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RIGIDITY AND THE DISTANCE BETWEEN
BOUNDARY POINTS

CHRISTOPHER B. CROKE

Introduction

In this paper we consider some rigidity problems in Riemannian geom-
etry. In particular, we prove

Theorem A. Any complete Riemannian metric without conjugate points
on R" which is isometric to the Euclidean metric outside a compact set must
be isometric to the Euclidean metric.

This was proved in the case n = 2 by Green-Gulliver [8] using E. Hopf s
theorem [12] that any metric without conjugate points on a 2-torus must
be flat. The corresponding question about ft-tori is called the E. Hopf
conjecture and is still open.

A corresponding theorem is true for hemispheres of the round Euclidean
sphere:

Theorem B. Any Riemannian metric on the open n-ball which has no
conjugate points, and for which the complement of a compact set is isometric
to the complement of a compact set in an open Euclidean hemisphere, must
be isometric to the Euclidean hemisphere.

The proofs of both these theorems rely on results that come from the
following "boundary rigidity" problem: Let (M, H, g) and (M{, H, gχ)
be compact Riemannian manifolds with the same (i.e., diffeomorphic)
smooth boundary H. The metric g on M induces a distance function
d from H x H to R, i.e., d(hχ, h2) is the distance in M between h{

and h2. For what (M, H, g) is it true that any (Mι, H, g{) with d =
dχ must have g isometric to g{ ? Such an (M, H, g) will be called
boundary rigid.

This problem was considered previously by R. Michel [14] and M. Gro-
mov [9]. They have shown that any compact subdomain of R" , any com-
pact subdomain of an open Az-dimensional hemisphere, and any compact
subdomain of the hyperbolic plane are boundary rigid (see [9, §5.5B]). In
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fact they show that M needs only admit an isometric immersion into the
same dimensional Euclidean space.

In this paper a geodesic segment of M will refer to a segment of a
geodesic which lies in the interior of M except possibly for the endpoints
(i.e., we do not include grazing geodesies). A segment is said to minimize if
its length is the distance between the endpoints, and to strongly minimize
if it is the unique such path. By a subdomain we will mean an open set
with a smooth boundary.

One cannot expect that all compact manifolds with boundary will be
boundary rigid. In §2 we will see examples on surfaces of revolution which
will lead us to consider only those (M, H, g) for which a certain condi-
tion SGM (Strong Geodesic Minimizing) on the boundary distance func-
tion, d, holds. The precise definition of SGM is given in §2 but loosely
speaking it means that all geodesic segments are strongly minimizing. Since
SGM is a condition on d, if (M, H, g) is SGM and (Mχ, H, gχ) has
dχ = d then (Mχ, H, gχ) is also SGM. Examples of such M are given by
compact subdomains of an open ball B in a Riemannian manifold where
all geodesies segments in B are assumed to minimize.

This problem is closely related to other natural problems. One is the
uniqueness of (geodesic) lenses. In this problem (M, H, g) is said to
be equivalent to (Mχ, H, gχ) as lenses if for each geodesic γ entering
M the corresponding geodesic yx of Mχ (it enters at the same point of
H and makes corresponding angle) exits at the same point of H as γ,
making a corresponding angle, after the same amount of time (i.e., γ and
γχ have the same length). The examples of §2 also lead one to consider
this problem in the SGM case. We will see in § 1 that if (M, H, g) is
SGM, then lens rigidity is equivalent to boundary rigidity.

Another related problem is the special case where M and Mχ are
assumed to be diίfeomorphic and the metrics pointwise conformal, i.e.,
gχ = f2og, where / is a positive function on Mχ. This problem is some-
times referred to as the uniqueness part of the inverse kinematic problem
of seismology. That problem is to determine the density ( / above) of an
object (say the earth) if one knows for each p and q on the boundary the
time it takes for a wave started at p to be felt at q (d(p, q) above). In
this paper we prove uniqueness:

Theorem C. Let (Λf, H, g) be a compact Riemannian manifold with
boundary which is SGM. Then if gχ = f2 g is a metric such that dχ = d,
then f{x) = 1 for all x e M, and hence gχ = g.

Earlier work on this problem in tv/o dimensions can be seen in [19],
[16]. In n dimensions, G. Beylkin [4] has recently proved such a theorem
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under the stronger assumption that (M, H, g) is convex. He was also
able to prove a stability result in that setting.

The paper will be organized as follows: In § 1 we give a precise definition
of SGM and show how it relates to the loose definition. In §2 on surfaces
of revolution we consider examples which show that the assumptions of
Theorem C are indeed necessary and that SGM is the right condition to
consider for this problem. In §3 we prove Theorem C. In §4 we prove
Theorems A and B. In §5 we take up the general question of boundary
rigidity reviewing the known facts and developing basic properties. In
§6 we will give a new proof that subdomains of R" are boundary rigid,
and we consider the problem of showing that compact subdomains of a
hyperbolic «-space are boundary rigid. Although we cannot yet solve this
problem, we will show that such subdomains are rigid if we only consider
metrics of negative definite curvature operator (in particular among all
nearby metrics). More precisely, we prove

Theorem D. Let (M, H, g) be a compact subdomain of a hyperbolic
n-space, and (M{, H, gχ) be a metric having negative definite curvature
operator {no curvature assumption if n = 2). If d = d{, then the spaces
are isometric.

§7 is an appendix where we deal with some differentiability questions
left unresolved in earlier sections and papers.

Some recent results on related problems can be found in [18].
Since writing this paper, significant progress was made in the two-

dimensional nonpositive curvature case (see [5], [17]). Earlier work on
this can be found in [7].

1. Preliminaries

We first give precise definitions of BGM (boundary geodesies minimize)
and SGM and then will show how they correspond to our loose definitions.

1.1. Definitions. The class that we will call BGM was considered in [9]
as the class of manifolds (AT, //, g) satisfying the following: For every
q e H and every tangent vector v e T H with ||τ;|| < 1 there exists a
unique point qχ e H satisfying the following two conditions:

(i) Vqd(q{, •) = υ , where d(q{, ):H —• R and V^ is the gradient at

(ii) there is no point q2^H other than q and qχ such that d(q, q2) +

The condition SGM will be BGM plus the condition that there is no
complete, possibly grazing, geodesic in M. (By a grazing geodesic we
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mean a smooth curve with 0 geodesic curvature which may intersect the
boundary in points or segments.) We must state this in terms of d alone.
A differentiable curve γ in H from a point p to a point q will be called
a straight segment if the length of γ is d(p, q) and, further, there is
a sequence υ. e TpH converging to the unit vector tangent to γ with
H l̂l < 1 such that the q{ determined from the definition of BGM converge
to a point z with d(z, q) + d(q, p) = d(z, p). (This means that γ is a
geodesic segment of M as well as a geodesic segment of H.) We say that p
and q in H are straight connected if {r e H: d(p, r) + d{r, #) = d(/?, q)}
is a countable union of straight segments and points (this means that a
length minimizing path in M from p to q is a possibly grazing geodesic).

(M,H,g) will be called SGM if it is BGM and, further, there
do not exist points p., i e Z, such that p• is straight connected
to pM, \\Vpd{Pi_χ, OH = 1, and Vpd{p^χ9 0 = -Vpjd(pi+ι, •) and

Σ£d{pi9pM) and Σo°° <*(/>,->P, +i) are infinite.
We will now show how these correspond to our loose definition. If y

is a minimizing geodesic from p to #, where /? and # are such that
Vqd{p, 0 exists, then /(#) must be the unique unit vector at q whose
projection onto T H is Vqd{p, ) . This is true since /(#) is the gradient
of d{p, 0 as a function on M (if the gradient exists). Let U+H —• //
represent the bundle of unit vectors u tangent to M at a boundary point,
say #, such that (u, Λ7 )̂ > 0, where ΛΓ is the inward normal. For given
u G U+H let ?; be the orthogonal projection onto TqH. This gives a one-
to-one correspondence between U+H and the v e 77/ with ||i;|| < 1. If
M satisfies BGM, for given u let qχ be the point corresponding to v .
Then by (ii) the minimizing path γ between q and qχ must be a geodesic
segment. Property (i) means that γ is γu (the geodesic determined by u)
and hence that yu is minimizing. By continuity, yu will be minimizing
even if u is tangent to H. If such a geodesic is not tangent to H at either
endpoint, then condition (i) (used from both end points) implies that it is
strongly minimizing. On the other hand if all geodesies from the boundary
strongly minimize, then for given v let qχ be the first point on H hit by

In the next section on surfaces of revolution we will see examples that
satisfy BGM and are not boundary rigid even in their conformal class.
These examples however have geodesic segments that are not minimizing,
because there are complete geodesies that never hit the boundary. By tak-
ing limits of such geodesies we see that this can only happen if there is
a complete "grazing" geodesic, i.e., a geodesic that grazes the boundary
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infinitely often and that minimizes between points of contact. The extra
condition in SGM guarantees that this does not happen, so, in particular,
all geodesic segments strongly minimize. It is not hard to construct a met-
ric where all geodesies strongly minimize, but which has such a complete
grazing geodesic, so is not SGM.

For given u e U+H the above arguments show that in the SGM case
(or even BGM) d determines the first point (i.e., qχ above) that the
geodesic γu hits on H. If (Mχ, H, gχ) is such that d = dχ9 then the
corresponding geodesic γXu also must exit at qχ. Since there is a unique
geodesic between q and qx in both spaces, reversing the roles of u = γ'(q)
and -y\qx) we see:

1.2. Lemma. If M is SGM, then the corresponding geodesies γu and
γlu have the same length I, and exit H at the same point and angle, i.e.,
-yu(l) € U+H corresponds to - / l M ( l ) € UχH. In other words, M and
Mχ are equivalent as geodesic lenses.

2. Examples on surfaces of revolution

It is easy to see that (M, H, g) is not boundary rigid if for some
x e M there is no minimizing geodesic segment between boundary points
that passes through x. For then one could change the metric or even the
topology near x without changing d. In this section we will consider
some examples that show even the existence of an open set worth of such
geodesies through each x is not enough to give boundary rigidity even in
the conformal case. The examples show that a reasonable class of mani-
folds to consider for boundary rigidity as well as Theorem C is the SGM
class.

2.1. Examples. We will consider surfaces of revolution obtained by
revolving a generating curve y - f(x) around the x-axis. We will refer to
the obvious coordinates x and θ . We will assume that /(0) = f(L) = 1,
f(x) > 1 for x e (0, L), and / ( 0 ) φ 0 and / ( L ) φ 0. We note that
for any choice of / every point will have an open set of geodesies passing
through it, going from one boundary point to another and achieving the
distance between them. We now consider a geodesic γ(s) = (x(s)9 θ(s))
with JC(O) = 0(0) = 0, which makes an angle φ with the boundary. Our
assumptions on / guarantee that the x-component will be monotonic
and that when x — L the angle with the boundary will again be φ . By
integrating Clairaut's relation (see [6]) we see that when x = L, θ will
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/

JoΌ f(χ)\ f'(x)2-cos2(φ)
dx.

Hence if / and g are functions such that the above integrals are the same
for all φ , then corresponding geodesies will exit at corresponding points
with the same angles and hence by the first variation formula will have
the same length up to a constant which will be 0 if the meridian geodesies
have the same length. A particular choice of such / and g is illustrated
by the figures. In fact we see that there is a one-parameter family of such
functions giving rise to a one-parameter family of nonisometric metrics
with the same boundary distance functions. Further, it is not hard to
see that these metrics are conformal to each other via a diffeomorphism
that leaves the boundary fixed. Hence, in particular, Theorem C is not
true if we only assume that for each x e M an open set of geodesies
passing through x are geodesies that minimize from one boundary point
to another. Note that by choosing / and g symmetric about x = L/2
we can make such examples on the Mόbius band, hence with only one
boundary component.

/(-v)

Surfaces of revolution as above never satisfy condition SGM since the
curve x - c is a closed geodesic, where c is the maximum point of / .
On the other hand it is easy to construct such surfaces that satisfy BGM. In
fact take any such surface and then by adding a sufficiently large constant
to / one can make the new metric satisfy BGM (by scaling this metric we
could again make the minimum value of / = 1, of course changing the
value of L). Thus not only are the conditions SGM and BGM different
but there are conformal nonisometric metrics satisfying BGM and having
the same boundary distance function.

Finally we note that if (Af, H, g) represents the standard metric on
the hemisphere, then all geodesic segments minimize but not strongly. But
in this case any metric gλ - f2 g, where / is 1 near the boundary and
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> 1 in the interior, will have dx = d. In particular the above example
shows that the condition GM, "all geodesies minimize", is not a condition
on d as is the condition SGM.

2.2. Question. If {M, H, g) is SGM is it boundary rigid?
In §5 we will return to this general question.

3. Proof of Theorem C

In this section we prove Theorem C. In order to do this we will intro-
duce some notation which will also be useful in later sections. Let UM
represent the unit sphere bundle over the interior of M endowed with its
usual (local product measure) du. Let U+H —• H represent the bundle
of unit vectors v tangent to M at a boundary point, say q, such that
(v, N ) > 0, where N is the inward normal. Endow U+H with the
standard measure dv (again a local product measure where the measure
on the fibre is the measure of a hemisphere). For u e U+H let l(v)
be the first value of t > 0 such that γυ(t) e H, where γυ is the unit
speed geodesic with initial tangent v . We will consider the subspace Q
of U+H x R given by {(v, ί)\0 < t < l(υ)}. There is a natural map
Z: Q —• UM given by (v , t) —• γυ{t) (the geodesic flow). Santalό's for-
mula (see [20, pp. 336-338]) states that Z is measure preserving when
Q is given the measure (v, Nq) dv dt.

Proof of Theorem C. For u a unit vector with respect to g, its norm
\\u\\x with respect to g{ is f(x) ,w here x is the base point of u. Inte-
grating this over all u e UM and applying Santalό's formula, we obtain

a ( n - l ) ί f(x)dx= f \\u\\ιdu= f f™ \\γv(t)\\ι dt(v f Nq) dv ,
JM JUM JU+HJO

where a(n-l) represents the measure of the standard unit [n - 1)-sphere
and n is the dimension of M. Now yv is a minimizing geodesic in
the metric g from a boundary point q0 = γv{0) to a boundary point
qχ - γv(l(υ)). In the metric gχ it is still a curve from qQ to qχ and
hence, since d = dx, has length > l(v). Hence

a(n-l) ί f(x)dx> ί l(υ)(υ , N) dv = f \du
JM JU+H JUM

= a{n- l)Vol(M, g).
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Now by a Holder inequality we have
-\)/n

Λn-\)ln
Vol(M,gι)

l/n Vol(M,g){n-l)/n

f{x)ndx\ / dx\ > f{x)dx
) KJM ) JM

with equality holding if and only if f(x) is constant. Hence we conclude
that Vol(Af, gχ) > Vol(Λf, g) with equality holding if and only if f(x) =
1 for all x . Since SGM is defined in terms of d alone, gχ is also SGM.
Hence the theorem follows by reversing the roles of g and gx.

We will see in §5 that, in the general boundary rigidity case, Vol(Mj) =
Vol(AΓ) so we could have used this instead of reversing the roles above.

4. Proofs of Theorems A and B

In this section we prove Theorems A and B.
4.1. Proof of Theorem A. By assumption there is a compact set K in

(Rπ, g) such that (Rn - K, g) is isometric to (RΛ - B(r), g0) for some
r > 0, where g0 is the standard Euclidean metric and B(r) is the metric
ball of radius r. We will prove that K is isometric to B(r) by showing
that d = d0, where d: dK x dK —• R is the boundary distance function of
the metric on K, and dQ is the corresponding one for B(r). The theorem
will then follow since B(r) is boundary rigid (see [9] or §4).

To prove d = dQ choose p and q in dK = dB{r). We first show that
do{p, q) < d(p, q). Let l(t) be a line in Rn parametrized by arclength
which does not pass through B{r) but is parallel to and has the same
orientation as the line from p to q. l(t) is also a geodesic in g and hence,
since g has no conjugate points and is simply connected, / minimizes
between any two points on it. In particular for all large t,

But for large t the line segment from p to l(-t) (resp. q to /(/)) does not
intersect B(r) and hence d(l{-t), p) = dQ(l(-ή9 p) (resp. d(q,l(t)) =
do(qj(t))). Thus we see 2t-do(l(-ή, p)-do(l(ή, q) < d(p, q). Taking
the limit as t goes to oc we get do(p, q) < d(p, q).

To prove the opposite inequality let γ(t) be the unit speed geodesic from
p to q, i.e., γ(0) - p and y(l) = q . By our assumptions y((-oo, 0)) and
γ((l, oo)) are straight lines in R" - B(r). It is easy to see that they are
parallel (although not necessarily segments of the same straight line) for if
not, for large values of /, the line between γ(-t) and γ(t + /) would not
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intersect B(r) and hence yield a different geodesic in g between γ(-t)
and y(t + /) which is not possible since there are not conjugate points.
Choose any point z in Rn - B(r). We thus have

2* + / = d(γ(-ή, γ(t + /)) < d(γ(-ή, z) + rf(y(ί + /), z).

Again for large values of t and appropriate choice of z the line segments
from z to γ{-t) and y(ί + /) do not intersect B(r). Hence we get
d(p,q) = I < do(z, γ(-ή) + do(z, γ(ή) - It. Now letting t to oo (and
doing a little Euclidean geometry) we get d(p, q) < do(p, q) which yields
the theorem.

4.2. Proof of Theorem B. The proof of Theorem B is similar to that
of Theorem A. We will let (B(π/2), gQ) represent the hemisphere with
the standard metric gQ (since it is the ball of radius π/2 about the north
pole). Our metric without conjugate points is a metric (B(π/2), g) such
that g = g0 on B(π/2) - B(r) for some 0 < r < π/2, and such that any
p and q in the interior are not conjugate to each other.

We must first prove that all geodesies in the metric g are minimizing.
Since near the boundary the metric is the standard metric it is easy to see
that a minimum length path between any two points must in fact be a
geodesic. Hence it is sufficient to prove that for any pair of points p, q
in the interior there is a unique geodesic between them. We may assume
that p and q both lie in a ball B(R) for r < R < π/2, and that σ
and τ are geodesies from p to q (parametrized on [0, 1]). Since any
geodesic leaving B(R) hits dB(π/2) and hence never returns, σ and τ
both lie in B(R). Since B(R) is simply connected, σ is homotopic to
τ through curves in B(R). Since there are no conjugate points and any
geodesic between points in B(R) lies in B(R), there is no obstruction
to uniquely lifting this homotopy to TpB(R). This yields a homotopy
from the line segment between 0 and σ(0) to the line segment between 0
and τ'(0) which must leave the point σ'(0) fixed. This is a contradiction
unless σ = τ . Hence all geodesies in the metric g are minimizing.

Let p and q be on the boundary dB(r) and let c: [0, π] —• B(π/2) be
the great circle such that c(tχ) = p and c(t2) = q with t{ <t2. Choose c
to be another great circle such that c(0) = c(0), c(π) = c(π), and c[0, π]
lies in B(π/2) - B(r). Then, by our assumptions, c[0, π), c[0, t{], and
c[t2, π] are minimizing geodesies in g . Hence we have

π = d(c(0), c(π)) < d(c(0), c(tx)) + d(p, q) + d(c(t2), c(π))

which implies that do{p, q) < d(p, q).
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Now let γ: [0, /] -• B(π/2) be the unit speed geodesic in g such that
y(0) and γ(l) are in the boundary dB(π/2), γ(tx) = p, and γ(t2) = q
where 0 < tι < t2 < I. Since y[0, tλ] and γ[t2, I] are geodesic segments

in g0, we get

= dQ(r(0),γ(l))<tι+d0(p9q)

i.e., d(p, q) < dQ{p, q). Hence rf(p, q) = do(p, q).
The theorem follows from the fact that subdomains of hemispheres are

boundary rigid as was shown in [14], [9].
4.3. Remark. The proof of boundary rigidity for a domain M in a

hemisphere goes as follows (see [14] or [9]]): cut M out of the hemisphere
and glue in the manifold Mχ with dχ = d. Doing a corresponding gluing
on the opposite hemisphere yields an antipodally symmetric metric on a
sphere. Using Lemma 1.2 it is not hard to see that this is a Blaschke
sphere. The isometry follows from the proof of the Blaschke conjecture
for spheres (see [3, Appendices D and E], or [2]). This argument works
without problems in our case above since our gluing is assumed to be
smooth. In [14] it was shown that if M is convex then the metric will be
C 2 , and again there is no problem. In the general case one must show that
the proof of the Blaschke conjecture works for these more general metrics.
We will discuss this in Remarks 5.3 and 7.3.

In §6 we will give a proof of boundary rigidity of subdomains of R" (dif-
ferent from the one in [9]) which is sufficient to prove rigidity in Theorem
A. In the general case we also must worry somewhat about differentiability
questions, which we do in the appendix.

4.4. Remark. The above arguments apply to a class of metrics on
R" , which includes the universal covering spaces of tori without conjugate
points, satisfying strong conditions on the Busemann functions. They yield
the property that if g and gχ are two such metrics that agree in the
complement of a compact set K, then the distance functions d and dχ

agree on dK. Hence if K (which is SGM) is boundary rigid then g = g{.

5. General boundary rigidity

In this section we will discuss the general boundary rigidity question
2.2. Most of the ideas in this section were known to Gromov and Michel
(see [9, §5.5] [14]) in different settings. However some modifications are
needed and so we will present them in our setting.
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Let (M,H, g) satisfy SGM. If (Mχ, H, g{) is another manifold such
that dx = d, then it is clear that the induced Riemannian metrics g>H and
gχ^H are the same since they are the length space metrics induced from
d and dχ respectively. The obvious identification of the bundles U+H
and UχH preserves the standard measures. Since all geodesies hit the
boundary, we can label them by their initial vector υ e U+H. We can
thus define a map Γ from the unit sphere bundle UM of M to the unit
sphere bundle UMχ of Mχ which preserves the geodesic flow as follows.
For u e UM there is a unique v e U+H such that u = γυ(t) for some t
and γv(s) (£ H for all 0 < s < t. We let Γ(w) be γ[υ(t). The fact that γv

has the same length as γXυ means that y[υ(t) is defined. The map Γ is the
composition of the inverse Z~ι of the map Z:Q —• UM (as defined in
§3) and the map Zχ: Qx —• UMX. These maps are measure preserving by
Santalό's formula if we take the measure on U+H x R to be (υ, N ) dudt
and hence Γ is measure preserving. The map Γ is continuous even though
Z " 1 may not be. Z " 1 may be discontinuous at u when υ is tangent to
H. So the possible discontinuities occur on grazing geodesies. But it is
not hard to see that grazing geodesies in M correspond naturally to ones
in Mχ, and hence that Γ is continuous. In conclusion we have

5.1. Lemma. If M satisfies SGM, then any M{ with d = dχ will have
the same volume as M and will have a homeomorphic unit tangent bundle.

5.2. Remark. It is still unknown in general if Mχ itself must be home-
omorphic to M. However, this will be the case if M can be seen as a
subdomain of an open metric ball B(x, r) in a manifold N with center
x which is not in M and of radius r less than the injectivity radius of
TV. In particular this is true for subdomains of complete simply connected
manifolds without conjugate points. To see this note that M is diffeomor-
phic via the exponential map to a subdomain D in TχN. If we let Bχ be
the manifold obtained by cutting M out of B and replacing it with Mχ,
then D will be diffeomorphic to M via the exponential map on Mχ. The
only question is whether two geodesies emanating from x might intersect
in Mχ (or whether there might be a conjugate point), but then they cannot
both be minimizing when they exit from Mχ, which they must be since
dχ=d.

5.3. Remark. The construction above of cutting M out of a manifold
N and replacing it with Mχ clearly yields a manifold N with a metric g
which is smooth except possibly for points on H. In [14] Michel shows
that ~g will be C 2 at points of H which are locally convex towards M.
In particular ~g will be C 2 whenever M is convex. We however are
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interested in the case where M is SGM. Of course a positive answer to
Question 2.2 would imply that ~g is smooth in this case. It is clear that
~g is C° and that geodesies are C1 curves. Further, geodesic segments
in g between points in N — M will be minimizing if and only if the
corresponding geodesic in g is. We will call these metrics "almost C 2 "
since many global rigidity theorems (especially those proved using inte-
gral geometry) will hold for these somewhat more general metrics (since
almost all geodesies intersect H transversely). In particular, Hopf s the-
orem [12] on 2-tori without conjugate points, the Blaschke conjecture for
spheres [2], Berger's isoembolic inequality [1], Katok's rigidity theorem
[13], and Guillemin and Kazhdan's deformation rigidity theorems [10],
[11] as well as Min-Oo's generalization [15] should be true for these more
general metrics. In [14] boundary rigidity was stated and proved for con-
vex subdomains of the round sphere, while in [9] it was claimed for all
subdomains of a convex subset of a round sphere. The proof uses the
above construction and then applies Berger's isoembolic inequality (or the
Blaschke conjecture). In the appendix we show why these theorems still
hold in the almost C 2 case. The proof in [9] for subdomains of the hy-
perbolic plane uses Katok's theorem along with the above construction. In
[14] a deformation rigidity theorem is proved for convex M with pinched
negative curvature by using the above construction along with Guillemin
and Kazhdan's theorems. This theorem is also true in the SGM case. In
the appendix we will discuss this result in the almost C 2 setting.

5.4. Remark. If the map Γ covers a map D on the base, then D
must in fact be an isometry. To see this let x, y e M be such that
there is a minimizing geodesic between them. Let γv be the geodesic with
γ(tx) = x, γ(t2) = y, and v e U+H. Then since Γ covers D, we see
that D(x) = ylv(t{) and D(y) = Yϊυ(t2), and hence the distance in M
between x and y is the same as the distance between D(x) and D(y) in
Mχ, and thus D is an isometry. Hence to answer the question one needs
only show that Γ covers a map D.

The above remark leads one to consider the following special case of
Question 2.2.

5.5. Question. Let (B, H, g) be a Riemannian metric ball of radius r
which is SGM. Must any (Bχ, H, gχ) with dχ = d also be a Riemannian
metric ball of radius r ?

If the answer to 5.5 is yes (when Bχ has an almost C 2 metric as in 5.3
above), then so is the answer to 2.2 in many cases. In particular, if M is
a compact subdomain of a complete simply connected manifold without
conjugate points and x e M, choose r so large that M is contained in
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the ball B about x of radius r. Let Bχ be the manifold obtained by
cutting M out of B and replacing it with Mχ yielding that dχ-d and
hence that B{ is a metric ball with center x{ e M{. It is not hard to see
that Γ takes vectors at x to vectors at xχ. Hence Γ covers a map on the
base, and M{ is isometric to M.

6. The R" and Hn cases

In this section we consider subdomains of R" and Hn (hyperbolic
rt-space). We give a new proof of boundary rigidity for subdomains of Eu-
clidean space having the flavor of the proof of the Blaschke conjecture ([3]
or [2]), and we prove Theorem D using the deformation rigidity theorem
of Michel [14].

We first consider some general results in the case where (Af, H, g) is
a subdomain of a complete simply connected manifold without conjugate
points N, and (M{, H, g{) is a smooth Riemannian manifold such that
d - dχ. Remark 5.2 states that M is diffeomorphic to M{, and 5.3 states
that if M is replaced by M1 in N, then the resulting metric g is almost
C 2 on N without conjugate points since all geodesies still minimize. In
this section we will prove our results under the assumption that ~g is C 2 .
This is good enough for applications such as Theorem A or for convex M
(see [14]). In the appendix we will discuss how to modify the proofs in
the general case.

We now discuss Jacobi fields of ~g along a geodesic γ. Let γ(t) be
the corresponding geodesic of g. For t where γ{t) £ M, we have
γ(t) g M and γ(t) = γ(t). As pointed out in [14], Lemma 1.2 states
that if J(t) is a Jacobi field of ~g along γ(t), then there is a Jacobi
field J(t) of g along y(t) such that 7(t) = J(t) when γ{t) <£ M. As-
sume that γ(0) = 7(0) g M, and let Xl9X2, - , Xn_{ along γ and
Ύ{, X2, , ~Xn_{ along 7 be parallel orthonormal vector fields perpen-
dicular to γ and γ respectively and Xz(0) = ^ . ( 0 ) . At t such that
γ{t) g M there is an orthogonal transformation taking X.(t) to ΊC^t).
Let (9(0 be the matrix such that 7(0 = O(t)J(t) when 7(0 is written as
a column vector with respect to the X z , and J(t) with respect to the X..
We will consider matrix solutions A(t) to the resolvent Jacobi equation
Z"(0 + R(t) Z(0 = 0, where R..(t) = (R(γ'(ή, ^ . ( 0 ) / ( 0 , *,• (0), and
the corresponding solutions ^ ( 0 along 7 The above discussion about
Jacobi fields states that if A{0) = A(0) and ^'(0) = 3^(0) then, when
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γ(t) <£M, ~A(t) = O(t)A{t). In particular let A(t) be a solution such that
A'(t)A~\ή is symmetric for some t = t0 and hence at all / since R is
symmetric. Then

(6.1) B*(t)

defines the solution with B(0) = 0 and B'(0) = I as long as A(x) is
nonsingular for x e[0, t] (see, for example, [3, Appendix D]). A similar
formula relates the corresponding solutions ~A and Έ and hence for all t
such that γ(t)<£M:

rt rt

(6.2) / A~\x)A~U(x)dx= I A~\x)A~l*(x)dx.
Jo Jo

Using the convexity of X -+ (Det(X))~1/2 on the space of positive
definite symmetric matrices as in [3, Appendix D], we have

n-\

(6.3) Όetί ['A~ι{x)A~ι*(x)dx\ > I f Όet(A{x))~2/{n 1}dx

with equality holding if A(x) is diagonal for each x e[0, 1].
In [9, §§6.1, 2.1, and 4.1] Gromov proves that compact subdomains of

a Euclidean space are boundary rigid by showing that the "filling volume"
of the boundary is greater than or equal to the volume of the domain. The
part that yields the rigidity is that equality in the filing volume estimate
implies flatness. In this section we give a more analytic proof having the
flavor of the proof of the Sn case i.e., the proof of the Blaschke conjecture
for spheres.

6.4. Theorem. Compact subdomains of the Euclidean metric on Rn are
boundary rigid.

Proof. Let (D, H, g) be a compact subdomain of a Euclidean n-
space, and let (Mχ, H, gx) be a Riemannian manifold such that d{= d
on H. Replacing D by Mχ we get a metric g on R" which is Euclidean
outside a compact set K and has no conjugate points (we assume for now
that ~g is C 2 ) . We may assume that K is contained in the interior of the
cube C = {{xχ, x2, , xJH X l < R} for some R. By 5.1 the volume
of C in J is (2R)n. Let F be the face of C given by xn = -R and for
each p e F let yp be the geodesic on ~g from p perpendicular to F . By
Lemma 1.2, yp has length 27?. Let Ap{t) be the solution to the Jacobi
equation such that ~Ap(0) = I and ^ ( 0 ) = 0. Then the volume of C is
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given by

JF Jo

2R _

Όet(AJx))dxdp.
IF JO P

For any positive function f(x) the Holder inequality implies:

f{x)dx > (b - a

with equality holding if and only if f(x) is a constant function. Applying
this to Όet(Ap(x)) yields

r ( r2R ϊ

Vol(C) > J^2R){n+l)/2 I Όet(Ap(x))-2/{n-l) dx dp

with equality holding if and only if Det(Λ (JC)) is constant hence equal to
1. A(x) is a nonsingular matrix for all x since for each x the geodesies
γp minimize the distance to the submanifold F and hence there are no
focal points to F along γp . Since the corresponding matrix A(x) in the
Euclidean metric is the identity, an application of (6.2) and (6.3) yields
Vol(C) > (2R)n with equality holding if and only if ~Ap(x) is the identity
matrix for all p and x. But we know that equality holds, hence ~AΛx) is
the identity, and the theorem is proved. (See §7.2 for the general almost
C 2 case.)

6.5. Remark. The theorem in [9, §5.5B] is more general than the one
stated above. However it is not hard to modify the above proof to prove
boundary rigidity for M which admits an isometric immersion into the
same dimensional Euclidean space.

We now consider the case where N is a hyperbolic «-space. The main
tool which we will use is that SGM manifolds with negative definite curva-
ture operators are "deformation rigid". A metric g is deformation rigid
if for every 1-parameter family gt of metrics with g0 = g and dt = d we
have g = Φ*(gt) for diffeomorphisms Φt that leave the boundary fixed.
Using the rigidity theorem of Guillemin and Kazhdan [11], Michel [14]
gave a deformation rigidity theorem for convex manifolds with pinched
negative curvature. Min-Oo's extension [15] of [11] extends this deforma-
tion rigidity theorem to the case of negative definite curvature operator.
The argument can also be extended to the SGM (as opposed to convex)
case. In this case rather than using the usual cut and paste method one
can apply the [11] or [15] argument directly to M. The global properties
of the geodesic flow used in the old argument can be easily replaced by
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the condition j-t(dt(p, q)) = 0 for all p and q on the boundary (see
§7.4). In the argument below we use the cut and paste construction inside
a convex M. We will treat the resulting metric as C 2 and handle the
differentiability problems at the boundary in the appendix (§7.5).

6.6. Proof of Theorem D. Since the case n = 2 was proved in [9], we
need only consider n > 3. Since M is compact, we can find a large ball
B(x,r) in a hyperbolic space such that M lies in an open "Half Ball"
B+ of B(x, r). Let ~g be the (almost C 2 ) metric gotten by replacing M
by Mχ in B(x, r). If we let Bχ be this new Riemannian manifold, it
is easy to see that B{ = Bχ(x, r) (i.e., Bχ is a metric ball about x) and
hence the orthogonal group O{ή) acts as a group of diffeomorphisms via
the exponential map. The function dχ—d is invariant under this group,
and hence O*~g has the same boundary distance function as "g for any
O E O(n). The deformation rigidity of ~g states that O*~g is isometric
to ~g via a diffeomorphism Φ that leaves the boundary fixed if O is in
SO(n). Since Φ takes geodesies of O*~g to geodesies of ~g, we first see
that Φ(x) = x since x is the midpoint of all geodesies between boundary
antipodal points in both cases. Now the definition of O implies that the
geodesies from x to the boundary are the same in both cases, so we see
that Φ = Id and hence O is an isometry of ~g . Thus O(MX) is isometric
to Mχ, and the theorem follows since there is an O in SO(w) taking the
half ball B\ containing Mχ to the opposite half ball.

7. Appendix: Differentiability

In this appendix we fill in the details needed in the proofs of the pre-

ceding sections (and in Theorem 5.5B of [9]) when the cutting and pasting

yields only an "almost C 2 " metric. Our Riemannian manifold TV is con-

structed by replacing a domain M in a smooth manifold by a Riemannian

manifold Mχ with the same boundary H. The metric will be smooth ev-

erywhere except possibly at H where it will be C°. For x e H and

V e TχN there will be two natural choices for V^ both being one sided

derivatives; they will be denoted V^ and V~ . Similarly there are two

second fundamental forms II + and II~ .
Let x e H, and V eTχN be transverse to H and written as aN+ W ,

where N is the unit normal to H and W is tangent to H. It will be
important to consider the linear transformation Tv from TχN to itself
defined by

TV(X) = a {V+

γN - V~7V} + {ll+(Y, W) - IΓ(Y, W)} N,
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where X = bV + Y, and Y is tangent to H. To see that Tv is symmetric
first consider the case X, Z e TχH. Then (TV(X), Z) = a{(VχN, Z) -
(V^TV, Z)} which is symmetric in X and Z by the symmetry of the
second fundamental forms. The general case follows since it is easy to
see that TV(V) = 0 and that (TV(X), V) = 0. Tv is a measure of the
difference between the two second fundamental forms of H.

We will only look at geodesies γ that intersect the set H transversely
since the others form a set of measure 0 in applications. We will call a
vector field J along such a y a Jacobi field if it comes from a variation of
geodesies. Such a / clearly satisfies the Jacobi equation except possibly
at points of γ(tQ) E H. At γ(t0), / is continuous. However it need not
be diίferentiable. We let V = γ'(t0). / has one-sided derivatives at tQ .
We will show

(7.1) V+

vJ(tQ)-V-J(t0) = 0

Let F(s, t) = γs(t) be a variation through geodesies giving rise to / . Since
V is transverse to H, there is a function t(s) such that F(s, t(s) +10) =
σ{s) e H. We will consider the related variation G(s, t) = F(s, t(s) + 0 .
The Jacobi field X(t) of the new variation is J(t) + ί'(0) /(ί) and is
tangent to // at tQ . To show (7.1) for / we need only show that it holds
for X. To see this, we extend V to G^d/dt) and the variation field
to X = G^d/ds). Now V+ΛΓ = V ^ F = ΛΓ(fl) Λ̂  + aV+N + ( V ^ ) τ +
(V^ W)N, where for a vector Z , Z τ and ZN represent the tangential and
normal components respectively. Subtracting the corresponding formula
for V^ yields (7.1) since {V+

χW)Ύ depends only on the intrinsic metric
of H and hence is equal to (V^ W)τ .

7.2. We now show how the above allows the proof of Theorem 6.4 to
work in the almost C 2 case. Along a geodesic γ which is transverse to H
we let A(t) be the matrix solution (with respect to a parallel orthonormal
basis) of the Jacobi equation except at points γ(tQ) e H where we require

A to be continuous and A'+(t0) - A (tQ) = Tv A(t0). As in the C 2

case since geodesies agree outside Mx and A is defined via variations of
geodesies, we see that Ά{t) = O(t) A(t). All of the arguments follow
exactly as before once (6.1) holds for A. To see this define B by (6.1).
B satisfies the initial conditions and will satisfy the Jacobi equation at
points γ(x) not on H as long as A(x)A~ι(x) is symmetric. To see this
we need only that the symmetry is maintained at t0 if γ(tQ) e H, and
Af+(t0)A-\t0) = A'-(tp)A-ι(t0) + Tv, where V = γ'(t0). Since Tγ is
symmetric, symmetry is maintained across t0. In order that B is the
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solution we want, we need only check that (7.1) holds at γ(tQ) e H. Since
we have

B (to)-B (to) = A(O)i A \x)A \x)dx\{A *(to)-A (ί0)}

= B*(to).T*v,

(7.1) and thus (6.1) hold, and the argument works.
7.3. Remarks. (6.1) is the only step in the proof of the Blaschke con-

jecture which does not clearly extend to the almost C 2 case. The above
argument thus extends the proof to the almost C 2 case and fills in a step
(which does not appear in the literature) in the theorem in [9, §5.5B].

7.4. We will now show that the arguments of [11], [15] are sufficient
to prove deformation rigidity if M is SGM and has negative definite
curvature operator. We look at a one-parameter family of metrics gt such
that dt = d0. We will assume that they have the same inward normal at
the boundary (if not a diffeomorphism near the boundary will make it so).
The argument looks at g*(V, V) as a one-parameter family of functions
on the cotangent bundle. The fact that the boundary distance is preserved
implies that if γ(ή for te[0, 1] is a geodesic in # 0 from boundary point
to boundary point, then its energy must be smaller in g0 than in all the
metrics gt and hence

/ '
^ o

By dualizing the above we see that ^(<?*)|,=0 integrates to 0 along the
integral curves of the geodesic flow ζ in the unit cotangent bundle U*M
and hence (since all geodesies hit the boundary) it is not hard to see that
there is a function / o n U*M which is 0 on all vectors at the bound-
ary such that ζ(f)(V) = ft{g*(V9 V))\t=0. The argument given in [11],
[15] now applies to / to show that / is linear on each fiber and hence
comes from a vector field Z o . Z o will be 0 at the boundary since all gt

are the same at the boundary. For small values of t, gt will also have
negative definite curvature operator, and hence we get vector fields Zt.
This gives rise to a one-parameter family Φ, of diffeomorphisms defined

by Z,Q(Φ,o(*)) = Tt(φt(x))\t=t0

 T h e n So = Φ*(*,) a n d h e n c e t h e r e s u l t

follows (see [11] for more details).
7.5. We now show how to modify the proof of Theorem D to allow for

lack of differentiability at the boundary H. Let O(t) be a one-parameter
family of orthogonal transformations, and gt = O(ή*~g as in the proof of
the theorem. We wish to proceed as above and prove that gt = ~g. The
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main problem is that $-t{gt)\t=0 need not be defined at points of H. It
is clear however that for p <£ M{ we have $-t(gt)\t=0 is 0 for covectors
at p. Hence the argument of §7.4 can be applied to give a function /
on U*N which is continuous, 0 outside of M{, and differentiate off H
with ζf = ^ ( g * ) | ί = 0 Now the same argument (which is /2 in nature)
implies that / is linear and hence comes from a continuous vector field
Z o which is 0 outside Mχ and differentiate in the interior of Mχ. The
same construction for small values of t yields vectorfields Zt which are 0
outside and differentiate inside Φt{Mχ). The proof will follow when we
show that Zt is 0 everywhere. To see this let y b e a geodesic ray from
the center x to the boundary. By construction γ is a geodesic in all our
metrics gt. For γ(t) not on H the Zt will generate a local one-parameter
family of diffeomorphisms Φt with Φ*(gt) = g0, and hence Φ^ι(y) is
a variation of geodesies in g0. Therefore Z o is a Jacobi field along γ
which vanishes at points of H. Since γ minimizes, Z o is 0 along γ and
hence everywhere. The same argument applied to Zχ yields the result.
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