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ON THE GAUSS MAP OF MINIMAL
SURFACES IMMERSED IN R”

MIN RU

Abstract

In this paper, we prove that the Gauss map of a nonflat complete minimal
surface immersed in a Euclidean n-space R” can omit at most n(n+1)/2

hyperplanes in a complex projective (n — 1)-space CP"™! located in
general position.

1. Introduction

Let M be a smooth oriented two-manifold without boundary. Take
an immersion f : M — R". The metric on M induced from the stan-
dard metric dsé on R” by f is denoted by ds’. Let A denote the
Laplace-Beltrami operator of (M, dsz). The local coordinates (x, y) on
(M, ds?) are called isothermal if ds® = h(dx> + dy*) for some local
function A > 0. Make M into a Riemann surface by decreeing that the
1-form dx + idy is of type (1, 0), where (x, y) are any isothermal co-
ordinates. In terms of the holomorphic coordinate z = x + iy, we can
write

-4 &

T h 8z0z°
We say that f is minimal if Af = 0, i.e., an immersion into R” is
minimal if and only if it is harmonic relative to the induced metric.

The Gauss map of f is defined to be

G:M—-CP"',  G(z)=10f/82),

where [(-)] denotes the complex line in C" through the origin and (-).
By the assumption of minimality of M, G is a holomorphic map of M
into CP"" L.

In 1981, F. Xavier showed that the Gauss map of a nonflat complete
minimal surface in R’ cannot omit seven points of the sphere [15]. In
1988, Fujimoto reduced seven to five, which is sharp [6]. For the n > 3
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case, Fujimoto [7] proved that the Gauss map G of a complete minimal
surface M in R" can omit at most n(n + 1)/2 hyperplanes in general
position, provided G is nondegenerate, i.e., G(M) is not contained in
any hyperplane in CP"'.

In this paper, we will remove Fujimoto’s “nondegenerate” condition.
The map G iscalled k-nondegenerateif G(M) is contained in a k-dimen-
sional linear subspace of cp! , but none of lower dimension. We shall
give the following theorem.

Theorem 1. Let M be a nonflat complete minimal surface immersed
in R" and assume that the Gauss map G of M is k-nondegenerate (0 <
k<n-1). Then G can omit at most (k+1)(n—k/2—1)+n hyperplanes
in CP"" located in general position.

In particular, we have

Corollary. Let M be a nonflat complete minimal surface immersed in
R". Then the Gauss map G can omit at most n(n + 1)/2 hyperplanes in
CP"™! located in general position.

Proof. We can assume G is k-nondegenerate (0 < k < n—1), because
for 0<k <n-1, we have:

nn+1)/2>(k+1)(n—-k/2-1)+n.
Thus the theorem implies the corollary.

2. Basic concepts of holomorphic curves into projective spaces

In this section, we shall recall some known results in the theory of holo-
morphic curves in CP”".

(A) Associated curve. Let f be a k-nondegenerate holomorphic map
of Ap :={z;]z| <R} (c C) into CP", where 0 < R < +oo. Since
f(Ag) is contained in a k-dimensional subspace of CP", we may as-
sume that f(A,) is contained in CPk, so that f: A, — CP* is non-
degenerate. Take a reduced representation f = [Z, : --- : Z,], where
Z=(Zy, - ,Z): Ay — C**!' {0} is a holomorphic map. Denote Z
the jth derivative of Z and define

j+1
A=ZOn Az A~ N\ C
for 0<j<k. Evidently A, , =0.

Denote

Jj+1 j+1
P:A\NC —{0} P (/\ c"“) =CPY,
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where N, = (I;Ill)_ 1,and P is the natural projection. A; projects down
to a curve

fi=P(A):Ag»CPY,  0<j<k,
called the jth associated curve of f. Let w ; be the Fubini-Study form
on CPY | and

2.1) Q=fw, 0<j<k,

be the pullback via the jth associated curve. It is well known [4] (see also
[12]) that, in terms of the homogeneous coordinates,

. Clogla o LAl
J

for 0 < j <k, and by convention A_, = 1. Note that Q, = 0. It follows
that
RicQ;=Q; ,+Q;,,-2Q;.
(B) Projective distance. For integers 1 < ¢ < p < n+ 1, the interior
product of vectors & € APt C**! and a € AT CH*! is defined by

CLa,B)=E,anp)=(anpB)<)

for any B e NP9 C*" . For x € P(N"H' C**') and a € P\ C**1)
the projective distance ||x, a|| is defined by
KL af
Elle]
where & € A?*' C**!' — {0} and a € A7 C* — {0}; P(&) = x and
P(o)=a.
For a hyperplane a of cpk , denote

"x ’ a” =

J
filLa=P(ALa):Ay—P (/\c"“) ,

(2.4)

P(A)=f,, P(a)=a,
and
(2.5) v, (a)=1F,al’.

Note that 0< ¢;(a) < ¢;,,(a) <1 for 0<j < k,and ¢, (a)=1.
We need the following well-known lemma (see [4], [12], or [14]).
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Lemma 2.1. Let a be a hyperplane in CP*. Then for any constant
N>1land 0<p<k-1,
¢P+1(aj) — _l_} Qp

1
>
~Tog4,(a,) = {¢,,<aj><N—log¢p<a,->>2 N

C
(26)  dd‘log

on Ap —{¢,=0}.
(C) Nochka weight and product to sum estimate. Let H, , -, H, be
the hyperplanes in CP” in general position. Then H; can be considered

asapointin CP" , where CP" is the dual space of CP". Let I: CP* —
CP” be the inclusion map. Then the dual map [*: CP" - CP" is
surjective. Let g, =I"(H ;) . According to Chen [2], we define the concept
of n-subgeneral posmon here

Definition 2.1. The hyperplanes a,-,a, in CP* are called in n-
subgeneral positz;on iff for every injective map A: Z[0, n] — Z[1, q], there
are o, € Cc**!" —{0} such that ay; = Play,) for i=0,1,---,n and

such that the vectors a, , -+ , a,, generate ck

It is easy to check thatif H,--- , H , are in general position in CP" ,

then a,, --- ,a, are in n-subgeneral position in CP*.

We have the following lemma.

Lemma 2.2 (See Chen [2, Theorem 6.16], also Nochka [8]). Let a,,

, a, be hyperplanes in CP* in n-subgeneral position. Then there exist

a function w : Q — R(0, 1] and a number 6 > 0 with the following
properties.

(1) 0<w()§<1 forall jeQ.

(2)g-2n+k-1 =0(Z;’.=lw(j)—k— 1).

B)1<(n+1)/(k+1)<0<(2n—-k+1)/(k+1).

We will call w the Nochka weight for hyperplanes {a,} .

We also have the product-to-sum estimate as follows:

Lemma 2.3 (See Chen [2, Theorem 7.3]). Suppose the above assump-
tions are true, and take p € Z[0, k — 1]. Then for any constant N > 1,
1/g < 4p < 1/(k — p), there exists a positive constant C, >0 which only
depends on p and the given hyperplanes such that

ﬁ( +1<a))“"” 1 Y
e ) <N—1og¢>,,<a,.>)2

a a;)
p+l
2; $,(N —log¢,(a;))*

(2.7)

Ap—{®, = 0}.
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3. The main lemma
In this section, we retain the notation of §2. For hyperplanes a,, -+ , a

in CP* , let @ be their Nochka weight (see Lemma 2.2).
Let Q, = 5h,(2)dzAdz and

(3.1) e H (,m(a))w“ 1 lph
' (N —logg,(a)?| 7’

where Cp is the constant in the product-to-sum estimate (cf. Lemma 2.3),

=1/[k —p+2q(k —p)*/N],and N >1.
We take the geometric mean of the a, and define

q

. k-1
(3.2) I'= f-c [[ol*dznadz,
T

-1

where B, =1/ 570 Ap™" and ¢ = 2([Ts Ap” )% Let

r= %h(z) dzndz,  RicT=dd°Inh(z).

Then
(33)  h(2) fI( : )ﬁIqI kl:f e
. Z)=¢C —_—
j=1 ¢0(aj)w(1) j=1 | p=0 (N~ l°g¢p(aj))2ﬂk

Lemma 3.1. For ¢g>2n—-k+2, and

2q Eq 1 w(] (k + 1)
V< k(k +2) ’

we have RicI' > T .
Proof. From (3.3) it follows that

q
RicT" = —,Bkzw(j)ddclog%(aj)

J=1

g kol 1 2 k—1 ‘
+ﬂkZ§:dd log (WM) +ka§(l/).p)R1ch.

j=1 p=1
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By Lemma 2.1, (2.3), and that dd‘log¢,(a;) = -, , we have

j=1
i $,.1(a;) 2g %
3.4 +2 ad Q
G4 ;,;0%( )N —log g ,(a;,))’ % N:‘: ?
k-1 224
+) [(k -p)+(k—-p) WJ Q,,-2Q,+Q, ;}| .
p=0
Using Lemma 2.3 we obtain
i ¢,.1(a;)

Q
= ¢,(a)(N —logg,(a))* *

q 3\ @0) ‘1'
1 (¢p+1<a,>) 1 a
i \ $(4) (N —logd,(a)| 7

i _
—-EEObdZ/\dZ.
We also notice that Q,

2C,

=0, so that
Z(k p)(Q,, —22,+Q, ) =—-(k+1)Q,
and therefore

q k-1
Ricrzﬂk(z 0(j)Q + 25— Zadz/\dz—(k+1)ﬂ

_ (k +2k)2qQ
k-2

+Ylk-p+1)°
p=1

2k -pl+k—p—1)P-114 Q+2A‘,’Q )

We use the following elementary inequality:

For all the positive numbers x,,--- ,x, and @, - , a,,
3.5
(3.5) ax +--+ax, > (@ +--- +an)(x;11 . '_xa,,)l/(a,+ +a,,).

n
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-1

Letting a, =Ap™ " in (3.5), we have

k-1 ¢ k 8./
E o >—||a" ’
p = p

and therefore
RicT"

>ﬂk[zwm-<k+1)-(k +2030)0, +22"Q +4g, ]+

By Lemma 2.2 we obtain

H(iw(j)—k—l) =q-2n+k-1>0,

j=1

and 6 >0, s0 37 , w(j) = (k+1) > 0. Using the assumption of the
lemma hence gives RicI' >T". q.e.d.
By the Schwarz lemma, we have

2
2R

Main Lemma. Let f=[Z,:---:Z,]: Ag — CP* be a nondegenerate

holomorphic map, a, --- . a, be hyperplanes in CP* in n-subgeneral
position, and «w(j) be their Nochka weight. Let P(a;) = a;, where P isa
projection, and Z = (Z,,--- , Z,). If g >2n—k +1 and

2q(k* + 2k)
T o) - (k+1)’
then there exists some positive constant C such that

k—
HI—[p=01 ;I.=1 lAp L aj|4/N|Akll+2¢]/N
= Z, a)*?

IR k(k+1)/2+ )17 (k=p)*24/N
<Ol
R —|z|

N>

(3.7) 1Z|

b

where H is given by ¥4_ w(j) - (k+1) - (k* + 2k — 1)2q/N.

Proof. We shall calculate Hk_ol h;/ % . By (2.2), we have

(k—p)+(k—p)*2q/N
Bl _ (I 1I 1A, )
r IA,,l

b
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)
= 1/4 2k+1)—(K*+2k—1)4g/N, , 8¢/N 8¢/N, , (2+4q/N
p =2(k+1)~(k*+2k—1)4q q q q
[14" = 1A, AL A T 1A .
p=0

Since |Ag| =|Z| and ¢o(a;) = [(Z, a))P*/|ZI", 6,(a)) = A, Lo, [P /1A, 7,
from (3.3) and (3.6) it follows that

IZ, e (H;:(;(N - 1°g¢p(af))>

1/B,
<C % .
R® —|z|

Set K := sup0<x<1x2/N(N—logx). Since ¢p(aj) <1 forall p and j,
we have N

(3.8)

1A, Loy "N
Sk e M
K A,

1
(N —108,(a,)

Substituting these into (3.8), we obtain the desired conclusion.

1 2/N

4. Proof of the theorem

We will now prove the theorem. The proof basically follows Fujimoto’s
proof [7].

We may assume M is simply connected, otherwise we consider its uni-
versal covering. By Koebe’s uniformization theorem, M is biholomor-
phic to C or to the unit disc A. For the case M = C, Nochka [8]
(see also Chen [2]) proved the Cartan conjecture which implies that a k-
nondegenerate holomorphic map from C to CP" cannot omit 2n — k +2
hyperplanes in general position; in this case our theorem is true. For our
purpose it suffices to consider the case M =A.

Now assume our theorem is not true, namely the Gauss map G omits g
hyperplanes H,,--- , Hq in CP"! in general position and g >
(k+1)(n—k/2—-1)4+n. Let w(j) be the Nochka weight of {H,}.

Because G is k-nondegenerate, we assume G(A) C CP* sothat G =
g::gl:A— CP* is nondegenerate. Let /: CP* — CP"™! be the
inclusion map, /*: CP"™"" — CP* be the dual map, and a; =I"(H,).
Then the {a,} are the hyperplanes in CP* in (n — 1)-subgeneral position.
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Let G = (&> > &): C — ck+t - {0}; then the metric ds’> on M
induced from the standard metric on R” is given by
(4.1) ds* =2|G)*|dz)*.

By Lemma 2.2, we have

q—2(n—l)+k—l=9(iw(j)—k—l) ,
j=1

and

2n-1)-k+1 2n-k-1
o< k+1 T k+1
SO
2( ?=10)(J')—k—1)_2(q—2n+k+1)>2(q_—2n+k+1)
Kk + 1) =T k(k+D) > (n—k-1k

Consider the numbers

>1.

k
(42) p== [%(H N+ —p)z} ,
p=0
k-1
(43) y=%[%(k+l)+%(k+l)+zwq2p(p+l)],
=0
.1

Choose some N such that
T w(y)-(k+1)-k(k+1)/2

Jj=1

K2+ 2k — 1+ Y5 _o(k - p)?

S 1 0() = (k+1)—k(k+1)/2
N 7 2/q+ (0 +2k — 1)+ k(k + 1)/2+ i p(p + 1)
so that
(4.5) 0<p<l, 4 1.

N
Consider the open subset

=J=4,YVSPV>

M=M- ({ék=0} U {Er'pl_aj=0})
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of M and define the function

e j P
(4 6) V= j:l I(G3 aj)'w('])
Hﬁ;(} .16, L aj|4/N|Gk|1+2q/N

on M', where Gp =GOA.--AG? and P(a;) = a;.

Let 7: M — M’ be the universal covering of M’ . Since logv o 7 is
harmonic on M’ by the assumption, we can take a holomorphic function
B on M’ such that |B| = vom . Without loss of generality, we may assume
that M’ contains the origin o of C. As in Fujimoto’s papers [5], [6],
[7], for each point p of M’ we take a continuous curve V5t [0, 11— M
with yp(O) = 0 and yﬁ(l) = m(p), which corresponds to the homotopy
class of p. Let 6 denote the point corresponding to the constant curve
0, and set

w=F@p)= | B(2)dz,

%
where z denotes the holomorphic coordinate on M’ induced from the
holomorphic global coordmate on M by n. Then F is a single-valued
holomorphic function on M satisfying the condition F(6) = 0 and
dF(p) # 0 for every p € M'. Choose the largest R (< +o00) such
that F maps an open neighborhood U of & biholomorphically onto an
open disc A, in C, and consider themap B = 7o (F |U)™': Ay = M.
By the Liouville theorem, R = co is impossible.
For each point a € A consider the curve
L,:w=ta, 0<t<1,
and the image I', of L, by B. We shall show that there exists a point
a, in dAy such that T'q, tends to the boundary of M. To this end,
we assume the contrary. Then, for each a € dA,, there is a sequence
{t,;v=1,2,---} such that limu_,oo ,=1and z,=1lim _, _ B(ta) ex-
istin M. Suppose that z, ¢ M. Let 0y = 4p* /N > 1. Then obviously,
lim inf |G, |29/ I |c~;p Laj® v>0.

z—z,

/41>

If Gk(zo) =0 or |§p (I a;|(zy) = 0 for some p and j, we can find a
positive constant C such that v > C/|z — zOI‘so in a neighborhood of z,

and obtain
dw
E, [a’z|—/v(z |dz|>c/ FEeT zolé ldz| =

R=/La|dw|=

This is a contradiction. Therefore, we have z, € M.
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Take a simply connected neighborhood V of z,, which is relatively
compact in M, and set C' = min, , v(z) > 0. Then B(ta) € V (¢, <
t < 1) for some ¢,. In fact, if not, I', goes and returns infinitely often
from 9V to a sufficiently small neighborhood of z, and so we get the

absurd conclusion
R=/ |dw|2C’/ ldz| = oo.
La rﬂ

By the same argument, we can easily see that lim,_,, B(ta) = z,,. Since =

maps each connected component of n_l(V) biholomorphically onto V,
there exists the limit

By = lim(F | U) '(ta)e M.

Then (F | U)~' has a biholomorphic extension to a neighborhood of
a. Since a is arbitrarily chosen, F maps an open neighborhood of U
biholomorphically onto an open neighborhood of KR. This contradicts
the property of R. In conclusion, there exists a point a, € A, such that
Fao tends to the boundary of M .
By the definition of w = F(z) we have

dw 1—-y dw 4

@n | Ge|=107 |4

14

dw
dz

G j 1/H
HI;;OI ?=1 |Gp I__aj|4/N|Gk|1+2q/N
Let Z(w) = GOB(w)’ ZO(w) = gOOB(’lU), e, Zk(w) — gk oB(w).

Since ZAZ'A---AZP = (GA---AGPV)(42)PP*D2 it is easy to see
that

dw

(4.8) =

. 1/H

~ = NZ, )Y

- k—1 4/N 1+2q/N ’
T T2 1A, Lo |7 |A, )2

where Ap = Z(O) Aeee /\Z(”) )

On the other hand, the metric in A, induced from ds® = 2G| |dz|?
through B is given by

2

(4.9) B"ds’ = 2|G(B(w))]? ldwl|*.

ii_z_
dw
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Combining (4.7) and (4.8) yields
\/H

k=114 A l_a.4/NA 1+2g/N
]=l| D jl I kl ld'LUl.

B'ds=2|Z| | —2=2 :
e, (2, o))V

Using the main lemma, we obtain

p
B* ds < C (RZZ_RIZ) Idwl ,

_Iw

where C is a positive constant. Since p < 1, it then follows that

R( 2R Y’
a0 [ ds= [ Bassc [ (5T ldul<e,
T L, 0 \R"—|w|

where d(0) denotes the distance from the origin o to the boundary of
M , contradicting the assumption of completeness of M . Hence the proof
of the theorem is complete.
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