanes such that

c,ίή^ "

on AR - {φ = 0} .
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3. The main lemma
In this section, we retain the notation of §2. For hyperplanes ax, , aq

in CPk , let ω be their Nochka weight (see Lemma 2.2).
Let Ω = j^hp(z) dz Λ dz and

(3.1) σP =
'Φp+li'jY

(N-logφp(aj))2

λp

* . .

where Cp is the constant in the product-to-sum estimate (cf. Lemma 2.3),

λp = \/[k-p + 2q{k-p)2/N],and N>1.
We take the geometric mean of the σp and define

(3.2)

where βk —

Then

(3.3) h{

k-\

/>=0

and c = 2 ( Π y λpλ"")βk Let

Γ=^-h(z)dzAdz, RicΓ = ddc In h(z).

7=1
\ω(j) π

k-i Kkβkβp

Lemma 3.1. For g>2n-k + 2, and

2£
N k(k + 2)

we have RicΓ > Γ.
Proof. From (3.3) it follows that

ic Γ = ~ K Σ ωC/)^c logtfoty
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By Lemma 2.1, (2.3), and that ddclogφ0(aj) = - Ω o , we have

q k-\

(3.4)

Using Lemma 2.3 we obtain

j}ι

We also notice that

k-\

k-\

\2 P N
/7=0

-logφp(aj))2

= 0, so that

p=0

and therefore
. k-l

k-2

We use the following elementary inequality:

For all the positive numbers x{, , xn and ax, , an
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Letting ap = λp~ι in (3.5), we have

k-\ k-\

and therefore

RicΓ
Q

7=1

By Lemma 2.2 we obtain

and 0 > 0, so ^ _ j ω(j) - {k + 1) > 0. Using the assumption of the
lemma hence gives Ric Γ > Γ. q.e.d.

By the Schwarz lemma, we have

Main Lemma. Let f = [Zo : : Zk]: AR —• CP be a nondegenerate

holomorphic map, aQi , aq be hyperplanes in CPk in nsubgeneral

position, and ω(j) be their Nochka weight Let P(at) = a(, where P is a

projection, and Z = (Z o , , Zk). If q > 2n - k + 1 and

2q(k2 + 2k)
τrq ( Λ—ϊk—n '

there exists some positive constant C such that

Y[k~lUq IΛ i-a.\4/N\A \ι+2g/N

(3.7)

<c
( 2R \

- {k2 + 2k- l)2q/N.

Proof We shall calculate Πplo K B ^ ί22^ w e h a v e

V |AP| /
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SO

k-\

p=0

Since |Λ0| = \Z\ and φo{aj) = | (Z, α . ) | 2 / | Z | 2 , φp{aj) = |Λ p Lα. | 2 / |Λ p | 2 ,
from (3.3) and (3.6) it follows that

Λ+2q/N

Set A: := sup 0 < ; c < 1 x 2 / i v (^- log jc) . Since φp(aj) < 1 for all p and ,
we have

1 2/N
> -LΛ (a ) 2 / N> (a ) =

{N-\ogφp{aj)) ~ Kφp{ai} K | Λ / / " *

Substituting these into (3.8), we obtain the desired conclusion.

4. Proof of the theorem

We will now prove the theorem. The proof basically follows Fujimoto's
proof [7].

We may assume M is simply connected, otherwise we consider its uni-
versal covering. By Koebe's uniformization theorem, M is biholomor-
phic to C or to the unit disc Δ. For the case M = C, Nochka [8]
(see also Chen [2]) proved the Cartan conjecture which implies that a k-
nondegenerate holomorphic map from C to CPn cannot omit In - k + 2
hyperplanes in general position; in this case our theorem is true. For our
purpose it suffices to consider the case M = Δ.

Now assume our theorem is not true, namely the Gauss map G omits q
hyperplanes Hl9- , Hq in CPn~ι in general position and q >
(k + l)(/ι - k/2 - 1) + n . Let ω(j) be the Nochka weight of {//.}.

Because G is fc-nondegenerate, we assume C?(Δ) c CPk , so that G =

[g0

 : * * : Ski : Δ -> c p k i s nondegenerate. Let /: CPk -> CPn ι be the

inclusion map, /*: CPn~ι* -• CPk* be the dual map, and α. = /*(//.).

Then the {at} are the hyperplanes in CPk in (n - l)-subgeneral position.
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Let G = (gQ> ••• , gk): C -> Ck+ι - {0} then the metric ds2 on M

induced from the standard metric on R" is given by

(4.1)

By Lemma 2.2, we have
/

Q

ds2 = 2\G\2\dz\2.

and

so

θ<
2(n-l)-k + l 2n-k-\

k+l k+l '

{2n-k-\)k

Consider the numbers

(4.2)

(4.3)

(4.4)

Choose some N such that

p=0

Qkt

k-\

•Σ
p=0

P =
1

(ί-γ)H

2q

N 2/q + {kz + 2k- l) + k(k

so that

(4.5) 0<p<l, If:

Consider the open subset

M' = M - I {Gk = 0}
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of M and define the function

(46) r

on M', where Gp = G{0) Λ Λ G w and P(α;.) = Λ;. .

Let π: M1 ^M1 be the universal covering of M1. Since logw o π is
harmonic on M1 by the assumption, we can take a holomorphic function
β on Λf' such that \β\ = voπ. Without loss of generality, we may assume
that M1 contains the origin o of C. As in Fujimoto's papers [5], [6],
[7], for each point p of M1 we take a continuous curve γp : [0, 1] —• M1

with γ~(0) = o and j^(l) = π(p), which corresponds to the homotopy
class of p. Let δ denote the point corresponding to the constant curve
o, and set

ί β(z)dz,= ί

where z denotes the holomorphic jcoordinate on Mf induced from the
holomorphic global coordinate on M1 by π. Then F is a single-valued
holomorphic function on M1 satisfying the condition F{δ) = 0 and
dF{p) Φ 0 for every p e M1. Choose the largest R (< +oo) such
that F maps an open neighborhood U of ό biholomorphically onto an
open disc AR in C, and consider the map B = π o (F | U)~ι: ΔΛ —• M1.
By the Liouville theorem, i? = oo is impossible.

For each point a e dA consider the curve

La:w = ta, 0 < t < 1,

and the image Ya of Lfl by B. We shall show that there exists a point
a0 in 9Δ Λ such that Γa0 tends to the boundary of M. To this end,
we assume the contrary. Then, for each a e dAR, there is a sequence
{t0: ϋ = 1, 2, } such that l i m ^ ^ tΌ = 1 and z0 = l i m ^ ^ 5(^α) ex-
ist in M. Suppose that zog M'. Let £0 = 4p*/N > 1. Then obviously,

liminf\Gk\
{Mq/N)pm J ] |Gp L α/° t; > 0.

If Gk(z0) = 0 or \Gp L aj\(z0) = 0 for some p and y, we can find a

positive constant C such that v > C/\z - zof° in a neighborhood of z 0 ,
and obtain

R= [ \dw\= f ^ \dz\= fv(z)\dz\>C f \ \dz\ = oc.
JLa ha dz J JΓa \z-zQ\δ0

This is a contradiction. Therefore, we have z0 e M'.
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Take a simply connected neighborhood V of z0, which is relatively
compact in M1, and set C' = minz€Ft;(z) > 0. Then B(ta) eV (t0 <
t < 1) for some t0. In fact, if not, Γa goes and returns infinitely often
from 9 F t o a sufficiently small neighborhood of z0 and so we get the
absurd conclusion

R= ί \dw\>C' ί |rfz| = oo.

By the same argument, we can easily see that lim,^ B{ta) = z0. Since π
maps each connected component of π~ι(V) biholomorphically onto V 9

there exists the limit

po = ]im{F\ U)~\ta)eM'.
t—>\

Then (F \ U)~ι has a biholomorphic extension to a neighborhood of
a. Since a is arbitrarily chosen, F maps an open neighborhood of V
biholomorphically onto an open neighborhood of ~ΔR. This contradicts
the property of R. In conclusion, there exists a point aQ e dAR such that
Γa tends to the boundary of M.

By the definition of w — F(z) we have

(4.7)
dw

= \β\l~
dw

\ωU)
\/H

dw
~dz

L e t Z ( w ) = Go B ( w ) , Z 0 ( w ) = gQ o B ( w ) ,•••, Z k ( w ) = gk o B ( w ) .

Since Z Λ Z' Λ Λ Z w = (G Λ • Λ G ( p ~ 1 ) )(^) p ( p + 1 ) / 2 , it is easy to see
that

(4.8)
dw

= Z ( 0 )

\/H

where Λ = Z ^Λ Λ Z 1

On the other hand, the metric in AR induced from ds2 = 2\G\2 \dz\
through B is given by

2

(4.9) = 2\G{B{w))\2

dw
\dw\
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Combining (4.7) and (4.8) yields

|Λιι|.

Using the main lemma, we obtain

B*ds<c(^-2R

where C is a positive constant. Since p < 1, it then follows that

\d\ oo,<[ ds= [ B*ds<c(R\ ,2R A \dw\

where d(0) denotes the distance from the origin o to the boundary of
M, contradicting the assumption of completeness of M. Hence the proof
of the theorem is complete.
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