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THE RICCI FLOW ON 2-ORBIFOLDS
WITH POSITIVE CURVATURE

LANG-FANG WU

Abstract

The Ricci flow on orbifolds converges asymptotically to a soliton solution.
This also provides us with a canonical metric on every orbifold.

0. Introduction

Richard Hamilton [3] proved that under the Ricci flow a metric on
any compact 2-dimensional, smooth manifold with positive curvature will
converge to one of constant positive curvature. One can extend this re-
sult rather easily to 2-dimensional orbifolds whose universal covers are
manifolds. In this paper we will prove an interesting result concerning
the asymptotic behavior of the Ricci flow on the so-called class of "bad"
orbifolds, or orbifolds whose universal cover is not a manifold.

The Main Theorem. Any metric with positive curvature on a bad orb-
ifold asymptotically approaches a Ricci soliton at time infinity under the
Ricci flow, where a soliton is a solution which moves only by diffeomor-
phism.

The main theorem gives us the first known example where a non-Kahler-
Einstein orbifold converges to a nontrivial Ricci soliton, namely a metric
of nonconstant curvature. The main theorem also provides us with a way
to get a canonical metric on a bad orbifold. On a compact surface, there are
no soliton solutions other than those of constant curvature (see Theorem
10.1 in [3]). Bad orbifolds do not admit metrics of constant curvature,
so every soliton solution has nonconstant curvature. The main theorem
also suggests strongly that a similar phenomenon may occur on higher
dimensional Kahler manifolds.

A local coordinate expression of an equation on a manifold M and
on any quotient of M by a finite group action look the same, since an
orbifold is locally the quotient of a manifold by a finite group action. It
is easy to obtain short time existence for the Ricci flow on an orbifold in

Received June 13, 1989 and, in revised form, November 27, 1989.



576 LANG-FANG WU

the standard way, and the Harnack's inequality and the evolution equation
for Q in [3] hold on any orbifold with positive curvature. Furthermore,
by using the evolution equation for Q and a slight modification of the
arguments given in [1], the entropy estimate on orbifolds can be easily
obtained. The only argument in [1] which fails in the bad orbifold case is
the one that guarantees a nonzero lower bound for the injectivity radius.
(See [3], p. 251.) Nevertheless, we can complete the proof of the main
theorem in the bad orbifold case using Theorems 2.7 and 3.7, which show
that every point on an orbifold lies in a ball whose radius is comparable to
1/^ov and whose area is comparable to \IR β . Then the main theorem

' max * ' max

follows directly from the arguments given in [3].
All the 1-gons and 2-gons in this paper are simple unless explicitly stated

otherwise.
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1. The topological properties of orbifolds

If a group G acts properly discontinuously on a smooth manifold M,
then the quotient space is a smooth orbifold. If the universal cover of a
smooth orbifold is a manifold, then we call it a good orbifold; otherwise,
we call it bad.

Theorem 1.1. The only bad 2-dimensional orbifolds without boundary
are of the following types:

(a) Zp-teardrop T:S2 with an orbifold point with an angle 2π/p . Its

Euler characteristic is χ(T) = 1 + \/p p is an integer.

(b) (Zp , Zq)-football F:S2 with two orbifold points with angles 2π/p

and 2π/q. Its Euler characteristic is χ(F) = \/p + \/q; p and q are

distinct integers, not less than 2.

{See [4], Theorem 2.3.)
Proof See [4].
For more details about the topological properties of orbifolds see [4].
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2. The geometric properties of Zp -teardrops with positive curvature

From now on we consider M a compact orbifold whose scalar curvature
satisfies 0 < R < i ? m a x . We consider a geodesic 2-gon a broken loop
consisting of two geodesic segments.

Lemma 2.1. Let D2 c M be a topological 2-disc, not containing any
orbifold points in the interior, whose boundary is a convex geodesic 2-gon.
Then L[dD2]>2π/y/K^χ.

Proof. Let γ be the shortest geodesic 2-gon in D2 . We may assume
L[γ] < 2π/y/Rmax, and we will derive a contradiction. This implies A
cannot be conjugate to B along γ (see Corollary 1.30 in [1]). We will
imitate the variational arguments in Lemma 5.6. in [1] to show that γ
can be shortened. If γ makes angles at two points, call them A and B.
If γ makes an angle at A, choose B to divide γ in half. If γ makes no
angles, choose A and B again to divide γ in half. Let γ be the union
of the two geodesic segments γ{ and γ2.

Case 1. Assume A e int(D2) and B e int(Z)2). (See Figure 1, next

page.)

Then all of γ e int(Z)2). By the variation arguments in Lemma 5.6 in

[1], we know ΔA = ΔB = π. This tells us that γ is a closed geodesic loop

in D2. From the fact that D2 is an even-dimensional manifold we get

A is conjugate to B along γ (see Theorem 5.9 (1) in [1] ). By Corollary

1.30 in [1], we get L[dD2] >

Case 2. Assume A e dD2 .
(I) Assume B e mt(D2). Then ΔB = π, as in Case 1. (See Figure 2,

next page.)

γχ and γ2 cannot have any arc on the boundary. If γ. had an arc

on the boundary, then we would have γ. c dD2 since γ. and dD2 are

geodesies. This tells us that B is on the boundary. dD2 is a convex

geodesic 1-gon so we have ΔA < π . From Lemma 5.6 in [1], we can find

some other shorter 2-gons in D . Thus a shortest 2-gon cannot occur in

this case.

(II) Assume B e dD2. (See Figure 3, p. 579.)

dD2 is a convex geodesic 2-gon, so we have ΔA < π and ΔB < π. If

ΔA = ΔB = π, then γ is a closed geodesic. By Corollary 1.30 in [1], we

have L[dD2] > 2 π / χ / R ^ . If either ΔA < π or ΔB < π (see Lemma

5.6 in [1]), we can find some other shorter 2-gons in D2 with at least one

endpoint in the interior of D2. So the endpoints of the shortest 2-gon

cannot both be on the boundary.
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pick a tangent vector V at A
— ΔA = ΔAχ + Z Λ 2 ,
where ΔA{ < π/2,

ΔA2 < π/2.
(See L e m m a 5.6 in [1].)

FIGURE 1

D

FIGURE 2
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FIGURE 3

Suppose now that M is a teardrop orbifold with one cone point at P
in the rest of this section. Let U = M-PQ, where PQ satisfies d(P0, P) —
max{d(P, m) \ m e M} .

Corollary 2.2. Let M be a Zp-teardrop with positive curvature. Denote

by i(P, U*) the injectivity radius of the orbifold point P in the universal

cover U* of U, where Π*:U* —• U is the covering map at P. Then

(2.1) i(P,U*)>
V^max

Proof Suppose d{P0, P) > i{P, U*). We may assume that i{P, (7*)
< π/y / i? m a χ . Then (Lemma 5.6 in [1]) we have a shortest geodesic 1-
gon γχ at P on [/*. The metric on U* is invariant under the Zp-

action. So we have p shortest geodesic 1-gons {yjjϊd ^n U* > where
L[yt] < 2i(P, (7*) < 2π/y/R^ for all /, and y ^ = P, for any distinct
/ and y. Since the exponential map is injective within the injectivity
radius and L[yt] < 2i(P, £/*), the disc enclosed by each γ. has an angle
less than 2π/p at P. Then we have ΓΓfy) = y in M , V/.
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From the topology of M, γ cuts M into two 2-discs {/) .}j^j. P eγ,
so Dj is a smooth 2-disc and P is not in the interior of D., for both
7. The total angle at P is 2π/p < π. (See Theorem 1.1.) So <9Zλ is a
convex, geodesic 1-gon for both j . By Lemma 2.1 we have 2 z(P, U*) =

> 2π/>/i? r n a χ . That is a contradiction. So we have

(2.2) i(P9u*)

Suppose d(P 0 , P) < /(P, [/*). Π*(d£/*) = Po in Λf and every point
on d U* has a unique shortest geodesic from P. This implies that there
are many geodesic 2-gons at P and Po let η be one of them. The cone
angle at P is less than π, and η cuts M into two 2-discs {Dk}

2

k==ι. The
boundary of one of the two discs is a convex geodesic 2-gon. By Lemma
2.1, we have L[η] > 2 π / χ / Λ ^ , which implies i(P, ί/*) > d(PQ9 P) >

On the universal cover U* of U, B* = exp*(5(0, (rπ/yfR^)) is
strongly convex if r < £ . (See Theorem 5.14 in [1].) Let Br = Π*(5*),
where Π*: £/* —• £/ is the p th covering map at P.

Lemma 2.3. Any geodesic η in N = M — Bι,4 which starts at dN and

returns to dN must have length L[η] > 3 π / ( 2 v ^ ^ ) .

Proof. (See Figure 4.) Let γ be the shortest geodesic in TV which starts
and ends at dN. Either γ passes through PQ or it does not. If γ does
not pass through Po, then we can lift γ to U*. Since 5* / 4 is strongly
convex, γ cannot have length zero. If γ does pass through Po, then since
Po is the furthest point from P, γ cannot have length zero. Let a, b eM
denote the endpoints of the shortest geodesic γ. A variational argument
easily shows that γ must intersect dN at right angles. The Gauss lemma
tells us that V£ e dBι/4 , the unique minimizing geodesic γξ from p to ξ
intersects dBx,4 at a right angle. Hence γα U γb U γ is a geodesic 1-gon at
the orbifold point. By Lemma 2.1, L[γα u yb U y] > 2π/ v /i? m a χ .

From the definition of Bι/4, we have L[yα] = L[yb] = ττ/(4
which implies L[y] > 3 ^ / ( 2 ^ / ^ ^ ) .

Lemma 2.4. y4«y geodesic l-gon γ in the closure of Bχ/4 - 5 1 / 8 with
the endpoint x e 0Bι/4 has length > Cχ/yJRm2iX, where

,* L 2Λ/2π . fy/2π
(2.3) C{ = mm j 2π, — — sm I

(See Figure 5, p. 582.) Let D D Bχ/4 be the disc which is

enclosed by y. If D does not contain the orbifold point P, then by
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Teardrop

N = M - B

FIGURE 4

Lemma 2.1, L[γ] > 2π/ v /i? m a χ . If D does contain P, then consider

the lifting γ* of γ in the universal cover B*,4 of Bχ,4 . The fact that D

contains P tells us that the endpoints of γ* are two different preimages of

x . Then by Corollary 1.30 in [1] we may compare B*,4 with the standard

sphere of constant curvature i?m a χ . This implies

L[y]>

Lemma 2.5. If γ is the shortest geodesic 2-gon in M with at least one
endpoint in N - M - Bγ.4, then L[γ] > C2/y/Rmax, where

. L 3π
= mm < 2π, -r-, sin

Proof (See Figure 6, p. 583.) If γ makes angles at two points, call
them A and B. If γ makes an angle at A, choose B to divide γ in
half. If γ makes no angles, choose A and B again to divide γ in half.
Let γ be the union of the two geodesic segments, γ{ and γ2.
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the standard sphere with radius /• = \/2/Rmaχ

L[ϋBj] = 2π/ sin0,

so 0 = lπ/y/2,

mjlU 7, ] > m\

so L[γ] > (2V2

L= s\n(lπ/V2) > (2V2

FIGURE 5

Case 1. Assume A e int(iV). By Lemma 5.6 in [1], we have ΔA = π .
Any closed curve which connects dB{ ,4 and dBx,% has length larger than
( π /4)\/^ m a x . Since C > π/4, we may only consider the case where
B E i n t ( M - 5 1 / 8 ) , which implies ΔB = π . Then we get a closed geodesic
y . By Case 1 in Lemma 2.1, we have

(2.4) L[y]>
2π

V^max

Case 2. Assume Aed(N) and 5 £ int(TV).

(I) Assume B φ dBι/4 . Since C > π/4 we may only consider the case

where γ is in Bχ/Λ - Bχ,%. Then ΔB = π (see Lemma 5.6 in [1]) and γ

is a geodesic 1-gon. By Lemma 2.4, we have L[γ] > C 1 / v

/ i ? m a χ , where

(2.5) C, = min < 2π, sin
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1/8

1/8

FIGURE 6
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(II) Assume B e dBx,4 . If γ has an arc η in N, then η is a geodesic
segment which starts and ends at dN. By Lemma 2.3, we have

( 2 6 )
If 7j and γ2 are both in 5 1 / 4 , we have ZA < π and ΔB < π. Using the
same arguments given in Lemma 2.1, we get

(2.7) L[γ] > £

Corollary 2.6. For each point ξ in N, we have i(ξ, M) > C2/
where

(2.8) C2 = min}[2π,Ύ,-Γs1n^wj,^.

Theorem 2.7. If M is any teardrop with positive curvature, then for
each point ξ e M, we have

where

(2.9) C = min {2(1 - cosC2)[C2]
2π, 2π(l-^cosl/4) |

Proof Let H be a 2-dimensional Riemannian manifold with curvature
i?m a x > RH. For any point ζ on H, assume exp^ \B+{0 p/π—^ is an
imbedding and π > p . Then, if we compare it with the standard 2-sphere
with constant scalar curvature i? m a χ , by Corollary 1.30 in [1], we have

In particular, we have

(2.11) ^ e x P ί ^ 0 , ^ = ^ ) >2(l-cos/W/*

Theorem 2.7 follows easily from this result as we will now demonstrate.
If ξ € the closure of N, then by Corollary 2.6, we haveA h (B

>2(l-cosC 2 )[C 2 ] 2 π/4i?
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If ζ is in 5 1 / 4 , then

1
(2.13) exp p ( i?(θ,

On the universal covering U* of U,

1
AlexpplBlO,

4λAR
max

which implies

A I expί

(2.14) >ΛlexpJiM0,

^ 2π(l-cosl/4)

Let C = min J2( 1 - cos C 2 )[C 2 ] 2 π ?

 2 π ( 1" c; s ^ 4 ) } .

3. The geometric properties of footballs with positive curvature

In this section we assume that M is a football orbifold with cone angles
2π/p and 2π/q, and with positive curvature. In order to apply the same
techniques for teardrops to footballs, first, we need to have some control
over the lower bound of the distance between the two orbifold points,

d{P,Q).
Theorem 3.1. On a (Zp9 Zq)-football M with positive curvature, we

have

(3.1) </(/>, β ) > — J = ,

where P, Q are the orbifold points.
Proof. Let Po be a point which satisfies

d(P0, P) = m a x { ύ f ( P ,m)\meM}.

Case 1. Assume d(P, Q) = d(P0,P). Let V = M-Q. Consider
the pth covering Π: F* —• V with respect to the Zp-action at P. Since
V = M - Q, we have Π(<9F*) = Q. This implies d(d V*, P) > d{P, Q).
Let i(P, V*) denote the injectivity radius of P in V*.
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(I) Assume i(P, V*) < d{P, β ) . Combining Corollary 1.30 and Lem-
ma 5.6 in [1], either i(P, V*) > π/y/Rmax or there is a shortest 1-gon γ
at P in F* UdV* with L[γ] = 2/(P, V*). The metric on V* udV*
is invariant under the Zp -action, and the exponential map is injective
within the injectivity radius; again, we get p disjoint geodesic 1-gons. So
if γ exists, then the disc enclosed by γ must have an angle less than
2π/p. Since 2π/p < π , the geodesic 1-gon γ is convex. By Lemma
2.1, we have L[γ] > 2n/^/R^ and i(P, V*) > n/y/R^. So we have

(II) Assume /(P, F*) > d(P, β ) . This tells us that

max{d(y,P)\yedV*} = d(P,Q).

Otherwise, there would be a y e V* with i(P, V*) > d(y,P) >
d(P9 Q), which contradicts the assumption d(P,Q) = d(P0,P) =
max{d(P, m) | m e M} . So we have

n{dexp*p(B(0,d(P,Q))} = Q.

This also implies that there are 2-gons γ c M at P and Q with L[γ] =
2d(P, Q). Any 2-gon γ c M at P and Q must enclose a disc D , where

d
y is a convex geodesic 2-gon since again the angles at P and Q are

< 2π/p and 2π/q which are < π . By Lemma 2.1, we have

(3.2) ^

This implies d(P, Q) > π/
Case 2. Assume d(P, β) < rf(P0, P ) . Let C/ = M - PQ . Consider

the #th covering U of U with respect to the Zq-action at Q, where
Π^: Uq —• [/. Fix a preimage of P , namely Pχ, and consider the pth
covering ί7p* of Uq with respect to the Zp-action at ̂  , where Π*: U*--+
Uq. Let i(Pχ, 6̂ *) denote the injectivity radius of Pχ in U*. Let P^
be any preimage of P in Uq other than P j . Let ω be the minimizing
geodesic connecting P and Pk . If (? G ω, then Π^(ω) is a convex 2-gon
at P , Q in Λ/. If Q £ ω, then Π (ω) is a convex 1-gon at P in M .
In both cases, by Lemma 2.1, we have L[ω] > (2π)/^/i?maχ . Thus

(3.3) £

(I) Assume d(P, Q) < i(P,, U'). (See Figure 7.) rf(/>, β) < i(Pχ, t T ) ,
so there exists a unique minimizing geodesic γ in M connecting P and
β . Choose the unit tangent vector V at β in M such that the two angles
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Q* '-^Po

U=M-PQ

FIGURE 7

θ{ and θ2 formed by V and y(Q) are equal. We also may assume that
Q > P > 2, so θχ = θ2 = π/q > π/3 < π/2. Let p(s) be the geodesic
which starts at Q in the direction of V and is parameterized by the arc
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length s . Let F be a connected fundamental domain of Π in U such
Q Q

that Ω π δ F c Π (p), where Ω is a small neighborhood of ζ?. Since

F is the fundamental domain, each p(s) in Π (Ω) has two different

liftings, px(s) and p2(s), on the closure of F. Π* is a /7th covering

map at Pχ, so we may identify the closure of F as a subset of U*.

Using d{P, Q) < i{Pχ, U*), θx=θ2 = π/q < π/3 < π/2, and the first

variational formula in [1], for small s > 0, there is a unique minimizing

geodesic arc Ψ^ in F connecting P and p.(s) for / = 1, 2 with

L\¥s]<d(P9Q),

Ψι

snΨ2

s=p,

and

So φ = Π*[Π^(ψ] uΨ2

S)] is a 2-gon in M, with

(3.5) L[ψ;] + L[Ψ2

S] = L[φ] < 2d(P, Q).

This implies Q $ φ and the shortest 2-gon ω at P in M does not pass
Q. So ω is a 1-gon. Then, by Lemma 2.1,

VΛmax

which gives

(3.6) ^

(II) Assume d(P, Q) > i(Pχ, U*). Without loss of generality, we may
assume /(Λ,^*) < (2π)/y/K^i. Then expΛ{5[0, / ( ^ , £/;)]} is a
smooth disc without touching any preimage of P other than Pχ. From
d(P, Q) > i{Pχ, ί7p*), we can find p shortest geodesic 1-gons {δ} in U*
with /(Pj, U*) = (L[ί])/2. The exponential map is injective within the
injectivity radius, so the p shortest 1-gons {δ} cannot intersect each other
except at the point P . Particularly the disc in U*, which is enclosed by
one of the 1-gons {δ} , has an angle less than 2π/p < π at P . By Lemma
2.1, we have

(3-7) ^

which implies d(P, Q) > n
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Theorem 3.2. If M is any football with positive curvature, then the
injectivity radius of the orbifold point P (or Q) in the universal cover of
M - Q (or M - P) is greater than π/ λ / i? m a χ . Particularly we have

( \ ( \ λ\ in
(3.8) A expp \B 0, . > Cminl — — , — —

V L V VRmJ2JlJ l ^ m a x ί Λ m ι
where C is a constant.

The proof for Theorem 3.2 can be obtained directly from the same
arguments in Corollary 2.2 and Theorem 2.7.

On the universal cover H* of Hp = M - Q at P (let HQ = M-P),

we know Bp

r - expp(5(0, r7r/^/i?max)) is strongly convex if r < 1/2 (see

Theorem 5.14 in [1]). Let Br

p = Π (Bp

r), where Π*:i/* -• Hp is the /?th

covering map.
Lemma 3.3. Any geodesic η in N = M - Bp which starts and ends

at ΘN must have length L[η] > 3π/(2 χ/i?m a χ).
Proof Let γ be the shortest geodesic which starts and ends at ON.

Then as defined and discussed in Lemma 2.3, we know γa u yβ U γ is a
geodesic 1-gon at the orbifold point P. By Lemma 2.1, we have

. Since α, βedB1'*,P

(3.9) L[γJ = L[γβ] =

Thus we have L[γ] >

Lemma 3.4. Let γ be any geodesic l-gon in the closure of BXJA - 5J/8

with the endpoint on dB]J4. Then we have L[γ] > CxlyJRmax, where

(3.10) C, - m i n j 2 π , —^— sin I ^ -

Proof. Since we have d(P, Q) > π/^R^ and i(P, H*p) > π/
all the arguments given in Lemma 2.4 can be applied directly.

Lemma 3.5. If γ is the shortest geodesic 2-gon in M with at least one
endpoint in NpQ = M- Bι

p

/4 - BιJ4, then L[γ] > (CJ/y/X^, where
(3.11)

ί. 3π 2N/2π . ίVϊπ\ 2\flπ . (\ίlπ\ π)π π an^j s i n ^ J |

Proof If γ makes angles at two points, call them A and B. If γ
makes an angle at A, choose B to divide y in half. If γ makes no
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angles, choose A and B again to divide γ in half. Let γ be the union
of the two geodesic segments yx and γ2.

Since CpQ < π/4, we may assume that L[y] < π/(4 v/i?m a χ).
Case 1. When A e int(NpQ).

This implies ΔA = π. Any closed curve which connects dBp and

dBι

p

β (or dBψ and dB1^) has length L > π/(4^R^χ). Since C <

π/4, we may let 5 e i n t ( M - 2?]/4 - BιJ4). By Lemma 5.6 in [ 1 ], we have
ΔB = π. So γ is a closed geodesic. Hence, by Case 1 in Lemma 2.1, we

Case 2. When A e dNpQ and B £ inl(NpQ).

(I) Suppose B $ dNpQ = dBp

/4 U dBιJ4, which means B e

int{Bp

/A - B1/*) or int(BιJ4 - BιJ*) since C <π/4. So ΔB = π and

γ is a geodesic 1-gon. The shortest distance between dBp

4 and OBQ4

is larger than {π/2)y/R^ and C < τr/4. Thus if ^ G 95], / 4, then

5 e int(Bp

/4 - Bp

β), and if A e βψ , then B e mt(BιJ4 - dB1^). Hence

by Lemmas 3.3 and 3.4, we have L[γ] > C2/^/i?m a x, where

(3.12) C2 = m i n | 2 π , - ^ s i n ^ J , ^ -

(II) Suppose B e dBp

/4 u dBιJ4. Assume that A and 5 are both on

the same connected component of the boundary, namely dBp . Then if

γ intersects Np = M - Bι

p

4 , we will get a geodesic segment η from γ,

which starts and ends at dNp. By Lemma 3.3, we have L[γ] > L[η] >

If γ does not intersect Np = M - Bι

p

/4, then yχ and γ2 are both

in Bx

p

4. So we have ΔA < π and ΔB < π. By Lemma 2.1, we have

Assume that A and 5 are not on the same connected component of
the boundary, namely A on dBlj/4 and B on dBlQ4. From Theorem
3.1, we have

(3.13) d(A,B) + —ί= > d(P9 Q)> π

which implies that L[γ] > 2 d(A, B) >
Corollary 3.6. For each point ξ e the closure of NpQ, we have

(3.14) i(ξ,M)>
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where
(3.15)

3π
an

' y/ϊπ
sm

y/2π\ πj , - J .
Theorem 3.7. //* M w any football with positive curvature, then for each

point ξ e M, we have

(3.16) > C/i?m a χ,

where C is a constant.
Proof. If ζ e the closure of NpQ, by Corollary 3.6, we then have

Λ(exPί(i?(0, n

If ξ e BXJA (or e βg / 4 ), then

(3.18) exP / )(5(0, \

> A(expζ(B(0,

(3.19)

and

(3.20)

Let

(3.21)

2π(l -cos 1/4)

8 i ? *

= min̂( l - c o s C ^ H C ^ ] 2 ,

2π(l-cosl/4) 2π(l-cosl/4)
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4. Ricci solitons on bad orbifolds
We know that the Ricci flow is the gradient flow of the relative energy:

E(g,h)= ί
J M

(4.1) d-^ = -2JM{Rq-rfμg.

The relative energy E has no absolute minimum on bad orbifolds because
there are no metrics of constant curvature on bad orbifolds. (See Figure
8.) There is a 1-parameter family of conformal diffeomorphisms of the
orbifold to itself, along which the soliton flows. Translating any metric by
one of these diffeomorphisms reduces its energy by a fixed amount. This
is related to Futaki's obstructions (see [2], Theorem 8.3.2, p. 125). For
completeness, we would like to discuss the existence and uniqueness of the
soliton solution.

Theorem 4.1. On any 2-dimensional orbifold, there exists a unique Ricci
soliton.

Proof. Richard Hamilton [3, Theorem 10.1] proved that, by providing
a way of getting soliton solutions on any orbifolds, the only soliton solution
on any 2-dimensional manifold is the metric of constant curvature. Good
orbifolds are those which can be covered by manifolds, where the group
action induced by the covering map is an isometry. Under the Ricci flow
any isometry is preserved. So the uniqueness of the Ricci soliton solution
on a good orbifold can be obtained directly from the cover manifold. Here
we are going to show the existence and uniqueness of the soliton solution
on any bad orbifold. We warn the reader that the notation we use here
may differ from that in [3]. From [3], we know that the way to get a
soliton solution on a (ZQ , Z J-football, where α < β , is to find a constant

k e (0, 1) such that the equation y = key~ι has two solutions

(4.2)
V ) ιy=l+q>U

and

(4.3) 0<a/β=p/l < 1.

For any given α and β, if there is a Ricci soliton, then there exists (at

least) a constant 6 e (0, ^ ) , such that

(4.4) - = b a >
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teardrop

So

FIGURE 8

(4.5)
y = 1 - ba < 1,

{ ; :
Define / : (0 , ±)-* R by

(4.6)
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Note that if k e (0, 1), then

y = I - ba < I,v-i ( y = I
(4.7) <£• y = ke has two solutions <

\y=l
&l-ba = ke~~ba a n d l+bβ = kebβ, for b € ( 0 , £)

1 6a 1+6/? , 1 r , / Λ n= - ^ = k<l, f o r 6 e ( 0 , i ) .

I + bβ b(a+β)

(4.8) «•/(*) = 0, f o r 6 e ( 0 , i ) .

(4.9) .

A*) = (a + /!) - 4 - ; - (« +
{{b-b-afParticularly, we have

(4.10)

and \imb_tl. f(b) = +00. So there exists a smallest nonzero ί> e (0,

such that f(b) < 0 is a local minimum. On the other hand,

1 - b -a

- β 1

0.

< 0l 1
l-b a (l-b-a)2

(l+b-β)(l -b a ) - 1 < 0 ,

(4.11) β-a-baβ < 0.
Hence Vb>~5, β-a-baβ<0.

Claim 1. For any solution b of f(b) — 0 between 0 and £ ,

(4.12) / ( 1 ) (£)>0.

Suppose b>0 and /(Λ) = ((1 +b_β)/(\ -b α)) - ί A
( α + * ) = 0. Since

is nonpositive near 6 = 0 and b is the smallest local minimum, we
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have b > ~b . So

(4.13) β-a-baβ < 0 ,

and

f\b) = {a + β)\ L-τ-e*
'l(l-b-a)2

(4,4) = ( α + Λ f_^__ϋ^l

L n - b - a ) 2 JL ( l - 6 α r

This proves Claim 1. Claim 1 also tells us that we have one and only
nonzero solution b for f{b) = 0 between 0 and £ . That implies the
existence and uniqueness of the soliton solution on a 2-dimensional bad
orbifold.

Corollary 4.2. The Ricciflow gives a canonical metric for any 2-dimen-
sional orbifold.

On any orbifold with χ > 0, the soliton solution is rotationally sym-
metric metric of positive curvature. That assures that the soliton solution
can be embedded in R3. To see the exact shape of the soliton solution of
a (Zα, Z^)-football in R3, one has to explicitly solve the inverse function

y = h"\u) of

(4.15)
j a p y - ke' *

where k e (0, 1), y{ and y2 are the two solutions of y -key~ι = 0, and

(4-16) ^ r Z i τ = ^

(Vy, < y < y2,y - key~x > 0, so h~{ is well defined.) (See Theorem
10.1 in [3].) The soliton solution on a (Za, Z»)-football induces a metric

2 2 2 n the cylinder wit

g(x) = g(x + Ct)

ds2 = g(x)(dx2 + dθ2) on the cylinder with coordinates (x, θ), where

(4.17) =lΊ[

Cx
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and C is the velocity with which the soliton is moving by translation in
x. Look at the embedding /* from the cylinder to the space R3, using
cylindrical coordinates (/, 0, z) :

(4.18) im:(x,θ)^(f(z)9θ9z(x)).

The induced metric on the embedded orbifold is

where
'dz

(4.19) 5* = . L ( i _
8 C

In particular, we have

y-\
. . (-00)

(4.20)
c^

k e y 2 ~ ι - 1 _ y 2 ~ ι _ β

ί(+oo)

which implies that by choosing the constant C suitably, we will have

/z(z(+oo)) = l/Va2 - 1 and /z(z(-oo)) = \/\Jβ2 - 1. Hence the angles
at the two endpoints are 2π/α and 2π/)S, and the embedding defined
above is a (Z β , Z^-football in R3.
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