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A GEOMETRIC CHARACTERIZATION
OF NEGATIVELY CURVED LOCALLY

SYMMETRIC SPACES

URSULA HAMENSTADT

Introduction

Let M be a compact connected Riemannian manifold of nonpositive
sectional curvature. In [l]-[3] the rank of M is defined as follows: For
υ £ TιM let the rank of υ be the dimension of the vector space of parallel
Jacobi fields along the geodesic γv with initial velocity v , and let rank(Λf)
be the infimum of the rank of the elements of TιM. Ballmann, Brin,
Eberlein, and Spatzier showed [l]-[3] (compare also [5], [6]) that if M is
irreducible (i.e., the de Rham decomposition of the universal covering of
M is trivial), and rank(Λf) > 2, then M is locally symmetric of higher
rank.

As the rank of M measures its flatness, we can define a notion of
rank for general manifolds of nonpositive curvature which measures the
distribution of the curvature maximum in the following way: Let -a2 < 0
be the maximum of the curvature of M. For an element v of the unit
tangent bundle TιM of M define the hyperbolic rank of v to be the
dimension of the vector space of parallel vector fields J along the geodesic
γv with initial velocity γ'υ(0) = υ with the following properties:

(1) / is orthogonal to the tangent of γv .

(2) For every t e R the curvature of the plane spanned by yv{t) and

J(t) equals -a2.

Let the hyperbolic rank h- rank(Λf) of M be the minimum of the hy-
perbolic ranks of the vectors v e TXM. It is not difficult to see that
rank(Λf) = h- rank(Λf) + 1 for manifolds with curvature maximum 0.

With this notion of rank the result of Ballmann, Brin, Eberlein, and
Spatzier holds for every manifold of nonpositive curvature:

Theorem. If Λ-rank(Λf) > 0 and M is irreducible, then M is locally
symmetric.
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The purpose of this paper is to provide the proof of the above theorem
in the case a > 0. By rescaling the metric of M we may thus assume
that the maximum of the curvature IC equals - 1 . The idea of proof ^s
to show that the universal covering M of M is homogeneous. Since M
admits a compact quotient, this implies by a result of Heintze [10] that
M is symmetric, and hence M is locally symmetric.

The organization of the paper is as follows: In § 1 we recall from [9]
the definition and basic properties of a family of distances which are^ de-
fined on (the complement of one point of) the ideal boundary dM of
the universal covering M of M. We show that these distances define a
class of rectifiable curves on dM. In §2 we define a distribution E1 on
an open subset of the unit tangent bundle T1 M of M, which is invari-
ant under the geodesic flow and tangent to the strong unstable foliation
Wsu of TιM. We show that curves which are tangent to E1 give rise
to rectifiable curves on dM. §3̂  is devoted to the investigation of the
space of rectifiable curves in dM. This is used in §4 to show that the
distribution E1 generates the whole tangent bundle of the foliation Wsu .
In §5 we study the Carnot-Caratheodory metrics on the leaves of WSλX,
which are induced by Έ! . These metrics give rise to a generalized con-
formal structure on dM whose associated group G of 1-quasiconformal
transformations is investigated in §6. In §7 we show that G acts transi-
tively on TιM as a topological transformation group commuting with the
geodesic flow. These transformations preserve the fibers of the fibration
TιM -> M, and hence G acts as a group of isometries transitively on
M, i.e., M is homogeneous.

We assume that our methods can also be used to show the analogous
result for manifolds of finite volume, but we did not check this.

Before we proceed it will be useful to fix some notation which will be
used throughout the paper (for definitions see [4], [12]). M denotes an
(m + l)-dimensional compact connected Riemannian manifold of negative
curvature -oc < -b2 </K < - 1 < 0 and fundamental group Γ.

The geodesic flow Φ* acts on the unit tangent bundle TιM (resp. TιM)
of M (resp. the universal covering M of M). TιM admits foliations
Wsu, Wu^which are^invariant under φ ' and the action of the isometry
group of M on TιM. The leaves of Wsu (resp. Wu) are called the strong
unstable (resp. unstable) manifolds of TXM.

For υ e TιM let γv be the geodesic line in M with initial direc-

tion γ'v(0) = v. v also determines a Busemann function θv at the

point yv(-oo) of the ideal boundary dM of M, which is normalized
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by θυ(γυ(O)) = 0. The leaf of Wu containing v then consists of all

w e TιM such that yw(-oo) = yv{-oo). Thus every ξ e dM determines

a unique leaf Wu(ξ) of the foliation Wu . The restriction of the canonical

projection P: TιM->M maps Wu(ξ) diffeomorphically onto M.

The horosphere θ~\t) (ί e R) is the image under P of the leaf

Wsa(Φtυ) of W^ containing Φ*v . The restriction of the Riemann-

ian metric of M to θ~\t) induces a distance dv t on θ~ι(t). Let

πυ t: M U dM - ^(-oo) —> θ~ι(t) be the projection along the geodesies
which are asymptotic to y v(-oo). Clearly θw = θυ and πw t = πυ t for
all w € Wsu{v) and alW G R. _

Finally denote by d the distance on M induced by the Riemannian
metric.

1. A class of distances of dM

Choose v eTιM, R>0, and define

a(x,y) = sup{ί e R | dvt(πvt(x), πvt(y)) < R}

and ηV9R(x,y)=e-a(x'y) for x, y e dM - yj-oc). Then ηw,R = ηv>R

for all w e Wsu{v), ηφίy R = eιηυ^ for all t e R, and ηdΨvR =^

ηv Roψ~ι for each isometry Ψ of M (recall that the isometries of M

act on dM in a natural way). Moreover (Corollary 3 of [9]) we have

Lemma 1.1. ηv R: (x,y) —• ηυ R(x,y) is a distance on dM-γυ(-oo).
ηυ R depends on the choice of R > 0 in the following way (Corollary

2 of [9]).
Lemma 1.2. IfO<r<R,then ηVtR<ηυtr< Wr)ηΌtR

Write ηυ = ηυ x. We want to show that the family of ^-rectifiable

curves in dM does not depend on v . For this define B (x, ε) = {y e

dM -γυ(-oc) I ηυ(x,y) < ε} for x e dM -γυ(-oo) and ε > 0. Thus

Bn (x, ε) is the projection in dM of the open ball of radius 1 about
πv,\og\/εx i n (^\logl/ε)9dυΛogl/e). Define a function σ: R -+ R by

(7(5) = e^5 •+• (4sinh5")/Z?. σ is continuous and σ(0) = 1.

Lemma 1.3. Let v, we TλM, and let A c dM-{γυ(-oo), ^ (-oo)}

be compact. Assume that there is δ > 0 and τ € R such that

d(πv>τ(y),πwjy))<δ for all ye A.

If Bη (x, r) c A for some x e A and r e (0, e~τ) then ηw(y, z) <

σ(δ)ηυ(y9 z) for all y,ze B%(x, r/3).
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Proof. Let y, z e Bη (x, r/3) and ηυ(y9 z) = e. Since ηv is a dis-

tance, and ηυ(x, y) < r/3, and ^ ( x , z) < r/3, we have z eB (y, \r) c

A and t = log(l/β) > τ. By the definition of ηυ there is a smooth curve

φ: I -> π V f ί ( ^ 0 ; , fr)) such that 0(0) = ^ , 0 0 , ^ ( 1 ) ^ = *„,,(*), and

that the length of φ equals 1. Since for every u e dM = {yv(-oo),
yw(-oo)} the function t -• d(πυt{ύ),πWJ{u)) is decreasing, 0(7) is

contained in the ^-neighborhood of β^^ί). Now the operator norm of

~\the restriction of the projection πt w to the 5-neighborhood of θ~\t) is

not larger than e δ hence the length of πw t o φ does not exceed ebδ .
On the other hand, d(πυt(y), πw t(y)) < δ implies

(Lemma 9 of [9]). By the estimates in [11] this yields

L e " dw%t{πW9t{y)9πWtt(z)) < ebδ + \sinhί = σ{δ) and ηwMδ)(y, z)

e~ι = ηv(y, z). The lemma now follows from Lemma 1.2.
ιCorollary 1.4. Lέtf v,w e TιM, x e dM - {γυ(-oo), γw{-oo)},

and θ be a Busemann function at x. If s = θ(πυ 0 (x)) - 0(7^ 0 (JC))
/Ae« ίA^r^ w/or ev^ry £ > 0 α neighborhood A of x in dM such that
(1 - ε)ηΌ(y9 z) < e'ηjy, z)<(\+ ε)ηv(y, z) for all y,zeA.

Proof Since ηυ = η- for all v e Wsu(υ), we may assume that 7υ(oo) =
y^(oo) = x . Moreover ηφtw = e ^ ^ for all t e R shows that it suffices
to consider the case θ_v(Pw) = 0 which means d^PΦ^, PΦ'tϋ) -* 0
(ί —• oo). For ε > 0 choose δ > 0 sufficiently small such that σ(£) <
m i n { l + ε , 1/(1—β)} . There is a number τ e R such that d{P<tfv ^P&w)
< δ/3 for all t > τ . Define

A = {yedM\ m&x{d(πυτ(y),PΦτv),d(πWiτ(y)9PΦτw)} < δ/3}.

A is an open neighborhood of x in dM and if y e A then

d(πvτ(y),πwχ(y))<δ.

Choose r e ( 0 , e~τ) such that Bn (x, r) u Bn (x, r) c A and let A =

5M (x, r/3) nfiM (x , r/3). By 1.3, A has the required property.

Corollary 1.5. For v, w e TιM every curve

φ:I^dM\{γv(-oc),γw(-oo)}
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is rectifiable with respect to ηv if and only if it is rectίfiable with respect to

By 1.5 we can call a curve φ: I —• dM η-rectifiable if φ is rectifiable
with respect to some and hence any distance ηv with yv(-oo) ^ φ(I).

Corollary 1.6. ηυ > dυ ? 0oπυ ^ 0 m particular, the projection into θ~\θ)

of a ηυ-rectifiable curve φ: I —• 9M\{yυ(-oo)} w rectifiable with respect

The corollary follows from the comparison with the hyperbolic plane of
constant curvature - 1 (see [9]).

2. The distinguished distribution

The differential of the projection P: TιM —• M maps the tangent
space at υ e TιM of the strong unstable manifold Wsu(v) containing
υ isomorphically onto the orthogonal complement v1 of v in Tp M.

V

Let R be the curvature tensor of M then the restriction to vL of the
operator Rυ: w ^ R(v , w)v is a self-adjoint automorphism of v1 whose
eigenvalues are not bigger than - 1 . For p > 0 define Ep(v) = {dPZ €

/ | I e TυW
m{υ)9R^υdPdΦtX = -dPd&X for all ί e [0,/?]}.

£ 0 ( Ϊ ; ) is the eigenspace of i?v with respect to the eigenvalue - 1 and

E(v) = Π / 7 >o^( i ; ) ^s a l i n e a r subspace of υ± . Let Q: M -+ M be the

canonical projection and let Ep{dQv) = dQEp(v) (υ e TιM, p > 0),
resp. E(dQv) = dQE(v).

For v e TιM and w e v± let ί -• Λ(υ , t)w be the Jacobi field along
the geodesic γυ through A(υ, 0)w = w which vanishes asymptotically
at -oc, i.e., satisfies A(v, t)w -• 0 (ί -• -oo). Then w -+ λ(v, 0 ^
is an isomorphism of Ϊ;"1 onto (Φtv)± which maps £(v) into E(Φfv)
for ί > 0. If p: TιM -+ M denotes the canonical projection, then
A(υ, 0 dpX = dpdΦιX for every X e Tυ Wsu(v).

Let | | f : TpυM -• TpφtυM be the parallel transport along the geodesic

2̂  and let k = min{dim£(?*;) | w G TιM} . Then we have

Lemma 2.1. /: = Λ-rank(Λf); zn particular, A(v, t)w = e'||,iί; /or

every v e TιM with dimE(v) = k and every w e E(υ).

Proof Let v e TιM; then there is an Λ-rank(v)-dimensional sub-

space A of v± such that for every w e A we have Rφ'v(\\tw) = -\\tw

for all ί e R . Define Jw(t) = e\\\tw)\ clearly / w is a Jacobi field

along γv which satisfies /^(ί) € E(Φtv) for all ί e R . This means

ά\mE(v) > Λ-rank(i ) and consequently k > Λ-rank(M).
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To show k < A-rank(M) let v e TιM be such that dimE(v) = k.
For w G E(υ) the assignment t —• w{t) = A(v, t)w is a Jacobi field along
γw with Rφtυw(t) = -w(t) for all t G [0, oo). The differential equation
for Jacobi fields shows that for t > 0, w is a solution of the differential
equation

where tt)' means covariant derivative. Every solution of this equation is
determined by its initial conditions w0 = w(0) and wx = w'(0), and can

ibe written as w(t) = coshί||rit;0 + si
Now Λ(Φ" rϊ;, t)E{Φ~tv) is contained in 2?(v) for every ί > 0. This

implies

Λ ( Φ " ^ , t)E(Φ~tv) = E(v),

since dimE(v) = k = min{dim£'(tί;) | w e TιM}. In particular, the
Jacobi field t —• Λ(ι>, ί)ty is a solution of (*) for every t e R.

Suppose ΊUJ = AIUQ + w for some A € R and W G WQ . Then

||ώ(0H2 = (coshί + Asinh02|N0ll
2 + s i n h 2 ^f

Since | |ti)(0| | —• 0 (t —> - o o ) , this shows w = 0 and A = 1, i.e.,

(**) w{t) =

Thus /2-rank(?;) > k which is the claim.
Remark 2.2. If dim£'(ί;) = k, then Λ(ι;, 0 maps the orthogonal

complement of E(υ) in v1 isomorphically onto E(Φtv)± c ( Φ ^ ) x :
For let t -+ e(ή be a parallel vector field along the geodesic γυ: t-+ PΦιv
such that e(0) G £ ( V ) , and let w be any Jacobi field along γυ . Then
d2/dt2(e(ή,w(ή) = -(e{ή, Rφtyw(t)). Since i?φ^ is self-adjoint and
e(ί) is an eigenvector of Rφtυ with respect to the eigenvalue - 1 , the map
Rφίy preserves the orthogonal complement of E(Φtυ). Thus the function
t —• (e(ή, w(ή) satisfies the differential equation (*).

For w e E^)1', w: t —> A(v, ήw is a Jacobi field along γv which
satisfies (e(0), w(0)) = 0. Then (*) shows

But ||ι»(ί)|| - > ( ) ( * - • -oo) which is only possible if (ώ'(0), ^(0)) = 0,
i.e., if (e{t), w(ή) = 0 for all / G R.

Since for v eTιM the restriction of dp to the tangent space TWsu(v)

C TTιM of ίΓsu(ί;) at Ϊ; is an isomorphism onto vL , the spaces Ep(v)



GEOMETRIC CHARACTERIZATION OF LOCALLY SYMMETRIC SPACES 199

(p > 0) (resp. E(υ))9 have a unique lift to subspaces Ep(v) (resp. Er(υ))

of TWsu(v). The definition of A(υ, t) shows dΦ(Ef(v) c Ef(Φtυ) for
all ί > 0.

Lemma 2.3. D = {w e TXM \ aimE{w) = k} is an open Φι-invariant
subset of TXM.

Proof. Choose v e TιM such that dimE(υ) = k. Now Ep{υ) is

a linear subspace of the finite-dimensional vector space V1 and E (υ) D
Eτ(v) if p < τ. This implies that there is p > 0 such that E(v) = Ep(υ).

The assignment v —• ΓίΓu(ΐ;) is a continuous vector bundle over Γ 1 ^/,
and for every ί > 0 the map w e TWu(v) -• i? φ ^ dpdΦtfw e (Φ^)" 1 is
continuous. Since by definition

^ ( V ) = p | {W e TWsu(v) I Rφty dpdΦ'w = -dpdΦ'w),
te[o,P]

this yields that the set {Ef

p(v) \ v e TXM] is closed in TTXM. In

particular, there is an open neighborhood U of v in TιM such that
dimE'(W) < k — dimis^(t ) for all w e U, i.e., U c D, and Z) is open.

The Φ'-invariance of Z) is clear from the definition of E.
Corollary 2.4. ΓΛere is an open Φι-invariant subset Ω of TιM such

that v —• E'(υ) w α smooth k-dimensional distribution on Ω.
Proo/ Recall (see [12]) that the tangent bundle TTιM of TιM ad-

mits a decomposition TTιM = Γ1 © Γh φ Γ v into smooth subbundles
as follows: Tι is tangent to the flow lines of the geodesic flow on TιM.
The vertical bundle Ty is tangent to the fiber of TιM ^ M. Th is
the subbundle of the horizontal bundle with the property that for every
w e TιM the fiber T^ of Th over Ή; is mapped by dp isomorphically
onto w1 c Γ M . The decomposition TTιM = Tι θ (Γh θ Γv) is invari-
ant under the geodesic flow, i.e., (Γ h © Tv)φtw = dΦ\Th © Γ v )^ for all
w e Γ ι Jlί .

For u e Γ h θ f write u = wh + wv, where wh € Γ h , u e T\
Now for every w e TιM there is a canonical isomorphism A of the
fiber Ty

w of the bundle Γ v at w with t ί / c Γptι;AΓ. For t e R define

At(w) = {ueTh®Tw\ dp(dQfu)h = A(dQfu)y] . At = \Jw€TιMAt(w) is

a smooth m-dimensional vector bundle over TXM.
We showed in 2.1 that Ef(w) = f]t>QAt(w) for all w e D. As-

sume that the curvature of M is not constant, i.e., k < m = d i m ^ 0 .
Then there is τ > 0 such that Aτ(v) Φ A0(v) for some v e D.
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Let q = min{dim(^0(ί/;) n Aτ[w)) \ w e D} < m. Since D is open and
AQ Π Aτ is closed in TTιM, there is an open subset U of D such that
dim(i40(tϋ) Π Λτ(tu)) = # for all w eϋ. But this implies that the restric-
tion of Ao n Aτ to (7 is a smooth vector bundle on L/. Repeating this
argument at most m - k - 1 times we find an open subset U of D such
that the restriction of Ef to U is a smooth λ -dimensional vector bundle.
Since Ef is invariant under the geodesic flow, E1 is then a smooth bundle
over an open Φjinvariant subset Ω of D. q.e.d.

Let Ω c Γ ! M be the preimage of Ω under the restriction of dQ to
TιM. E' lifts to a smooth distribution £ o n Ω which is tangent to the
strong unstable foliation.

Let v e Ω and let φ: I -> Ω be a curve through p(0) = i; which is

tangent to E. Then Pp is a curve on the horosphere θ~ι(0) such that

(Pφ)'{t) € £(p(0) f o r aU ί € / . _
Lemma 2.5. π

ViOO°P °Ψ is an ηυ-rectifiable curve in dM.

Proof. Assume without loss of generality that Po φ c θ~x (0) is param-
etrized proportional to arc length with respect to dυ 0 . Then there is α > 0
such that dv0(Pφ(t), Pφ(t + ε)) <aε for all ε > 0 , t e [0, 1 - ε]. Let
5 > 0 by the definition of E the length of πυsoPoφ on 0" 1 (5) equals
esa, i.e., /ty(/) can be covered by ~ ^ α balls of radius e~s/2 with
respect to the distance ηv . This means that the τ/υ-length of πv ^oPoφ

does not exceed a.

3. /̂-rectifiable curves in dM

In this section we investigate the ^/-rectifiable curves in dM. It follows
from 2.5 that the space of these curves is not empty.

Let φ: I —• dM be an ^-rectifiable curve. For υ e TιM with yv(-oo)
£ $?(/) there is a unique curve ~φ: I —> W S U (Ϊ;) such that p(s) = π υ ^ o

P o ψ(s) for all 5 € / . Since by 1.6 πv 0 o ηv > dv 0 , ψ is rectifiable as a
curve in the Riemannian manifold Wsu(v), is hence differentiate almost
everywhere.

Recall that a point w e TιM is called recurrent if for every neighbor-
hood U of w the orbit / —> Φ*w (t e [0, 00)) meets ί7 infinitely often.
The Birkhoff ergodic theorem implies that with respect to the Lebesgue
measure almost every w e TιM is recurrent.

The purpose of this section is to show
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Proposition 3.1. If dQψ(s) is recurrent for almost every s e I then
{PΊp)'{s) e E(ψ(s)) for almost every s e I.

For the proof of 3.1 we need the following preparations.
Lemma 3.2. If dimEp(υ) < q for some v e TιM, and p, q > 0,

then there is a neighborhood U of v in TιM and ε > 0 such that for
all w e U and every q-dimensional subspace A of w1 the determinant
of the restriction to A of the map A(w, p) is not smaller than eqp{\ + ε).

Proof For w ev± write w(t) = A(υ, t)w . Since the curvature of M
does not exceed - 1 , it follows that ||i&(0ll > ^~Ί|wO?)|| for all s > 0,
t > s, where || is the norm associated to the Riemannian metric of M
(see [11]). In particular,

(w(t), w'(t))/\\w(t)\\ = ^l|tί(0ll > ll^(0)lkr,

and the determinant of the restriction of A(υ, t) to any ^-dimensional
subspace A of vL is not smaller than eqt. Moreover, A(v, t + s) =
Λ(Φ5ι;, t)A(v, s) shows

Choose a ^-dimensional subspace ^ of / with the property that

det(Λ(v, p) I A) is less than or equal to the determinant of A(v, p) re-

stricted to any other <?-dimensional subspace of v1. Since dim is (υ) <

q, there is τ < p such that A(υ , τ)A = ~A£ £Q(O T ) .

Let wχ, •" , w be an orthonormal basis of A, and let ex (t), , eq{t)
be parallel vector fields along the geodesic γv such that e.(0) = wi. Then
for all s > 0

det(Λ(Φ rί; ,s)\A)> H ^ r + s), w^s)),

where w (s) = Λ(Φτ?;, s)wi. Hence,

| U V s)\A)s=0

and this sum is not smaller than q . The differential equation for Jacobi
fields shows

^ j d e t ( Λ ( Φ τ ^ , s) I A)S=Q > q ( q - l ) + jΓ(Wi, -R(Φτv , Wi)Φτυ).
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Since ~A <jL EQ(Φτυ) and since the eigenvalues of the map Rφτv are not
larger than - 1 , it follows

as

which together with A(v ,τ + s) = Λ(Φτi;, s)A(v , τ) and the above con-
siderations implies that det(Λ(v, p) \ A) = eqp(l + 2c) for some ε > 0.
By continuity there is then a compact neighborhood U of υ in TιM as
claimed in the lemma^ q.e.d.

Assume <p: I —• dM satisfies the assumptions of 3.1. For s e I let
Lip( s) be the local dilation at s of the map φ with respect to the distance
ηυ . Then almost every s e I has the following properties:

(i) Lip( s) < oc .
(ii) The differential ~φ\s) of ψ at s exists.

(iii) rfβ((p(.s)) is recurrent.

Thus 3.1 follows from
Lemma 3.3. If s e I satisfies (i)—(iii), then φ\s) € E(φ(s)).
Proof. Assume s e I satisfies (i)-(iii), let w — dQψ(s), and choose

p > 0 such that E(w) = E (w). By 3.2 there is a compact neighborhood

U of w in TιM and ε > 0 such that for all u € 1/ and every (fc + 1)-
dimensional subspace 4̂ of w"1, the determinant of the restriction to A
of the map A(u, p) is not smaller than e{k+ι)p(l + c).

Assume (Pφ)f(s) £ E(φ(s)) in particular, ψ'(s) Φ 0, and let A c w"1

be the linear hull of E(w) and the projection dQ(PΊp)\s) of (Pψ)'(s)
into ΓΛf. Let d0 = dυ 0; since ^(s) ^ 0 and Lip(s) < oc, there
are numbers σ > 0, v e (0, 1) such that do{Pφ(s), Pφ{s + ή) > vt
and ι/v(p(j) 5 Ψ(s + 0) < ^/^ f o r a 1 1 ^ < σ > i e., dQ(Pφ(s),

Denote again by | | r: ( Φ ^ ) " 1 -> wJ~ the parallel transport along the

geodesic s —> Φ~5iί; in Λf. Since K; is recurrent, there are numbers
{tj} e R such that ίy+1 >tj + ρ and Φr>w; e ί7. The choice of U then
implies that the determinant of the map \\_t A(w, tj) \ A is not smaller

than <?(*+1)/>(l+β)Λ

However \\_tA(w, t)u = eιu for every u € 2s(ιι;) and t > 0 by 2.1, and

||_£Λ(ti;, /) leaves the orthogonal complement E(w)± of £'(^) invariant.

Thus if e e A n ^(w;)-1, then e - / : / det ||_,Λ(w , ί ) μ = ^ is the norm of

the vector \\_tA(w , t)e and Λf > ^r>(l + ε)j by the choice of t .
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Now the projection of Fφ(s) into TM equals ae + e for some e e

E(w) and some a Φ 0. Choose j eZ such that t > 1 and (1 + ε)~j <

v2\a\/4\\ae + e\\, and denote by exp the exponential map at πtφ(s) on

the horosphere θ~ι(tj) with respect to the induced Riemannian structure.

The above arguments show that the norm of (πt φ)'{s) is not smaller

than \a\λt > 4et>\\Pφ'(s)\\lv2 > 1 thus if β € (0, 1] is such that u =

β{πtφ)\s) is a unit vector in the tangent space of θ~\tj) at πtφ(s),then

||</ffoκ|| < e tjv2/4, and there is τ 0 e (0, σ) such that \\dπo ̂ expτu\\ <

e~tjv2/2 and

d (exp τu, π, 5?(5 + τβ)) < v2τ/4

for all τ < τ 0 . Thus

dvt(πt(p{s + τ0/?), fl^^(j)) > τ o(l - ι/2/4),

which implies that

ηυ(φ(s + τoβ), J>(J)) > ^ τ o ( l - v2J4).

On the other hand,

do(πoφ(s), exp τou) + rfo(πo exp τow, πQφ(s -h τoj8)) < e~tj3v\/4.

Since τ 0 < σ, \β\ < 1, and ι/2 < 1, this contradicts the fact that

do(noφ(s), πop(s + ή) > v2ηv(φ{s), φ{s + 0) f o r all ί < σ and finishes

the proof of the lemma.

4. The foliation on DM

By 2.5 the assignment Ef: w —• Ef(w) is a smooth Λ>dimensional
distribution on Ω c TιM. Thus for if e Ω and / > 1 we can consider
the vector space Ef.(w) c Γί^ s u(ιt;) which is spanned by Ef(w) and the
values at w of the commutators up to order / of the vector fields which
are tangent to Ef. Since the dimension of E'^w) is locally nondecreasing,
there is an open subset U of Ω such that the dimension of E\ is constant
on U for every / e {1, ••• , m} . In particular, E'm is an integrable
distribution on U (recall m = dim Wsu). Now E1 is invariant under
the geodesic flow on TιM, hence the same is true for E\. Thus, by the
ergodicity of the geodesic flow, E\ are smooth distributions on an open
subset of Ω of full measure which we may identify (by abuse of notation)
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with Ω. Let Ω be the lift of Ω to Γ 1 ^ . E\ lifts to a distribution on

Ω which we denote by E{.

Lemma 4.1. Let D be an open Φ*-invariant subset ofTιM.IfveD,
and -v is recurrent, then the whole strong unstable manifold Wsu(v) is
contained in D.

Proof. Given v £ TιM, the distance dϋ0 on the horosphere PWsu(ϋ)

lifts to a distance dϋ on Wsu(ϋ). These distances are clearly invariant

under the action of the isometry group of M on TιM, hence they project

to distances dυ on Wsu(v) (v eTιM).
For v eD there is a neighborhood U of υ in D and ε > 0 such that

for all w e U the ε-neighborhood of w in (Wsu(w), dw) is contained

in ΰ . If -v is recurrent, there are numbers t e R such that tj —•

-oo and Φtjv e U. This implies that the ε-neighborhood of Φtjv in

JVu(ΦtJv, dφtjv) is contained in D.

By the choice of the distances rf^ the image under Φ~'> of JFsu(φ'>?;)n

D contains the e~tj^ε-neighborhood of v in (W*u(υ), dυ). Since D is

invariant under the geodesic flow, this shows Wsu(υ) c D. q.e.d.

Define Ω = {v e Ω | dQ(w) and dQ(-w) are recurrent for almost

every w G ίΓsu(ϊ;)} (with respect to the Lebesgue measure on Wsu(v)).

Since the strong unstable foliation is absolutely continuous with respect

to the Lebesgue measure (see [14]), Ω is a subset of Ω of full measure

which is invariant under the action of Γ and the geodesic flow. Lemma

4.1 shows Wsu(v) c Ω for every v e Ω; in particular, the distribution

Em is defined on all of Wsu(v). Thus the maximal integral manifolds of

Em induce a smooth foliation of Wsu(v) which projects to a foliation $υ

of Θ;\O).

Lemma 4.2. Let v, w e Ω and let φ: I -> fl'^O) be a smooth curve

which is tangent to Ev and such that yw(-oo) £ πv ^φil). Then πw Oo
71 v, oo^ is contained in a leaf of $w .

Proof Without loss of generality we may assume that the map φ: / —•

ί?" 1^) is an embedding. Then there is an open neighborhood U of φ(I)

in θ~ι(0) and local coordinates {xι, ••• , xm)\ U -> ( - 2 , 2 ) w on U

with the following properties:

(ii) x'(φ(0)) = 0 for ί € { l , , / n } .
(iii) The local vector field d/θjc, is tangent to Eυ

(iv) φ is an integral curve of d/dx{ .
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Let λm be the Lebesgue measure on the Riemannian manifold θ~ι(0).
Recall that the m-dimensional modulus Mm(Ψ) of a family ψ of rectifi-
able nontrivial curves in θ~ι(0) is the infimum of all integrals / pm dλm ,
where p runs through the family of all nonnegative Borel functions on
θ~ι(0) with the property that fψp>l for every ψ € Ψ.

Identify U with ( - 2 , 2 ) m via the coordinates (JC1,--- , xm). Let
Im~ι = [-1, i ] m " 1 c Rm~ι , and for x e Im~λ denote by φ(x) the curve
t -> (ί, x) on fl'^O). Then for every open subset B of Im~ι the m-
dimensional modulus of the path family ΨB = {^(JC) | Λ: e B} does not
vanish [19]. _

Let φ(x) = πWtQ o ̂ ^ ^ ^ ( x ) then ΨB = {^(x) | x € B} isjt family
of rectifiable curves in F = πw 0 o π υ > o o(ί7). We claim Mm(ΨB) > 0.
To see this observe first that by 2.5, 1.4, 1.6, and the absolute continuity
°f πw o ° πv oo w ^ r e s P e c t t 0 Λe Lebesgue measure (see [14]) there is a
number L > 0 such that for every x e lm~x and t e I we have

(a) The local dilation of

at p(x)(0 does not exceed L.
(b) The Jacobian at ψ(x){t) of the map (π^ 0 o πυ o o)~1 :ΊJ -> U with

respect to the Lebesgue measure does not exceed L.

Let ~p\ V —• [0, oc) be a Borel function such that L,χ, ~p > 1 for every

x e B. Define p = ~poπw Ooπv ^ then (a) shows / , * p> l/L for every

x G ί and consequently /c//?m > L~mMm(ΨB). On the other hand, (b)

implies fϋP

m < Lfvp
m,J.c, fop"1 > L-m-ιMJΨB). Since p was

arbitrary, this means Mm(ΨB) > 0 as claimed.

Let λι be the 1-dimensional Hausdorff-measure in (U, dw 0) and let

A = {u £ ΊJ \ dQ{u) is recurrent}. Then U\A is a set of measure

zero, and hence the m-dimensional modulus of the path family Ψ =

{φ(x) I x e Γ~ι, λ\φ{x){I)\A) > 0} vanishes (see [19]). Since Mm(ΨB)

> 0 for every open subset B of Im~ι, this means that 2? = {x e

Γ~ι I Ψ(x) i Ψ} is dense in Im~ι.
Now 3.3 shows that φ(x) is tangent almost everywhere to Ew for every

x e Έ, hence by continuity and absolute continuity it is contained in a
leaf of $w . Since Έ is dense in lm~x and the leaves of $w are locally
closed, this implies that every curve ψ(x) (x e B) is contained in a leaf
of $w in particular, this is true for ^(0) = ^ ^ 0 ^ ^ . q.e.d.
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Assume dimEm = p. Since Ω and the distribution Em are Γ-invari-

ant, 4.2 shows that the foliations $υ (υ G Ω) induce a Γ-invariant p-

dimensional foliation # on dM. Here the leaf of $ containing ζ consists

of all ζ e dM for which there is υ G Ω and a curve φ on θ~ι(0) which

is contained in a leaf of $υ and such that the projection of φ into dM

joins ξ to ζ. For / G N denote by Cι the cube {x = (xx, , x,) G

R7 I !*,•!< 1} in Rι. _

Corollary 4.3. ^v^ry leaf of # w every wλere dense in dM.
Proo/ Assume that there is an open subset U of dM and a leaf F of

# which does not meet U. Choose ξ G F by the definition of # there
is a homeomorphism α of an open neighborhood A of ξ in dM\U
onto C m such that α~ ! (C p x {y}) is contained in a leaf of 5 for every
y e Cm~p . In particular, every leaf of # through a point of 4̂ meets the
topological boundary dA of A.

Let v e Ω be such that γv is the axis of an isometry Ψ G Γ and
that, moreover, ^(oo) G A, and yv(-c») e U. Now Ψ acts as a home-
omorphism on dM leaving # invariant; moreover, there is k G Z such
that Ψ^d.4 c ί / . But this means that every leaf of S through a point
of Ψ A D A meets U in particular, this is true for F, a contradiction
which shows the claim.

Corollary 4.4. d i m £ m = m, i.e., $ is the trivial foliation.

Proof Assume to the contrary that dim Em = p < m. Let υ G Ω
be such that γv is the axis of an isometry Ψ e Γ , There is an open
neighborhood A of ξ = yv(oo) in <9M and a homeomorphism a of A
onto C m such that for every y G C w " p the set α'^C^xfy}) is contained
in a leaf of # . Similarly we can find a homeomorphism β of an open
neighborhood B of f = yυ(-oo) in 9 M with according properties, α
and /? may be chosen in such a way that a(ξ) = β(ζ) = 0. Moreover,
by the arguments in the proof of 4.3 we may assume Au B = dM and
ΨBeB.

Since a~l(Cpx{0}) is homeomorphic to Cp (p > 1), the complement
of ξ in a~ι(Cp x {0}) has at most two components F{, F2. Fχ, F2 are
subsets of the leaf F of § through ξ which is invariant under Ψ. Let
dFt (/ = 1, 2) be the intersection of the closure of F. with dM\A . dFt

is a connected subset of B n F and hence there is y{ e Cm~p such that
Gi = Fi U β~x{Cp x {y.}) is a connected subset of F.

Since the image of Fχ under Ψ " 1 is a connected component of F\ξ n

Ψ " 1 ^ c Λ, we have Ψ " 1 ^ c F. for = 1 or j = 2 thus replacing Ψ

by Ψ2 if necessary we may assume Ψ~ιFt c / ) .
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Suppose y. Φ 0; then there is k > 0 such that β~\Cp x {yt}) n

ΨkB = 0 . Now Gt = Gi\Ψ~kFi is a connected subset of F, and hence

ΨkGi is a connected subset ofFnB containing ΘF . But this means
x¥kGi c β~ι(Cp x {y.}), in contradiction to the choice of k. Thus y. =

0 for i = 1, 2, and consequently α " 1 ^ x {0}) U β~x{Cp x {0}) is a

leaf of # which is closed in dM. This contradicts 4.3 and shows the

corollary, q.e.d.
Since by 4.4, Em is a smooth distribution on Ω which equals the

.tangent bundle of the strong unstable foliation, we have
Corollary 4.5. The strong unstable foliation is smooth on Ω.

5. The Carnot-Caratheodory metric induced by E

In §4 we showed that for υ € Ω the distribution Eυ on θ~ι(0) gener-
ates the whole tangent space of the horosphere. Thus we can consider the
Carnot-Caratheodory metric δυ on θ~ι(0) which is induced by Eυ . Let
lv be the length-pseudo metric on dM - yυ(—oo) induced by ηυ .

Lemma 5.1. If Wsu(v) c Ω, then lv < δv o πυ 0 in particular, Ίv is a

distance on dM -γυ(-oo).

Proof Since δv is a complete length metric on PWsu(υ) (see [7]),
the distance between any two points x,y e PWsu(υ) can be realized
by a minimizing geodesic. Let φ: [0, p] -• PWsu(υ) be such a geodesic
parametrized by arc length. Then δv(φ(s), φ{s + e)) = ε for all ε > 0,
s € [0, /> - e], hence e~*dυt(φ(s), φ(s + ε)) < ε for all ί G R. This
shows ηυ(πVtOOφ(s)9 nυoo(φ(s + ε)) < ε by the definition of ηv , hence
7V < δv o π v >0 as claimed, q.e.d.

Combining 4.5 and 1.4 we obtain
Lemma 5.2. Ίv is a distance on dM - yυ(-oo) for every v e TιM.

Corollary 5.3. Let v eTιM be such that Wsu{υ)cΩ, and let <p: I ->
^ ( O ) be a rectifiable curve which is tangent almost everywhere to Eυ.
Then the δ^length of ψ coincides with the ηυΊength of πvoo o ψ.

Proof If φ: / —• θ~ι(0) is tangent almost everywhere to Eυ , then the
δv -length of φ coincides with the length of φ with respect to the distance
dυ 0 (see [17]). Since ηv > dυ0 o πυQ, the ^-length of φ is not smaller
than its δv-length. The reverse inequality follows from 5.1 and the fact
that Ίυ>ηυ.
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By ergodicity of the geodesic flow on TιM and the Birkhoffergodic the-
orem there is υ € TιM andaBorelset A c Wsu(v) of vanishing Lebesgue
measure such that for every w e Wsu(υ) - ~A the orbit {Φt dQ(w) | t e
[0,oo)} of dQ(w) is dense in TιM. Let A = πv ^A U {γv(-oc)}.
Then ji is a measure zero set withj espect to the Lebesgue measure class
on dM, and for every w e TιM with π{w) e dM - A the orbit
{Φ* dQ(w) I t £ [0, oo)} is dense in TXM. Clearly we may assume that
A is Γ-invariant. Let χA be the characteristic function of A.

For υ € TιM and a curve φ: I -> dM - {yv(-oo)} let /v(^) be

the ^-length of p . For x,y e dM - {yυ(-oc)} and ε > 0 define

/β(*,y) = infί/^p) I ̂ ( x , φ(0)) <ε, ηυ(y, φ{\)) < ε, / f ( l - x j = 0}

and lυ(x,y) = lims\ipε^Qlυ(x, y). Clearly lv is a pseudo-metric on

dM-{γv(-oc)}.

Lemma 5.4. // Wsu(v) c Ω, then lυ=δvoπvJ).

Proof. Weshowfirst lυ <δvoπvQ. Forthislet x,y e θ~ι(0), xφy,

and let φ: I ^ θ~ι(0) be a minimizing geodesic with respect to δv joining
φ(0) = x to φ{\) —y. Then φ is a smooth curve which is tangent to Eυ

and parametrized proportional to arc length ([10]). Thus there is a smooth
section of X of Eυ on a neighborhood of φ(I) in 0^(0) of constant
norm δ = δv(x, y) whose restriction of φ{I) equals the tangent of φ.
Let ε > 0 and let ^ be an open neighborhood of x in θ~\θ) with the
following properties:

(ii) For every Z G ^ the integral curve p z of X through φz(0) = z
exists on [0, 1] and satisfies %{nυooφz{\),πvoo{y)) <ε.

The considerations in the proof of 4.2 show that the w-dimensional
modulus of the path family {φz \ z e ^} does not vanish. Let χ be the
characteristic function of πv 0(A) and let Ψ be the family of all locally

rectifiable curves ψ in fl'^O) such that / (1 - / ) > 0. Since πv 0(A)

is a set of vanishing Lebesgue measure, the m-dimensional modulus of

Ψ vanishes. But this means that there is z e % such that φz £ Ψ . By

5.3 the ^-length of πυ ^ o φz equals δ = δυ(x, y), and consequently

K(πυ cxj ̂ ' πυ oo )̂ - ^ ^ ^ e choice of ^ . Since ε > 0 was arbitrary,

this shows lv <δvoπυ0,in particular lv is finite on dM - {γυ(-oc)} .

To show the reverse inequality let x, y e dM - {γv(-oo)} and let

ε > 0. Then there is a curve φ :I^>dM-{γv(-oo)} with ηv(x, φ(0)) < ε,
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%{y,9(l)) < e, J ( l - * ) = 0 and ϊv(φ) < lv(x,y) + ε. Let
φ = πv 0 o φ, then φ is rectifiable with respect to dυ 0 , hence differ-
entiable almost everywhere. Moreover by the choice of A and 3.1, ψ is
tangent almost everywhere to Eυ . Thus ϊυ(φ) equals the δv-length of φ
(Lemma 5.3) which shows δυ{ψ(0), ψ(l)) < ϊυ(φ) < lυ(x, y) + ε. Since
ε > 0 was arbitrary, this yields the lemma.

Remark. 5.4 shows in particular that lυ is a distance on dM -

{γv(-oo)} inducing the standard topology for all v e TιM such that

Next we investigate the relation between the distances lv {υ eTιM).

Lemma 5.5. Let v ,w e TXM and x e dM - {γυ(-oo), }^(-oo)}.
Assume that there is λ>0, σ > 0 such that ηw(y, z) < ληυ(y, z) for all
y,ze B%{x,σ). Then IJy, z) < λlv(y, z) for all y, z e Bt{x, σ/3).

Proof. V Let y, z e 5 ; (Λ: , σ/3) and let ε > 0. Since ηv<ίυ, there is a

curve p : / ^ dM-{γv(-oo)} with p(0) € 5^ (x , σ/3)ΠB%(y9 β), p(l) G

5^(x, σ/3) n 5^(z , e), ζ(p) < min{2σ/3, /v(y, z) + ε} and such that

/ (1 -χ) = 0. Then necessarily #>(/) c ί (x, σ), hence the η -length of
Ψ 'v

φ does not exceed λϊv(φ). Since ε > 0 was arbitrary, the lemma follows.
Corollary 5.6. Let v, w e TιM, and x e dM - {γv{-oo), yw{-oc)},

and let θ be a Busemann function at x. If τ = θ(πυ 0(x)) - θ(πw 0(x)),

then for every ε > 0 there is a neighborhood A of x in dM such that

(1 - e ) / v ( y , z) < e T / w (y, z) < (1 + e ) / w ( y , z ) . ^

By 1.4 there is a neighborhood A of x in 9 M such that

^ y , z ) < ^ τ ^ ( y , z) < {I + ε)ηw(y Lz) for all 7 , Z G 1 Choose

σ > 0 such that Bn (x,σ)U Bn (x, σ) c i ί . By 5.4, A = B,(x, σ/3) Π

B, (x, σ/3) satisfies the claim.
w

Lemma 5.7. Let v, w e TιM and let A c dM-γv(-oo) be compact.

Assume that there is T G R and x e A such that πυ ΌOBd(πv τx, 3) c A

and d(πvτ(y)9πwτ(y))<l for all ye A. Then BηJx, e'τ) c A.

Proof. For y e Bη (x, e'τ) there is a curve φ: I -> θ~ι(τ) of length

smaller than 1 such that φ{0) = πwτ{x) and 0(1) = ̂ > T O > ) . If πwooφ(I)
<£_ A, then there is a first 5 e / such that rf(πVϊT(x), πυτφ(s)) = 3 . But
for this s we have φ(s) e A, hence

d(πw,τ(x),πwτ(φ(s))>d(πυτ(x),πViτφ(s))-2=U

in contradiction to the choice of φ.
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Lemma 5.8. Let v e TXM and let A c dM - γv(-oo) be compact.

Then for every ε > 0 there is a neighborhood U of υ in TιM such that

(i) (l-ε)ηw(y, z) < ηυ(y, z) < {l+e)ηw(y, z),
(ii) (1 -β)/ w (y, z) < lυ(y, z) < (1 +ε)Iυ{y, z)

for all y, z eA and w eU.
Proof Let x = yυ(oc) and choose r > 0 such that ^ c Bt (x, r).

Define τ = logl/(24r) and let B be the closure of πVtOOBd(πυ"τ(x)9 3)

in 9 ¥ . Given ε e (0, 1) let p > 0 be such that

where σ is as in 1.3. There is an open neighborhood U of v in TιM

such that d(πw τ(y), πv τ(y)) < p for all y e B and w e U (compare

the proof of Lemma 7 iii [9]). Then Bη (x, 24r) c B for all w e U by

5.5. Now 1.3 shows ηw{y, z) < σ(p)ηjy, z) for y, z e B%(x, 6r) in

particular, 5^(x, 3r) c 5 ^ ( x , 6r), and ^ ( y , z) < σ{p)ηwφ9 z) for all

7, z e £ (x Jόr) (it; G U). Since ^ c ί H ( x , r ) , this is (i).

It follows from 5.5 that lw(y, z) < σ{p)lv(y, z) for all y, z G Bι (*, 2r),

and that /υ(y, z) < σ(p)lw(y, z) for all y , z G 5^(x, 2r). Thus ^ ( x , r)

C 5/ (x, 2r), and this is (ii) since A c B, (x, r).
W V

Corollary 5.9. There is a number v > 0 such that ηv > vlυ for all

v G TλM.
Proof Let D c M be a compact fundamental domain for the ac-

tion of the isometry group on M. For it; G T^Λ/I^ define u(w) =
sup{r > 0\BηJγw{oo),r)cBlw{γw(oo), 1)}. We claim ẑ  = inf{u{w)\w G

Γ 1 M | D } > 0 ^

To show this choose a sequence {v^ c TXM\D such that w ^ ) —> i/.

By compactness of TλM\D we may assume that {v(} converges to υ G

TιM\D . Let x. = yV/(oo), x = yv(oo) and write /. = /V/ ,l = lυ,η. = ^ ,

and η = ηυ. Define /? = sup{r > 0 | Bη(x9 r) c 5 7(JC, 1/4)} > 0. Let

5 = 5 (JC , 2). By 5.8 there is a number i0 > 0 such that for all i > i0

(i) x . € ^ ( j c , p / 4 ) ,
(ii) ι;(j;, z)/2 < ^.(y, z) < 2^(>;, z) for all y, z G_5 , and

(iii) /(y, z)/2 < /.(y, z) < 2/(y, z) for all y, z G 5 .

Let / > /0. Then η(x,y) = 2 implies ηt(x,y) > 1, hence by the
connectedness of the ^-balls this means B (x, 1) c 5 . Since l.(x, x ) <
p/2 < 1/4, by (i) and (iii) we have Bι(xi, Ί) D Br(x, 1/2) D B^x, 1/4)
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and in the same vein Bη(xi, p/4) c Bη(x, p/2) c Bη(x, p). This shows

Now v is the constant which we are looking for. Let v e TιM be arbi-
trary, x e ΘM-γυ{-oo), ε > 0, τ = log 1/e. Let w e Wm(Φτv) be such
that 3^(00) = x. Clearly ηw = ηυ/e9 lw = /υ/ε. By the choice of Z) there
is an isometry Ψ of M such that Ψ(Pw) e D. Let w =^dΨ(w) Ψ then
induces an isometry of (dM-γu(-oo) ,ηu/ε) onto (dM-y^(-oc), η^).
By the definition of v we have Bι (Ψ(x), 1) D 5^ (Ψ(x), 1/), hence
B, (x, ε) D Bn (x, vε), which finishes the proof, q.e.d.

lV 'V

Again let v e Ω be such that Wsu(v) c Ω. Then δv is a Carnot-
Caratheodory metric on PWsu(v) induced by a smooth generic distribu-
tion (see [15]). Hence δv admits at Pv a tangent cone (see [15]) which
consists of a nilpotent homogeneous Lie group 91̂  equipped with a left-
invariant Carnot-Carathedory metric δ^ υ . (9tv, δ^ v) is determined
by the property that for every r > 0 the compact balls Έλδ (Pv, r) con-
verge as λ —• oc in the Hausdorff-sense to the closed ball of radius r in
(Vlυ , δ^ v). 9lv admits a one-parameter group {ΔJί > 0} of automor-
phisms which act as a group of homotheties with respect to δ^ υ . The
Lie algebra automorphism associated to At is diagonalizable over R its
eigenvalues are t,t2

9- , f where p > 1 is the least integer such that
dim£ί

/7(t;) = m. In the sequel we will mean by a homothety always an
automorphism of a nilpotent homogeneous Lie group of the above kind.

Let T c Ω be the set of points which project onto a periodic point of

the geodesic flow in TιM. For υ GΎ there is an isometry Ψ e Γ which

acts as a translation on γv , i.e., dΨΦsv = Φs+τυ for some τ > 0 and all

s e R. By 4.1 we have * F s ι » c Ω; thus for every integer j dΨj in-

duces an isometry of {PWsu(v),δv) onto (PWm{&xv)9SQ,rv) and the

transformation π υ 0 o Ψ ; of PWsu(υ) is an isometry of (PWsu(v), δυ)

onto (PWsu(v), ejτδυ) with fixed point Pv. This means that for ev-

ery r > 0 the balls Έδ (Pv, r) and ~Be*6 (Pv, r) are isometric; hence

(PWsu(v), <JJ is isometric to (Kυ , δ^^)."
Fix an arbitrary i; € T and define ( 0 1 , ^ ) = (0tF, δ^ - ) .

Lemma 5.10. (<9M - y^ί-oo), Ẑ ) is isometric to (91, ί^) 6̂

We show first the claim for w e T . In this case (dM -

yw(~oo), lw) is isometric to its tangent cone at any of its points. Let
x e dM-{γ-(-oc), γw(-00)} it suffices to show that for every r > 0 the
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Hausdorff-distance of the compact balls of radius R in^the tangent cone
at x of the metric spaces (dM - yF(-oo), /F) and (dM -γw(-oo), lw)
vanishes (see [7]).

Let ε > 0 by 5.4 there is a number β > 0 and a neighborhood A of
x in 9 M such that

(o) (1 -β)/L(y, z) < ^ ( y , z) < (1 +ε)/F()>, z)

for all y, z e A. Choose Λo > 0 sufficiently large such that Bι (x, r/λo)U

ΰ«/ (x, r/λ0) c Λ. Since (o) is invariant under rescaling of I- and

lw with the same factor, it follows sup{|λ/F(y, z) - λβlw(y, z)\\y9 z €

Bλl (x, r)u Bλβ! (x9 r)} < εr for all A > λ0. But this means that for

λ > λQ the Hausdorff-distance of Bλl (x, r) and Bλβl (x, r) does not

exceed εr. Since e > 0 was arbitrary, the claim now follows from the

definition of the tangent cone.

Now let w e TιM be arbitrary, x = 7^(00) and r > 0. Since Ω c

TιM is open and dense, and the periodic points of the geodesic flow in

TιM are dense, T is dense in TιM. Thus for r, ε > 0 by 5.6 there

i s a υ G Ϊ such that (1 -ε)lv{y, z) < lw{y, z) < (l+ε)lυ(y, z) for all

y, z e B, (x, r)nB, (x, r). But this means as above that the Hausdorff-
ιυ w

distance of Bι (x, r) and the compact ball of radius r in (91, δ^) is

not larger than εr. This is true for every ε > 0 hence these balls are

isometric. But r > 0 was arbitrary, so this is the claim.

6. The group G of 1-quasiconformal transformations in dM

Let (X, d) be a metric space. We call a distance δ on X quasicon-
formally equivalent to d if limsuPg^Q^x, ε) = 1 for every x e X,
where #(;t,ε) = inf{β > 1 | Bd{x,r) c Bη(x,ε) c Bd(x,βr) and
2? (JC J J c i ^ j f i J c 2^(.x, /?7) for some r, r > 0} . A class of confor-
mally equivalent metrics on X is called a generalized conformal structure
on ^ . A homeomorphism / of X is called X-quasiconformal if it pre-
serves the generalized conformal structure. The set of 1-quasiconformal
transformations of X has a natural group structure.

By 5.5 the distances lv (v e TιM) define a generalized conformal
structure on dM. Thuswe can consider the group G of 1-quasiconformal
transformations on dM with respect to this structure. For example, the
action of an isometry of M on dM defines an element of G. In this
section we investigate the structure of G.
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Every ζ e dM determines a subgroup Gζ of the isotropy group of G

at ζ as follows: If we identify dM - ζ with (9t, 5^), then Gζ is the
semidirect product of the 1-parameter group of homotheties of δ^ and the
isometry group of (9t, δ^). This does not depend on the identification,
i.e., on the choice of the distance lυ (υ e Wu(ζ)) on dM - ζ.

Since the distance δ^ on 9t is left-invariant, Gζ acts transitively on

dM- ζ. More precisely, the following is true: δ^ is defined by a subspace
L of the Lie algebra of 91 and a scalar product ( , ) on L. Then every

• ψ G Gζ admits a decomposition ψ = ψχo ψ2o ψ3, where ψχ is a left
translation in 91, ψ2 is an automorphism of 91 leaving L and ( , )
invariant, and ψ3 is a homothety (see [8]). In particular, the isotropy
subgroup G^ χ of G^ at any point x € dM - ζ is the direct product
of a compact group Z^ x and an abelian group 7^ ^ which is naturally
isomorphic to the multiplicative group of positive reals.

We want to show that Gζ coincides with the isotropy group of G at
ζ. For this we need the following preparation:

Let ψ e G, x e dM, and let U be an open neighborhood of x in dM
such that dM-(UUψU)ϊ0,and ζedM-(UUψU). Then dM-ζ
can be identified with ( 9 1 , ^ ) , and the restriction of ψ to U is a 1-
quasiconformal homeomorphism of U c (91, δ^) onto ψU c (9ΐ, δ^).
For y e U let Lip (y) be the local dilation of ψ at y with respect to

Choose a compact neighborhood ^A of Λ: in U, and define for i? <
€ ψ(A),z e dM - ψ(U)} and y e A,DR(y) =

o o δ Λ ) ) τ h e m a P ^ Λ : A ~~* R + i s continuous.
The following lemma shows that ψ is locally Lipschitz.
Lemma 6.1 (Pansu [17, 18.4]). Lip^(y) < R/DR(y) for all ye A.
Compare the proof of the following lemma with [17, 18.5].
Lemma 6.2. For every ζ e dM, Gζ is the isotropy subgroup of G at

ζ.
Proof Since G acts as a topological transformation group transitively

on dM, the isotropy groups of G at different points are mutually iso-
morphic; thus it suffices to show the lemma for any particular point of
dM.

For this let Id Φ Λ e Γ be an isometry with axis γ which is oriented in
such a way that Aγ(t) = γ(t + logτ) for some τ > 1 and all t e R. Then
the points C = y(-oo) and ξ = )>(oc) are fixed by the restriction L of Λ
to dM.
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Identify as before dM-ζ (resp. dM-ξ)with {Jί, δ^), with identity
at ξ (resp. C). Denote the resulting space by (yyζ,δζ) (resp. {yKξ,δξ))

and let {Δ£ | t > 0} (resp. {Aξ

t \ t > 0}) be its 1-parameter group of
homotheties. Then there is an automorphism AζeZζ^ξ (resp. Aξe Zξ ζ)

such that L = ΔJ,t o ̂  = Δ£ o A , .

Let now Ψ e G be such that Ψ(£) = f. By 6.1 the restriction of Ψ
to (Nζ, <̂ ) is locally Lipschitz, hence Δ-differentiable almost everywhere
[17]. Thus Ψ can be composed with suitable translations of N, in such
a way that the resulting map fixes ξ and is Δ-differentiable at ξ.

This map can be written as a product of an element of Gζ ξ and a map
φ eGζξ = {ψ eG\ ψ(ζ) = ζ, ψ(ξ) = ξ} whose Δ-differential exists at ξ
and equals thejdentity.

For y e dM - {ξ, ζ} and R > 0 let Bζ(y,R) (resp. Bξ(y9R)) be
the ball of radius R about y in (Nζ, δζ) (resp. (Nξ,δξ)). As above let

DR(y) = δξ{y, φ~ιdBξ(φ(y), R)) for A: > 0 we then have

Dkτ(y)/(kτ) = δξ(y, φ-lLkdBξ(L-kφ(y), l))/(kτ)

= δξ(L~ky, L-k<p~lLkdBξ(L-kφ(y), 1)).

Since L~kφ(y) -» ζ(/c —• oc), we can find numbers k0 > 0, i?0 > 0 in

such a way that dBξ(L~kφ(y), 1) c 5C(£, i?0) for all k>k0. Now $? is

Δ-differentiable at ζ, and its Δ-differential equals the identity; thus Δ^τ o

φ~ι o Δ ^ τ -+ Id uniformly on Bζ{ξ, Ro) and hence also L~koφ~x oLk =

(Ak)(Aζ

kτ o p " 1 o A\/fcτ)(A~k) -• Id uniformly on 5C({, i?0) (recall that

^ c e Zζξ). But L~V -> ζ(k -+ oc) and consequently Dkτ(y)/(kτ) -•

l(fc ^ oo) or ^(?>(z), ^(J7)) < ί ^ ^ ) f o r a 1 1 y, z edM-ξ by 6.1.

The same argument applied to φ~ι then shows that φ is an isometry

of (Nξ, δξ), i.e., φ e Zξ ζ . In particular the restriction of ^ to <9M -

{<!;, C} is smooth, and the restriction of ψ to dM-ζ is Δ-differentiable
everywhere. Thus we obtain a group homomorphism F^: G^ ξ —• G ^
by mapping ψ to its Δ-differential at ζ. The kernel keri^ of Fζ is a
normal closed subgroup of Z* ^.

We have to show that keri^ = Id. Let φ e kerFζ it suffices to prove
that φ fixes pointwise the distance sphere dBζ(ξ, 1) of radius 1 about ξ
in (Nζ,δζ).

Since Zξ . and hence keri^ are compact, for every ε > 0 there is a
number k{ε) > 0 such that δζ{x, ax) < ε/(kτ) for all α € kerF, and all
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k > k(ε), all x e Bζ(ξ, l/kτ). For x e Bζ(ξ, 1) we then have Lkx e

Bζ(ξ, l/{kτ)) and consequently δζ(x, φ(x)) = (kτ)δζ{Lkx, Lkφ(x)) =

(kτ)δζ(Lkx,Ak o A\/(kτ) o φ(χ)) = (kτ)δζ(Lkx, (Ak o φ o A~ι)Lkx) < ε

(recall that φ commutes with {Aζ

t \ t > 0}). But ε > 0 was arbitrary,
which shows the required property of φ and finishes the proof of the
lemma.

7. The action of G on TιM

In this section we show that G acts naturally on TιM. We start with
an examination of the geometry of the hyperbolic plane H of constant
curvature - 1 . Choose u e dH, a Busemann function θ at w, and
denote by πt the projection onto θ~ι(t) along the geodesies which are
asymptotic to u. For t e R let dt be the induced distance on θ~\t).
If x e θ~ι(ή and y e H, then the hyperbolic distance dH(x, y) of x
and y only depends on ε = dt(x, πty) and p = θy - θx\ this number
will be denoted by r(ε, p). The function r: [0, oo) x R -> [0, oo) has the
following properties:

(a) r is continuous and increasing in the first variable.
(b) r(0,p) = \p\ for all peR.
(c) r(ε, 0) < ε for all ε > 0.
(d) r(ε, /?) = r(epε, -p) for all ε > 0 and /? € R.
(e) r(ε, /?) < r(ε, ~ρ) + r (^(ε - ε), p - ~p) for ε < ε and />, ~p e R.

(a)-(c) are obvious. To show (d) observe that dH is symmetric, and
for x,y € H with 0(x) = ί and θ(y) = t + p we have dt+p(y, π ί+/?x) =
e^ dt(x, π,(j;)). (e) is an immediate consequence of the triangle inequality
for dH.

For every ζ € dM we can now define a distance dζ on Λf as follows:
Let v e Wu(ζ) and x,y eM. If 0V(JC) = ί and θv(y) -t = p, define
dζ(x,y) = r{lφtvπvoo(x),πυoo(y)),p). Since / φ ^ = eΊφ<υ, by (d)
above ^ is symmetric. The triangle inequality of d^ follows from the
triangle inequality for lφtv and properties (a) and (e) of the function r.

Remark. If Wu(ζ) c Ω, then it is easy to see that dζ is the Carnot-

Caratheodory metric on M, which is induced by the distribution Eζ: Pw
^ span{w, Ew(Pw)} .

Lemma 7.1. There is χ > 0 such that dζ(p, q) < χd(p, q) whenever
d{p, q) > 1 X does not depend on ζ.
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Proof. Let v, w e WλX(ζ) be such that d(Pv, Pw) = 1, and assume
0υ(Pw) > 0. Then d(Pv,πυ0Pw) < 1, hence dυ tO(Pυ, πυ >QPw) <
(2siήhb/2)/b by [11], which by 1.2 means

%(yυ(<x>)>*v,oo(pw)) ϊ (2sinhb/2)/b.

It thus follows from 5.8 that lv(γv(oo), nυoo{Pw)) < (2siήhb/2)/(bv),
i.e., dζ(Pv, πv 0(Pw)) < (2&iήhb/2)/(bvj\ here v > 0 is the constant
from 5.8. But θv(Pw) < 1, hence dζ(πv 0(Pw),Pw) < 1 and dζ(Pv,Pw)
<(2sinhb/2)/(bv) + l.

For υ, w e Wu(ζ)^with d(Pv, Pw) = r > 1, choose a minimizing
geodesic φ: [0, r] —• Λf which is parametrized by arc length and joins
0(0) = P Ϊ ; to 0(r) = Ptί;. The above argument yields

dζ(φ(s)9φ(s + ε))<χ/2

for all ε € (0, 1] and s e [0, r - ε], hence dζ(Pv , Pw) < χ([r] + l)/2 <
^ r , which is the claim, q.e.d.

Since dζ > d, 7.1 shows in particular that every isometry of dζ is a

pseudo-isometry of M (for the definition and basic properties of pseudo-
isometries see [16] or [17]), hence admits a unique extension to a trans-
formation of dM. ^

Now every ψ e G^ can be extended to a transformation θ ^ of M as
follows: Choose υ eWu(ζ). Then there is a number λ{ψ) > 0 such that
lv(ψx, ψy) = λ(ψ)lυ(x, y) λ(^) does not depend on the choice of υ .
For w e Wu(ζ) define θψ(Pw) = πwΛogλ{ψ)ψπwoo(Pw). Then Θ J s

clearly a homomorphism of Gζ into the group of transformations of M.
Lemma 7.2. θ w an isomorphism of Gζ onto the subgroup Iso, of the

isometry group of d^, which fixes ζ, and the inverse of θ is the restriction
mapping.

Proof. Let ψ e Gζ and t = logA(^). Since for every w e Wu{ζ)

the map nwtπwoo is an isometry of (θ~ι(0)9 lwπwjOO) onto (θ~\t),
e~tlΦ'wπw,J> ΘΨ m a P s Wwl(°)>lwπwtJ isometrically into (θ^(t)9

lφ'wπw OQ) By the definition of θ ^ and d^, this means that θ ^ is

an isometry of d^. Consequently θ ^ is a pseudo-isometry of M and

admits a unique extension to a transformation of dM. But the image
under θψ of a geodesic γ in M with y(-oo) = ζ is a geodesic γ in M
with y(-oo) = ζ and y(oo) = ψy(oo) hence this extension is just ψ .

It remains to show that ΘGζ = Iso^, i.e., that θ is surjective. Let

Ψ e Isθ£ and w e Wu(ζ). Since ΘG^ is transitive on M, we may assume
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that Ψ(Pw) = Pw . Now Ψ is an isometry of dζ, which fixes ζ. Thus
the image under Ψ of the geodesic ray γ: [0, oo) —• M, s —• πw _s(Pw)
is a globally minimizing geodesic with respect to dζ, which is contained
in the ^-tubular neighborhood of γ[0, oo) for some β > 0 in particular,
θwΨγ{s) e [s, -s + β) for all s € [0, oo).

Let again H be the hyperbolic plane of constant curvature - 1 , M E
dH, and θ be a Busemann function at u. If φH: [0, r] —• /f is a geodesic
parametrized by arc length with θφH{r) - θφH(O) = /?, then the function
σ(p, r): s -• θφH(s) = θφH(O) only depends on /? and r. If 0: [0, r] -•
i/ is any curve parametrized by arc length with θφ(r) - θφ(O) = p and
0</>Os) - 00(0) φ σ{p, r)(s) for some s € [0, r], then dH(φ(0), φ{r)) < r.
Moreover for every τ 0 > 0 and s e [0, oo) there is a number r0 > 0,
such that |J + <j(τ - r, r)(s)\ < ε for all τ < τ 0 and r > r 0 .

This consideration and the definition of d^ imply the following: If

ψ - [0, r] —• M is a minimizing geodesic with respect to dζ, which is
parametrized by arc length and satisfies θwφ(r)-θwφ(O) = p, then θwφ(s)
- θwφ(O) = σ(p, r)(s). This applies in particular to the geodesic Ψγ. Let
ε > 0, s e [0, oo), and choose r > 0 such that \s + σ(τ-r, r)(s)\ < ε for
all τ < β . Since ^Ψy(r) + r <β and βwΨy(j) = σ(θwΨγ(r), Γ)(J) , this
implies fl^Ψy^) < ε - s, and consequently Ψ leaves γ pointwise fixed.

For y e M let p(y) = l imsup^^ dζ(y, γ(s)) -s. Then p>θw\ but
if θw(y) = t, then dζ(yfγ{s))-s < t + lφ-w{πWtJy), πwoo{Pw)) =
ί + ί Γ ' / J π ^ > o o 0 ; ) , πw9θO(Pw)) -+ t, which means p = θw . Since /> is
clearly invariant under Ψ ^ Ψ leaves the horospheres at ζ invariant.

Now for every y e dM - ζ the curve s —• πw s(y) is a minimizing
geodesic with respect to dζ (recall dζ > d) which realizes the ^-distance
between the horospheres at ζ, and every geodesic with this property is
(up to reparametrization) of this form. Thus Ψ permutes the geodesies
which are asymptotic to ζ, i.e., Ψ commutes with the projections πw t

(t e R). Moreover, the definition of dζ shows that Ψ induces an isometry

of ( ^ ( O ) , lwπwoo), i.e., Ψ G ΘGζ is claimed.
Remark. 7.2 shows in particular that every element of Iso^ is uniquely

determined by its restriction to dM. Thus if Ψ: M -• M is an isometry
of (M, dζ) onto (M, dζ) for some ζ, X e dM with Ψζ = ~ζ, then Ψ is

uniquely determined by its restriction to dM.
Corollary 7.3. For g e G and ζ e dM there is a unique isometry

θ ( ζ , g) of (M, d^) onto (M, d ς), whose restriction to dM equals g.
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Proof. Let / be an isometry of (M, dζ) onto (M, dgζ). By 7.1, /

has an extension 7 to a transformation of dM, and this extension is

an element of G which maps ζ to g(ζ). Thus glι e Gζ and hence

Jθ(g7ι) is an isometry of (M, dζ) onto (M, dgζ), whose restriction to

dM equals g. By the above remark, θ ( ^ 7 1 ) is unique.
Corollary 7.4. There is a natural homomorphism J of G into the group

of topological transformations of TιM with the following properties:

(i) / is continuous, i.e., the map G x TιM -> TιM, (g, v) ->
(Jg)(v) is continuous.

(ii) The action of JG on TιM is transitive.
(iii) For every g e G, J(g) preserves the weak unstable foliation and

commutes with the geodesic flow.
(iv) JΨ = dx¥ for all Ψ e Γ .
(v) For every g eG the restriction of J{g) to ΩnJ(g)~ιΩ is smooth.

Proof For ζ e dM let Wu(ζ) = {v | yv(-oo) = ζ} be the leaf
of the weak unstable foliation defined by ζ. The canonical projection
maps Wu(ζ) diffeomorphically onto M hence for g eG we can define

J\g) by J_{g)\w»{ζ) = (Plw^gζ))'1 °®(£ > 8) ° p\w*(ζ)- s i n c e θ(C>gh) =
&{hζ, g)θ{ζ, h), / is a homomoφhism of G into the group of trans-
formations of TιM. The properties (i)-(v) follow directly from the defi-
nition of / .

8. Proof of the theorem

We continue to use the notation of §§1-7. Consider the homomorphism
/ of 7.4; we want to show that J(g) preserves thejibers of TιM for every
g e G, hence decends to a transformation of M. For this we need the
following preparation:

Let v e Ύ ] then θ~ι(0) can naturally be identified with the nilpotent
Lie group 9t in such a way that the identity of 9t equals Pv. Denote
by n the Lie algebra of 91 with respect to this identification the derived
algebra [n,n] is a distribution on θ " 1 ^ ) which is complementary to Ey .

Lemma 8.1. [n, n] is equal to the orthogonal complement of Ev in

Proof By the choice of υ there is Ψ € Γ and τ > 0 such that dΨv =
φτv . Then πυ 0 o ψ is the composition of an isometry of ( 9 1 , ^ ) fixing
Pv and the dilation Δe-τ in particular, πυ 0 o ψ is an automorphism
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of 9t and hence preserves the distribution [n, n] (7.6 of [8]). Moreover,

[n, n] is the only πυ 0 o Ψ-invariant distribution on θ~ι(0), which is

complementary to Eυ [ On the other hand, by Remark 2.2 the orthogonal

complement E^ of Eυ in fl'^O) is invariant under πv 0 o ψ as well;

thus EJ" = [n, n]. q.e.d.

Since T is dense in TιM, by continuity wej)btain that the statement

of 8.1 holds for every horosphere θ~ι(0) in M. Let again Ϊ G Ω , and

identify fl'^O) with the Lie group 9t as before.

Lemma 8.2. Let X be a left-invariant unit vector field on 9t ~ β'^O)

tangent to Ev and let ψ:R^ 0" 1 (0) be a maximal integral curve of X.

Then A = {πvtψ{s) \ s, t e R} is a totally geodesic embedded plane of

constant curvature - 1 in M. ^
Proof It suffices to show that for every ε > 0 the geodesic y in M

joining ψ(0) to ^(ε) is contained in A. Since A is a smooth embedded
plane in M, and ^(0) can be joined in A to ^(ε) by a curve of length
r(e, 0), we have to show that d(ψ(0), ψ{ε)) is not smaller than r(ε, 0).

Thus let φ: I —• M be a minimizing geodesic joining φ(0) = ψ(0)
to φ(l) = ψ(ε) and let ψ(t) = πv oφ{t). Then ^ is a smooth curve
in 9ΐ with ^(0) = ̂ (0), ^(1) = ψ(ε), and can be decomposed as φ(t) =
ψι{t)ψ2{t), where Ίpγit) is the orthogonal projection of Ίp{t) into the left-
invariant distribution Ev, and ψ2 is tangent to [n, n]. Then
ψ(ε) φ2(l)~ι, and the length of φx is not smaller than

doo(ψ(0),ψ(ε)'ψ2(iyι)>ε.

Let s{ή = θv{φ(ή). Since ^ ( ί ) = Ίpx(t) + φ'2(t) is an orthogonal de-
composition, the length of φ is not smaller than the integral

Jo
which is not smaller than r(ε, 0). This is the claim, q.e.d.

By continuity we obtain
Corollary 8.3. For every v e Ω and X e E(v) there is a unique totally

geodesic embedded plane of constant curvature -1 in M whose tangent
space at Pυ is spanned by v and^X.

Now let g e G and let H c M be a totally geodesic embedded plane
of constant curvature - 1 as in 8.3. The definition of J(g) then implies
that the restriction of J(g) to the unit tangent bundle TιH of H is a
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fiber preserving isometry onto the unit tangent bundle of a totally geodesic

embedded plane H oΐ constant curvature - 1 .

Now for jy e TXM the tangent space at v of the fiber of the bundle

TιM over M has a natural identification with the orthogonal complement

v± of v in the tangent space of M at the foot point Pυ. Under this

identification E(v) can be viewed as a subspace of the tangent space of

the fiber. Consequently the assignment v -> E(v) is a smooth distribution

on Ω tangent to the fibers with the following properties:

(i) For every u e M the canonical homeomorphism of P~ι{u) onto

dM maps the distribution E on P~ι(u) Π Ω onto the distribution on

dM, which is the projection of the distributions E. (Recall that the

restriction to P~1(w)nΩ of the canonical homeomorphism of P~ι(u) to

dM is smooth.)

(ii) For every u e M and v e P~l(u) Π Ω, every 0 φ X e E(υ) is

tangent to the unit tangent bundle of a unique totally geodesic embedded

plane of constant curvature - 1 in ¥ .

Now by (i) for every v € Ω the distribution E generates the whole

tangent space at υ of the fiber of TιM. Thus every point of the connected

component of v in P~ι(Pv)Γ\Ω can be joined to υ by a curve φ which is

tangent to E. Let g e G if, moreover, φ is contained in J(g)~ιΩ, then

by (ii) and 8.3 the image under J(g) of φ is a differentiate curve which

is tangent to a fiber of TιM. Since Ω Π J(g)~ιΩ is open and dense in

TXM, this implies that J(g) is a bundle map for every g eG, i.e., J(g)

projects to a homeomorphism 1{g) of M. Since J(g) commutes with

the geodesic flow on TιM, 7(g) maps each geodesic in M isometrically

onto a geodesic, i.e., J(g) is an isometry of M. Thus by 7.4(ii), M is

homogeneous. Since M admits a compact quotient, this is only possible

if M is symmetric, i.e., if M is locally symmetric (see [10]). This finishes

the proof of the theorem, q.e.d.
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