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ON TWISTOR SPACES OF THE CLASS %

F. CAMP ANA

0. Introduction

Let M2n be a 2«-dimensional compact and connected oriented Rie-
mannian manifold, and Z(M) be its twistor space. The M2n for which
Z(M) is Kahler are classified, up to conformal equivalence, in [16], [13]
for n = 2, in [24] for n > 4 and even, and in [3] for n > 3. The proofs
are mainly differential-geometric.

Y. S. Poon has, however, constructed self-dual metrics on P2(C) Φ

P2(C) = M4 for which Z(M) is in Fujiki's class W (i.e., bimeromorphic

to a compact Kahler manifold), but not Kahler.
We show here that:

(1) for n > 3 , Z{M) is in % iff it is Kahler, iff M2n = S2n

(2) for n = 2, if Z(M) is in ^ , then M is either S 4 , or homeo-
morphic to the connected sum of τ(M) > 0 copies of P2(C).

Apart from well-known facts, the proof consists in showing that if
Z(M) is in g% then π{(M) = πχ(Z(M)) = 0 where πχ denotes the
fundamental group.

This last equality is obtained by purely complex-geometric methods,
using the simple-connectedness of the twistor fibers, and the compactness
of the Chow scheme of manifolds in £?. More precisely, it is possible
(see Theorem 2.2) to evaluate π{(Z), for Z in ? , from nχ(Y) and
πχ(A) if A and Y are compact connected submanifolds of Z , such that
Y has enough "deformations" meeting A in Z . When Y is a smooth
rational curve with ample normal bundle in Z (for example, a twistor fiber
in Z(M 4 ) ) , and A is a point on 7 , we get, in particular, π{(Z) = 0.
This extends a former result of J. P. Serre on the fundamental group of a
unirational variety.

1. Preliminaries

1.1 Notation. Let X be any irreducible complex analytic space. Then
πχ(X) := πχ(X, a) for some unspecified ίϊ in I .
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Let / : X —> Y be a morphism of irreducible analytic spaces. Then
/„ : πx(X) := πx(X, a) -> 7^(7) := πx(Y, /(α)) denotes the morphism of
groups induced by / . If no confusion arises, we denote also by fφ the
morphism induced by the restriction of / to any subspace of X.

Let A and B be two irreducible subspaces of X, and let a : A —•
X and β : B ^ X, respectively, be the natural inclusions. Let μ :
B1 —• 5 be any modification of 5 (for example, its normalization or its
desingularization). We shall denote by (π{(A), πχ(Bf)) the subgroup of
πx(Z)9 generated in πx(Z) by am(πx(A)) and {β o μ)^πχ(B')).

1.2 Remarks. Let d : X" -+ X' be a desingularization of the normal
analytic space X1. Then rfφ is surjective, since all fibers of d are con-
nected. However, d^ is not always injective: blow-up the vertex of the
cone over an elliptic curve.

Let n : X1 —• x be the normalization of X. Then nm is not always
surjective: identify two points in X' = PX(C) to obtain X.

1.3 Proposition. Let f : X —> Y be a proper surjective morphism of
irreducible analytic spaces. Assume Y is normal. Then (f^-n{(X)) has
finite index in nx(Y).

Proof. Let / := h o g, where g : X —• Γo has connected fibers so that
( g j is surjective, and A : Yo —• 7 is finite surjective. We can thus assume
that f = h and Yo = X.

Let 7* be a dense Zariski open subset of Y over which / is an un-
ramified covering. Let X* := f~ι(Y*) then /^(π^-Y*)) has finite index
in πx(Y*). The assertion now follows from the following commutative
diagram:

πx(χ ) > π{(X)

*ι(Y*) > πx(Y) > 1

in which the exactness of the bottom line follows from the normality of Y,
since any y € Y has a fundamental basis of (contractible) neighborhoods
U in Y such that U* := (U Γ\X*) is pathwise connected.

1.4 Proposition. Lei f : X -+ S be a surjective analytic map between
irreducible compact analytic spaces, with S normal and X smooth. Let
Xs be a connected component of a smooth fiber f~\s) of f, and let Y
be a compact irreducible analytic subset of X such that f(Y) = S. Then
(nx(Y), πx(Xs)) is a subgroup of finite index in πx(X).

Proof. Let S* be a dense Zariski open subset of S over which / is
smooth. Let X* be f~ι(S*)9 and let Y* := (ΛΓ* Π Y). The following
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homotopy sequence provides an exact sequence of groups:

(We may assume by Stein reduction, as in Proposition 1.3, that the fibers
of / are connected.) Thus, (πχ(Xs), πx(Y*)) has finite index in πx(X*)9

and hence in πx(X) since X is smooth. Hence (πx(Xs), πx(Y)) has finite
index in πx(X), by the functoriality of πx.

2. The main result

2.0 Notation. All analytic spaces here are reduced. Let Z , A, and S
be compact irreducible analytic spaces, where A is a subspace of Z , and
S is a subspace of C(Z), the analytic space of compact, pure dimensional,
analytic cycles of Z constructed in [2].

Let Gs c S x Z be the graph of the universal analytic family (Ys),
s e S, of cycles of Z parametrized by S, and let p : Gs —• S and
q : Gs —• Z be the restriction of the natural projections of S x Z . Recall
that, set-theoretically, G5 : {(s, z) s.t. z e Ys}. We call (^) J€ iS simply
the "family S ". We say that S is Z-covering if # is surjective. Equiva-
lently, this means that any z of Z belongs to at least one member of the
family S. Because S is compact and Z is irreducible, it is sufficient to
check this condition for z in some open nonempty subset of Z .

Finally, C(Z)A denotes the closed analytic subset of C(Z) consisting
of cycles of Z meeting A. Thus, S is contained in C(Z)A iff, for any
s in S, Ys meets A.

2.1 Definition. Let (Z,A,S) be as in Notation 2.0. Then Z is said
to be (A, S)-connected if:

(1) Z is normal,
(2) Ys is irreducible for s generic in S,
(3) S is contained in C(Z)A ,
(4) 5 is Z-covering.

2.2 Theorem. Lef Z ie (A, S)-connected. Let s be generic in S, and
n:Y's - • 75 &> ίAe normalization of Ys. Γfow (π^Λ), πx{Y's)) is of finite
index in nx{Z).

2.3 Remark. In particular, (πx(A),πx(Ys)) and (πx(A), πx(Y")) are
of finite index in πx(Z) if d : Y" —• Γ5 is a desingularization of ϊ^.

2.4 Corollary. Let Z be (A, S)-connected. Then the following hold:

(i) 7/1 π{(A) = 0 (//? particular, if A = {a} is a single point of Z),

then πx(Y's) is of finite index in nx(Z).
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(ii) // πx(Y's) = 0, then π{(A) is of finite index in πx(Z).

(iii) Ifπχ{A) = πχ{Y's) = 0,then π{(Z) is finite.

Proof of Theorem 2.2. Let G c S1 x Z be the graph of the family

S', where v : Sf —• S is the normalization of S. Let p0 : G -^ Sf

and #0 : G —> Z be the natural projections. Let rf : G' -^ G be a

desingularization of G and p' := (p0 o rf) (resp. #' := (#0 o rf)). Remark

that G' is connected. Let H be an irreducible component of (q)~x{A)

such that p(H) = 5 ' . The existence of // follows from Definition 2.1(3).

By Proposition 1.4, we get that (π^G^), nx(H)) has finite index in

π{(Gf) if G's := (^/)"1(^) is smooth.

Since Z is normal, (qf)^(n{(Gf)) has finite index in πx{Z) (Propo-
sition (1.4)). Hence q'm{(nx{Cfs)9 πx(H))) = (q'm nx(&s)9ql πx{H)) has
finite index in nχ(Z). However, (q[ π^G^)) = (π{(Y^)) in πj(Z),and
(^ πx(H)) is contained in πχ(A). Hence the assertion.

2.5 Remark. Even when A = (a) is a point of Z , and Ys is smooth
for generic s in 5 , it may happen that πx(Ys)φπx(Z).

Let, for example, C be a genus 2 curve, let a : C —• Tf be its Albanese
map, let β : C —• P3(C) be an embedding, and let γ : T1 —• Γ be a degree
d isogeny. Also, let α := (y o rf), let f : (a x β) : C -+ T x P3(C) := Z ,
let α' be any point of C, and let a := / ( # ' ) . Then £ π^C) has index
d in π{(Z), although Z is easily seen to be ({α}, 5)-connected if S
is the irreducible component of C{Z),a, containing the point of C(Z)
corresponding to f{C).

3. Rationally connected manifolds

3.1 Definition. Let Z be a normal irreducible compact analytic space.
Then Z is said to be rationally connected, or R.C. for short (resp. smoothly
rationally connected, or S.R.C. for short), if there exists (A, S) as in No-
tation 2.0 such that:

(1) Z is {A, ^-connected,
(2) A = {a} is a single point of Z ,
(3) Ys is a rational curve (resp. a smooth rational curve) for s generic

in S.

3.2 Remarks. (1) It follows from [9, Theorem 3, p. 206, and Remark,
p. 208] that Z is Moishezon if Z is rationally connected.

(2) If / : Z —> Z' is surjective (resp. an unramified covering) and Z
is R.C. (resp. Z ' is S.R.C), then Z' is R.C. (resp. Z is S.R.C). In
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particular, taking Z = PΠ(C), we see that unirational varieties are R.C.,
and even S.R.C., if smooth.

(3) Z is R.C. iff Zχ\=Zx ΨX(C) is S.R.C., as one sees by considering
the graph of the composite map P^C) —• Z of the normalization of Ys,
for s generic in S, and of the inclusion of Ys in Z .

(4) Let Z be smooth and in &. From [17] it follows that Z is S.R.C.
(resp. R.C.) iff it contains a smooth rational curve C (resp. a rational
curve C) such that NZC (resp. ΓZ,C) is ample, where NZC (resp.
ΓZ.C) is the normal bundle to C in Z (resp. the restriction to C of the
tangent bundle of Z ) .

3.3 Question. Let Z be an R. C. manifold. Is it unirational? Probably
not, in general. Observe that the answer is obviously negative if Z is not
smooth (take the cone over an elliptic curve).

3.4 Proposition. Let Z be an R. C. manifold. Then h\Z ,#z) = 0 for
r > 0 where hr is the dimension of the r th-cohomology group Hr(Z, &z).
In particular, the Euler-Poincarέ characteristic χ(Z, <fz) = 1.

Proof Since Z is Moishezon, it is sufficient by Hodge symmetry to

show that λ°(Z, Ω'z) = 0 for r > 0. Let p : G1 -> S and q : G1 - Z

be as in the proof of Theorem 2.2. Let ($, z) be a smooth point of Gs<,

with 5 (resp. z) smooth in S (resp. Z ) , and with G's :=q'~\s) smooth

and q of maximal rank of {s, z). Let ω e //°(Z, Ω^), let Δ be any

( r - l)-dimensional polydisk of S' centered at s, and let w be any nowhere

vanishing section of (Ω^"1). The holomorphic form [ωj{p')*u] on G's
thus vanishes identically, since G's is a rational curve, for any such choice,

where ω Δ := {QΫioή^yx^y For some neighborhood U of s in 5 ,

there thus exists a section ^ of (Ωr

u) such that (</)* ω - (/?')* z/. Since

d~ι(U x {α}) is mapped to # by q , i> and thus ω vanish.
3.5 Theorem. Let Z be rationally connected. Then πx(Z) = 0.
Proof. We can assume that Z is S.R.C; possibly we replace it by Z x

Pj(C). Since π{(Z) is finite by 2.2, the universal cover u: Z -> Z of Z
is S.R.C, so / = χ(Z, ^~) = 1 O n the other hand, χ is also the degree
of the map u by Riemann-Roch.

4. Moishezon twistor spaces

4.1 Notation. Let M = (M2n , g 9 +) be a compact connected oriented
2/t-dimensional (n > 2) Riemannian manifold. Let τ : Z(M) —• M be
its twistor space as constructed in [4] for arbitrary n , and in [1], [5, §14],
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[11], [20], [22] for n = 2. The almost complex structure of Z(M) is
integrable precisely when g is self-dual, if n = 2, and g is conformally
flat, if n > 3. The fibers of τ , called twistor fibers of Z(M), are then
rational homogeneous manifolds.

4.2 Proposition. Let Zp := τ~\p) be the reduced twistor fiber of Z[M)

above p e M2n . Let {Zp} be the corresponding point of C(Z(M)). Then
C(Z(M)) is smooth and of dimension 2n at {Zp}.

Proof If n = 2, this follows from [17], since Z ~ P^C) has a normal

bundle in Z(M) isomorphic to ^ ( l ) 0 2 [1].

If n > 3, this follows from [24], since h°{Zp, N) = 2n, where N is
the normal bundle of Zp in Z(M), and since Z^ has a neighborhood
in Z(Af) analytically isomorphic to a neighborhood of the zero section in
N, because M is then conformally flat.

4.3 Definition. Using Proposition 4.2, there exists a unique irreducible
component ZM of C{Z(M)) containing all {Zp} for p in M. The map

ί: M2n -+ Z M such that t(p) = {Zp} is then a differentiate totally real

embedding of M2n in the smooth locus of ZM. We call ZAf the cora-
plexification of M it has (complex) dimension 2n , but it is not compact
in general (see Theorem 4.5 below).

4.4 Proposition. Let p e M2n, let A:= Zp for n>3, and let A = {a}
with a e Zp for n = 2. Let S be the irreducible component of (ZM)A :=
(ZMΓ)C(Z(M))A) containing {Zp}. Then Z(M) is {A, S)-connected
iff S is compact.

Proof By the definition of (A, ^-connectedness, we have only to show
the " i f part, and so that S is Z(Λ/)-covering.

If n = 2, this follows immediately from [17].
Assume that n > 3. It is sufficient to show the assertion when M2n =

S2n, since M is then conformally flat. We can thus [24] differentiably
identify N with Z x T M, where T M is the tangent space to M n at
p , in such a way that for any holomorphic section S of N over Zp , there

exists (u,υ) e {TpM)2 such that s(τ) = u + τ v , where Z p is identified
with the set of complex structures τ on TpM compatible with both g
and (+) . Thus s vanishes at τ 0 if v = τou, and s vanishes somewhere
iff u2 = g(u, u) = g(v, v) = υ2 a n d u - v = g(u,υ) = 0. F r o m t h i s w e
get that s(τ) = w iff there exists h which is ^-orthogonal to w and τw ,
and such that u = w/2 + h and υ = w/2-h . The conditions w-f τv = w ,
u2 = v2, and w i> = 0 are thus always compatible. Hence the assertion.
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4.5 Theorem. Let M = (M2n , g, +) be as in Notation 4.1 and such
that the complex structure of Z(M) is integrable. Then the following con-
ditions are equivalent:

(1) (ZM) is compact.
(2) Z(M) is in Fujiki's class & {i.e., bimeromorphic to some compact

Kάhler manifold).

(3) Z(Af) is Moishezon.

Moreover, in each case, πχ(M) = 0.

Proof. The implications (3) => (2) => (1) are generally true (the last
one follows basically from [6]; see [14] or [19].)

We show that (1) implies nχ(M) = 0. We use the notation of Propo-
sition 4.4. Since Z(M) is (A, S)-connected, and (ZM) is compact,
πχ(A) = 0, πχ(Ys) = 0 for s generic in 5 , and πχ(Z(M)p) = 0 for all p
in M 2 " , it follows from Theorem 2.2 that πx(M) = π{{Z{M)) is finite.

If n = 2, Z(Af) is then rationally connected, thus Moishezon and with
πχ(Z(M)) = 0. If n > 3, π^Λf) is thus finite.

Let M' be the (Riemannian) universal covering of M it is conformally
equivalent to S2n [18]. Then Z(M) is covered by Z(M') which is ratio-
nal homogeneous [24], hence rationally connected. Thus π1(Z(M)) = 0,
and M is conformally equivalent to S n .

We have thus shown:
4.6 Corollary. Let M be conformally flat. Then the following are equiv-

alent:

(1) (ZM) is compact.
(2) Z(M) is Moishezon.
(3) Z(M) is rational homogeneous (hence projective).
(4) M is conformally equivalent to S2n.

From this we get a purely Riemannian characterization of S4 , relaxing
condition n{(M4) = 0 in Kuiper's theorem:

4.7 Corollary. Let M = (M4, # , +) fo> conformally flat with bx(M4)

= 0 <zm/ £ having positive scalar curvature where bx denotes the first Betti

number. Then M is conformally equivalent to S4 .

Proof. From [7] it follows that b2(M4) = 0 where b2 denotes the

second Betti number. Since bχ(M4) = 0, we get χ(M4) = 2 and τ(M4) =

0. Using [16], c\(Z(M)) = \6(2χ(M4)~3τ(M)) > 0, where cx is the first

chern class of the tangent bundle, and c\ its third self-intersection. But

Corollary 3.8 of [15] and Serre duality show that h2(Z(M), K~™M)) = 0
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for m > 0. Riemann-Roch now shows that the Kodaira dimension of
^ *s ^ Hence Z(M) is Moishezon. The result now follows from

Corollary 4.6.
4.8 Remark. Easy examples show that the above conditions do not

characterize Sm for m > 5, and that the condition on scalar curvature
cannot be removed.

4.9 Corollary. Assume that M = (M4, g, +) is self-dual and that
Z(M) is Moishezon. Then either M4 = S4 or M4 is homeomorphic
to the connected sum of τ(M) > 0 copies of P2(C).

Proof It is sufficient to show that b2 (Λf) = 0 [ 12], [ 10] since πχ (M) =
0. From [16], where c. = c^M)), χ := χ(M), and τ := τ(M),
we have c{ c2 = 12(χ - τ) . By Riemann-Roch we have c{ c2 = 24
χ(Z(M), &Z{M)) = 24, since Z(M) is then rationally connected. Hence
χ = τ + 2. On the other hand b{ (M) - 0, so we have χ = b2 + 2. Hence
&2~ (M) = 0, as desired.

4.10 Added in proof. Recently, C. Lebrun and then H. Kurke have
constructed examples of Moishezon twistor spaces with M4 a connected
sum of an arbitrary number of copies of P2(C). As far as the topology
of M4 is concerned, 4.9 is thus optimal. Question: Does 4.9 remain true
with "homeomorphic" replaced by "diffeomorphic"?
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