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ON TWISTOR SPACES OF THE CLASS ¢

F. CAMPANA

0. Introduction

Let M*" be a 2n-dimensional compact and connected oriented Rie-
mannian manifold, and Z (M) be its twistor space. The M 2" for which
Z (M) is Kihler are classified, up to conformal equivalence, in [16], [13]
for n =2, in [24] for n > 4 and even, and in [3] for n > 3. The proofs
are mainly differential-geometric.

Y. S. Poon has, however, constructed self-dual metrics on P,(C) #
P,(C)=M * for which Z (M) is in Fujiki’s class Z (i.e., bimeromorphic
to a compact Kihler manifold), but not Kéhler.

We show here that:

(1) for n >3, Z(M) isin # iff it is Kahler, iff M*" = §>";
(2) for n=2,if Z(M) isin &, then M is either S*, or homeo-
morphic to the connected sum of 7(M) > 0 copies of P,(C).

Apart from well-known facts, the proof consists in showing that if
Z(M) is in &, then n (M) = n,(Z(M)) = 0 where mn, denotes the
fundamental group.

This last equality is obtained by purely complex-geometric methods,
using the simple-connectedness of the twistor fibers, and the compactness
of the Chow scheme of manifolds in % . More precisely, it is possible
(see Theorem 2.2) to evaluate n,(Z), for Z in %, from =,(Y) and
n,(A4) if A and Y are compact connected submanifolds of Z , such that
Y has enough “deformations” meeting 4 in Z. When Y is a smooth
rational curve with ample normal bundle in Z (for example, a twistor fiber
in Z(M4)) ,and A is a point on Y, we get, in particular, 7, (Z) = 0.
This extends a former result of J. P. Serre on the fundamental group of a
unirational variety.

1. Preliminaries

1.1 Notation. Let X be any irreducible complex analytic space. Then
n,(X):=m,(X, a) for some unspecified a in X.
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Let f: X — Y be a morphism of irreducible analytic spaces. Then
foin(X)=n/(X,a)—n(Y):=n(Y, f(a)) denotes the morphism of
groups induced by f. If no confusion arises, we denote also by f, the
morphism induced by the restriction of f to any subspace of X .

Let A and B be two irreducible subspaces of X, and let a : 4 —
X and B : B — X, respectively, be the natural inclusions. Let u :
B’ — B be any modification of B (for example, its normalization or its
desingularization). We shall denote by (r,(4), nl(B')) the subgroup of
n,(Z), generated in 7,(Z) by o, (7,(4)) and (ﬂoﬂ)*(nl(B')).

1.2 Remarks. Let d : X" — X' be a desingularization of the normal
analytic space X'. Then d, is surjective, since all fibers of d are con-
nected. However, d, is not always injective: blow-up the vertex of the
cone over an elliptic curve.

Let n: X' — x be the normalization of X. Then n, is not always
surjective: identify two points in X’ =P (C) to obtain X .

1.3 Proposition. Let f : X — Y be a proper surjective morphism of
irreducible analytic spaces. Assume Y is normal. Then (f, - n,(X)) has
finite index in n (Y).

Proof. Let f:=hog, where g: X — Y, has connected fibers so that
(g,) is surjective, and % : Y, — Y is finite surjective. We can thus assume
that f=h and Y, =X.

Let Y* be a dense Zariski open subset of Y over which f is an un-
ramified covering. Let X* := f~'(Y*); then f,(n,(X™)) has finite index
in nl(Y*). The assertion now follows from the following commutative
diagram:

nl(X*) — 7, (X)

l l

nl(Y*) — n(Y) — 1

in which the exactness of the bottom line follows from the normality of Y,
since any y € Y has a fundamental basis of (contractible) neighborhoods
U in Y such that U" := (UNX") is pathwise connected.

1.4 Proposition. Let f: X — S be a surjective analytic map between
irreducible compact analytic spaces, with S normal and X smooth. Let
X, be a connected component of a smooth fiber f 'l(s) of f,andlet Y
be a compact irreducible analytic subset of X such that f(Y)=S. Then
(m,(Y), =,(X,)) is a subgroup of finite index in m,(X).

Proof. Let S* be a dense Zariski open subset of S over which f is

smooth. Let X* be f~'(S*), and let Y* := (X" NY). The following
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homotopy sequence provides an exact sequence of groups:

n(X,) = m (X)) — =, (S7).

s

(We may assume by Stein reduction, as in Proposition 1.3, that the fibers
of f are connected.) Thus, (,(X,), n,(Y™)) has finite index in 7z (X7),
and hence in 7,(X) since X is smooth. Hence (n,(X,), 7,(Y)) has finite

index in 7,(X), by the functoriality of z, .

2. The main result

2.0 Notation. All analytic spaces here are reduced. Let Z, 4,and S
be compact irreducible analytic spaces, where A is a subspace of Z , and
S is a subspace of C(Z), the analytic space of compact, pure dimensional,
analytic cycles of Z constructed in [2].

Let G, C § x Z be the graph of the universal analytic family (Y)),
s € §, of cycles of Z parametrized by S, and let p : G, — § and
q : G, — Z be the restriction of the natural projections of S x Z . Recall
that, set-theoretically, G, : {(s, z) s.t. z€Y}. Wecall ()¢ simply
the “family S ”. We say that S is Z-covering if g is surjective. Equiva-
lently, this means that any z of Z belongs to at least one member of the
family S. Because .S is compact and Z is irreducible, it is sufficient to
check this condition for z in some open nonempty subset of Z .

Finally, C(Z), denotes the closed analytic subset of C(Z) consisting
of cycles of Z meeting 4. Thus, S is contained in C(Z), iff, for any
sin §, Y, meets 4.

2.1 Definition. Let (Z, A, S) be as in Notation 2.0. Then Z is said
to be (A4, S)-connected if:

(
(
(
(

1) Z is normal,

2) Y, is irreducible for s genericin §,
3) S is contained in C(Z),,

4) § is Z-covering.

2.2 Theorem. Let Z be (A, S)-connected. Let s be generic in S, and
n:Y, — Y, be the normalization of Y,. Then (r (A), n,(Y))) is of finite
index in n,(Z).

2.3 Remark. In particular, (m,(4), n,(Y,)) and (7 (4), n,(Y")) are
of finite index in 7,(Z) if d:Y,' — Y, is a desingularization of Y, .

2.4 Corollary. Let Z be (A, S)-connected. Then the following hold:

(i) If m,(A) = 0 (in particular, if A = {a} is a single point of Z),
then nl(Y') is of finite index in n (Z).

N
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(i) If 7z1(Ys') =0, then n (A) is of finite index in n,(Z).

(iil) If n,(A) == (Y]) =0, then n,(Z) is finite.

Proof of Theorem 2.2. Let G C S' x Z be the graph of the family
S’ where v : ' — S is the normalization of S. Let py: G- S’
and g, : G — Z be the natural projections. Let d : G — G bea
desingularization of G and p’ := (p,od) (resp. ¢’ :=(gyod)). Remark
that G' is connected. Let H be an irreducible component of (g')”'(4)
such that p'(H) = S’. The existence of H follows from Definition 2.1(3).

By Proposition 1.4, we get that (r,(G.), n,(H)) has finite index in
n,(G") if G :=(q")"'(s) is smooth.

Since Z is normal, (q’)*(nl(G')) has finite index in #,(Z) (Propo-
sition (1.4)). Hence ¢.((n,(G.), n,(H))) = (4, - n,(G.), 4, - n,(H)) has
finite index in 7,(Z). However, (¢, 7,(G.)) = (z,(Y})) in #n,(Z), and
(4. - m,(H)) is contained in m,(4). Hence the assertion.

2.5 Remark. Even when A4 = (a) is a point of Z, and Y, is smooth
for generic s in S, it may happen that =, (Y,) # n,(Z).

Let, for example, C be a genus 2 curve, let o' : C — T’ be its Albanese
map, let g : C — P,(C) be an embedding, and let » : T' — T be a degree
d isogeny. Also, let a:= (yod),let f:(axB):C —T xPy(C):=Z,
let @' be any point of C, and let a:= f(a’). Then f, - n,(C) has index
d in n,(Z), although Z is easily seen to be ({a}, S)-connected if §
is the irreducible component of C(Z) (a} containing the point of C(Z)
corresponding to f(C).

3. Rationally connected manifolds

3.1 Definition. Let Z be a normal irreducible compact analytic space.
Then Z is said to be rationally connected, or R.C. for short (resp. smoothly
rationally connected, or S.R.C. for short), if there exists (4, S) as in No-
tation 2.0 such that:

(1) Z is (A, S)-connected,

(2) A= {a} is a single point of Z,

(3) Y, is arational curve (resp. a smooth rational curve) for s generic
in S.

3.2 Remarks. (1) It follows from [9, Theorem 3, p. 206, and Remark,
p. 208] that Z is Moishezon if Z is rationally connected.

(2)If f:Z — Z' is surjective (resp. an unramified covering) and Z
is R.C. (resp. Z' is S.R.C), then Z' is R.C. (resp. Z is S.R.C.). In
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particular, taking Z = P,(C), we see that unirational varieties are R.C.,
and even S.R.C., if smooth.

(3) Z isR.C.iff Z, :=Z x P (C) is S.R.C,, as one sees by considering
the graph of the composite map P,(C) — Z of the normalization of Y_,
for s generic in S, and of the inclusion of Y, in Z.

(4) Let Z be smooth and in & . From [17] it follows that Z is S.R.C.
(resp. R.C.) iff it contains a smooth rational curve C (resp. a rational
curve () such that NZ. (resp. TZ|C) is ample, where NZ_ (resp.
TZ) is the normal bundle to C in Z (resp. the restriction to C of the
tangent bundle of Z).

3.3 Question. Let Z be an R. C. manifold. Is it unirational? Probably
not, in general. Observe that the answer is obviously negative if Z is not
smooth (take the cone over an elliptic curve).

3.4 Proposition. Let Z be an R. C. manifold. Then h'(Z , ag,) =0 for
r >0 where h" is the dimension of the r th-cohomology group H'(Z , &,).
In particular, the Euler-Poincaré characteristic x(Z ,0,) = 1.

Proof. Since Z is Moishezon, it is sufficient by Hodge symmetry to
show that 4°(Z, Q}) =0 for r>0. Let p':G' - S and ¢ : G — Z
be as in the proof of Theorem 2.2. Let (s, z) be a smooth point of G,
with s (resp. z) smoothin S (resp. Z), and with G; = q"l(s) smooth
and g of maximal rank of (s, z). Let w € HO(Z, Q:), let A be any
(r—1)-dimensional polydisk of S’ centered at s, and let u be any nowhere
vanishing section of (Q}~'). The holomorphic form [w,/(p')*u] on G
thus vanishes identically, since G; is a rational curve, for any such choice,
where w, := (q’)*(w)l(p,)-l(A). For some neighborhood U of s in §,
there thus exists a section v of (Q) such that (¢')* @ = (p')" v . Since
d"(U x {a}) is mapped to a by ¢', v and thus w vanish.

3.5 Theorem. Let Z be rationally connected. Then n,(Z)=0.

Proof. We can assume that Z is S.R.C; possibly we replace it by Z x
P,(C). Since = (Z) is finite by 2.2, the universal cover u : Z-Zof Z
is SR.C,s0 ¥ =x(Z, @) = 1. On the other hand, X is also the degree
of the map u by Riemann-Roch.

4. Moishezon twistor spaces

4.1 Notation. Let M = (M 2n , &, +) be a compact connected oriented
2n-dimensional (n > 2) Riemannian manifold. Let 7: Z(M) — M be
its twistor space as constructed in [4] for arbitrary 7, and in [1], [5, §14],
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[11], [20], [22] for n = 2. The almost complex structure of Z(M) is
integrable precisely when g is self-dual, if » =2, and g is conformally
flat, if » > 3. The fibers of 7, called twistor fibers of Z (M), are then
rational homogeneous manifolds.

4.2 Proposition. Let Z, := z'l(p) be the reduced twistor fiber of Z (M)

above p € M*". Let {Zp} be the corresponding point of C(Z(M)). Then
C(Z(M)) is smooth and of dimension 2n at {Zp}.

Proof. If n =2, this follows from [17], since Z,~ P,(C) has a normal
bundle in Z(M) isomorphic to @’(l)ﬂ32 [1].

If n > 3, this follows from [24], since hO(Zp, N) = 2n, where N is
the normal bundle of Z, in Z(M), and since Z, has a neighborhood
in Z(M) analytically isomorphic to a neighborhood of the zero section in
N, because M is then conformally flat.

4.3 Definition. Using Proposition 4.2, there exists a unique irreducible
component ZM of C(Z(M)) containing all {Zp} for p in M. The map

t:M*" - ZM such that t(p) = {Zp} is then a differentiable totally real

embedding of M 2" in the smooth locus of ZM . We call ZM the com-
plexification of M ; it has (complex) dimension 2r, but it is not compact
in general (see Theorem 4.5 below).

4.4 Proposition. Let p e M™", let A:= Z, forn>3, and let A = {a}
with a € Z, for n=2. Let S be the irreducible component of (ZM) , :=
(ZM N C(Z(M)),) containing {Zp}. Then Z(M) is (A, S)-connected
iff S is compact.

Proof. By the definition of (A4, S)-connectedness, we have only to show
the “if” part, and so that S is Z(M)-covering.

If n =2, this follows immediately from [17].

Assume that » > 3. It is sufficient to show the assertion when M 2
s , since M is then conformally flat. We can thus [24] differentiably
identify N with Z x T, M, where T, M is the tangent space to M n at
D, in such a way that for any holomorphic section S of N over Z!7 , there

exists (u, v) € (TpM)2 such that s(1) =u+7-v, where Z, is identified
with the set of complex structures 7 on TpM compatible with both g
and (+). Thus s vanishes at 7, if v = tyu, and s vanishes somewhere
iff u® = gu,u)=g,v) = v? and u-v = g(u,v) =0. From this we
get that s(7) = w iff there exists 4 which is g-orthogonal to w and tw,
and such that ¥ = w/2+h and v = w/2-h. The conditions u+71v =w,

ut =0? ,and u-v =0 are thus always compatible. Hence the assertion.
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4.5 Theorem. Let M = (M*", g, +) be as in Notation 4.1 and such
that the complex structure of Z (M) is integrable. Then the following con-
ditions are equivalent:

(1) (ZM) is compact.

(2) Z(M) isin Fujiki’s class & (i.e., bimeromorphic to some compact
Kdhler manifold).

(3) Z(M) is Moishezon.
Moreover, in each case, n (M) =0.

Proof. The implications (3) = (2) = (1) are generally true (the last
one follows basically from [6]; see [14] or [19].)

We show that (1) implies z,(M) = 0. We use the notation of Propo-
sition 4.4. Since Z(M) is (A, S)-connected, and (ZM) is compact,

m (A4 ) 0, n,(Y,) =0 for s genericin S, and =n,(Z(M)p) =0 forall p
in M*", it follows from Theorem 2.2 that 7 (M) =mn,(Z(M)) is finite.

If n=2, Z(M) is then rationally connected, thus Moishezon and with
n,(Z(M))=0.1If n>3, n (M) is thus finite.

Let M’ be the (Riemannian) universal covering of M ; it is conformally
equivalent to s2n [18]. Then Z (M) is covered by Z(M') which is ratio-
nal homogeneous [24], hence rationally connected. Thus n,(Z(M)) =0,
and M is conformally equivalent to S*"

We have thus shown:

4.6 Corollary. Let M be conformally flat. Then the following are equiv-
alent:

(1) (ZM) is compact.
(2) Z(M) is Moishezon.
(3) Z(M) is rational homogeneous (hence projective).
(4) M is conformally equivalent to s

From this we get a purely Riemannian characterization of st , relaxing
condition 7, (M 4) = 0 in Kuiper’s theorem:

4.7 Corollary. Let M = (M4, g, +) be conformally flat with bl(M4)
=0 and g having positive scalar curvature where b, denotes the first Betti
number. Then M is conformally equivalent to st

Proof. From [7] it follows that bZ(M4) = 0 where b, denotes the
second Betti number. Since bl(M4) =0, we get x(M"’) =2 and T(M4) =
0. Using [16], ¢}(Z(M)) = 16(2x(M*)=3t(M)) > 0, where ¢, is the first
chern class of the tangent bundle, and cf its third self-intersection. But

Corollary 3.8 of [15] and Serre duality show that hz(Z (M), KZ_(';'{)) =0
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for m > 0. Riemann-Roch now shows that the Kodaira dimension of

KZ'(IM) is 3. Hence Z(M) is Moishezon. The result now follows from

Corollary 4.6.

4.8 Remark. Easy examples show that the above conditions do not
characterize S™ for m > 5, and that the condition on scalar curvature
cannot be removed.

4.9 Corollary. Assume that M = (M4, g, +) is self-dual and that
Z(M) is Moishezon. Then either M =S or M* is homeomorphic
to the connected sum of ©(M) > 0 copies of P,(C).

Proof. It is sufficient to show that b, (M) = 0 [12], [10] since 7 (M) =
0. From [16], where ¢, = ¢,(Z(M)), x = x(M), and 1 := (M),
we have ¢, - ¢, = 12(x — 7). By Riemann-Roch we have ¢, - ¢, = 24 -
x(Z(M), @’Z( M) =24, since Z(M) is then rationally connected. Hence
X =1+2. On the other hand b,(M) =0, so we have y = b, + 2. Hence
by (M) =0, as desired.

4.10 Added in proof. Recently, C. Lebrun and then H. Kurke have
constructed examples of Moishezon twistor spaces with M * a connected
sum of an arbitrary number of copies of P,(C). As far as the topology

of M* is concerned, 4.9 is thus optimal. Question: Does 4.9 remain true
with “homeomorphic” replaced by “diffeomorphic™?
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