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SUMS OF ELLIPTIC SURFACES

ROBERT E. GOMPF

Introduction

The classification of smooth, simply connected 4-manifolds remains
one of the main unsolved problems of topology. A rich collection of exam-
ples is provided by the simply connected algebraic surfaces. A well-known
folk conjecture states that perhaps all simply connected, smooth, closed
4-manifolds are connected sums of algebraic surfaces (possibly with some
orientations reserved). This suggests the importance of studying the topol-
ogy of algebraic surfaces—particularly, their behavior under connected
sums and related constructions.

An important subclass of algebraic surfaces is comprised by the ellip-
tic surfaces. These achieved fame in topology via Donaldson's invariants
[4], [5], which showed that there are infinitely many diffeomorphism types
of simply connected elliptic surfaces within each homeomorphism type
[8], [9], [23], even though there is no classical smoothing uniqueness ob-
struction. In particular, these are infinite families of counterexamples
to the smooth Λ-Cobordism conjecture for 4-manifolds. In some sense,
"most" simply connected algebraic surfaces are elliptic. For any fixed in-
teger b > 10, there are infinitely many diffeomorphism types of simply
connected elliptic surfaces with b2 = b, but only finitely many diffeo-
morphism types of simply connected, nonelliptic algebraic surfaces with
b2<b.

Some progress has been made on the question of how algebraic sur-
faces behave under connected sum. Donaldson's invariants are "stable"
under connected sum with CP2, where the bar denotes reversed orien-
tation. Thus, this operation (the algebraic geometer's "blowup") tends
not to collapse diffeomorphism types. However, Mandelbaum [18], [20]
and Moishezon [22] showed that for any M in a large class of algebraic
surfaces (containing all simply connected elliptic surfaces and "complete
intersections") the connected sum M$CP2 (with the standard orientation
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on each summand) decomposes as J ± C P 2 , a connected sum of copies of

CP2 and CP2 . Using this result, it can be shown [11] that for M, N in

a large class of algebraic surfaces (containing all simply connected elliptic

surfaces and complete intersections except for CP2) MjjTV decomposes

as 8 ± CP2, provided that either M or N does not admit a spin struc-

ture. Clearly, this cannot hold if M and TV are both spin (since CP2

is not spin), but one might hope for an analogous decomposition in the

spin case. Mandelbaum [18] showed that for V a spin, simply connected

elliptic surface, V$S2 x S2 decomposes as %kK3$[S2 x S2, a sum of copies

of S2 x S2 and the K3 surface, the quartic hypersurface in CP3. In the

present paper, Corollary 10 of the first main theorem shows that for V, W

spin, simply connected elliptic surfaces VffV « ±($kK3$lS
2 x S2).

To state our results conveniently, we make a definition.

Definition. A manifold M dissolves if it is diffeomorphic to either

^hCP2^CP2 or ±{tkK3lιS
2 x S2) for some fc, / > 0.

Note that only one of the two possibilities can occur for a given M, and

this is determined by the type of the intersection form (odd or even). The

numbers k and / of each summand are determined by the rank and the

signature of the form, as is the sign (±) denoting the choice of orientation

in the even case. We put the sign outside the parentheses, since it is well

known that K3$K3 « $22S
2 x S2 (Corollary 2). A standard trick of Wall

[24] shows that if M is simply connected and nonspin, then M$S2 x S2

« M$S2 x S2, where the last summand is the twisted S2-bundle over

S2 and is diffeomorphic to CP2$CP2. It follows immediately from this

and the work of Mandelbaum and Moishezon that if M dissolves, so do

M$S2 x S2, M(tCP2, and M$CP2 (with the exception of ±(^iΠltCP 2 ) ,

k>0).
Corollary 10 is now easily stated:
Corollary 10. If V and W are simply connected elliptic surfaces, then

ViW dissolves.
We obtain similar results with other constructions. As we will see in

the next section, large elliptic surfaces are made from smaller ones (in
the smooth category) by a process called fiber sum. This process normally
preserves the natural orientations on the elliptic surfaces. However, we
may ask what manifolds are obtained from elliptic surfaces by fiber sums
which do not respect orientation. (We might even hope to construct man-
ifolds which are not connected sums of algebraic surfaces!) Theorem 13
tells us that if P is a nontrivial fiber sum of elliptic surfaces, with both
orientations present, and if P is simply connected, then P dissolves.
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Theorem 13 graphically illustrates the importance of orientations in
these results: A nontrivial fiber sum of elliptic surfaces with their usual
orientations can never dissolve (except for the K3 surface, by definition),
since it will again be an elliptic surface. Similarly, no information is avail-
able about connected sums of nonrational algebraic surfaces with their
usual orientations. This phenomenon is also discussed in [11] (in the
nonspin connected sum case). In practice, it occurs because nonrational
algebraic surfaces tend to contain embedded spheres of negative square
(under the intersection pairing) but no spheres of positive square. When
we perform either type of sum with an algebraic surface with reversed
orientation, it tends to introduce spheres of positive square. (Note that
this fails for connected sum with CP 2 , but it applies to sum with CP2) .
The interaction of spheres of positive and negative square is what allows
us to prove our theorems, by creating an S2 x S2 summand. For ex-
ample, Corollary 10 follows from Theorem 7, which shows that a simply
connected elliptic surface decomposes after connected sum with any mani-
fold containing a sphere of square 2 or 4. (Other positive numbers could
also be used.) This main theorem of [11] is in the same spirit.

As another example of this phenomenon we have Theorem 11, which
states that a simply connected elliptic surface decomposes after connected
sum with any nonorientable 4-manifold. Of course, "positive square"
and "negative square" become interchangeable in this setting. As an ap-
plication, we analyze what happens if the "subtle" exoticness of smooth
structures from elliptic surfaces is mixed with the "crude" exoticness of
the Cappell-Shaneson fake RP4 [3], an exotic smooth structure on RP4

which is detected by classical smoothing theory. If we take a collection
of homeomorphic simply connected elliptic surfaces and sum members of
this with RP4 (with either the standard or the Cappell-Shaneson struc-
ture), we obtain exactly one or two diffeomorphism types (depending on
whether the elliptic surfaces are nonspin or spin), distinguished by classical
theory. This prompts a question: Do compact, nonorientable 4-manifolds
admit exotic smooth structures which are not detected by classical theory?

We consider one more construction, which seems related to Donaldson-
Floer theory. The structure of elliptic surfaces provides us with embedded
Es plumbings. The boundary of an E% plumbing is the Poincare homol-
ogy sphere, which also bounds a smaller manifold (with the homotopy
type of a 2-sphere) obtained by gluing a 2-handle to a 4-ball along a left-
handed trefoil knot with framing - 1 (for example, [16]). We may form
a manifold M from a simply connected elliptic surface by cutting out
some E% plumbings and gluing in copies of the smaller manifold. M will
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be simply connected, with the same b+ as the original elliptic surface,
but smaller b_ . Since we are replacing negative definite pieces by other
negative definite pieces along homology spheres with simple Floer theory,
we might hope to use Donaldson-FΊoer theory to derive the Donaldson
invariants of M from those of the original elliptic surface. In particular,
if we apply the procedure to an infinite family of elliptic surfaces which
are homeomorphic but not diffeomorphic, we might hope to distinguish an
infinite family of homeomorphic but nondiffeomorphic M 's. This could
imply that some M 's cannot be written as connected sums of algebraic
surfaces (by the finiteness result for nonelliptic surfaces mentioned above).
Unfortunately, this program fails, since Theorem 14 states that M neces-
sarily dissolves. (Viro has also proved this in the case b2 = 10.) However,
this allows us to compute the Donaldson invariants of M directly. Pre-
sumably, we obtain constraints on the Donaldson-FΊoer invariants of the
various pieces involved. We prove that M dissolves by relating the con-
struction to another one, in which we replace some singular fibers by other
singular fibers with reversed orientation. Manifolds produced by the latter
construction also dissolve (Theorem 16). This should seem plausible from
our discussion of constructions which reverse orientations, although our
method of proof differs somewhat from that of previous proofs.

It should be noted that Matsumoto [21] studied singular torus fibra-
tions over S2 with fibers which look locally like elliptic fibers (possibly
with reversed orientation). Theorems 13 and 16 of the present paper also
follow from his work, together with Mandelbaum's theorem that V$S2 x S2

dissolves for V elliptic and simply connected.

In the sequel, we will continue to work in the smooth category. Except
where otherwise specified, all 4-manifolds will be oriented (canonically,
in the algebraic case), and diffeomorphisms and codimension zero embed-
dings will be assumed to preserve orientation. We will use vF to denote
a closed tubular neighborhood of an embedded surface F, which will
implicitly be identified with the normal disk bundle to F. A circle (for
example, vF ) will be used to denote the interior of a subset.

2. Preliminaries

We begin with a discussion of the topology of elliptic surfaces. Other
references for this are [13], [18], [22]. An elliptic surface is a compact,
complex surface V which admits an elliptic fibration, a holomorphic map
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FIGURE 1

π: V -> C onto a compact, connected complex curve, such that the generic
fibers of π are elliptic curves. Topologically, V is a closed, oriented 4-
manifold, mapping onto a closed surface, with generic fibers diffeomorphic
to a torus T2. We will deal primarily with simply connected elliptic sur-
faces. In this case, C must be a 2-sphere, since any nontrivial loop in
C would lift to a nontrivial loop in V. Note that the Euler characteris-
tic of a closed, simply connected 4-manifold is always positive. We will
frequently restrict attention to minimal elliptic surfaces, i.e., those which
are not blowups of other elliptic surfaces. This causes no loss of general-
ity, since an arbitrary elliptic surface has the form V\kQP2, where V is
minimal elliptic.

An elliptic fibration has well-understood structure. It has only finitely
many critical values, and away from these it is a bundle projection with
torus fibers (called regular fibers). The singular fibers, or preimages of
critical values, have been classified by Kodaira [17]. These fall into two
general types: nonmultiple singular fibers (on which π has finitely many
critical points) and multiple fibers (on which π is singular everywhere).
We will be concerned with two types of nonmultiple singular fibers, namely
cusp fibers and Es fibers, and with smooth multiple fibers.

A cusp fiber is a PL-embedded sphere with a unique nonlocally flat
point, which is a cone on a right-handed trefoil knot. Thus, a regular
neighborhood of a cusp fiber is diffeomorphic to the handlebody obtained
by gluing a 2-handle to B4 along a 0-framed right trefoil. This neighbor-
hood can be obtained from a tubular neighborhood vF of a regular fiber
F by ambiently adding a pair of 2-handles along a basis for HX(F). Fig-
ure 1 shows a Kirby calculus picture of this. The 1-handles and 0-framed
2-handle represent vF « T2 x D2 the other two 2-handles cancel the
1-handles to yield the neighborhood of the cusp fiber. (See [13].) Note
that if V is an elliptic surface which contains a cusp fiber and F c V is
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a regular fiber, then the inclusion map F «-> V is trivial on πχ (since the
2-handles kill πxF).

An Es fiber is described as follows: Begin with the Dynkin diagram
for Es. Add an extra vertex to the long arm to obtain an E% graph. Take
nine Z)2-bundles over S2 with Euler class - 2 , and plumb them together
according to the Es graph. This yields a regular neighborhood of an Es

fiber (with the fiber itself being the union of the nine 0-sections). Note
that by construction, our neighborhood contains an Es plumbing. This is
the starting point of the last construction described in the introduction.

Simply connected minimal elliptic surfaces without multiple fibers are
classified up to diffeomorphism by a positive integer n [14], [22]. Each
such manifold Vn has Euler characteristic \2n and signature - 8 « , a n d
admits an elliptic fibration with both a cusp fiber and an 2?8 fiber. V{ is

the rational elliptic surface CP 2 J 9 CP 2 obtained from CP2 by blowing up
the base locus of a suitable pencil of cubic curves. V2 is diffeomorphic to
the K3 surface. In general, Vn is obtained from Vx by fiber sum, as will
be described next.

Let M and N be 4-manifolds (not necessarily orientable), and let
K c M be a compact, codimension zero submanifold. Let φ: K ^+ N be
an embedding (possibly reversing orientation).

Definition. MiN denotes the manifold obtained by gluing N-φ(K)

to M-K along dK by the map φ\dK.

For example, suppose that K is diffeomorphic to B4, and if M and
TV are both oriented, suppose that φ reverses orientation. Then MVN
is just the ordinary connected sum M$N. In general, if M and N are
oriented and φ reverses orientation, then M\ N will inherit an orienta-
tion.

Now suppose that V and W are oriented 4-manifolds with singular
torus fibrations over connected, oriented surfaces. (In particular, suppose
that they have elliptic fibrations, after possibly reversing orientations.) Let
vF be a tubular neighborhood of a regular fiber F in V, which is the
preimage of a disk under the fibration. Let φ: vF -» W be an orientation-
reversing, fiber-preserving map onto a similar neighborhood in W, such
that the induced map between disks reverses orientation.

Definition. The fiber sum of V and W is the manifold V%φW.
Note that this inherits a singular torus fibration. The fiber sum of V

and W is clearly independent of all choices involving F and φ , except
possibly the isotopy class of the map φ\F onto its image. This last choice
may also be eliminated, provided that either V or W has a cusp fiber
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(possibly with reversed orientation). (If we perturb the cusp fiber into two
"fishtail" fibers, the monodromy of the bundle will realize all orientation-
preserving self-diffeomorphisms of F .) Vn is now easily described, as the
fiber sum of n copies of Vχ. (The orientation on the base does not matter
here, since complex conjugation Vχ -• Vχ may be assumed compatible with
the fibration but it reverses orientation on the base.)

Next, we consider multiple fibers. After a small perturbation of the
fibration, we may assume that all multiple fibers are smooth, i.e., they
are smoothly embedded tori which are multiply covered by nearby regular
fibers. (Essentially, they are Seifert multiple fibers crossed with Sι.) Any
elliptic fibration can be made from one without multiple fibers by a process
called logarithmic transform. In this procedure, we remove a neighborhood
vF of a regular fiber, and glue it back in by some diffeomorphism of
dvF « Γ 3 . Any time we glue T2xD2 into a 4-manifold along a boundary
Γ 3 , the resulting diffeomorphism type is determined by the image μ of
{point} x Sι. (In fact, we are adding a 2-handle, two 3-handles, and a
4-handle, so the diffeomorphism type is determined by the framed circle
along which the 2-handle is attached. The circle is μ, and the framing is
uniquely determined: If we lift to the cover of Γ 3 corresponding to the Z
subgroup of πχT

3 determined by μ, the framing is the one determined
by two distinct lifts of μ.) In the case of logarithmic transforms, μ is
determined by its projections into the base (by the fibration) and into
the fiber F. The former is essentially a nonnegative integer called the
multiplicity, and the latter is an element of Hχ (F), which is a multiple of a
primitive class called the direction. Logarithmic transforms of multiplicity
zero have no algebrogeometric interpretation (they destroy complex and
elliptic structure), but we will still find them useful. It can be shown (for
example, [12]) that in the presence of a cusp fiber, the diffeomorphism type
resulting from logarithmic transforms depends only on the multiplicities
involved.

We form manifolds Vn(px, , pk) by applying logarithmic transforms
of multiplicities px, , pk to Vn. By the above remarks, these are
completely determined up to diffeomorphism by the nonnegative integers
pχ, , pk (unordered) and n > 1. Since the trivial logarithmic trans-
form has multiplicity one, we can add or delete pt 's equal to one without
affecting diffeomorphism type. Vn(px, , pk) is elliptic if all p{ 's are
nonzero. (In fact, this yields all minimal elliptic surfaces over S with
nonzero Euler characteristic.)

K(P\' " " ' Pk) w *^ ^ e simply connected if and only if it can be written
(by adding or deleting p{ 's equal to one) as Vn(p, q) with p, q relatively
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prime (including (p, q) = (0, 1)). (To understand πχ, it should be noted
that for F cVn?i regular fiber, πι(Vn-F) = ί. When n = 1, this follows
because πx Vx = 1 and an exceptional curve provides a nullhomotopy for
a meridian of F in Vχ - F. The general case follows from the n = 1
case.) A complete list of simply connected elliptic surfaces (up to diffeo-
morphism) is given by Vn(p, q)$kCP2, p, q Φ 0 [22]. (The minimal ones
are precisely those with k = 0.) The remaining case Vn(0) dissolves (into
t) ± CP2) [12], so for n > 1 it is neither elliptic nor complex.

Since logarithmic transform preserves Euler characteristic and signa-
ture, the intersection form of a simply connected Vn(p, q) will have rank
12/2 — 2 and signature -Sn. By Freedman's classification [6], two such
manifolds, Vn(p, q) and Vn(p , q), will be homeomorphic if and only if
their forms have the same type (even or odd). But the form of Vn(p, q)
is even (i.e., Vn(p, q) is spin) if and only if n is even and p, q are both
odd. (Note, in particular, that the answer depends on n only through its
residue mod2.) This provides ahomeomorphism classification: one type
for each odd n, and two for each even n . The diffeomorphism classifi-
cation is much more complex and only partially understood. A summary
appears in [12].

We will need some general facts about 4-manifolds. In particular, we
will use the following mathematical folklore.

Proposition 1. Let H4 be obtained from a 4-ball by attaching 2-han-
dles. Let 2H denote the double of H. Then 2H dissolves.

Proof 2H is the boundary of H x I, which is a 5-manifold built
from 2?5 by attaching 2-handles. The attaching circles cannot be knotted
or linked in dB5 = S4, since homotopic embeddings of a 1-manifold in
a 4-manifold are isotopic. Thus, Hxl is a boundary sum of Z>3-bundles
over S2 . In particular, 2H = d(H x I) is a connected sum of S 2 x S2 's
and (if H is nonspin) S2 x S2 's. Since S2 x S2 « CP 2 JCP 2 , we are done.

Corollary 2. Let M be a closed 4-manifold which admits a handle de-
composition with no I- or 3-handles. Then M\M dissolves. In particular,
K7>iKΪ « »22S

2 x S2.
Proof. The manifold H = M - B4 admits a handle decomposition as

in Proposition 1, and 2H = M%M. The Kl surface admits a handle
decomposition without 1-or 3-handles, by [13]. q.e.d.

Other examples of closed 4-manifolds with handle decompositions as
in Corollary 2 include Vn [13] and Vn{p) [12].

We also need the following lemma of Moishezon.
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Lemma 3. (Moishezon [22, Lemma 13]). Let L be a lens space {pos-
sibly S3 or S2 x Sι). Let M be a manifold obtained from L x Sι by
surgery on two circles, one of which is {point} x Sι. Suppose πxM = 1.
Then M is diffeomorphic to S2 x S2 or S2xS2.

Proof Details appear in [22], so we merely sketch the argument. The
main trick is as follows: Suppose T2xD2 is embedded in a 4-manifold N.
If we perform surgery on the pair (N, T2 x {0}) along an essential circle
μ in T2 with the framing induced by the T2 x D2 product structure, we
obtain a 4-manifold N* with an embedded copy of S2 xD2. Performing
surgery on TV* along this S2 results in a manifold N. Clearly, N* may
be reconstructed from N by surgery along a certain circle. Moishezon
computed that N is obtained from N by deleting T2 x D2 and gluing
it back in by a map sending {point} x Sι to the circle μ x {point} in
T2 x S{. This is easily seen by Kirby calculus: If T2 x D2 is drawn as
Borromean rings with two dotted circles and a 0-framed 2-handle, the
first surgery turns a dotted circle to a 0-framed one, and surgery on the
2-sphere turns the original 0-framed circle to a dotted one.

Now let N be L x Sι. Let N* be obtained from N by surgery on
{point} xSι. There are two possible framings on this circle, but by a self-
diffeomorphism of LxS1 (preserving the Sι coordinate) we may change
one to the other. The genus 1 Heegaard splitting of L decomposes N
into two copies of T2 x D2. Applying the previous paragraph to one of
these, we see that N* is obtained from a manifold N by surgery on a
circle, and N is obtained by gluing together two copies of Sι x Sι x D2

by a map sending l x l xSι to l x ^ x l . Thus, N is ^ x S 3 . N* is made
from Sι x S 3 by a surgery, so M is made from Sι x S3 by two surgeries
on circles. Since M is simply connected, we may slide the surgery circles
over each other until one is trivial and the other is Sι x {point}. The

9 9 9 *** 9

result of these surgeries is either S x S or S x S .

3. The main results

Mandelbaum and Moishezon proved that many algebraic surfaces (in-
cluding simply connected elliptic surfaces) dissolve after connected sum
with CP2. Their work is based on an "irrational connected sum" lemma
of Mandelbaum [19], which allows objects such as fiber sums to be de-
composed into ordinary connected sums in the presence of an additional
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S2 x S2 or S2 x S2 connected summand. Our Lemma 4 is an adapta-
tion of this lemma to the spin case, which (presumably) was known to
Mandelbaum since he asserted [18] that V$S2 x S2 dissolves when V is
a spin, simply connected elliptic surface. The proof of Lemma 4 and its
application to dissolving elliptic surfaces are essentially taken from the
work of Mandelbaum and Moishezon. The new ideas of the present paper
center around constructing the required S2 x S2 from pieces of a more
complicated ambient space (cf. [11]).

Lemma 4. (Mandelbaum). Let M and N be oriented A-manifolds.
Let F c M be a closed, connected, orientable, surface of genus g, and
let φ\ vF ^> N be an orientation reversing embedding. Let P = M$φN.
Suppose that the inclusion map dvF ^ M -vF is trivial on πχ. Suppose
that either (1) M is spin, or (2) P is not spin and πχP - 1. Then
P\S2 x S2 is dijfeomorphic to M$N*, where N* is a manifold obtained
from N by surgery on 2g circles in φ{yF) forming a (preassigned)
symplectic basis for H{(φ(F)). If M or N has boundary, then we may
assume the dijfeomorphism is the identity on dP = dMudN.

Corollary 5. (Mandelbaum). Under the above hypotheses, if πγN = 1,

then P$S2 x S2 is diffeomorphic to M$N$2gS
2 x S2 {if P is spin) or

Mm2gCP\gcF (if P is not spin).
Proof of Corollary 5. This follows immediately, by the techniques of

Wall [24]. Since N is a simply connected 4-manifold, it contains (up
to isotopy) only one collection of 2g circles. Thus, each surgery is a
connected sum with either S2 x S2 or S2 x S2. On a simply connected
nonspin manifold, these operations are the same.

Remark. The missing case of Lemma 4 (P is spin and M is not spin)
is clearly false, since P$S2 x S2 will be spin and M$N* will not be. It
becomes true, however, if S2 x S2 is replaced by S2xS2. This case arises,
for example, when P is the K3 surface, since it is the fiber sum of two
copies of the nonspin manifold Vχ.

Proof of Lemma 4. Let μcdvF be a meridian to F . Then μ inher-
its a canonical normal framing in dvF from the local product structure
induced by the normal bundle to F. Extend this to a normal framing
of μ in P, and let P* be the result of surgery on this framed circle in
P. We verify that P* is diffeomorphic to P$S2 x S2: Since inclusion
dvF <-+ M — vF is π{-trivial, μ is nullhomotopic in M — vF . Thus,
P* is either P%S2 x S2 or P$S2 x S2. In Case 1 M is spin, and the
framing on μ is the one corresponding to spin surgery on M. Restricting
to M - F, we see that the surgery is the same as connected sum with
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S2 xS2,
x S2 «

FIGURE 2

In Case 2, P is nonspin and simply connected, so by Wall,
x S2

D2Now let Fo = F - D2, and let ??0 be the restriction of φ to uFQ.
We show that P* is diffeomorphic to Λ/(( N. P* is obtained from P
by deleting a tubular neighborhood of μ to obtain a manifold P o , and
then gluing in S2 x D2. Po is obtained by gluing M -vF to JV - φ{vF)
everywhere along the boundary except near μ. If we split S2xD2 into two
copies of D2 x D2 , we may think of one D2 xD2 as a 2-handle attached
to M - i/F along μ, and the other D2 x D2 as a 2-handle attached to
N — φ{vF) along φ{μ). Figure 2 shows the analogous phenomenon in
dimension 2. The 2-handle attached to M -vF is glued along μ with
the canonical framing, so it has the effect of filling in a normal disk to F,
resulting in M - ί/F0 . Similarly, the other 2-handle gives N - φ{vFQ).
P* is now seen to be MίM N.

Finally, we show that P* is M$N* as required. Observe that vF0 is a
regular neighborhood of a 1-complex. Let B be a regular neighborhood of
the 0-cell, and let γx, , γ2 be arcs in M attached to B to determine
vFQ. Then M$φ\BN is the connected sum MtfTV, and P* « A ^ # is
obtained from this by deleting neighborhoods of the 2g circles yt U φ(γ.)
and gluing each resulting boundary component to itself by φ. This is
the same as performing surgeries on the circles γ. u φ{γt) in M$N. But
dvF is πj-trivial in M - vF , so the arcs yf. may be isotoped into dB,
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and we see that P* is made from M$N by surgery on 2g circles in N
representing a basis for Hχ{φ{vF)). q.e.d.

We may weaken the hypotheses of Lemma 4 to obtain the following
lemma (which we need for Theorem 11, and for Theorem 7 if πχW Φ 1).

Lemma 6. Let M, N, F, φ, and P be as in Lemma 4, but with
M and N possibly nonorientable. {If either is nonorientable, drop the
requirement that φ reverse orientation.) In place of the last hypothesis,
assume that either (1) M is spin or (2) P is not spin (where the tilde
denotes universal cover). Then P$S2 x S2 « M$N*(reld) as in Lemma 4.

Proof Note that vF is an orientable manifold, since πχF —• πχM is
trivial. The hypotheses which we have weakened are only used in the first
paragraph of the proof of Lemma 4, where we proved P* « P$S2 x S2.
Here, Case 1 follows as before, lifting to the universal cover. In Case 2,
P is nonspin and simply connected, so it contains an immersed 2-sphere
with odd normal Euler class. We push this down into P, where it allows
us to apply Wall's trick to obtain P$S2 x 5 2 « P$S2 x S2.

Theorem 7. Let V be a simply connected minimal elliptic surface. Let
I2n be its Euler characteristic. Let W be an oriented 4-manifold con-
taining an embedded 2-sphere of square - 2 or -A, and let W denote its
universal cover.

(A) // V and W are spin, then V^W is diffeomorphic ( re ldTF) to

k/2K:skn/2)-ιs2χs2^ In particular, if W$S2xS2 dissolves and n>2f

then V$W dissolves.
(B) // V or_W_ is not spin, then VW is diffeomorphic (reldW) to

\ 2 I f W$CP2 dissolves, then FtfTF dissolves.
Corollary 8 (Mandelbaum [18]). If V is a simply connected elliptic

surface, then FtfS2 x S2 dissolves.
Corollary 9 (Mandelbaum [18] and Moishezon [22]). If V is a simply

connected elliptic surface, then V$CP2 dissolves.

Corollary 10. If V and W are simply connected elliptic surfaces, then
VfίV dissolves.

Proof. Corollary 10 is immediate from Theorem 7 unless V and W
are both spin with Euler characteristic 24. In this case, V%W « K2>\W «
K3$K3 (by Theorem 7, reversing orientation in one case). But K3$K3
dissolves by Corollary 2.

Proof of Theorem 7. We begin with Part A. Write V as Vn(p,q),
where n is even since V is spin. Suppose n > 2. Then V is the fiber
sum V2l Vn_2(p, q), where φ maps a neighborhood vF of a regular
fiber in V2 onto a neighborhood of a regular fiber φ(F) in Vn__2(p, q).
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By changing the elliptic fibration on Vn_2(p, q), we may assume it has an
E% fiber. In particular, we have a pair of embedded spheres Sx, S2 with
square - 2 , intersecting (transversely) at a single point. In Vn_2(p, q)%W
we are given a sphere with square 2 or 4. Tube this into S2 to obtain
a sphere with square 0 or 2. In the latter case, tube S2 into one of
the remaining spheres of square - 2 in the 2?g fiber, to drop the square
to 0. We are left with a wedge of two 2-spheres, with squares - 2 and
0. A regular neighborhood of this is a punctured S2 x S2, so we have
decomposed Vn_2(p, q)$W as N$S2 x S2, where the image of φ lies

in N. Write VW = V2%φVn_2[p, q)W = V2tφNiS2 x S 2 . We may

apply Lemma 4 to V2$φN (since nι(V2 - vF) = 1 and V2 is spin) to

obtain FjjTF « V2$N*. But N* is made from N by surgery on two

homotopically trivial loops (namely, two generators of Hχ(φ(vF))), so

N* « Λ%S2 x S 2 . (There can be no S2 x S2 summand since TV* has

spin universal cover. This is because the universal cover of V2$N* « V%W

is spin.) Thus, by the definition of N, N* = Vn_2(p, ^)STF(t5r2 x 5 2 ,

and FtfTF » K2|(S2 x S2|tKΛ_2(p, q)$W. But F2 is the K3 surface, so by
induction on n we reduce to the n = 2 case.

When F = K,(/?, q), it is the fiber sum V2l Q, where β is obtained

from S 2 x T2 by logarithmic transforms of multiplicities p and # . Since
the diffeomorphism type of V2(p, q) depends only on p and q, we may
assume that the directions of the log transforms are along the first factor
of T2 = Sι x Sι. It follows that Q = L x Sι, where L is a Seifert fibered
space with two multiple fibers, i.e., a lens space. The elliptic fibers are
Seifert fibers crossed with Sι.

The proof in the n = 2 case now proceeds as before. V2$W decom-

poses as S2 x S2l$M, with a regular fiber F lying in M. Thus, V$W =

W\V2\φQ = S2 x S2$M$φQ. We may apply Lemma 6 to M%ψQ, because

M is spin and dvF is π^trivialin M-vF (since it is trivial in V2-vF).

We get V^W « Mji(2*, where Q* is obtained from ζ? by surgery on a

pair of generators of a regular fiber of Q. If we choose {point} x Sι in

L x Sι = Q as one generator, Lemma 3 implies that β* is S2 x S2 or

S 2 x S2. (To see that πχ Q* = 1, note that this group is obtained from TΓJ ζ?

by killing φ^nγF . But 1 = π{ V = πχ{V2$φQ) is obtained in the same way,

since π{(V2-uF) is trivial.) Q* cannot be ^ x ^ S 2 since the universal

cover of KjjTF is spin, so V$W « Af#(2* « Mjt52 x S 2 = FjTF = K3$W.
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Part B of the theorem follows from a similar argument. The only dif-

ferences are that we reduce to the n = 1 case by splitting off copies of

Fj = CP 2 # 9 CP 2 , and we apply Case 2 of Lemma 6 in place of Case of

Lemmas 4 and 6. (Note that^after the first step of the induction, we may

find that Vn_{{p, q) and W are spin. If this occurs, we can force W

to be nonspin by adding one of the extra CP2 's to W. Also recall that

MUS2 x S 2 « M%S2 x S2 if M is nonspin; see the proof of Lemma 6.)
Theorem 11. Let V be a simply connected minimal elliptic surface

with Euler characteristic \2n. Let W be a nonorientable 4-manifold,
with universal cover^W.

(A) // V and W are spin, then V\W is diffeomorphic (τeldW) to
either $6n_{S

2 x S2W {if \n is even) or K3%6n_nS
2 x S2W {if \n

is odd).

(B) If V or W is not spin, then V\W is diffeomorphic {τtλdW) to

1 2 » 2

Proof The proof is similar to that of Theorem 7. We prove Part A;
Part B follows by the same method. If n > 2, write V = Vn{p, q) =
viKVn-2lP>0) asbefore(or V « V^V^p, q) for Part B, n > 1). To
decompose Vn_2{p, q)%W as N$S2xS2, locate an Es fiber in Vn_2{p, q).
Find a pair of intersecting spheres of square -2 in this fiber, along with
a disjoint sphere of square - 2 . Tube the latter into one of the former
spheres in Vn_2{p, q)%W, using a tube which runs along an orientation-
reversing loop in W. This produces a sphere with trivial normal bundle,
transversely intersecting a sphere of normal Euler class - 2 . A regular
neighborhood of these two spheres is the required punctured S 2 x S2.

Now Lemma 6 applies in place of Lemma 4, to show that V%W =

K2jtf #HS2 x S2 « V2%N* ( F o r P a r t B> observe that V^φN has a non-

spin universal cover since V%W does.) As before, V%W « FJS 2 x S2))
n 2 By Corollary 8, this is the same as

x S2 x S2jjJ*\ Since W is nonorientable, A:3JA:3tt^ »
J225'2 x S 2 i t^ by Corollary 2. Thus, we are done unless n = 2 (or n = 1
in Case B).

Assuming n = 2, write F = K ^ Q as before. V2%W = S2 x S2tfΛf,

as above. By Lemma 6, FJW = S2 x S^Λ/^β « AfDβ*. (Note that in

Part A M is spin, and in Part B M\ Q has nonspin universal cover.) As

before, V\W « AfJlS2 x S 2 = V2jW, and we are done.

Remarks. It follows easily from Freedman's classification of simply
connected topological 4-manifolds [6] that KZ\W is homeomorphic to
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t t n 5 2 x S2$W. (K3 « E^E^S2 x S2 and £ 8 | ίE 8 » tf8S
2 x S2.) These

cannot be diifeomorphic if W7 is the twisted S3 bundle over Sι. (Oth-
erwise, the methods of [10] would contradict the stable exoticness of the
Cappell-Shaneson fake RP 4 .) Parts A and B of Theorem 11 are distin-
guished by whether the universal cover of V\W is spin. However, if W
is not spin, then V%W can be written as \^n_xS

2 x S2\W by Wall's trick.
Theorem 11 has an amusing application. Let Wχ denote R P 4 , and let

W2 denote the (simplest) fake RP 4 of Cappell and Shaneson [3]. These
are homeomorphic (by Freedman's s-cobordism theorem with πχ = Z 2

[7]) but not diffeomorphic. Wχ and W2 exhibit a "crude" sort of ex-
otic smoothing, distinguished by high-dimensional smoothing theory, in
contrast with the subtle exotic structures given by elliptic surfaces. What
happens if we combine the two types of examples by connected sum?
If {v.\i = 1, 2, 3, } is a family of nonspin, simply connected ellip-
tic surfaces with fixed Euler characteristic k, then the manifolds V ftW.

are all diffeomorphic to jJ^_2CP2(tRP4 by Theorem 11 and Akbulut's re-

sult [1] that WJCP2 « RP4t)CP2. If the manifolds V. are spin, we

get that VfiWj decomposes as in Part A, so it is independent of /. In

this case, there are exactly two diffeomorphism types, distinguished by

j . (This follows because Wχ^S2 x S2 and W^S2 x S2 are not diffeo-

morphic for any / [3]. Note that if a K2> also appears in the decompo-

sition, we can eliminate it by sum with K2>.) The same remarks apply

if Wχ = K3$S3 x Sι and W2 = $χχS
2 x ^ V x ^ 1 : In the nonspin case

i s t)^+2oCjp2tl5r3 * S1' a n d i n t h e s P i n c a s e w e S e t t w 0 distinct diffeo-j

morphism types %{k/2)+ι0S
2 x ^ t t ^ 3 >< Sι and K3${k/2)_{S

2 x S2$S3 x Sι.

Next, we consider fiber sums of elliptic surfaces with incompatible ori-
entations. Let P = Vm{p{, , Pk)$φVn(pk+ι, , /?,) be the fiber sum
of two minimal elliptic surfaces, where we have reversed orientation on the
second summand. By reversing the orientation of P if necessary, we may
assume m > n. Since we may isotope fibers from one summand to the
other, we may write P as Vm{pι, , Pι)itφVn . We need to understand
the algebraic topology of P. Clearly, the Euler characteristic is 12(m + ή)
and the signature &{n - m). Since π{(Vn - φ(F)) = 1 and inclusion of a
fiber into Vm(pχ, , pz) is πj-trivial, we have πχP ^ πχ Vm(pχ, , /?,).
In particular, P is simply connected if and only if it can be written (by
adding or deleting p{ 's equal to 1) as Vm(p, q)$φTn , with p, q relatively
prime. This applies even when some pt 's equal zero, so we will include
the nonelliptic situation (p, q) = (0, 1) in further discussions.
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It remains to consider when P is spin. The homeomorphism type of
P will then be completely determined in the simply connected case. Let
P1 denote the manifold Vm+n{px, , pt).

Proposition 12. P has an even intersection form if and only if P1 does.
P is spin if and only if P' is. In particular, if πxP = 1, P is spin if and
only if m + n is even and p, q are both odd.

Proof (Compare with [12].) The elliptic surface Vn contains a section,
which is an embedded 2-sphere with square -n , hitting each fiber exactly
once. Let Nn c Vn denote a closed regular neighborhood of this section
union a cusp fiber. Nn has the homotopy type of S2 V S2 and unimodu-
lar intersection form [?_!„], so ΘNn is a homology sphere. Performing
logarithmic transforms in Nn , we obtain a manifold Nn(jpχ, , pk) c
v

n(P\>'" > Pk) > c a l l e d the nucleus of the elliptic surface [12], with bound-
ary the homology sphere dNn . Note that if we change n , the nucleus is
only changed by modifying the framing on one 2-handle (namely, the one
coming from the section). This allows us to abstractly define a manifold
No(P\ > ' * * ' Pk)' a n c i s h o w s t h a t n affects whether Nn(pχ9- , pk) is spin
or has an even intersection form only through its mod 2 residue. Now
observe that Vm'iφVn admits a section with square n - m, obtained by
summing together sections of Vm and Ύn . This allows us to construct
an embedding N = Nm_n(pι, , p7) c P, by analogy with the above
procedure. Note that since m - n = m + n (mod 2), the nucleus Nf of
P' is spin if and only if iV is, and the intersection forms of iV and N1

have the same type.

We show that N and P have intersection forms of the same type. Since
dN is a homology sphere, it induces an orthogonal sum decomposition of
the form of P, so it suffices to see that P - N has an even form. But this
lies in Vm$Ύn -F (F being a regular fiber), which embeds in VrJlφVm .
The latter has an even form, since it is the double of the spin manifold
Vm-ΰF.

To finish the argument, apply similar reasoning to Nf and P'. We see
that the intersection forms of P, N, Nf, and P' all have the same type.
To see that all four of these are spin if any one is, note that dNxR admits
a unique spin structure and apply the same technique.

Theorem 13. (Compare with Matsumoto [21].). Let P be the fiber sum
of two elliptic surfaces with nonzero Euler characteristics, one of which has
the nonstandard orientation. If P is simply connected, then P dissolves.
The same result holds if we allow logarithmic transforms of multiplicity
zero.
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Proof. It suffices to deal with minimal elliptic surfaces and Vn(0).
Since P is simply connected, both elliptic surfaces must have 2-sphere
base, so (reversing orientation if necessary) we can put P in the form
v

m(P> Q)$φVn > m > n > ®> P> 4 relatively prime (including (p,q) =
(0,1)) .

We begin with the case where P is spin. Then m - n is even. Suppose
m > n. Write P = V2tψVm_2{p, q\Vn, m - 2 > n > 0. Using E%

fibers, we decompose Vm_2(p9 q)%^V n as N$S2 x S2, with the image of

ψ in N. By Lemma 4, P = V2$ψN$S2 x S2 « F2)jJV*. Since N is simply

connected, P « K2J|Ar)t25
2 x S 2 = F^S 2 x 5r2jtFm_2(/7, q)$φVn . By induc-

tion, we reduce to the case where m = n. To simplify J^(/?, ?)L"^Π >

write it as ^ , ί ^ Λ t t ^ β 5 which is VjVn by Lemma 4 (as in the proof

of Theorem 7), since Vn\Ύn - F is simply connected. Now observe that

Vn%φVn is the double of FΛ - z/F, and the latter has a handle decom-

position without 1- or 3-handles [13]. (Begin with a neighborhood of a

cusp fiber = 0-handle U 2-handle; the remaining singular fibers add more

2-handles.) Thus VJ,^Vn dissolves, by Proposition 1.

Now suppose P is not spin and m>\. Write P = Vχ%ψVm_χ{p,q)%yV n .

As above, Lemma 4 splits this as Vχ\S2 x S2iVm_χ(p9 q)jφVn . If p and

q are odd, then Vm_{(p, q)%φVn is spin, and we have reduced to the

previous case. Otherwise, we continue by induction (reversing orientation

when necessary) to reduce to the case of Vx{p, q)iφVι, where p or q is

even.

This last case must be handled separately. As before, we can split the
manifold as V^φV^ψQ, but Lemma 4 yields Vχ(p, q\Vχ » M$S2 x S2 ,

where M$S2 x S2 = Vχ%^Vχ is spin. (If we started with m > 1, we are

now done, since the extra CP2 's allow us to change S2 χS2 to S2 x S2.)
What we see from this is that the diffeomorphism type of Vχ(p, q)$φVχ is
independent ofp,q (provided that p or q is even and p, q are relatively
prime). Thus, it suffices to show that Vϊ(0)iTι dissolves.

Figure 3 (next page) shows a Kirby calculus picture of Vχ - vF as
constructed by Harer, Kas, and Kirby [13]. The 1-handles and 0-framed
2-handle are a tubular neighborhood of a regular fiber (cf. Figure 1). The
two ribbons represent twelve 2-handles which are interleaved where the
ribbons cross. These 2-handles come from the singular fibers of Vχ. We
can draw Vχ%~Vχ - vF by the same method, since Vχ\φVχ has a singular

fibration over S2. (This looks just like an elliptic fibration, except that
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FIGURE 3

FIGURE 4 FIGURE 5

half of the singular fibers are backward.) The result is Figure 4. To obtain
Vι(0)jTι, we add a T2 x D2, i.e., a 2-handle, two 3-handles, and a 4-
handle. The 2-handle goes along an essential curve in a single fiber, with
framing determined by the F x Sι product structure. Figure 5 shows

i (Compare with the picture of Vn(0) in [12].)

We show that Vι(0)jφVι is diffeomorphic to inCP\xCP2 by blowing

down Figure 5 to obtain S4 . Consider the parallel pair of horizontal curves
in the center of Figure 5, with framings 1 and - 1 . Slide the - 1 over the
+ 1 , so that it becomes a 0-framed meridian to the -hi. The pair can now
be removed by sliding the +1 off of the 1-handle using any convenient
cancelling 2-handle, and then unlinking the pair from all 2-handles by
sliding 2-handles over the 0-framed meridian. This splits off an S2 x S2

or 5 x 5 (depending on whether the cancelling 2-handle had odd or
even framing). We have now exposed a parallel pair of vertical curves.
Repeating the procedure eventually yields Figure 6. This is easily seen to
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FIGURE 6

be S4, by cancelling handles. Note that this argument also shows that
Vn(0)^φVn dissolves. (Replace 6 by 6n everywhere.) q.e.d.

Now we return to the construction described in the introduction, re-
placing Es plumbings by smaller handlebodies. The manifold Vχ ad-
mits an elliptic fibration with exactly two singular fibers: one cusp fiber
and one E% fiber. By taking fiber sums, we obtain an elliptic fibration
on Vn with n cusp fibers and n E% fibers. This locates n canonical
Es plumbings (and hence, n canonical E% plumbings) in the manifold
Vn(p, q). But the boundary of an E% plumbing is the Poincare homol-
ogy sphere, which is also the boundary of the handlebody H obtained by
gluing a 2-handle to B4 along a left trefoil with framing - 1 [16]. Thus,
we may construct a manifold Mn k(p, q) (1 < k < n) by removing k
Es plumbings from Vn(p, q) and replacing them by copies of H. (The
gluing map is uniquely determined, by [2]. Thus, the diffeomorphism type
of Mn k(p, q) depends only on n, k, p, q by [12, Proposition 2.1].) We
take p, q relatively prime, so that Mn k(p, q) is simply connected. We
wish to prove:

Theorem 14. The manifold Mn k(p, q) dissolves (into (t ± CP 2 ) .
The above construction is closely related to the following procedure: Let

C denote B4 union a 2-handle attached to a right trefoil with framing
0. Thus, a regular neighborhood of a cusp fiber is diffeomorphic to C.
Because V{ admits an elliptic fibration with one cusp fiber and one 2?8

fiber, the boundary of a regular neighborhood of the Es fiber is d C. (This
is also seen by Kirby calculus, using the methods of [15], [16].) Thus, we
may remove k Es plumbings from Vn(p, q) and replace them by copies
of C, to obtain a simply connected manifold Pnk(p,q) depending only
on n, k, p, q . (It is routine to check that this is independent of the
gluing map. From the structure of dC as a torus bundle over Sx, one



112 ROBERT E. GOMPF

+1

-1

FIGURE 7

may compute that dC admits only one nontrivial self-diffeomorphism,
and this extends over C.)

We compare the two constructions, beginning with the elliptic surface
Vχ. Since Vχ is formed by gluing together C and an j?g plumbing, our
latter construction yields Pχ x(l, l) = C\Jd'C which is the double of C .
In Kirby calculus, this is obtained from C by adding a 2-handle along a
0-framed meridian to the knot, as well as a 4-handle. To analyze the first
construction, consider the nucleus Nχ c Vχ, a regular neighborhood of a
cusp fiber union a section (with square - 1 ) . Then Vχ = Nχ \JdEs (for
example, [12]). Nχ is obtained from C by gluing a 2-handle along a - 1 -

framed meridian, as in Figure 7. Observe that Nχ « H$CP2 (by sliding

the knot off the - 1 as shown). Thus Mχ χ(l, 1) = Nχ \Jd H is obtained

by doubling the 77, i.e., adding a 2-handle along a 0-framed meridian to

the trefoil, and a 4-handle. If we do this to the first picture in Figure 7,

we can slide the - 1 over the 0-framed meridian to obtain C \Jd CflCP2 .

This shows that Mχ χ(l, 1) « Pχ χ(l, l)tfCP2. Now observe that the
diffeomorphism may be taken to be the identity on C. (We slid one
meridian over the other without disturbing the trefoil.) It follows that the
two constructions are always related in this manner:

Proposition 15. If we remove the Es plumbing from an Es plumbing

and replace it by H, the result is CtlCP2. In particular, Mn k(p, q) «

(This can also be seen by applying Kirby calculus directly to 2?g, using
the method of [15], [16].)

Theorem 14 now follows immediately from:
Theorem 16. Pn k(p, q) dissolves (1 < k <ή).
Proof Split PnΛ{p,q) as a "fiber sum" Pn_χ k_χ{p, q\PlΛ{\, 1).

(If k = 1, n > 1, we define the first summand to be Vn_χ (p, q). If n = 1,
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then k = 1 and we define the first term to be the elliptic surface Q = LxS1

obtained by logarithmic transforms on S2 x T2 as in the proof of Theorem

7.) We have already seen that Pχ x{\, 1) is the double of a neighborhood

C of a cusp fiber. C is obtained from the neighborhood φ{vF) of a

regular fiber by adding a pair of 2-handles along a basis for Hχ (F) (as in

Figure 1). We double C by adding a third 2-handle h along a meridian

to the fiber (with the 0-framing in Figure 1, i.e., the canonical framing in-

duced by the product structure on vF)9 and adding a 4-handle. Since the

"fiber sum" given above essentially identifies dφ(vF) with dz/i7, wehave

described Pn k(p, q) as Pn_x k_x(p, q)-vF union three 2-handles and

a 4-handle. Since the 2-handle h is attached to dvF along a canonically

framed meridian, it fills in a normal disk to F. (Compare with the proof

of Lemma 4.) Thus, PnJζ{p,q) is given by Pn_xΛ_x(p, q) - u(F - D1)

union two 2-handles and a 4-handle. But v(F - D2) is a regular neigh-

borhood of Sι V Sι, and the 2-handles are attached along a longitude

of each circle. It is now easily verified that Pn k(p, q) is obtained from

Pn-ι k-\(P'» ί ) by surgery on a pair of circles representing a basis for

HX(F). In the n = 1 case, Po 0(p, q) = β,and PlA(p, q) is S2xS2 or
S 2 x S2 by Lemma 3. If n > 1, then Pn_χ k_x(p, ί ) is simply connected,

so Pn>k(p,q) is Pn_!,*_!(/>, ̂ ) Ϊ 2 5 2 X S 2 or / ^ . ^ ^ ( p , ^)«25
2 Ϊ 5 2 , and

the result follows by indication on k and Corollary 8.
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