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A GEOMETRIC CHARACTERIZATION
OF NEGATIVELY CURVED LOCALLY
SYMMETRIC SPACES

URSULA HAMENSTADT

Introduction

Let M be a compact connected Riemannian manifold of nonpositive
sectional curvature. In [1]-[3] the rank of M is defined as follows: For
v € T'M let the rank of v be the dimension of the vector space of parallel
Jacobi fields along the geodesic y, with initial velocity v, and let rank(M)
be the infimum of the rank of the elements of T'M . Ballmann, Brin,
Eberlein, and Spatzier showed [1]-[3] (compare also [5], [6]) that if M is
irreducible (i.e., the de Rham decomposition of the universal covering of
M is trivial), and rank(M) > 2, then M is locally symmetric of higher
rank.

As the rank of M measures its flatness, we can define a notion of
rank for general manifolds of nonpositive curvature which measures the
distribution of the curvature maximum in the following way: Let —a® < 0
be the maximum of the curvature of M . For an element v of the unit
tangent bundle T'M of M define the hyperbolic rank of v to be the
dimension of the vector space of parallel vector fields J along the geodesic
y, With initial velocity 7, (0) = v with the following properties:

(1) J is orthogonal to the tangent of y, .

(2) For every t € R the curvature of the plane spanned by y;(t) and
J(t) equals -a.

Let the hyperbolic rank h-rank(M) of M be the minimum of the hy-
perbolic ranks of the vectors v € T'M. It is not difficult to see that
rank(M) = h-rank(M) + 1 for manifolds with curvature maximum 0.

With this notion of rank the result of Ballmann, Brin, Eberlein, and
Spatzier holds for every manifold of nonpositive curvature:

Theorem. If h-rank(M) >0 and M is irreducible, then M is locally
symmetric.
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The purpose of this paper is to provide the proof of the above theorem
in the case a > 0. By rescaling the metric of M we may thus assume
that the maximum of the curvature X equals —1. The idea of proof is
to show that the universal covering M of M is homogeneous. Since M
admits a compact quotient, this implies by a result of Heintze [10] that
M is symmetric, and hence M is locally symmetric.

The organization of the paper is as follows: In §1 we recall from [9]
the definition and basic properties of a family of distances which are de-
fined on (the complement of one point of) the ideal boundary oM of
the universal covering M of M. We show that these distances define a
class of rectifiable curves on M . In §2 we define a distribution E’ on
an open subset of the unit tangent bundle T'M of M, which is invari-
ant under the geodesic flow and tangent to the strong unstable foliation
W™ of T'M. We show that curves which are tangent to E' give rise
to rectifiable curves on OM . §3 is devoted to the investigation of the
space of rectifiable curves in M . This is used in §4 to show that the
distribution E’ generates the whole tangent bundle of the foliation W*™
In §5 we study the Carnot-Carathéodory metrics on the leaves of W*™
which are induced by g'. These metrics give rise to a generalized con-
formal structure on & M whose associated group G of 1-quasiconformal
transformations is investigated in §6. In §7 we show that G acts transi-
tively on T'M asa topological transformation group commuting with the
geodesw ﬂow These transformations preserve the fibers of the fibration
T M - M and hence G acts as a group of isometries transitively on
M , 1.e., M is homogeneous.

We assume that our methods can also be used to show the analogous
result for manifolds of finite volume, but we did not check this.

Before we proceed it will be useful to fix some notation which will be
used throughout the paper (for definitions see [4], [12]). M denotes an
(m+1)-dimensional compact connected Riemannian manifold of negative
curvature —oo < —b> </K < -1 < 0 and fundamental group I'.

The geodesic flow ® acts on the unit tangent bundle 7' M (resp. T'M )
of M (resp. the universal covering M of M ). T 'M admits foliations
ws, wt _which are invariant under &' and the action of the isometry
group of M on T'M . The leaves of W™ (resp. W") are called the strong
unstable (resp. unstable) manifolds of T'M .

For v € T'M let 7, be the geodesic line in M with initial direc-
tion y;(O) = v. v also determines a Busemann function 6, at the
point y, (—oo) of the ideal boundary M of M, which is normalized
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by 6,(y,(0)) = 0. The leaf of W" containing v then consists of all
w € T'M such that Yy (—00) = 7, (—00). Thus every & € OM determines
a unique leaf W*(&) of the foliation W". The restriction of the canonical
projection P: T'M — M maps w* (&) diffeomorphically onto M.

The horosphere 0, 1(t) (t € R) is the image under P of the leaf
W (@'v) of W™ containing ®'v. The restriction of the Riemann-
ian metric of M to 6, 1(t) induces a distance d, , on 6, 1(t). Let
Ty 4t MuoM - Py (=00) = 6, l(t) be the projection along the geodesics
which are asymptotic to y,(-o0). Clearly 6,, =6, and 7, , ==, , for
all we W™(v) and all teR.

Finally denote by d the distance on M induced by the Riemannian
metric.

w,t

1. A class of distances of 9 M
Choose v € TIH, R > 0, and define
a(x,y)=sup{t€R|d, (n, (x), 7, (¥)) <R}

and 7, p(x,y)= e ™Y for x,y € dM —y,(~o0) . Then Nw R =My R
for all w € W™(v), Ny, g = et”v’,\g for all t € R, and Nawo, R =
N, r©° ¥~! for each isometry ¥ of M (recall that the isometries of M
act on M in a natural way). Moreover (Corollary 3 of [9]) we have

Lemmall. 7, p: (x,y) — nU’R(x,y) is a distance on 8 M —7y,(—o0).

1, g depends on the choice of R > 0 in the following way (Corollary
2 of [9)).

Lemma1.2. If0<r<R,then n, o <n, , <(R/NN, g

Write n, = 1, ;. We want to show that the family of #,-rectifiable
curves in M does not depend on v. For this define B" (x,e)={ye
oM — 7,(—00) | m,(x, y) < &} for x € oM - 7,(—o0) and & > 0. Thus
B, (x,¢) is the projection in OM of the open ball of radius 1 about
Ty tog1/eX 1IN (6, '(log 1/e), d, 1og1/c) - Define a function o: R — R by

o(s) = € + (4sinhs)/b. o is continuous and g(0)=1.
Lemmal3. Letv, we T'M,andlet AC OM —{y,(-0), 7,(—0)}
be compact. Assume that there is 6 >0 and t € R such that
d(n, .(¥), m, (V) <o forall y € A.

If B, (x,r) C A for some x € A and r € (0,e7") then n,(y, z) <
o(d)n,(y, z) forall 'y, z € B, (x, r/3).
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Proof. Llet y,z € B,,v(x, r/3) and n,(y, z) = . Since 7, is a dis-
tance, and 7,(x, y) <r/3,and n,(x, z) <r/3,wehave z € B, (v, irc
A and t =log(1/e) > . By the definition of 5, there is a smooth curve
¢: 1 — nv,t(Bnu(y, %r)) such that ¢(0) = =, ,(y), #(1) = =, (2), and
that the length of ¢ equals 1. Since for every u € oM = {r,(=00),
7, (—00)} the function ¢ — d(nv’t(u), nw,,(u)) is decreasing, ¢(I) is
contained in the J-neighborhood of 0;1(t). Now the operator norm of
the restriction of the projection =, , to the J-neighborhood of O_I(t) is

not larger than % ; hence the length of n, ,o¢ does not exceed e
On the other hand d(n, (), m, () <5 implies

d(n, om, (), 7, (¥) <20
(Lemma 9 of [9]). By the estimates in [11] this yields

dw,t(nw,t Oﬂv,t(y), nw,t(t)) < %sinhd,

1e d, (7, (), 7, (2)) <€ +$sinhé = 0(3) and n,, (v, 2) <
=1, (y , 2) . The lemma now follows from Lemma 1.2.

Corollary 14. Let v,w € T'M, x € OM - {r,(=0), 7,(=0)},
and 0 be a Busemann function at x. If s = 6(m, 4(x)) — 6(m,, ,(x))
then there is for every ¢ > 0 a neighborhood A of x in OM such that
(1-en,(v, z)<e'n, (v, 2) (L +e)n, (v, 2) forall y,z€ A.

Proof. Since 7, = n forall 7 € W*(v), we may assume that y,(c0) =
7p(00) = x. Moreover 74, = e’nw for all ¢+ € R shows that it suffices
to consider the case 6_, (Pw) = 0 which means d(P®'v, PO'w) - 0
(t = 00). For & > 0 choose 6 > 0 sufficiently small such that ¢(d) <
min{1+é, 1/(1—¢)}. Thereis a number 7 € R such that d(P®'v, P®'w)
< d/3 for all ¢t > 7. Define

A={y € dM | max{d(m, (), PO'v), d(n,, .(v), P®'w)} <J/3}.
A is an open neighborhood of x in 8M and if y € A then
d(nv’-((y) > nw,[(y)) < 6'

Choose r € (0, ¢™") such that B, (x,r)UB, (x,r) C A andlet A =
B,, (x,r/3) ﬂB” (x,r/3). By 1. 3 'A has the requlred property.

Corollary 1.5. For v, w € T'M every curve
9: 1 — OM\{7,(-00), 7,(—00)}
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is rectifiable with respect to n, if and only if it is rectifiable with respect to
nw *

By 1.5 we can call a curve ¢: I — OM n-rectifiable if ¢ is rectifiable
with respect to some and hence any distance #, with y, (—oc) ¢ o(I).

Corollary 1.6. 1, >d, (om, ; in particular, the projection into 6, 10)
of a n,-rectifiable curve ¢: 1 — oM \{7,(—00)} is rectifiable with respect
tod, .

The corollary follows from the comparison with the hyperbolic plane of
constant curvature —1 (see [9]).

2. The distinguished distribution

The differential of the projection P: T'M - M maps the tangent
space at v € T'M of the strong unstable manifold W™ (v) containing
v isomorphically onto the orthogonal complement vt of v in T, M.

Let R be the curvature tensor of M ; then the restriction to v’ of the
operator R : w — R(v, w)v is a self-adjoint automorphism of v’ whose
eigenvalues are not bigger than —1. For p > 0 define E (v) = {dPX €
vt | X € T,W*™(v), Ry, dPAD'X = —dPdd'X for all ¢ € [0, p}.
E,(v) is the eigenspace of R, with respect to the eigenvalue —1 and
E(v) = Ny5o E,(v) is a linear subspace of v*. Let Q: M — M be the
canonical projection and let E p(dQv) =dQE p(v) (v e T'M, p>0),
resp. E(dQv) =dQE(v).

For ve T'M and wev™ let t — A(v, t)w be the Jacobi field along
the geodesic y, through A(v, O)w = w which vanishes asymptotically
at —oo, i.e., satisfies A(v,tH)w — 0 (¢ - —o0). Then w — A(v, t)Hw
is an isomorphism of v* onto (<I>’v)l which maps E(v) into E(®'v)
for t > 0. If p: T 'M — M denotes the canonical projection, then
A(v, )dpX = dpd®'X for every X € T,W™ (v).

Let |,: Tva — Tpd,,vM be the parallel transport along the geodesic
7, and let k = min{dim E(w) | w € T'M}. Then we have

Lemma 2.1. k = h-rank(M); in particular, A(v, hw = e']]tw Sor
every v e T'M with dimE(v) = k and every w € E(v).

Proof Llet v € T'M; then there is an h-rank(v)-dimensional sub-
space A of v' such that for every w € A we have Ry (l,w) = —||,w
for all t € R. Define J (t) = e'(||,w); clearly J, is a Jacobi field
along y, which satisfies J (¢) € E(®'v) for all t € R. This means
dim E(v) > h-rank(v) and consequently k > h-rank(M).
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To show k < h-rank(M) let v € T'M be such that dimE(v) = k.
For w € E(v) the assignment ¢ — w(¢) = A(v, t)w is a Jacobi field along
7 With Ry () = —w(t) for all ¢ € [0, oco). The differential equation
for Jacobi fields shows that for ¢z > 0, W is a solution of the differential
equation

(%) W' (1) —w(t) =0,

where 1w’ means covariant derivative. Every solution of this equation is
determined by its initial conditions w, = w(0) and w, = @'(0), and can
be written as w(t) = cosh ||, w, + sinh¢||,w, .
Now A(® ‘v, t)E(d~"v) is contained in E(v) for every ¢ > 0. This
implies
A@ v, HE@ 'v) = E(),

since dimE(v) = k = min{dimE(w) | w € T'M }. In particular, the
Jacobi field ¢t — A(v, t)w is a solution of (x) for every ¢ € R.
Suppose w, = Aw, + W for some A€ R and W € wj . Then

I?

[ (8)]|> = (cosh ¢ + Asinh £)*|lw,|* + sinh’ ¢[[@* .

Since ||w(t)|| = 0 (¢t — —o0), thisshows W =0 and A=1,ie.,
(%x) w(t) = coshi||,w, + sinh||,w, .

Thus A-rank(v) > k which is the claim.

Remark 2.2. If dimE(v) = k, then A(v,t) maps the orthogonal
complement of E(v) in v' isomorphically onto E(CD’U)"‘ C (<D’v)l:
For let ¢ — e(t) be a parallel vector field along the geodesic y,: ¢ — P®'v
such that ¢(0) € E(v), and let % be any Jacobi field along y,. Then
d*/dt*(e(t), w(1)) = —(e(t), Rey,W(t)). Since Ry, is self-adjoint and
e(t) is an eigenvector of R, with respect to the eigenvalue —1, the map
Ry, preserves the orthogonal complement of E (®'v). Thus the function
t— (e(t), w(t)) satisfies the differential equation (x).

For w € E(v)‘L , w:t — A(v, H)w is a Jacobi field along y, which
satisfies (e(0), w(0)) = 0. Then (x) shows

(e(t), w(t)) = (e(0), w’'(0)) sinh .

But ||w(t)]| - 0 (¢ » —oo) which is only possible if (w'(0), e(0)) = 0,
ie., if (e(?), w(t)) =0 forall ¢t € R.

Since for v € T' M the restriction of dp to the tangent space TW*(v)
cTT'M of W*(v) at v is an isomorphism onto v™, the spaces E (V)
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(p > 0) (resp. E(v)), have a unique lift to subspaces E,(v) (resp. E'(v))
of TW*™(v). The definition of A(v, t) shows d®'E’(v) c E'(®'v) for
all t>0.

Lemma23. D={weT'M|dimEw)= k} is an open ®'-invariant
subset of T'M.

Proof. Choose v € T'M such that dimE(v) = k. Now Ep(v) is

a linear subspace of the finite-dimensional vector space v~ and E ,(v) D
E (v) if p < t. This implies that there is p > 0 such that E(v) = E,(v).

The assignment v — TW"(v) is a continuous vector bundle over T'M,
and for every ¢ > 0 the map w € TW*(v) — Ry, dpd®'w € (®'v)"
continuous. Since by definition

E;(v) = [\ {weTW )| Ry, dpd®'w = —dpd®'w},
t€[0, p]

this yields that the set {E;(v) | v € T'"M} is closed in TT'M. In
particular, there is an open neighborhood U of v in T'M such that
dim E,(w) < k =dim E, (v) forall we U, ie., UcCD,and D is open.
The ®'-invariance of D is clear from the definition of E .

Corollary 2.4. There is an open ®'-invariant subset Q of T'M such
that v — E'(v) is a smooth k-dimensional distribution on Q.

Proof. Recall (see [12]) that the tangent bundle TT'M of T'M ad-
mits a decomposition TT'M = T' © T ® T' into smooth subbundles
as follows: T' is tangent to the flow lines of the geodesic flow on T 'M.
The vertical bundle T" is tangent to the fiber of T'M — M. T" is
the subbundle of the horizontal bundle with the property that for every
w e T'M the fiber T:j of T over w is mapped by dp isomorphically
onto w C TM . The decomposition TT'M=T's® (T "o T") is invari-
ant under the geodesic flow, i.e., (T"® T"),, = d®(T" & T"), for all
weT'M.

For u e T"® T' write u = u" + 4", where u" € T", v’ € T".
Now for every w € T'M there is a canonical isomorphism A of the
fiber 7)) of the bundle T" at w with w™ c T, M. For ¢ € R define
Aw)={ueT" o T"|dpdd'u)" = A(dD'u) } A, = Uypepip A, (w) is
a smooth m-dimensional vector bundle over T M.

We showed in 2.1 that E'(w = ;50 4,(w) forall w € D. As-

sume that the curvature of M 1s not constant ie, k <m=dim4,.
Then there is 7 > 0 such that 4 (v) # A4y(v) for some v € D.
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Let ¢ = min{dim(4,(w)N A4 (w)) | w € D} < m. Since D is open and
AyN A, is closed in TT'M , there is an open subset U of D such that
dim(4y(w)N 4, (w)) =q forall we U . But this implies that the restric-
tion of 4,N 4, to U is a smooth vector bundle on U . Repeating this
argument at most m — k — 1 times we find an open subset U of D such
that the restriction of E' to U is a smooth k-dimensional vector bundle.
Since E’ is invariant under the geodesic flow, E’ is then a smooth bundle
over an open &'-invariant subset Q of D. q.e.d.

Let Q c T'M be the preimage of Q under the restriction of dQ to
T'M . E' lifts to a smooth distribution E on Q which is tangent to the
strong unstable foliation.

Let v € Q and let p:1— Q be a curve through ¢(0) = v which is
tangent to E. Then Py is a curve on the horosphere 6, 1(O) such that
(Pp) (t) € E(p(t)) forall tel.

Lemma 2.5. =, oPog isan n,-rectifiable curve in oM.

Proof. Assume without loss of generality that Pog C 6, ! (0) is param-
etrized proportional to arc length with respect to d,, 0 Then thereis a > 0
such that d, ((Py(1), Pp(t+¢)) < ac forall e >0, t€[0,1—¢]. Let
s > 0; by the definition of E the length of 7, ;oPog on 6, '(s) equals
e'a, i.e.,, Pp(I) can be covered by ~ e'a balls of radius e™°/2 with

respect to the distance #, . This means that the #,-length of 7, _oPog
does not exceed a.

3. n-rectifiable curves in oM

In this section we investigate the #-rectifiable curves in 8 M . It follows
from 2.5 that the space of these curves is not empty.

Let ¢p: I — M be an n-rectifiable curve. For v € T'M with 7, (—00)
¢ ¢(I) there is a unique curve @: 1 — W™ (v) such that ¢(s) =z, o
Pog(s) forall sel. Sinceby 1.6 m, jon, >d, o, ¢ is rectifiable as a
curve in the Riemannian manifold W*'(v), is hence differentiable almost
everywhere.

Recall that a point w € T' M is called recurrent if for every neighbor-
hood U of w the orbit t — ®'w (t € [0, oo)) meets U infinitely often.
The Birkhoff ergodic theorem implies that with respect to the Lebesgue
measure almost every w € T'M is recurrent.

The purpose of this section is to show
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Proposition 3.1. If dQw(s) is recurrent for almost every s € I then
(P9)'(s) € E(@(s)) for almost every s € 1.

For the proof of 3.1 we need the following preparations.

Lemma 3.2. If dimEp(v) < g for some v € T'M, and p,q >0,

then there is a neighborhood U of v in T'M and ¢ > 0 such that for
all w € U and every q-dimensional subspace A of w' the determinant
of the restriction to A of the map A(w, p) is not smaller than e’ (1 +¢).

Proof. For w € v write () = A(v, f)w . Since the curvature of M
does not exceed —1, it follows that |Jw(¢)|| > e'°||w(s)|| for all s >0,
't > s, where | is the norm associated to the Riemannian metric of M
(see [11]). In particular,

. . . d, . .
(w(0), ' @)/l ()] = prLd Ol [ (0)le,
and the determinant of the restriction of A(v, t) to any g-dimensional
subspace 4 of vt is not smaller than e?'. Moreover, A(v,t+s) =
A(@°v, t)A(v, s) shows

L det(Aw, 1)) 4),.0 2 g™

Choose a g-dimensional subspace A4 of v’ with the property that
det(A(v, p) | A) is less than or equal to the determinant of A(v, p) re-
stricted to any other g-dimensional subspace of v™ . Since dimE ,(v) <
q, there is 7 < p such that A(v, 1)4 = A ¢ E(®").

Let w,, --- , w, bean orthonormal basis of 4,andlet e (?), - , e, ()
be parallel vector fields along the geodesic y, such that e,(0) = w;. Then
forall s >0

det(A(@'v, 5) | 4) > [[(e,(z +5), W, (5)),
where @,(s) = A(®"v, s)w, . Hence,

d T -
%det(A@D v,s)|A4),_,

q
Z ,T(8)) - (e,(8), TWi(9)) -+ (g (5), Wy(s))mg

and this sum is not smaller than ¢g. The differential equation for Jacobi
fields shows
d’ . - e
Edet(A(d:'v,sHA)s:OZq(q—l + > (w,, —R(®"v, w,)Pv).
i=1
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Since 4 ¢ Eo(d)rv) and since the eigenvalues of the map R, are not
larger than —1, it follows

© fet(A@" 4 2
75 et(A(Pv,s) | A)g>q",
which together with A(v, 7+ 5) = A(®'v, s)A(v, 7) and the above con-
siderations implies that det(A(v, p) | 4) = e?’(1 + 2¢) for some ¢ > 0.
By continuity there is then a compact neighborhood U of v in T'M as
claimed in the lemma. q.e.d.

Assume ¢: 1 — OM satisfies the assumptions of 3.1. For s € I let
Lip(s) be the local dilation at s of the map ¢ with respect to the distance
n, - Then almost every s € I has the following properties:

(i) Lip(s) < o0.
(ii) The differential '(s) of @ at s exists.

(iii) dQ(@(s)) is recurrent.

Thus 3.1 follows from

Lemma 3.3. If s € I satisfies (i)-(iii), then 3'(s) € E(p(s)).

Proof. Assume s € I satisfies (i)—(iii), let w = dQp(s), and choose
p > 0 such that E(w)=FE p(w) . By 3.2 there is a compact neighborhood
U of win T'M and & > 0 such that for all u € U and every (k + 1)-
dimensional subspace A4 of ut , the determinant of the restriction to A4
of the map A(u, p) is not smaller than e(k“)p(l +é).

Assume (P@) (s) ¢ E(®(s)); in particular, '(s) #0, and let 4 C w*
be the linear hull of E(w) and the projection dQ(P)'(s) of (P®)(s)
into TM. Let dy = d, ; since '(s) # 0 and Lip(s) < oo, there
are numbers ¢ > 0, v € (0, 1) such that d,(P9(s), Pp(s + 1)) > vt
and n,(¢(s), p(s+1)) <t/v forall t <o, ie., d,(PP(s), PP(s+1)) >
vin,(0(s), p(s +1)) .

Denote again by ||,: ((I)'w)L — w™ the parallel transport along the
geodesic s — ®*w in M. Since w is recurrent, there are numbers
{tj} € R such that ¢;,, > t;+p and ®'iw € U. The choice of U then
implies that the determinant of the map ||_,jA(w, t;) | 4 is not smaller
than e**V5(1 + )/ .

However ||_,A(w, t)u = e'u forevery u € E(w) and ¢ > 0 by 2.1, and
|_,A(w, t) leaves the orthogonal complement E(w)J‘ of E(w) invariant.
Thus if e € AN E(w)*, then e~ det||_,A(w, )| 4 =4, is the norm of

the vector ||_,A(w, t)e and 4, >e'i(1+¢)’ by the choice of t;.
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Now the projection of Pg’'(s) into TM equals ae + é for some ée
E(w) and some a # 0. Choose j € Z such that ¢, > 1 and (1+¢)™/ <

1/2|a| /4llae + €|/, and denote by exp the exponential map at 7, ¢(s) on
J

the horosphere 6, ! (¢ ;) with respect to the induced Riemannian structure.
The above arguments show that the norm of (nt_(p)'(s) is not smaller
J

than |a|/1,j > 4e'f||P¢J(s)||/1/2 > 1; thus if g € (0, 1] is such that u =
ﬁ(nt.(p)'(s) is a unit vector in the tangent space of 6, l(tj) at m, ¢(s), then
J J

ldz,ull < e~"»*/4, and there is 7 € (0, o) such that ||d7,% expu|| <
-t 2
e v°/2 and

d, , (exptu, m, ¢(s+18)) <v’1/4

forall 7< 7,. Thus

d, , (m,9(s+708), o7, (s) > 7o(1 - v"/4),
which implies that

1,(9(s +7,8), 9(5)) > e i7y(1 - 17/4).
On the other hand,

dy(my0(s), exp Tyu) + dy(myexp Tou, my@(s + 7,8)) < e_tf31/210/4.

Since 7, < g, || £ 1, and v o< 1, this contradicts the fact that

dy(mye(s), myp(s + 1)) > uznv((p(s), ¢(s+1t)) forall t < g and finishes
the proof of the lemma.

4. The foliation on 8M

By 2.5 the assignment E': w — E'(w) is a smooth k-dimensional
distribution on Q c T'M . Thus for w € Q and i > 1 we can consider
the vector space E;(w) C TW*(w) which is spanned by E'(w) and the
values at w of the commutators up to order i of the vector fields which
are tangent to E’. Since the dimension of E;(w) is locally nondecreasing,
there is an open subset U of Q such that the dimension of E ,' is constant
on U for every i € {1, ---, m}. In particular, E,'n is an integrable
distribution on U (recall m = dim W*™). Now E’ is invariant under
the geodesic flow on T "M, hence the same is true for E; . Thus, by the
ergodicity of the geodesic flow, E; are smooth distributions on an open
subset of Q of full measure which we may identify (by abuse of notation)
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with Q. Let Q be the lift of Q to 7'M . E, lifts to a distribution on
Q which we denote by Ei .

Lemmad.l. Let D be an open ®'-invariant subset of T'M. IfveD,
and —v is recurrent, then the whole strong unstable manifold W™ (v) is
contained in D.

Proof Given © € T'M , the distance d; o onthe horosphere PW* (%)
lifts to a distance d; on W*(d). These distances are clearly invariant

under the action of the isometry group of M on T'M , hence they project
to distances d, on W¥(v) (ve T'M).

For v € D there is a neighborhood U of v in D and ¢ > 0 such that
for all w € U the e-neighborhood of w in (W™ (w), d,) is contained
in D. If —v is recurrent, there are numbers ¢ ;€ R such that t, —

—oo and ®v € U. This implies that the e-neighborhood of ®%v in
W*(@"v, dy,,) is contained in D.

By the choice of the distances d,, the image under &Y of W@ iv)N
D contains the e ‘g-neighborhood of v in (W™ (v), d,). Since D is
invariant under the geodesic flow, this shows W*(v) c D. q.e.d.

Define Q = {v € Q | dQ(w) and dQ(—w) are recurrent for almost
every w € W™ (v)} (with respect to the Lebesgue measure on W*(v)).
Since the strong unstable foliation is absolutely continuous with respect
to the Lebesgue measure (see [14]), Q is a subset of Q of full measure
which is invariant under the action of I" and the geodesic flow. Lemma
4.1 shows W™(v) c Q for every v € Q; in particular, the distribution
Em is defined on all of W*(v). Thus the maximal integral manifolds of

~

E,, induce a smooth foliation of W*'(v) which projects to a foliation 5,

of 6;'(0).

Lemma 4.2. Let v,weQ andlet 9: 1 — 0, L(0) be a smooth curve
which is tangent to E, and such that y,(-0) ¢ =, ¢(I). Then m, ;o
T, o® IS contained in a leaf of §,, .

Proof. Without loss of generality we may assume that the map ¢: I —
6, '(0) is an embedding. Then there is an open neighborhood U of ¢(I)
in 6;'(0) and local coordinates (x',---,x™): U — (=2,2)" on U
with the following properties:

(1) 7, U B 7,(—00).

(i) x'(p(0))=0 for ie{l, -, m}.
(iii) The local vector field 8/dx, is tangent to E, .
(iv) ¢ is an integral curve of 9/dx, .



GEOMETRIC CHARACTERIZATION OF LOCALLY SYMMETRIC SPACES 205

Let 4,, be the Lebesgue measure on the Riemannian manifold 6, ! (0).
Recall that the m-dimensional modulus M,,(¥) of a family ¥ of rectifi-
able nontrivial curves in 9;‘(0) is the infimum of all integrals [ p™ dA"™
where p runs through the family of all nonnegative Borel functions on
6, 1(0) with the property that fw p>1 forevery weV¥.

Identify U with (-2, 2)" via the coordinates (xl, o, x™). Let
I" ' =[=1,1"""cR™", and for x € """ denote by ¢(x) the curve
t— (t,x) on 00_1(0). Then for every open subset B of I"™™' the m-
dimensional modulus of the path family ¥, = {¢(x) | x € B} does not
vanish [19].

Let 9(x) = m, gom, @(x); then ¥, = {§(x) | x € B} is a family
of rectifiable curves in U =T, o° o(U). We claim M, (‘I’ ) > 0.
To see this observe first that by 2.5, 1 4 1.6, and the absolute continuity
of n, o0°T with respect to the Lebesgue measure (see [14]) there is a

v, 00
number L > 0 such that for every x € I m=! and t € I we have
(a) The local dilation of

w,0° %y 0o (p()I), dv,()) = (p(x)(1), dw,O)

at ¢(x)(¢) does not exceed L.

(b) The Jacobian at (x)(z) of the map (7, 5o nv’w)_l : U — U with
respect to the Lebesgue measure does not exceed L.

Let 7: U — [0, oo) be a Borel function such that Js0P 2 1 for every
x € B. Define p =pon, jon ; then (a) shows f¢(x) p > 1/L for every

v,00?
x € B and consequently [, p" > L™ M, (¥;). On the other hand, (b)
implies [, p" < L [zP", ie., [gP" > L™"'M_(¥,). Since 7 was
arbitrary, this means M, (¥;) >0 as claimed.

Let A' be the 1-dimensional Hausdorff-measure in (U, d, o) and let

= {u € U | dQ(u) is recurrent}. Then U\A is a set of measure

zero, and hence the m-dimensional modulus of the path family ¥ =
{p(x) | xeI™ U AY®@(x)(I)\4) > 0} vanishes (see [19]). Since M (‘I’ )
> 0 for every open subset B of I™ ', this means that B = {x €
"' 9(x) ¢ ¥} isdensein 1™,

Now 3.3 shows that @(x) is tangent almost everywhere to E, for every
x € B, hence by continuity and absolute continuity it is contained in a
leaf of §F, . Since B is dense in I™! and the leaves of g, are locally
closed, this implies that every curve @(x) (x € B) is contained in a leaf
of §,; in particular, this is true for 9(0) =17, 0°7, ?- q.e.d.

/(9
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Assume dimE, = p. Since Q and the distribution E, are I-invari-
ant, 4.2 shows that the foliations §, (v € Q) induce a I-invariant p-
dimensional foliation § on 8M . Here the leaf of § containing & consists
of all { € M for which there is v € Q and a curve ¢ on 6, 1(0) which
is contained in a leaf of F, and such that the projection of ¢ into oM
joins & to {. For / € N denote by C' the cube {x=0(x,,x)e€
R'||x|<1} in R’

Corollary 4.3. Every leaf of § is everywhere dense in oM.

Proof. Assume that there is an open subset U of M and aleaf F of
§ which does not meet U. Choose & € F ; by the definition of F there
is a homeomorphism o« of an open neighborhood 4 of ¢ in OM\U
onto C™ such that o~ '(C” x {y}) is contained in a leaf of § for every
y € C™? . In particular, every leaf of § through a point of 4 meets the
topological boundary 64 of A.

Let v € Q be such that 7, 1is the axis of an isometry ¥ € I' and
that, moreover, y,(oc) € 4, and y,(-o0) € U. Now ¥ acts as a home-
omorphism on oM leaving § invariant; moreover, there is kK € Z such
that ¥*94 c U. But this means that every leaf of § through a point
of ¥¥4 > A meets U ; in particular, this is true for F, a contradiction
which shows the claim.

Corollary 4.4. dim Em =m, ie, § is the trivial foliation.

Proof. Assume to the contrary that dimE, = p < m. Let v € Q
be such that y, is the axis of an isometry ¥ € I'. There is an open
neighborhood 4 of ¢ = y,(o0) in M and a homeomorphism o of 4
onto C™ such that for every y € C™” theset o' (C”x{y}) is contained
in a leaf of §. Similarly we can find a homeomorphism S of an open
neighborhood B of { = y,(—o00) in M with according properties. «
and f may be chosen in such a way that a(&) = #({) = 0. Moreover,
by the arguments in the proof of 4.3 we may assume AU B = OM and
YBeB.

Since o~ (C? x {0}) is homeomorphic to C? (p > 1), the complement
of £ in a_l(C” x {0}) has at most two components F,, F,. F,, F, are
subsets of the leaf F of § through & which is invariant under ¥. Let
OF; (i=1, 2) be the intersection of the closure of F, with oM \4. OF;
is a connected subset of BN F and hence there is y, € C™” such that
G, =F,up™'(C” x {y,}) is a connected subset of F.

Since the image of F, under ¥~ ! is a connected component of F\¢N
¥~'4 C 4, we have ‘I’_'Fl CF, for j =1 or j = 2; thus replacing ¥
by ¥ if necessary we may assume ‘P_IFI. CF,.
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Suppose y; # 0; then there is k > 0 such that BH(CP x {yhn
¥*B = &. Now (~;,. = Gi\‘I’_kFi is a connected subset of F, and hence
‘I’kéi is a connected subset of F N B containing F;. But this means
‘I’kéi c pH(CP x {»;}), in contradiction to the choice of k. Thus y, =
0 for i = 1,2, and consequently a~'(C? x {0}) U B~'(C? x {0}) is a
leaf of § which is closed in 8M . This contradicts 4.3 and shows the
corollary. g.e.d.

Since by 4.4, Em is a smooth distribution on Q which equals the
tangent bundle of the strong unstable foliation, we have

Corollary 4.5. The strong unstable foliation is smooth on Q

5. The Carnot-Carathéodory metric induced by E

In §4 we showed that for v € Q the distribution E, on 6, 1(0) gener-
ates the whole tangent space of the horosphere. Thus we can consider the
Carnot-Carathéodory metric J, on 6, l(0) which is induced by E, . Let
71; be the length-pseudo metric on oM - ¥, (—00) induced by 7, .

Lemma 5.1. If W) c Q, then 1,<8,0 m, o in particular, I, isa
distance on M — 7, (—00).

Proof. Since J, is a complete length metric on PW*™(v) (see [7]),
the distance between any two points x,y € PW™(v) can be realized
by a minimizing geodesic. Let ¢: [0, p] = PW*™ (v) be such a geodesic
parametrized by arc length. Then J,(¢(s), #(s +¢)) = ¢ for all ¢ > 0,
s € [0, p—¢], hence e'd, (#(s), ¢(s +¢)) < e forall t € R. This
shows 1,(m, &(s), 7, oo(¢(s + ¢)) < & by the definition of #,, hence

l <9, oM, o asclalmed q.e.d.
Combmmg 4.5 and 1.4 we obtain
Lemma 5.2. [ is a distance on M — y (—o0) for every v € T'M.

v

Corollary5.3. Let v € T'M be such that w*(w) c Q, and let p:1—
6, l(O) be a rectifiable curve which is tangent almost everywhere to E, .
Then the 6,-length of ¢ coincides with the n,-length of My 0o®®-

Proof. If p:1 -0, l(O) is tangent almost everywhere to E, , then the
d,-length of ¢ coincides with the length of ¢ with respect to the distance
d, o (see[17]). Since n, > d, oo™, o, the n, -length of ¢ is not smaller
than its 6, -length. The reverse inequality follows from 5.1 and the fact

that [, > 7, .-
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By ergodicity of the geodesic flow on T'M and the Birkhoff ergodic the-
orem thereis v € T'M and a Borelset 4 C W*(v) of vanishing Lebesgue
measure such that for every w € W™(v) — 4 the orbit {®'dQ(w) |t €
[0, )} of dQ(w) is dense in T'M. Let A = m, AU {y,(-0)}.
Then A is a measure zero set with respect to the Lebesgue measure class
on Bﬁ, and for every w € T'M with n(w) € OM — A the orbit
{®' dQ(w) | t € [0, o)} is dense in T'M . Clearly we may assume that
A is T-invariant. Let x, be the characteristic function of 4.

For v € T'M and a curve p: 1 — oM — {7,(=00)} let iv(w) be
the 7,-length of ¢. For x,y € oM — {r,(=0)} and & > O define
l,(x, y) = inf{l,(p) | n,(x, 9(0)) <&, n,(v, (1)) <&, [,(1-2x,) =0}
and /[ (x,y) = limsup, / (x,y). Clearly [ is a pseudo-metric on
M — (3,(~0)} . )

Lemma 54. If W*(v) C Q, then I, =6, 0m, ,.

Proof. We show first / < 5v°7‘u,o- For thislet x, y € 0;1(0), X#Yy,
andlet p: 1 — 6, 1(O) be a minimizing geodesic with respect to J, joining
9(0) =x to ¢(1) =y. Then ¢ is a smooth curve which is tangent to E
and parametrized proportional to arc length ([10]). Thus there is a smooth
section of X of E, on a neighborhood of ¢(I) in 6, 1(O) of constant
norm J = J,(x, y) whose restriction of ¢(I) equals the tangent of ¢.
Let ¢ >0 and let % be an open neighborhood of x in 6, l(0) with the
following properties:

(i) 7, % CB, (m, X,¢€).
(i) For every z € Z the integral curve ¢, of X through ¢,(0) =z
exists on [0, 1] and satisfies n,(%, ¢.(1), T, (V) <e.

The considerations in the proof of 4.2 show that the m-dimensional
modulus of the path family {¢, | z € Z} does not vanish. Let x be the
characteristic function of =z, (4) and let ¥ be the family of all locally
rectifiable curves y in 6, l(0) such that fw(l —x) > 0. Since m, ,(4)
is a set of vanishing Lebesgue measure, the m-dimensional modulus of
¥ vanishes. But this means that there is z € Z such that ¢, ¢ ¥. By
5.3 the n,-length of 7, o¢, equals § =J,(x,y), and consequently
l (T, X s Ty oY) < 0 by the choice of Z . Since ¢ > 0 was arbitrary,

€
this shows / <4, o Ty 0 in particular /, is finite on oM — {r,(=0)}.

v,00

To show the reverse inequality let x,y € oM - {r,(=o0)} and let
€ > 0. Then there is a curve (o:I—»Bﬂ—{yv(—oo)} with n,(x, ¢(0)) < ¢,
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v, 0(1) < &, [,(1-x) =0 and [(9) < [(x,y) +e. Let
9 =m, yo¢, then 9 is rectifiable with respect to d .0 hence differ-
entiable almost everywhere. Moreover by the choice of 4 and 3.1, 9P is
tangent almost everywhere to E, . Thus lU( ) equals the J,-length of @
(Lemma 5.3) which shows J,(9(0), #(1)) < /[, (¢) < [,(x,y)+¢e. Since
¢ > 0 was arbitrary, this yields the lemma.

Remark. 5.4 shows in particular that /, is a distance on oM —
{7,(=o0)} inducing the standard topology for all v € T 'M such that
whcQ.

Next we investigate the relation between the distances /, (v € T'M ).

Lemma 5.5. Let v,w € T'M and x € M — {7, (=00), 7, (=00)}.
Assume that there is >0, >0 such that n,(y, z) < An,(y, z) for all
y,z eB%(x, o). Then I (v, z) <Al(y,z) forall y, z € B, (x,a/3).

Proof. Lety,ze€ B"(x 6/3) andlet ¢ > 0. Since 7, < lv , there is a
curve ¢: I — 8M—{y,(—o0)} with ¢(0) € B, (x,0/3)NB, (v,¢), ¢(1) €
B, (x,a/3) nB ( €), i((p) < min{20/3, [ (y, z) + ¢} and such that
f (1 -x)=0. Then necessarily ¢(I) C B, (x , 0), hence the 7, -length of
¢ does not exceed Alv(q)) Since ¢ >0 was arbitrary, the lemma follows.

Corollary 5.6. Let v, we T'M, and x € OM - {r,(=0), 7,(=0)},
and let 6 be a Busemann function at x. If 1= 0(m, ,(x)) - 0(m, o(x)),
then for every ¢ > O there is a neighborhood A of x in M such that
(1-e)l,,2)<el,y,2) <1+, 2). N

Proof. By 1.4 there is a neighborhood 4 of x in M such that
(1-en,v,z)<en,y,z)<(1+e)n,(y,z) forall y, ze A. Choose
o >0 such that B, (x,0)UB, (x,0)C A.Bys54, 4= B, (x,a/3)n
B,w (x, a/3) satisfies the claim.

Lemma5.7. Let v, w e T'M andlet AcC OM - 7, (—00) be compact.
Assume that there is T € R and x € A such that nv’ooBd(nv’tx, 3)c4
and d(n, (v),m, (¥)) <1 forall ye A. Then B, (x, e") CA.

Proof. For y € B, (x e” ") there is a curve ¢: I -0, (1) of length

smaller than 1 such that ¢(0)=m, .(x) and ¢(1)=m, T(y) If 7, o9()
¢ A, then there is a first s € ] such that d(n m, (x), m, ¢(s)) =3. But
for this s we have ¢(s) € A, hence

d(m, (x), m, (6(s))>d(n, (x),n, ¢()-2=1,

in contradiction to the choice of ¢.
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Lemma 58. Let v € T'M andlet A C OM - ¥,(—00) be compact.
Then for every ¢ > 0 there is a neighborhood U of v in T'M such that
i) (1-em,(y,z)<n,»,2) <1 +e)n,W, 2),
(i) (1-e),(»,2)<,(v,z)<(1+&)l,, 2)
forall y,z€ A and weU.
Proof. Let x = y,(co) and choose r > 0 such that 4 C B, (x,r).
Define 7 = log1/(24r) and let B be the closure of nv’ooBd(nv’:(x) , 3)

in OM . Given ¢ € (0, 1) let p >0 be such that
ag(p) <min{l/(1-¢), 1 +¢},

where o is as in 1.3. There is an open neighborhood U of v in T'M
such that d(m, (v),m, (v)) <p forall y € B and w € U (compare
the proof of Lemma 7 in [9]). Then B, (x,24r) Cc B forall we U by

5.5. Now 1.3 shows 7, (y, z) < o(p )nv(y z) for y,z € Bﬂv(x, 6r); in
particular, B, (x 3r) C B, (x 6r),and n,(y, z) < a(p)n,(y, Z) forall
y,Z€B, (x 6r) (weU) Since 4 C B, ( r), this is (i).

It follows from 5.5 that [ (y, z) < a(p)l (y, z) forall y, z € B, (x,2r),
andthat [ (¥, Z) < a(p)l,(¥,Z) forall y,Z € B, (x, 2r). Thus vBIv(x, r)
C B, (x 2r), and this is (ii) since 4 C B, ( )

Corollary 59. There is a number v > 0 such that n, > vl, for all
veT'M.

Proof let D C M bea compact fundamental domain for the ac-
tion of the isometry group on M. For w e T'M |p define u(w) =
sup{r > 0|B w(y (00), r)C B, (yw(oo) 1)}. We claim v = inf{u(w)|w €
T'M|,} > 0.

To show this choose a sequence {v;} C T' M| p such that u(v,) - v.
By ‘compactness of T'M |p we may assume that {v;} convergesto v €
T'M|,. Let x, = 7, [(00), x =y,(c0) and write [; =1, , I =1, n,=n,,
and 7 =1,. Deﬁne p—sup{r>O|B(x r)CB x 1/4)} > 0. Let
B= F”(x, 2). By 5.8 there is a number i, > 0 such that for all i > i,

(i) x; €By(x, p/4), B

(i) n(y,z)/2<n(y,z)<2n(y, z) forall y, z€ B, and

(i) I(y,z)/2<(y,z)<2l(y,z) forall y,z€B.

Let i > i,. Then n(x,y) = 2 implies n,(x,y) > 1, hence by the
connectedness of the #,-balls this means B, (x 1)cB. Smce L(x, x;) <
p/2 < 1/4, by (i) and (iii) we have Bi( 1) D> B, (x 1/2) > B,(x 1/4)
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and in the same vein B’h (x;, p/4) C B,,‘_ (x,p/2) C B,’(x , p) . This shows
v>pl4.

Now v is the constant which we are looking for. Let v € T 'M be arbi-
trary, x € M -y (—0), >0, t=1log1/e. Let w € W™ (®"v) be such
that y, (o0) = x. Clearly n, =n,/e, [, =1 /e. By the choice of D there
is an isometry ¥ of M such that Y(Pw)e D. Let w =d¥(w); ¥ then
induces an isometry of (617—7»“(—00) ,1,/€) onto (aﬁ-yw(—oo) s My) -
By the definition of v we have B,w(‘I’(x), 1) o B”w(‘I’(x), v), hence
B,v (x,€)D Bﬂv (x, ve), which finishes the proof. q.e.d.

Again let v € Q be such that W) c Q. Then d, is a Carnot-
Carathéodory metric on PW*™(v) induced by a smooth generic distribu-
tion (see [15]). Hence 6, admits at Pv a fangent cone (see [15]) which
consists of a nilpotent homogeneous Lie group 9, equipped with a left-
invariant Carnot-Carathédory metric 6, ,. (M,,d,, ,) is determined
by the property that for every r > 0 the compact balls Fz s (Pu,r) con-
verge as 4 — oo in the Hausdorff-sense to the closed ball of radius  in
,,d, ,). M, admits a one-parameter group {A|[¢ > 0} of automor-
phisms which act as a group of homotheties with respect to J_, . The
Lie algebra automorphism associated to A, is diagonalizable over R; its
eigenvalues are ¢, £ ,--+, 1 where p > 1 is the least integer such that
dim Ep(v) = m. In the sequel we will mean by a homothety always an
automorphism of a nilpotent homogeneous Lie group of the above kind.

Let T c Q be the set of points which project onto a periodic point of
the geodesic flow in T'M. For v € T thereis an isometry ¥ € I' which
acts as a translation on 7, , i.e., d¥®'v = ®*"*v for some 7 > 0 and all
s € R. By 4.1 we have W™ (v) c Q; thus for every integer j d¥’ in-
duces an isometry of (PW*™(v), é,) onto (PW*(®’"v), d4:,) and the
transformation 7, ;oY of PW™(v) is an isometry of (PW*™(v), d,)
onto (PW™(v), e’'s,) with fixed point Pv. This means that for ev-
ery r > 0 the balls _Eéu(Pv ,r) and B, 5,(Pv, r) are isometric; hence
(PW*(v), d,) is isometric to (N, ).

Fix an arbitrary U € T and define (N, J_) = (N5, 7).

Lemma 5.10. (0M — P (=0), 1) is isometric to (M, ) for every
weT'M.

Proof. We show first the claim for w € Y. In this case (aﬂ -
7, (—00), [,) is isometric to its tangent cone at any of its points. Let

x€eoM- {rz(=00), 7,,(=00)}; it suffices to show that for every r > 0 the
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Hausdorff-distance of the compact balls of radius R in the tangent cone
at x of the metric spaces (OM — y;(—o0), k;) and (M -y, (-0), [,)
vanishes (see [7]).

Let ¢ > 0; by 5.4 there is a number f > 0 and a neighborhood A4 of
x in &M such that

(o) (1-e)l(y, z) < BL,(y, z) (1 + &)y, 2)

forall y, z € 4. Choose 4, > 0 sufficiently large such that B, (x, r/4,)U
Bﬁlm (x,r/A;) C A. Since (o) is invariant under rescalingu of L; and
[, with the same factor, it follows sup{|Al;(y, z) — 4B, (¥, 2)||y, z €
Bu"(x, ryu wa(x, r)} < er for all A > A;. But this means that for
A > A, the Hausdorff-distance of Buv (x,r) and wa(x, r) does not
exceed er. Since ¢ > 0 was arbitrary, the claim now follows from the
definition of the tangent cone.

Now let w € T'M be arbitrary, x = 7p(00) and r > 0. Since Qc
T'M is open and dense, and the periodic points of the geodesic flow in
T'M are dense, T is dense in T'M . Thus for r,e > 0 by 5.6 there
isa v €Y suchthat (1 -¢)/ (y,z) <[, (y,2z)<(1+¢),(y,z) forall
y,z€ F,ﬂ (x,r)N F,w (x, r). But this means as above that the Hausdorff-
distance of Fl (x, r) and the compact ball of radius r in (M,d) is

not larger than er. This is true for every ¢ > 0; hence these balls are
isometric. But r > 0 was arbitrary, so this is the claim.

6. The group G of 1-quasiconformal transformations in oM

Let (X, d) be a metric space. We call a distance § on X quasicon-
formally equivalent to d if limsup,_,q(x,e) = 1 for every x € X,
where ¢(x, &) = inf{f > 1| By(x,r) C B,(x,e) C B,(x, pr) and
B,(x,7) C B,(x,¢)C B,,(x, B7) for some r, 7> 0}. A class of confor-
mally equivalent metrics on X is called a generalized conformal structure
on X. A homeomorphism f of X is called 1-quasiconformal if it pre-
serves the generalized conformal structure. The set of 1-quasiconformal
transformations of X has a natural group structure.

By 5.5 the distances /[, (v € T 'M ) define a generalized conformal
structure on dM . Thus we can consider the group G of 1-quasiconformal
transformations on 6 M with respect to this structure. For example, the
action of an isometry of M on OM defines an element of G. In this
section we investigate the structure of G.
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Every { € OM determines a subgroup G, of the isotropy group of G

at { as follows: If we identify M —{ with (9,d,), then G, is the
semidirect product of the 1-parameter group of homotheties of J_ and the
isometry group of (9, J_). This does not depend on the identification,
i.e., on the choice of the distance [, (v € W"({)) on oM -¢.

Since the distance 6, on N is left-invariant, GC acts transitively on

oM —{ . More precisely, the following is true: J_ is defined by a subspace
L of the Lie algebra of 9 and a scalar product ( , ) on L. Then every
VS GC admits a decomposition y = y, o ¥, o y,, where y, is a left
translation in 9N, y, is an automorphism of N leaving L and ( , )
invariant, and y, is a homothety (see [8]). In particular, the isotropy
subgroup Gc’ , of Gc at any point x € oM — { is the direct product
of a compact group Z and an abelian group T, , which is naturally
isomorphic to the multiplicative group of positive reals.

We want to show that G, coincides with the isotropy group of G at
{ . For this we need the following preparation:

Let we G, x € oM ,andlet U bean open neighborhood of x in oM
such that 6ﬁ—(UUy/U) #D,and { € IM - (UuyU). Then oM -
can be identified with (9, d_ ), and the restriction of ¥ to U is a I-
quasiconformal homeomorphism of U C (M, ) onto yU C (M, 4).
For y € U let Lipw(y) be the local dilation of ¥ at y with respect to
o_.

ooChoose a compact neighborhood 4 of x in U, and define for R <
inf{o(y,2) | ¥y € w(d4),z € OM — y(U)} and y € A4, Dg(y) =
o (v, w '9B; (y(»),R)). The map Dg: A — R" is continuous.

The followin“é lemma shows that y is locally Lipschitz.

Lemma 6.1 (Pansu [17, 18.4]). Lipw(y) < R/Dg(y) forall y € A.

Compare the proof of the following lemma with [17, 18.5].

Lemma 6.2. For every { € oM, G, is the isotropy subgroup of G at
¢.
Proof. Since G acts as a topological transformation group transitively
on dM, the isotropy groups of G at different points are mutually iso-
morphic; thus it suffices to show the lemma for any particular point of
oM.

For this let Id # A € I' be an isometry with axis y which is oriented in
such a way that Ay(¢t) = y(t+1log7) for some 7> 1 and all £ € R. Then
the pgints { =y(—o0) and & = y(c0) are fixed by the restriction L of A
to OM.



214 URSULA HAMENSTADT

Identify as before dM —{ (resp. oM =¢) with (/, 6_) , with identity
at & (resp. {). Denote the resulting space by (/VC’ éc) (resp. (/Vf, 65))
and let {Af | t > 0} (resp. {Af | ¢ > 0}) be its 1-parameter group of
homotheties. Then there is an automorphism Ac € ZC, ¢ (resp. 4 : € Zf’ C)
such that L=A{, od, =Alod,.

Let now ¥ € G be such that ¥({) = {. By 6.1 the restriction of ¥

0 (N, d,) is locally Lipschitz, hence A-differentiable almost everywhere
[17]. Thus ¥ can be composed with suitable translations of N, in such
a way that the resulting map fixes ¢ and is A-differentiable at &.

This map can be written as a product of an element of Gc ¢ and a map
pE ﬁc, = {veG|v({)=C,w(&) =&} whose A-differential exists at &
and equals the identity.

For y e OM — {¢,(} and R > 0 let B.(y, R) (resp. B,(y, R)) be
the ball of radius R about y in (N, ‘Sc) (resp. (N, 55)). As above let

Dp(y) =6, (y, (o'laBé((p(y), R)); for k > 0 we then have

Dy (»)/(k7) = 8,(v, qo“L"aB (L), 1)/ (k)
=8,(L7™"y, L™ p™' L"0B,(L™"p(»), 1))

Since L'k(p(y) — {(k — o), we can find numbers k, >0, R; >0 in
such a way that 8B,(L ™ p(y), 1) C B,(¢, Ry) forall k > k,. Now ¢ is
A-differentiable at &, and its A-differential equals the identity; thus Ai{ o
(p'l Af/kt — Id uniformly on B,({, R,) and hence also L'koqp'l oLF =
(A )(Akr o (o"l o Af/kr)(Ac_k) — Id uniformly on Bc(é, R,) (recall that
A, € Z, ;). But L™ y — {(k — oo) and consequently lzkj(y)/(kr) —
1(k — o0) or O (9(2), p(y)) < O(z,y) forall y,ze€ oM - by6.1.
The same argument applied to (p_l then shows that ¢ is an isometry
of (N, ), ie., ¢ € Z, ,. In particular the restriction of ¢ to OM —

{&, ¢} is smooth, and the restriction of y to oM — { is A-differentiable
everywhere. Thus we obtain a group homomorphism F G — G
by mapping y to its A-differential at {. The kernel kerF of F, lS a
normal closed subgroup of Z,

We have to show that kerF Id Let ¢ € ker Fy; it suffices to prove
that ¢ fixes pointwise the dlstance sphere 0B (é 1) of radius 1 about &
in (N, d;).

Smce Z e and hence kech are compact, for every ¢ > 0 there is a
number k(e ) > 0 such that J,(x, ax) < ¢/(kt) forall o € ker F, and all
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k>k(e),all xe€ B¢, 1/kt). For x € Bc(f, 1) we then have L*x e
Bc(é, 1/(kt)) and consequently 0 (x, o(x)) = (kt)JC(ka, Lk(o(x)) =
(kT)0, (L x, Af 0 &S 40y 0 (%)) = (kT)3,(L*x, (4f 0 p o 47" )L*x) < &
(recall that ¢ commutes with {Af | £ > 0}). But ¢ > 0 was arbitrary,

which shows the required property of ¢ and finishes the proof of the
lemma.

7. The action of G on T'M

In this section we show that G acts naturally on T'M . We start with
an examination of the geometry of the hyperbolic plane H of constant
curvature —1. Choose u € 0H, a Busemann function 6 at u, and
denote by n, the projection onto G'I(t) along the geodesics which are
asymptotic to u. For ¢ € R let d, be the induced distance on H"I(t).
If x e G_I(t) and y € H, then the hyperbolic distance dj(x,y) of x
and y only depends on ¢ = d,(x, #,y) and p = Oy — 6x; this number
will be denoted by r(e, p). The function r: [0, co) x R — [0, co) has the
following properties:

(a) r is continuous and increasing in the first variable.
(b) r(0, p)=|p| forall peR.
(c) r(e,0)<e forall ¢>0.
(d) r(e, p)=r(e’e, —p) forall £>0 and p €R.
(e) r(e, p)<r@E,p)+r(e’(e—%),p—p) for £<e and p,p eR.

(a)=(c) are obvious. To show (d) observe that d,, is symmetric, and
for x,y € H with 6(x) =1t and 6(y) =t+ p we have d,+,,(}’, anx) =
e’ d,(x, m,(y)). (e) is an immediate consequence of the triangle inequality
for dy; .

For every { € OM we can now define a distance dc on M as follows:
Let ve W*¢) and x,y e M. If 6,(x) =1t and 6,(y)—t = p, define
d(x,9) = r(lgy T, (%), 7, (), p). Since Iy, = €’ly,, by (d)
above dc is symmetric. The triangle inequality of d( follows from the
triangle inequality for /4, and properties (a) and (e) of the function r.

Remark. If W"({) C Q, then it is easy to see that d, is the Carnot-
Carathéodory metric on M , which is induced by the distribution E.: Pw
— span{w, E (Pw)}.

Lemma 7.1. There is yx > 0 such that dc(p, q) < xd(p, q) whenever
d(p,q)>1. x does not depend on {.
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Proof. Let v, w € W"({) be such that d(Pv, Pw) = 1, and assume
0,(Pw) > 0. Then d(Pv,n, (Pw) < 1, hence d, ,(Pv,m, Pw) <
(2sinh b/2)/b by [11], which by 1.2 means

M(7,(00), 7, oo (Pw)) < (2sinh b/2)/b.
It thus follows from 5.8 that /, (y,(0), 7, . (Pw)) < (2sinhb/2)/(bv),
ie., d(Pv, m, o(Pw)) < (2sinh b/2)/(bv); here v > 0 is the constant
from 5.8. But 6,(Pw) < 1, hence d,(n, ,(Pw), Pw) <1 and d,(Pv, Pw)
< (2sinh b/2)/(bv) + 1.

For v,w € W"({) with d(Pv, Pw) = r > 1, choose a minimizing
geodesic ¢: [0, r] — M which is parametrized by arc length and joins
¢(0) = Pv to ¢(r) = Pw. The above argument yields

d,(¢(s), (s +¢)) < x/2
forall ¢ € (0, 1] and s € [0, r —¢], hence d,(Pv, Pw) < x([r1+1)/2 <
xr, which is the claim. q.e.d.

Since d, > d, 7.1 shows in particular that every isometry of d, is a
pseudo-isometry of M (for the definition and basic properties of pseudo-
isometries see [16] or [17]), hence admits a unique extension to a trans-
formation of dM .

Now every v € G, can be extended to a transformation Oy of M as
follows: Choose v € W"({). Then there is a number A(w) > 0 such that
I(wx, wy) = Aw)l,(x,y); A(wy) does not depend on the choice of v.
For w € W({) define Oy (Pw) = T, 102,)¥ T, oo(Pw). Then 9~is
clearly a homomorphism of GC into the group of transformations of M .

Lemma 7.2. © is an isomorphism of G, onto the subgroup Iso, of the
isometry group of dC’ which fixes {, and the inverse of © is the restriction
mapping.

Proof. Let y € G, and t = logA(y). Since for every w € W*({)

the map 7, 7, . is an isometry of (0;1(0),lwnw’°°) onto (8,'(t),
e_'ld,,wnw’oo), Oy maps (0;1(0), lwnw’oo) isometrically into (6;1(t),

g™y o) - By the definition of Oy and d,, this means that Oy is
an isometry of dC' Consequently Oy is a pseudo-isometry of M and

admits a unique extension to a transformation of 83/ . But the image
under Oy of a geodesic y in M with y(—oo) = { is a geodesic 7 in M
with 7(—o00) = { and P(c0) = wy(o0) ; hence this extension is just y .

It remains to show that OGC = Isoc, i.e., that © is surjective. Let
Ye Iso, and w € w"(¢). Since OG, is transitive on M, we may assume
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that ¥(Pw) = Pw. Now ¥ is an isometry of dc, which fixes {. Thus

the image under ¥ of the geodesic ray y: [0, c0) — M,s— My _s(Pw)
is a globally minimizing geodesic with respect to d( , which is contained
in the f-tubular neighborhood of [0, o) for some B > 0; in particular,
0,%¥r(s) €e[-s, —s+ p) forall s €[0, 0).

Let again H be the hyperbolic plane of constant curvature —1, u €
O0H , and 6 be a Busemann function at u. If ¢,,: [0, r] - H isa geodesic
parametrized by arc length with 6¢,(r) — 6¢,(0) = p, then the function
a(p,r): s — 0¢,(s) = 0¢,(0) only dependson p and r. If ¢: [0, r] —
H is any curve parametrized by arc length with 6¢(r) — 6¢(0) = p and
0¢(s) — 606(0) # a(p, r)(s) for some s € [0, r], then d,(6(0), é(r)) <r.
Moreover for every 7, > 0 and s € [0, oo) there is a number r, > 0,
such that |s+a(t—r, r)(s)| <e forall 1< 7, and r>r,.

This consideration and the definition of d, imply the following: If
v:[0,r] — M is a minimizing geodesic with respect to d; , which is
parametrized by arc length and satisfies 6, ¢(r)—6,¢(0) = p, then 6,,¢(s)
—6,6(0)=0a(p, r)(s). This applies in particular to the geodesic ¥y . Let
e€>0, s€[0, 00), and choose r > 0 such that |s+a(t—r, r)(s)| < e for
all < g. Since 6, ¥y(r)+r< B and 6, ¥y(s) = a(6,¥y(r), r)(s), this
implies 6, ¥y(s) < & —s, and consequently ¥ leaves y pointwise fixed.

For y € M let p(y) = limsup,_,, d,(v, 7(s)) —s. Then p>6,;but

_— w?
if 0,(y) =t then d,(y, 7(s)) — s < t + -5, (7, V), 7, (PW)) =
t+ e—’lw(nw’oo(y), T, o(Pw)) — t, which means p =6, . Since p is
clearly invariant under lPA’, ¥ leaves the horospheres at { invariant.
Now for every y € OM — { the curve s — m,, (y) is a minimizing
geodesic with respect to dC (recall d, > d) which realizes the dc-distance
between the horospheres at {, and every geodesic with this property is
(up to reparametrization) of this form. Thus ¥ permutes the geodesics
which are asymptotic to {, i.e., ¥ commutes with the projections Ty
(t € R). Moreover, the definition of d, shows that ¥ induces an isometry
of (65'(0), l,7, ), ie, ¥ €OG, is claimed.
Remark. 7.2 shows in partlcular that every element of Isoc is uniquely
determm(\ad by its restriction to 8M . Thus if ReE M — M is an isometry
of (M, dc) onto (M, dc) for some (, € OM with Y. =17, then ¥ is

uniquely determined by its restriction to 6@ .
Corollary 7.3. For g € G and { € OM there is a unique isometry
8, g) of (M, dc) onto (M, dgc), whose restriction to OM equals g .
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Proof. Let J be an isometry of (M, d,) onto (M, d,). By7l, J

has an extension J to a transformation of dM , and this extension is
an element of G which maps { to g({). Thus g71 € Gc and hence

J O(gjl) is an isometry of (1\7 , dc) onto (]Ti , dg¢) , whose restriction to
oM equals g. By the above remark, 8(g71) is unique.

Corollary 7.4. There is a natural I’zgmomorphism J of G into the group
of topological transformations of T'M with the Jollowing properties:

() J is continuous, ie., the map G x T'M — T'M, (g,v) —
(Jg)(v) is continuous.
(ii) The action of JG on T'M is transitive.
(iii) For every g € G, J(g) preserves the weak unstable foliation and
commutes with the geodesic flow.
(iv) J¥Y=d¥ forall YeT.
(v) Forevery g € G the restriction of J(g) to QnJ(g)~'Q is smooth.

Proof. For { € M let W*({) = {v | y,(~o0) = {} be the leaf
of the weak unstable foliation defined by {. The canonical projection
maps W"({) diffeomorphically onto M ; hence for g € G we can define
J(8) by J(&)lyng) = (Plysgr)” ©6(L, &) 0 Plya, - Since 8((, gh) =
e(nt, g)8(¢, h) J is a homomorphism of G mto the group of trans-
formations of 7'M . The properties (i)-(v) follow directly from the defi-
nition of J.

8. Proof of the theorem

We continue to use the notation of §§1-7. Consider the homgmomhism
J of 7.4; we want to show that J(g) preserves the fibers of T’ 'M for every
g € G, hence decends to a transformation of M . For this we need the
following preparation:

Let v € T; then 6, '(0) can naturally be identified with the nilpotent
Lie group 91 in such a way that the identity of 9t equals Pv. Denote
by n the Lie algebra of 91; with respect to this identification the derived
algebra [n, n] is a distribution on 6, l(0) which is complementary to E, .

Lemma 8.1. [n,n] is equal to the orthogonal complement of E, in
6,'(0).

Proof. By the choice of v thereis ¥ € I and 7 > 0 such that d¥v =
¢"v . Then m, oo ¥ is the composition of an isometry of (M, d_) fixing
Pv and the dilation A,-:; in particular, Ty o © ¥ is an automorphism
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of 9 and hence preserves the distribution [n, n] (7.6 of [8]) Moreover,
[n, n] is the only =, , o W-invariant distribution on 6 ( ), which is
complementary to E On the other hand, by Remark 2. 2 the orthogonal
complement Ev of E in Hv (0) is invariant under 7, ,o'¥ as well;
thus Evl =[n,n]. qe.d.

Since T is dense in T'M , by continuity we obtain that the statement
of 8.1 holds for every horosphere 6, 1(0) in M. Let again v € Q, and
identify 6, '(0) with the Lie group 9t as before.

Lemma 8.2. Let X be a lefi-invariant unit vector field on M~ 6, L0)
tangent to E andlet y:R— 6, 1(0) be a maximal integral curve of X .
Then 4 = {m, ,w(s)|s,t € R} is a totally geodesic embedded plane of
constant curvature —1 in M.

Proof. Tt suffices to show that for every ¢ > 0 the geodesic y in M
joining y/(O) to w(e) is contained in A. Since A is a smooth embedded
plane in M, and w(0) can be joined in 4 to y(e) by a curve of length

r(e, 0), we have to show that d(y(0), w(e)) is not smaller than r(e, 0).

Thus let ¢: I — M bea minimizing geodesic joining ¢(0) = w(0)
to ¢(1) = y(e) and let 9(t) = =, (¢(¢). Then P is a smooth curve
in N with §(0) = w(0), (1) = w(e), and can be decomposed as §(¢) =
?,(0)9,(2) , where E’,(t) is the orthogonal projection of @ (¢) into the left-
invariant distribution E , and 9, is tangent to [n,n]. Then 9 ,(1) =
w(e) -Ez(l)'l , and the length of @, is not smaller than

d_(w(0), w(e) - 7,(1)7) > e

Let s(t) = 0,(¢(t)). Since @ (¢) = P;(t) + P,(¢) is an orthogonal de-
composition, the length of ¢ is not smaller than the integral

1
AMNwmﬁwﬁ%u

which is not smaller than r(e, 0). This is the claim. q.e.d.

By continuity we obtain 5

Corollary 8.3. Forevery v € Q and X € E(v) there is a unique totally
geodesic embedded plane of constant curvature —1 in M whose tangent
space at Pv is spanned by v and X .

Nowlet g€ G and let H C Mbea totally geodesic embedded plane
of constant curvature —1 as in 8.3. The definition of J(g) then implies
that the restriction of J(g) to the unit tangent bundle T'H of H isa
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fiber preserving isometry onto the unit tangent bundle of a totally geodesic
embedded plane H of constant curvature —1 .

Now for v € T'M the tangent space at v of the fiber of the bundle
T'M over M has a natural identification with the orthogonal complement
v’ of v in the tangent space of M at the foot point Pv. Under this
identification E(v) can be viewed as a subspace of the tangent space of
the fiber. Consequently the assignment v — E(v) is a smooth distribution
on Q tangent to the ﬁbers with the following properties:

(1) For every u € M the canonical homeomorphlsm of P~ (u) onto
M maps the distribution E on P~ (u) N Q onto the distribution on
OM , which is the projection of the distributions E. (Recall that the
restriction to P~ (w)N Q of the canonical homeomorphism of P'l(u) to
oM is smooth.)

(ii) For every u € M and v € P-l(u) NQ,every 0# X € E(v) is
tangent to the unit tangent bundle of a unique totally geodesic embedded
plane of constant curvature —1 in M.

Now by (i) for every v € Q the distribution E generates the whole
tangent space at v of the fiber of T'M . Thus every point of the connected
component of v in P_I(Pv)ﬂﬁ can be joined to v by a curve ¢ which is
tangentto E. Let g € G; if, moreover, ¢ is containedin J(g )’lﬁ then
by (ii) and 8.3 the image under J(g) of ¢ is a differentiable curve which
is tangent to a fiber of 7'M . Since QN J (g)” !Q is open and dense in
T'M , this implies that J(g) is a bundle map for every g € G, i.e., J(g)
projects to a homeomorphism J(g) of M . Since J (&) _commutes with
the geodesic flow on T'M, J(g) maps each geodes1c in M 1sometncally
onto a geodesic, i.e., 7(g) is an isometry of M. Thus by 7.4(ii), M is
homogeneous. Since M admlts a compact quotient, this is only possible
if M is symmetric, i.e., if M is locally symmetric (see [10]). This finishes
the proof of the theorem. q.e.d.
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