ESTIMATE OF THE SINGULAR SET OF THE EVOLUTION PROBLEM FOR HARMONIC MAPS

XIAOXI CHENG

1. Introduction

Let \mathcal{M} , \mathcal{N} be Riemannian manifolds of dimensions m, n (m > 2) with metrics γ , g respectively. We consider the evolution of harmonic maps [3, (1.4)], [1,(1.6), (1.7)]:

(1.1)
$$\partial_t u - \Delta_{\mathscr{M}} u + \Gamma_{\mathscr{N}}(u) (\nabla u, \nabla u)_{\mathscr{M}} = 0, \qquad u|_{t=0} = u_0.$$

M. Struwe proved the following theorem.

[3, Theorem 6.1]. Suppose $u: \mathbb{R}^m \times \mathbb{R}_+ \to \mathcal{N}$ is the limit of a sequence u_k of regular solutions to (1.1), with finite energy

$$E(u_k(t)) \le E_0 < \infty, \quad \forall k \in \mathbb{N} \text{ and } t > 0$$

in the sense that $E(u(t)) \leq E_0$ almost everywhere and that $\nabla u_k \to \nabla u$ weakly in $L^2(Q)$ for any compact $Q \subset \mathbf{R}^m \times \mathbf{R}_+$. Then u solves (1.1) in the classical sense and is regular on a dense open subset of $\mathbf{R}^m \times \mathbf{R}_+$ whose complement Σ has locally finite m-dimensional Hausdorff measure (with respect to the parabolic metric).

Here we give a better estimate on the singular set Σ .

Theorem. If $t_0 > 0$, then $\Sigma \cap (\mathbb{R}^m \times \{t_0\})$ has finite (m-2)-dimensional Hausdorff measure.

Remarks. In [1], with a general *m*-dimensional Riemannian manifold \mathcal{M} replacing \mathbb{R}^m , Y. Chen and M. Struwe proved the *existence* of a solution to (1.1), which satisfies all the above conditions of [3, Theorem 6.1]. Here E_0 is the energy of the initial map $u(\cdot, 0)$.

In the case m = 2, M. Struwe [2] proved that Σ consists of at most finitely many points of $\mathcal{M} \times \mathbf{R}_{+}$.

Received March 2, 1990.

XIAOXI CHENG

2. Notation

We follow Struwe's notation. Let z = (x, t) denote points in $\mathbb{R}^m \times \mathbb{R}_+$. For a distinguished point $z_0 = (x_0, t_0)$, R > 0, let $\mathbb{B}_R(x_0) = \{x: |x - x_0| < R\}$ be a Euclidean ball centered at x_0 . Also let $T_R(t_0) = \{z = (x, t) | t_0 - 4R^2 < t < t_0 - R^2\}$ and $S_R(t_0) = \{z(x, t): |t = t_0 - R^2\}$. Define the fundamental solution

$$G_{z_0}(z) = \frac{1}{\left(4\pi(t_0 - t)\right)^{m/2}} \exp\left(-\frac{|x - x_0|^2}{4(t_0 - t)}\right), \qquad t < t_0$$

In [3], Struwe proved that

$$\Sigma = \bigcap_{R>0} \left\{ z_0 \in \mathbf{R}^m \times \mathbf{R}_+ \left| \liminf_{k \to \infty} \int_{T_R(t_0)} |\nabla u_k|^2 G_{z_0} \, dx \, dt \ge \epsilon_0 \right\} \right\},$$

where ϵ_0 is the constant determined in Theorem 5.1 of [3]. Moreover, Σ is a closed set by Theorem 6.1 of [3].

Let

$$\Sigma_{R}^{t_{0}} = \left\{ x_{0} \in \mathbf{R}^{m} \left| \liminf_{k \to \infty} \int_{T_{R}(t_{0})} \left| \nabla u_{k} \right|^{2} G_{(x_{0}, t_{0})} \, dx \, dt \geq \epsilon_{0} \right\},$$

and let $\Sigma^{t_0} = \bigcap_{R>0} \Sigma_R^{t_0}$; then $\Sigma = \bigcup_{t_0>0} \Sigma^{t_0}$. For the theorem we will actually show that

$$\mathbf{H}^{m-2}(\mathbf{\Sigma}^{t_0}) < C(t_0),$$

where $C(t_0)$ is a finite number depending only on the time t_0 (as well as the target manifold \mathcal{N} , the dimension m, and the energy bound E_0).

3. Proof of Theorem

Lemma 1 [3, (5.4') and (5.4")]. For $\epsilon > 0$, one has on $T_R(t_0)$ the estimate

$$G_{z_0}(x, t) \leq \begin{cases} R^m & \text{for all } x, \\ \epsilon G_{z_0+(o, R^2)}(x, t) & \text{if } |x-x_0| > K(\epsilon)R, \end{cases}$$

where $K(\epsilon)$ depends only on ϵ and m. Proof. For any (x, t) in $T_R(t_0)$,

$$G_{z_0} = \frac{1}{\left(4\pi(t_0 - t)\right)^{m/2}} \exp\left(-\frac{|x - x_0|^2}{4(t_0 - t)}\right) < \frac{1}{R^m}.$$

170

In the case $|x - x_0| > K(\epsilon)R$, we can estimate

$$\begin{split} \frac{G_{z_0}}{G_{z_0+(0,R^2)}} &= \frac{(t_0 - t + R^2)^{m/2}}{(t_0 - t)^{m/2}} \exp\left(\frac{|x - x_0|^2}{4(t_0 - t + R^2)} - \frac{|x - x_0|^2}{4(t_0 - t)}\right) \\ &\leq 5^{m/2} \exp\left(-\frac{R^2|x - x_0|^2}{4(t_0 - t + R^2)(t_0 - t)}\right) \\ &\leq 5^{m/2} \exp\left(-\frac{K^2(\epsilon)R^4}{4 \cdot 5R^2 \cdot 4R^2}\right) = 5^{m/2} \exp(-K^2(\epsilon)/80) < \epsilon \end{split}$$

for a suitable $K(\epsilon)$.

Lemma 2 [3, Lemma 3.2]. Let $u: \mathbb{R}^m \times [0, T] \to \mathcal{N}$ be a regular solution to (1.1) with $|\nabla u(x, t)| \le c < \infty$ uniformly. Then for any $z_0 = (x_0, t_0) \in \mathbb{R}^m \times (0, T)$ the function

$$\Phi_{z_0}(R; u) = \frac{1}{2}R^2 \int_{S_R(t_0)} |\nabla u|^2 G_{z_0} dx$$

is nondecreasing in R for $0 < R \le R_0 = \sqrt{t_0}$.

Lemma 3 [3, Proposition 3.3]. Let u be as in Lemma 2. Then the function

$$\Psi_{z_0}(R, u) = \int_{T_R(t_0)} |\nabla u|^2 G_{z_0} \, dx \, dt$$

is nondecreasing in R for $0 < R \leq R_0$.

Note that Lemma 3 implies that if $R_1 < R_2$, then $\sum_{R_1}^{t_0} \subset \sum_{R_2}^{t_0}$.

For the proofs of Lemmas 2 and 3, see [3, Lemma 3.2 and Proposition 3.3].

Proof of the Theorem. By Lemma 1 we obtain

$$\begin{split} \int_{T_{R}(t_{0})} |\nabla u_{k}|^{2} G_{z_{0}} \, dx \, dt &\leq \int_{t_{0}-4R^{2}}^{t_{0}-R^{2}} \int_{\mathbf{B}_{KR}(x_{0})} R^{-m} |\nabla u_{k}|^{2} \, dx \, dt \\ &+ \epsilon \int_{t_{0}-4R^{2}}^{t_{0}-R^{2}} \int_{|x-x_{0}| \geq K(\epsilon)R} |\nabla u_{k}|^{2} G_{z_{0}+(0,R^{2})} \, dx \, dt \\ &\leq R^{-m} \int_{t_{0}-4R^{2}}^{t_{0}-R^{2}} \int_{\mathbf{B}_{KR}(x_{0})} |\nabla u_{k}|^{2} \, dx \, dt \\ &+ \epsilon \int_{T_{R}(t_{0})} |\nabla u_{k}|^{2} G_{z_{0}+(0,R^{2})} \, dx \, dt. \end{split}$$

Now applying Lemma 2 to the last term yields

$$\begin{split} \epsilon \int_{T_{R}(t_{0})} |\nabla u_{k}|^{2} G_{z_{0}+(0,R^{2})} \, dx \, dt \\ &= \epsilon \int_{t_{0}-4R^{2}}^{t_{0}-R^{2}} 2(R^{2}+t_{0}-t)^{-1} \Phi_{z_{0}+(0,R^{2})}(\sqrt{R^{2}+t_{0}-t}, u_{k}) \, dt \\ &\leq \epsilon \int_{t_{0}-4R^{2}}^{t_{0}-R^{2}} 2(R^{2}+t_{0}-t)^{-1} \Phi_{z_{0}+(0,R^{2})}(\sqrt{t_{0}+R^{2}}, u_{k}) \, dt \\ &\leq \epsilon (t_{0}+R^{2})^{1-m/2} \left\{ \int_{\mathbf{R}^{m}} |\nabla u_{k}|^{2} \, dx|_{t=0} \right\} \int_{t_{0}-4R^{2}}^{t_{0}-R^{2}} (R^{2}+t_{0}-t)^{-1} \, dt \\ &\leq \epsilon (t_{0}+R^{2})^{1-m/2} E_{0} \log 5/2 \leq \epsilon t_{0}^{1-m/2} E_{0} \leq \frac{1}{2} \epsilon_{0} \end{split}$$

for ϵ sufficiently small depending on E_0 , m, and t_0 . So we have

$$\int_{T_{R}(t_{0})} |\nabla u_{k}|^{2} G_{z_{0}} dx dt \leq \frac{1}{2} \epsilon_{0} + R^{-m} \int_{t_{0}-4R^{2}}^{t_{0}-R^{2}} \int_{\mathbf{B}_{KR}(x_{0})} |\nabla u_{k}|^{2} dx dt.$$

Now K depends on ϵ_0 , E_0 , m, \mathcal{N} , and t_0 .

If $x_0 \in \Sigma_R^{t_0}$, then

$$\begin{aligned} \epsilon_0 &\leq \liminf_{k \to \infty} \int_{T_R(t_0)} |\nabla u_k|^2 G_{z_0} \, dx \, dt \\ &\leq \frac{1}{2} \epsilon_0 + \liminf_{k \to \infty} R^{-m} \int_{t_0 - 4R^2}^{t_0 - R^2} \int_{\mathbf{B}_{KR}(x_0)} |\nabla u_k|^2 \, dx \, dt \end{aligned}$$

and therefore

$$R^{m} \leq \frac{2}{\epsilon_{0}} \liminf_{k \to \infty} \int_{t_{0}-4R^{2}}^{t_{0}R^{2}} \int_{\mathbf{B}_{KR}(x_{0})} \left|\nabla u_{k}\right|^{2} dx dt.$$

Observe that the family $\mathscr{F} = \{\mathbf{B}_{KR}(x_0) | (x_0 \in \Sigma_R^{t_0}\} \text{ covers } \Sigma_R^{t_0} \cap F \text{ for compact } F \subset \mathbf{R}^m$, so there is a finite subfamily $\mathscr{F}' = \{\mathbf{B}_{KR}(x_j)\}$ such that any two balls in \mathscr{F}' are disjoint and that $\{\mathbf{B}_{5KR}(x_j)\}$ covers $\Sigma_R^{t_0} \cap F$.

Thus,

$$\begin{split} \Sigma_{j}(5KR)^{m} &= (5K)^{m} \Sigma_{j} R^{m} \\ &\leq (5K)^{m} \Sigma_{j} \liminf_{k \to \infty} \frac{2}{\epsilon_{0}} \int_{t_{0} - 4R^{2}}^{t_{0} - R^{2}} \int_{\mathbf{B}_{KR}(x_{j})} |\nabla u_{k}|^{2} dx dt \\ &\leq C(5K)^{m} \liminf_{k \to \infty} \Sigma_{j} \int_{t_{0} - 4R^{2}}^{t_{0} - R^{2}} \int_{\mathbf{B}_{KR}(x_{j})} |\nabla u_{k}|^{2} dx dt \\ &\leq C(5K)^{m} \liminf_{k \to \infty} \int_{t_{0} - 4R^{2}}^{t_{0} - R^{2}} \int_{\mathbf{R}^{m}} |\nabla u_{k}|^{2} dx dt \\ &\leq C(5K)^{m} \int_{t_{0} - 4R^{2}}^{t_{0} - R^{2}} E_{0} dt \leq C(5K)^{m} E_{0} \cdot 3R^{2} \,, \end{split}$$

and therefore

$$\sum_{j} (5KR)^{m-2} \le C(5K)^{m-2} E_0.$$

Hence,

where $C(t_0) = \omega_{m-2} C(5K)^{m-2} E_0$, and ω_{m-2} is the volume of the unit ball in \mathbb{R}^{m-2} .

Since F is arbitrary, we obtain the desired result:

$$\mathbf{H}^{m-2}(\boldsymbol{\Sigma}^{t_0}) \le C(t_0). \qquad \text{q.e.d.}$$

Examining the specific dependence of $C(t_0)$ on t_0 as well as \mathcal{N} , m, and E_0 , we see that

$$C(t_0) \le C_1 (C_2 - \log t_0)^{(m-2)/2}$$

where C_1 and C_2 are positive constants depending only on \mathcal{N} , m, and E_0 . Struwe [3] has observed that Σ^{t_0} is actually empty for $t_0 > T_0$, where T_0 is a positive constant depending only on \mathcal{N} , m, and E_0 .

XIAOXI CHENG

As in [1], the above estimate continues to hold. We then conclude: For any smooth $u_0: \mathcal{M} \to \mathcal{N}$, there exists a global weak solution $u: \mathcal{M} \times \mathbf{R}_+ \to \mathcal{N}$ of the evolution problem for harmonic maps (1.1). u is regular off a singular closed set $\Sigma \subset \mathcal{M} \times \mathbf{R}_+$, and $\Sigma \cap (\mathcal{M} \times \{t_0\})$ has finite (m-2)-dimensional Hausdorff measure.

Acknowledgment

I would like to thank my adviser R. M. Hardt for many helpful discussions.

References

- Y. Chen & M. Struwe, Existence and partial regularity results for the heatflow for harmonic maps, Math. Z. 201 (1989) 83-103.
- M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comm. Math. Helv. 60 (1985) 558-581.
- [3] ____, On the evolution of harmonic maps in higher dimensions, J. Differential Geometry 28 (1988) 485-502.

RICE UNIVERSITY

174