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EXISTENCE OF SMOOTH EMBEDDED
SURFACES OF PRESCRIBED GENUS

THAT MINIMIZE PARAMETRIC EVEN
ELLIPTIC FUNCTIONALS ON 3-MANIFOLDS

BRIAN WHITE

Introduction

Let F be a smooth positive function on the boundary of the unit ball

in a Euclidean 3-space R3. Then F defines a functional on immersed

surfaces M in R by the formula

F(M)= ί F{u)dA,
JM

where v(x) is the unit normal to M at x and the integration is with
respect to surface area. Such a functional is called a "constant coefficient
parametric functional". In this paper we study the existence of smooth em-
bedded surfaces (with given boundaries) that minimize F . In particular,
we show:

Theorem 3.4 (condensed version). If F is even and elliptic, and S is
a smooth simple closed curve on the boundary of a convex set in R3, then
for each g > 0 there exists a smooth embedded surface that minimizes
F(M) among all embedded surfaces M with boundary dM = S and
genus(M) < g.

Here " F is even" means that F(y) = F(-u), i.e., that F(M) does not
depend on the orientation of M. Ellipticity of F means that the set

{x:\x\F{x/\x\)<\}

is uniformly convex; this is equivalent to ellipticity of the Euler-Lagrange
equations for the corresponding functional on graphs.

More generally, F can depend on position as well as unit normal di-
rection:

F:R3 xdB3 -+R+,
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where B3 is a 3-ball, and R+ is the set of positive real numbers. The
functional on surfaces is then given by

F(x,v(x))dA.F(M) = ί
J xxeM

Such an F is called a (nonconstant coefficient) parametric functional. We
say that F is even and elliptic if and only if F(x, •) is even and elliptic
for each x . The theorem above remains true for such an F defined on a
compact 3-manifold-with-boundary TV provided that S is a simple closed
curve in dN and that dN is strictly ^-convex (see §1.5).

There has been much work on related questions, especially for the area
functional (the case F{v) = 1). First, Douglas [6], [7] proved the ex-
istence of a branched immersion minimizing area under the hypotheses
of Theorem 3.4, except he did not require S to be on the boundary of
a convex set; Rado [29] also showed this in the case g = 0. Morrey
[26] proved existence of smooth area minimizing maps of disks into 3-
manifolds. Hildebrandt [21] and Heinz and Hildebrandt [19] showed that
such maps (into Euclidean space and Riemannian manifolds, respectively)
were branched immersions up to and including the boundary. (The regu-
larity results of Douglas, Rado, and Morrey were for interior points.) Os-
serman [28] showed that such surfaces in i?3 have no true branch points
except possibly at the boundary, and Gulliver [15], [16] extended Osser-
man's result to both true and false branch points and to arbitrary ambient
3-manifolds.

Now suppose that S is on the boundary of a convex set as in Theo-
rem 3.4. It is fairly easy to see that the area minimizing disk it bounds
has no boundary branch points either. Thus such an S bounds an area-
minimizing immersed disk. For some time, however, it was not known
whether such an S must bound an embedded minimal disk. In 1978
Tomi and Tromba [32] used degree theory and global analysis to show
that S must bound an embedded disk that is minimal (i.e., is a critical
point for the area functional). But the disk given by their proof is not
necessarily area minimizing or even stable. Shortly afterward, Almgren &
Simon [3] proved that S bounds a smooth embedded disk that minimizes
area among all embedded disks. They used techniques of geometric mea-
sure theory to get a varifold solution and then to prove that the varifold
was a smooth surface. Finally, Meeks and Yau [25] showed that for such
an S the genus 0 Douglas-Rado solution is in fact embedded.

For general elliptic functionals F , Cesari [4], Danskin [5], and Sigalov
[31] showed that there is a W1'2 map u of the two-disk D into R3 with
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u(dD) = S that minimizes

EY ^m\ f T7 ( d U 9U I dU 3U \
F(u(D)) = / F I — x — / — x —- ύf̂

Ẑ) \ d x dy/ d x dy )

where in the second line we have extended F: dB3 —• R+ to be homoge-
neous of degree 1 on i? 3 . Morrey [27] gave a simpler proof of the result.
However, they were unable to prove smoothness of the weak solution.

By the compactness theorem for integral currents [10], [37] or for BV
functions [14] there is an integral current that minimizes F(M) among
surfaces with dM = S. in 1977 Almgren, Schoen, and Simon [2] showed
that the integral current is a smooth embedded surface away from its
boundary, and Hardt [17] showed that if S is on the boundary of a con-
vex set then it is also smooth at the boundary. However, those theorems
say nothing about minimizing F among surfaces of specified topological
types.

Recently Lin [23] and the author [36] independently used the Tomi-
Tromba argument to show existence of smooth embedded disks that are
stable for even elliptic functional. However, the disks produced need
not minimize the functional. Examples show that in manifolds the Tomi-
Tromba approach fails even for the area functional [36, §3].

The main contribution of this paper is to prove Theorem 3.4 for disks
(the g = 0 case); the higher genus result follows easily with the help of an
elegant idea of Hass and Scott [18]. The proof here is not a generalization
of the proofs for the area case. It is unusual in that it uses the Almgren-
Schoen-Simon result on surfaces of unspecified genus. The proof starts
with minimizing sequence of embedded disks. For each disk D. in the
sequence, we consider the family ^ of C 1 ' 1 surfaces with boundary S
that: (i) lie on a given side of D{ (let us say "above" D.), (ii) are F-
stable among surfaces with Dt as an obstacle, and (iii) have F-integral
less than or equal to F(Di). (This is a slightly simplified account of the
proof; for technical reasons a condition somewhat stronger than stability
is used.) This family is not empty because (by the Almgren-Schoen-Simon
theorem) it contains the F-minimizing integral current that lies above D{.
Of course this integral current may have high genus, but it turns out that
the surface in the family ^ that is closest to Dt must be a disk D\.
Note that D1. will be F-stationary except at points x where it touches the
obstacle Zλ, and at those points the F analogue of the mean curvature
points "downward" (toward D.).
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Now the process is repeated with D\ instead of Dt and with "above"

and "below" reversed. The result is a C 1 ' 1 disk Dι[ that lies "below" D\

and that is F-stationary except where it touches D\. But by the maximum

principle it cannot touch D\. Also, by the construction,

F{D'!) < F(D\) < F{Dt).

Thus we have a minimizing sequence of smooth F-stationary embedded
disks. By a priori curvature estimates there is a convergent subsequence;
the limit is of course the F-minimizing disk D.

The a priori estimates come from two Bernstein-type theorems:
4.1. Theorem. Let M be a complete connected orientable surface that

is properly immersed in R3 and stable with respect to a constant coeffi-
cient parametric elliptic functional F. Suppose that the density ratios are
bounded above:

Area(Λfn5(0)) „
sup =—- = C < oo.
r>o πr

Then M is a plane.
5.1. Theorem. Let I be the line of intersection of two planes in R3

and let 31 be one of the four regions into which the planes divide R3.
Let M be a complete connected orientable surface-with-boundary properly
immersed in R3 such that int(M) c 31 and dM = I where int(Af)
denotes the interior of M. Suppose that M is stable with respect to a
constant coefficient parametric elliptic functional F and that the density
ratios are uniformly bounded above:

Area(Mn5r(0))
sup 2—-^-^ < C < oo.
r>o πr

Then M is a half plane.
For the case of the area functional, Theorem 4.1 was proved by Fischer-

Colbrie and Schoen [11] and by doCarmo and Peng [8] without assuming
bounded density ratios. Theorem 5.1 is apparently new even for the area
functional.

The organization of the paper is as follows. §1 contains definitions
and basic facts about variational problems with obstacles; the reader may
wish to skip it. §2 gives the proof of the main result (the genus 0 case).
In §3 we obtain the extension to higher genus and to arbitrary ambient
manifolds. In §4 we establish a Bernstein type theorem and curvature
estimates for stable surfaces, and in §5 we derive the analogous results at
boundaries. In §6 we prove the regularity of F-minimizing currents with
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obstacles and extend Hardt's boundary regularity theorem to nonconstant
coefficient functionals.

The referee has informed us that Theorem 4.1 and the results of §6 are
contained in some unpublished work by F. H. Lin [22], [24]; Lin's methods
for proving 4.1 are, however, different.

1. Preliminaries

1.1. In what follows, N will be a 3-manifold (with or without bound-
ary), and F will be a smooth even elliptic parametric functional on N.
If M is a C 1 submanifold of N, we will refer to F(M) as the F -area
of M.

1.2. Let M be a C 1 immersed surface in N and v be a Lipschitz
vectorfield on M. We say that φt is a one-parameter family with initial
velocity v if

(1) t H+ 0,() is a smooth map from R (or from a neighborhood of 0
in R) to the space of Lipschitz maps of M into N,

(2) 0o(x) = x, and

(3) (rf/rfθ^(*) = *>(*)-
For example, if N is Euclidean space, then φt(x) = x + tv(x) defines

a one-parameter family with initial velocity v .
1.3. Let M c N be a C 1 surface. We say that Af has F-mean

curvature h if Λ is a vectorfield on Λf such that

(d/dt)t=0F(φt(M)) = - f h v d A ,
J M

whenever v is a Lipschitz vectorfield supported in a compact subset of
M\dM, and 0, is a one-parameter family with initial velocity υ . If M
is C 2 , then it has a continuous F-mean curvature vectorfield whose value
at each point is determined by the second fundamental form of M at that
point.

The surface M is said to be F -stationary if it has F-mean curvature
0. An F-stationary surface F is said to be F -stable if

(d/dt)l0F(φt(M))>0

for every φt as above.

1.4. Let Ω be an open subset of N with C 1 boundary, and let M be
a C 1 surface disjoint from Ω. Let p be a C1 retraction from an open
set containing iV\Ω onto iV\Ω. We say that M is F -stationary for the
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obstacle Ω (or, by slight abuse of terminology, for the obstacle dΩ) if

F(p(ft(M))) > F(M) - o(t)

for every φt as in §1.3.

Proposition. Let Ω be an open subset of N such that dΩ is C 1 and
has bounded F-mean curvature, and let M be a C surface that is F-
stationary for the obstacle Ω. Then M has bounded F-mean curvature
{with the same bound). If Ω is C 1 ' x , then so is M.

Proof By working locally we may assume that M is the graph of a
C 1 function u:Έ -+ R on the unit ball in R2 and that Ω is the region
below the graph of a C 1 function f:B->R with f <u.

Define a functional Φ: C 0 ' ι(B) -• R by letting Φ(υ) be the F-area of
the graph of υ . Then

Φ(υ)= [ L(x,υ(x),Dυ(x))dx,
JB

where

Since L is smooth, Φ is a smooth functional, so

and, since dΩ has bounded .F-mean curvature, we have

DΦ(f)v = - ί v h ,
JB

where h is a bounded measurable function. Thus

Φ(w) -Φ(u + tv)

<[φ(u)-Φ((u + tv-f)+ + f)]

+ [φ(f)-φ((u + tυ - / ) " + / ) ]

|Φ((M + ίV - / ) " + /)

+ | | (M + ̂  - f)'\\ι HAIL + °(K W + ' v - / ) ~ l o , i )

+ ll^lli-IIA|loo + ° ( l ^ l o , i ) '

(where a+ = (a + |fl|)/2 and α~ = (α - |fl|)/2) since u- f >0. Hence,
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and by the Riesz-representation theorem, we have

DΦ(u)v = - g v
JB

for some function g with \g\ < \h\.
Note that u is a weak solution of H(u) = g, where H is the Euler-

Lagrange operator for L. Note also that if w > f, then

(H(u) 9w-u) = {d/dt)t=0Φ{u + t(w - ύ)) > 0.

It follows that u is C 1 ' 1 if / is C 1 ' 1 [12].

Corollary. Let Ω c N be an open set such that dΩ is C1 and has
bounded F-mean curvature, and let M be a C 1 surface in N\Ω. Then M
is F-stationary for the obstacle Ω if and only if M has F-mean curvature
h, where h(x) = 0 // x φ dΩ, and h(x) points into Ω if x e dΩ.

Remark 1. For this paper it is not really necessary to use the theorem
that u is C 1 ' 1 if / is C 1 ' 1 . For, as proved above (without assuming /
to be C1 s ι), u is a weak solution to H(u) = g for some bounded mea-
surable function g . But then by Theorem 13.1 of Gilbarg and Trudinger
[13], u is C 1 ' 7 , where γ depends only on F . (Gilbarg and Trudinger as-
sume that u is C 2 and prove Cι'γ estimates, but the proof can be slightly
modified with an approximation argument to avoid the assumption.)

In the rest of the paper one can substitute C 1 ' y for C 1 ' 1 .
Remark 2. Note that the first conclusion of the proposition remains

true for several disjoint obstacles Ω,, even if their closures are not disjoint.

1.5. Let Ω c iV be an open set such that dΩ is C 1 and has F-mean
curvature h(x) = u(x)n(x), where n(x) is the unit normal to dΩ that
points into Ω. We say that Ω is F -convex if u(x) > 0 for almost every
x E dΩ, and strictly F-convex if u(x) > 0 for almost every x e dΩ.

Proposition. Suppose that Ωj c Ω 2 , where Ω2 is F-convex, and dΩ{

has bounded F-mean curvature. Let M be a C1 surface that is F-
stationary for the obstacle Ω{ U (N \ Ω 2 ). Then M is F-stationary for
the obstacle Ωx.

Proof By Proposition 1.4, M has a bounded F-mean curvature vec-
torfield h . By the maximum principle, at any point x where M touches
dΩ2, h{x) points into Ω 2 . The result then follows immediately from
Corollary 1.4.

2. Existence of smooth F-minimizing disks

Theorem. Let B be a ball in R3 (or more generally a bounded region
diffeomorphic to a ball and having smooth boundary), and let F be an even



420 BRIAN WHITE

parametric elliptic functional on B such that B is strictly F-convex. If S is
a simple closed curve in SB, then there is a smooth disk D that minimizes
JDF(x,v(x))dA among all embedded disks in B with boundary S.

If j > 1, and S is CLθL near x e S, then D is an embedded CLa

manifold'With-boundary near x.
Proof Suppose first that S is smooth. Let ΘB+ and dB~ be the two

connected components of dB \S. For any embedded surface M in B
with dM = S, we will say that x is above M if x is in the closed region
bounded by M and dB+, and that x is below M if x is in the closed
region bounded by M and dB~ .

Let D be any smooth embedded disk in B with dD = S and F(D) =
A. We will first show that there exists an F-stable such disk D with
F(D) < A. Now if D is not F-stationary and F-stable, then we can
modify it to get a new disk Df so that F(Df) < F(D). For technical
reasons we modify Df to get a disk D" SO that D" meets dB+ tan-
gentially along S in other words, so that D" U dB~ is a smooth surface.
Note that this modification can be done at arbitrarily small cost in F-area,
in particular so that F(Dn) < F(D). Thus we may as well assume that
D" = D.

Let Jt be the set of embedded C 1 ' 1 surfaces M such that:
(1) M lies above D,
(2) dM = S,
(3) M U dB~ is F-stationary for the obstacle D u dB~ , and
(4) M is "one-sided F-minimizing" in that F{M) < F(Mf) for every

surface M1 such that dM1 = S and Mf lies in the closed region between
M and D.

Let M e Jί. If B{x, r) c B, then by (4)

F(Af Π 5(x, r)) < F(dB(x, r) Π {the region between M and D})

+ F(B(x,r)nD)

<cr\

where c depends only on D and F. Note also that M \ D is F-stable.
(Otherwise a compact subset would be unstable, and, because the lowest
eigenfunction does not change sign, we would be able to decrease the F-
area of M by deforming it toward D, which would contradict (4).)

Therefore by Theorem 4.2 the surfaces M in Jt are uniformly C 1 >a .
The class ^# is nonempty since it contains the surface M of least F-

area among surfaces above D and having boundary S. (Of course one
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must check that this surface does in fact belong to Jΐ. Certainly MuB~
is stationary given as obstacles both the region inside D u BΓ and the
region outside dB since B is F-convex, M U B~ is in fact stationary
given only the first obstacle (Proposition 1.5). See §6 for a proof that the
surface is C 1 ' 1 / 2 it then follows from Proposition 1.4 that it is C 1 ' ι ) .

Hence among the surfaces in Jt, there exists a surface Σ for which
the volume of the region between Σ and D is as small as possible. We
claim that Σ is a disk.

For suppose not. Then by topology (e.g. the Mayer-Vietoris sequence for
the regions above and below Σ), there is a closed curve C in the interior
of the region U above Σ such that C does not bound any surface (i.e.,
is not Z2-homologically trivial) in U. On the other hand, C does bound
a surface in the region above D. Let T be such a surface (flat chain mod
2) of at least possible F-area. Then T is a C 1 ' 1 embedded surface away
from C (by 1.4, 6.1, and 6.2); in particular the portion of T below Σ is
C 1 ' 1 .

Now consider the class of surfaces in the closed region between Σ and
D that have boundary S and do not cut across T. This class is nonempty
since it contains D. Let M be the surface of least jF-area in this class.
Then M is C 1 ' 1 (just as T was) and by the maximum principle M
cannot touch Σ or T at any point not in D. Thus M e Jΐ. Since M
lies below Σ, this contradicts the choice of Σ. Thus Σ must be a disk as
claimed.

(To make the argument in the previous paragraph more precise, let B
be the geodesic completion of B \ T, that is, the metric space completion
of B \ T with respect to the metric given by geodesic distance in B\T.
Then there is a natural map π: B —• B that is the identity on B \ T. Note
that for each x in T\dT, π~ι(x) consists of two points. Consider the
class of surfaces in B that have boundary S and lie between Σ and D.
Note that D is in this class but that Σ is not. (Σ has extra boundary on
π~ι(T).) Let M be the support of the least F-area surface in this class,
and let M = π(M).)

Note by (4) that F(Σ) < F(D).
Now we redefine Jt to be the set of all C 1 ' 1 surfaces M such that

(1) M lies below Σ,
(2) dM = S,
(3) M is F-stationary, and
(4) M is "one-sided F-minimizing" in that F(M) < F(λf') for every

surface M' such that dMf = S and M' lies in the closed region between
M and Σ.
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The set Jl is not empty since it contains the surface M of least F-
area between ΘB~ and Σ with boundary S. (See §6.3 for the proof that
M is regular up to the boundary.) As with Jί, the one-sided minimizing
property implies that members of Jΐ are Testable and satisfy a uniform
upper bound on density ratios. Thus the curvature bounds of Theorem
5.2 imply that Jΐ is compact. Let D be a member of Jt for which the
volume between D and Σ is as small as possible. Then (by the argument
used above for Σ) D is a disk. Also, by (4), the F-area of D is less than
or equal to the F-area of Σ, which, as already mentioned, is less than or
equal to the F-area of D.

Thus we have shown that given any smooth disk D with boundary S,
there is a smooth F-stationary (indeed F-stable) disk D with 3D = S
and F{D) < F{D).

Now let

& = {smooth embedded disks DcB with 3D = S},

m= in

and let D{ e 2 be a sequence with F(D.) —• m. Let D be the corre-
sponding sequence of .F-stable disks.

Unfortunately we cannot use the previously cited curvature bound (The-
orem 5.2) to get a convergent subsequence because that theorem requires
a uniform bound on density ratios, which we do not know how to prove.
However, since the boundary S is smooth and the areas and genuses of
the Di are bounded, we do have curvature estimates and therefore a con-
vergent subsequence (see [34]: the curvature estimate comes in part from
the Gauss-Bonnet theorem). The limit is of course a smooth embedded
disk with F-area m .

If S G dB is not smooth, let S( e dB be a sequence of smooth em-
bedded curves that approach S in the C° topology. Let D[ be a smooth
embedded F-minimizing disk with dDi = St. Let x e B. In the next
section (Corollary to Lemma 3.3) we will show that for sufficiently small
r > 0, the intersection of each D. with B(x, r) consists of disjoint disks,
each of which is F-minimizing. Note that each of these disks has .F-area
less than or equal to half the F-area of dB(x, r). This upper density ratio
bound (for connected components of D πB(x, r)) implies (by Theorem
5.2) that the principal curvatures of the D( are uniformly bounded on
compact subsets of B. Therefore there is a subsequence (which we will
assume to be the original sequence) converging to a disk D that is smooth
away from S.
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If <9/y = S\then

F(D.) < F(Df) + F(the region in dB between 5. and S).

Thus

F(D) < liminf F(Dt) < F(D'),

hence D is F-minimizing.

If 5 is CJ'a near X E S , then we can choose the Si to coincide with
S near x. It then follows from Theorem 5.2 that the curvatures of the
Dt are uniformly bounded near x and thus that the limit surface D is
C 1 > α and(byPDE) C 7 ' " near x.

3. Surfaces of higher genus

In this section we extend the results of the previous section to surfaces
of higher genus and to arbitrary ambient 3-manifolds. We begin with a
proposition and two lemmas which are topological.

3.1. Proposition. Let B, F, S and D be as in the Theorem o/§2.
If D' c B is an immersed disk with dDf = S, then F(D) < F{D). If
Si (1 < / < k) are disjoint simple closed curves in dB, then there exist
disjoint smooth embedded F-minimizing disks Dt with dDi = St.

Proof For any e > 0 we can find a smooth transversally immersed
disk D" with 3D" = S and F{D") < F{D') + e . By cutting and pasting
along the self-intersection set of D" as in the proof of Dehn's lemma (see
[25] or [20]), we can make an embedded disk D with F{D) < F{Dn).
But F(D) <F(D), so F(D) < F(D') + e for every e > 0. This proves
the first conclusion. The proof of the second is similar, q.e.d.

Recall that a plane domain is a compact 2-manifold-with-boundary that
is homeomorphic to a submanifold of the 2-sphere. In particular, a con-
nected plane domain is homeomorphic to the complement of a disjoint
union of disks in S2.

3.2. Lemma. Let P be a connected plane domain contained in a disk
D. Let P1 be another plane domain with dPf = dP. Then {D\P)U P'
is the union of a disk and several (0 or more) spheres.

Proof Attach another disk to D to get a sphere S. We must show that
(S\P)UP' is a union of spheres. But S\P is a collection of disjoint disks
D(. Note that attaching a disk to a connected plane domain gives a plane
domain or a sphere. Thus when we form (S\P)U P' by attaching the
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disks U Dt = S\P to P1 we get a union of plane domains and spheres.
But (S\P)\J P' has no boundary, so it must consist entirely of spheres.

3.3. Replacement Lemma. Let N be a compact 3-manifold with bound-
ary, and let F be an even parametric elliptic functional on N such that
N is F-convex. There is an e > 0 such that if r < e, and D c N
is a piecewise smooth immersed disk transverse to dB(x, r) with dD c
d(B(x, r)Γ\N) and D \ B(x, r) embedded, then there is a smooth embed-
ded disk D1 cB{x,r)nN such that dD1 = dD and F(D') < F{D). //
D<£B{x,r), then F{Df) < F{D).

Proof Choose R > 0 so that B(x, p) is strictly .F-convex whenever
p < 3R. (An € < R will be chosen later.)

Suppose D and B(x, r) are as in the statement of Lemma 3.2. For
simplicity let us suppose that B(x, 3R) Π ON = 0 (the other case is
similar). If D (jL B{x, r), let U be a connected component of D\B(x, r).
Let T be the surface (flat chain mod 2) of least F-area in N \ B{x, r)
such that dT = dU. If T has a point y in ΘB(x, 2R), then

since dTnB{y, R) = 0 ; cf. [9, 5.1.6].
On the other hand, d U divides the sphere dB(x, r) into two regions,

each of which is a candidate for T and one of which has area < 2πr2 .
Thus

F{T)<c2(2πr2)<2πc2e
2,

hence under the assumption that T n dB(x, 2R) Φ 0 we have

cχR
2 < 2πc2e

2 or e > RyJcι/(2πc2).

Conversely, if we choose e < Rys/cι/(2πc2) (and we assume from now on
that such an e has been chosen), then T n dB(x, 2R) ~ 0 .

We claim that T c <95(JC , r). To see this, first note that Γ c B(x, 2R)
otherwise replace T by Γ n i ( x , 2R). Let /? be the smallest radius such
that T c B(x, p). If p were greater than r, then at the intersection of T
and ΘB(x, p) we would have a contradiction to the maximum principle
by recalling that dB(x, p) is strictly F-convex, and T is smooth away
from its boundary [2].

Thus T is one of the two regions in dB{x, r) with boundary dU. By
Lemma 3.2, (D\U)uT is the union of a disk and zero or more spheres.
Let D{ be that disk. Then

F{DX)<F(D).
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Now deform Dχ by pushing T in a little to get a piecewise smooth im-
mersed disk D2 with F(D2) < F(D{). Note that the set of connected
components of D2\B(x, r) is a proper subset of the set of connected
components of D \ B(x, r ) . Thus by repeating the process we eventually
get an immersed disk D 3 inside B(x, r). Finally, by Proposition 3.1, we
get an embedded disk D' C B(X , r) with F(Df) < F(D3) < F(D).

Corollary. Let N and F be as above. There exist e > 0 and c <
oo such that if D is an embedded F-minimizing disk in N with dD c
(N\B)U dN, where B is a ball of radius r < e such that dB intersects
D transversely, then DnB is a disjoint union of embedded F-minimizing
disks, each of which has area < cr .

Proof By transversality D ΠdB is a disjoint union of simple closed
curves Cχ, , Cn . Each Cz bounds a unique disk Dt in D. If Dt is
not a subset of any other Zλ , let D\ be an F-minimizing disk in B with
boundary Ci. Otherwise let Ώ\ = 0 . Then Df = (D \ \J D.) U \JD[ is a
disk with boundary dD. By Proposition 3.1, D1 is embedded and thus
F(D') > F(D). But by Lemma 3.3, F(D') would be less than F(D) if it
were not the case that each Dt is contained in B and is F-minimizing.

Note that Ci divides dB into two regions, each of which is a compar-
ison surface for Dt. Thus the F-area of Di is less than or equal to half
of the F-area of dB, so the area of D. is less than or equal to cr2.

3.4. Theorem. Let N be a compact 3-manifold-with-boundary, F be
an even parametric elliptic functional on N such that N is strictly F-
convex, and S be a simple closed curve in dN. Let ^ g be the set of all
piecewise smooth embedded surfaces in N with genus g and boundary S,
and let

If a{g) < a(g - 1), then there is a smooth M e JKg with F(M) = a(g).
Proof Suppose a(g) < a(g - 1) and let δ = (a(g - 1) - a(g))/2. We

first prove the following lemma.

Modification Lemma. There is an e > 0 with the following property.

If M eJt with F(M) < a(g) + δ, and B c N is a ball of radius r < e

such that dB intersects M transversely, then there is a surface M e ^ g

such that

(1) F(M')<F(M),
(2) Mf\B CM, and
(3) M1 ΠB is a union of embedded F-minimizing disks.
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Proof of Lemma. By transversality, the intersection of dB and M is
a collection Cx, C 2 , , Cn of simple closed curves. Let Dk be an F-
minimizing embedded disk in B with dDk = Ck. Note that each Dk has
F-area less than or equal to the F-area of each of the two components of
dB\Ck. In particular, F(Dk) < cr2 < ce2. Form a sequence MQ9Mχ9

• , Mrt of surfaces as follows:

(l)Let M0 = M .
(2) If Ck bounds a disk Z> in Mk_χ, replace Z> by Dk to form M f c:

Then Λffc and Mk_χ have the same genus, and F(Mk) < F(Mk_{) by
Lemma 3.3.

(3) If Ck bounds a nonsimply connected subset T of Mk_χ, replace
T by Dk to form Affc:

Then the genus of Mk is less than the genus of Mk_χ and

F(Mk) < F{Mk_γ) + F(DΛ) < FίΛ^. j ) + ce2.

(4) If Ck is not contained in Mk_{, let Λffc = Mk_{.
(5) If Ck c A/A:_1 but Cfc is not the boundary of a region in Mk_χ,

then form Mk by cutting Mk_χ along Cfc and glueing in two copies of
Dk . Thus the genus of Mk is less than the genus of Mk_χ and

F(Mk) = F(Mk_χ) + 2F(Dk) < F{Mk_χ) + Ice2.

Let Mf = Mn. Then clearly Λf' has boundary S as does each Mk.
Conclusions (2) and (3) of the lemma are obvious. Now M'\B is embed-
ded by conclusion (2). Also, Mf Γ\B consists of disks, any two of which
are either disjoint or else coincide (by Proposition 3.1). But two cannot
coincide since M' \B is embedded. Thus M' is embedded.

It remains to show that Mf has genus g and that F(Mf) < F(M).
Note that in each of the four cases (2)-(5) of the construction,

F(Mk) + 2ce2genus(MJ < F(Mk_χ) + 2ce2genus(Mk_χ).

Thus

(*) F(M') < F(M) + 2ce2(genus(M) - genus(M'))

< a(g) + δ + Ice2 genus(M)

= a(g-l)-δ + Ice2 genus(M).
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Now choose e so that 2ce2genus(M) < δ. Then F(Mf) < a(g - 1) so
Mf has genus g. Thus by (*), F{M') < F(M). This completes the
proof of the modification lemma, q.e.d.

Now let Bχ, , Bn be a collection of balls of radii < e that cover TV.
Let Mχ, M2, . . . be a sequence of surfaces in J£g with F{Mt) < a(g) + δ
and F ί A / ^ - f l t e ) .

Increase the radius of Bχ slightly, if necessary, so that dBι intersects

each Mi transversely. Now apply the modification lemma to Bχ and Mt

to get a new surface Aίj .

Then F(Λff) —• a(g), and M.\ πBχ consists of F-minimizing disks.
Thus by the Corollary to Lemma 3.3 and Theorem 5.2, the curvatures
of the M\ are uniformly bounded on compact subsets of Bχ. Hence a
subsequence (which we will assume to be the original sequence) of the
M\ n Bχ converges smoothly on compact subsets of Bχ to a surface Σχ.

Next increase the radius of B2 slightly, if necessary, so that dB2 is

transverse to the M\ and to Σχ. Then

dB2ΠM} Γ\Bχ -+dB2ΠΣχ

smoothly on compact subset of Bχ. Now apply the modification lemma

to B2 and M\ to get a surface Λίf. Then

As before, the curvatures of Mf Π B2 are uniformly bounded on compact

subsets of B2 , and so we may assume that the ΛffnB2 converge smoothly

on compact subsets of B2. Furthermore, by the Corollary to Lemma

3.3 and the boundary curvature estimate 5.2, the curvatures of the Aff

are uniformly bounded on compact subsets of B2 u (dB2 Π Bχ). Thus a

subsequence of the Mf (which we will assume to be the original sequence)

converges smoothly on compact subsets of B2 u (dB2 ΠB χ). Note that we

also still have smooth convergence of the Mf on Bχ\B2.

Likewise, for k = 3, 4, , n form sequences M^ by applying the

modification lemma to M^~ι and Bk (and passing to subsequences as

necessary). Let M\ = M" . Then F(M[) —• a(g), and the M[ converge

smoothly on compact subsets of
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for each j . In particular, we have uniform convergence on all of N, and
the limit surface M has F-area a(g), is piecewise smooth, and is a limit
of embedded surfaces of genus g. If M were not C 1 at some point
x, then we could round M off slightly near x to reduce its F-area and
then perturb slightly to get an embedded surface of genus g and F-area
< a(g), a contradiction. Thus M is C 1 . It follows that M is a regular
immersed F-minimal surface. But since M is a limit of embeddings, and
M is embedded near dM, it follows from the strong maximum principle
that M is embedded everywhere.

4. A Bernstein-type theorem and curvature estimates
for F-stable surfaces

4.1. Theorem. Let M be a complete connected orientabl'e surface that
is properly immersed in R3 and stable with respect to a constant coeffi-
cient parametric elliptic functional F. Suppose that the density ratios are
bounded above:

Area(Mn5 r (0)) „
sup 2

 r ; = C < oc.
r>o πr

Then M is a plane.
Proof Suppose that M is not a plane. Without loss of generality, we

may assume that 0 e M and that the principal curvatures of M at 0 do
not vanish. Let n(x) be the unit normal t o M a t x . Let / : C2'a{M) ->
C°'a(M) be the second variation operator for F. Since / is a second-
order self-adjoint elliptic operator (see [35] for basic properties of / ) , it
has the form

where alJ(x) is a 3 x 3 rank 2 positive semidefinite symmetric matrix

with Σaιjnj = 0 and

Dfu(x) = Ver{ern)nu(x).

Let Q be the associated quadratic form:

Q(u)= [ f
M

We claim that the aιj are bounded by a constant depending only on F.
To see this, suppose that 0 e M. Let M, be the surface obtained from
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M by a dilation by s. Let u be a function with compact support on M,
and w5 be the corresponding function on Ms. Define φs t: Ms —• i?3 by

^ ^(JC) = x + tsus(x). Finally, let α^ and fs be the coefficients of the
second variation operator on F on Ms. Note that:

so

5 -r.

or

JM ' J

= ί {ai

s

iD^{sus)D^{sus) + {fs){sus)
2)dAs

J hi

JM

Thus aij{x) = fljy'(jjc) and /(JC) = s2fs(sx). In particular, α l7(0) =

aιJ(0). As 5 —• oo, Ms -> Tan0Λf, so fli;'(O) depends only on T a n 0 M .

Likewise alJ{x) depends only on Tan^Λf. Since the set of planes is

compact, the aιj(x) are bounded as claimed.

If v G R3, then {M + tυ} is a one-parameter family of stationary
surfaces with initial velocity vectorfield υ, so Ju = 0, where u(x) -
v - n(x). Fix a unit vector υ that is tangent to M at 0, so that u
changes sign in M n Bχ (0).

Intuitively, u is an eigenfunction with eigenvalue 0, u changes sign,
and the first eigenfunction should not change sign, so M should be unsta-
ble. If M were a compact surface in a flat torus, this would be a proof.
But since M is not compact, we have to use a cutoff function.

Let

r u(x) ifu(x)>0,

0 if not,

and let P = {x e M: u(x) > 0}. Let φ: M -+ R be a smooth function
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with compact support. Then

ί aijDf(φw)D*ί{φw)dA

= ί aijDf(φu)D^(φu)dA
J p

= ί aij(φDfu + uDfφ)(φD»u + uϋf φ) dA

= [ 2aijuDfuφDfφdA + / aUφ2DfuDfudA + E
Jp J Jp J

= ί aijuDfuDf(φ2) dA+ [ aijφ2DfuD**u dA + E
Jp J Jp J

= / (D*1 (aιjuDf uφ ) - aιjD1^uDi uφ - uD^(aιjDi ύ)φ )dA

Jp ' ;

= j (D^(aijuDfuφ2) - uD^(aijDfu)φ2) dA + E

= ί Df(aUuDfuφ2)dA- [ ufuφ2dA
Jp J Jp

= - fφ u
Jp

f φ ) f φ + E
Jp

u2
dA

(where E = fpa
ιJu2DfφDfφdA) since φ has compact support and u

vanishes on dP.
Thus Q{φw) = E. Now let R > 1 and let

if W < 1,

i f l < | x | < Λ ,

if |JC| > R.

Then

Q(φw) = E= f u2aiJDfφDfφdA

<a f \Vφ\2

Jp
dA

(\x\lnR) 2dA
\<\x\<R
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fR -2
= a (tlnR) dA{t)

Λ=i

= aί d({tlnR)~2A(t)) + a ί 2t~\inR)~2A(t)dt

Ca

(In/?)

fR -i
2+Ca It (lni?)"

Λ=i
Cα 2Ca

(Ini?)2 " lni? '

where a = sup |Λ / ; (X) | , and A(ή is the area of Λf n 5 r(0).

Now let w minimize Q{w') among all Lipschitz functions that coin-
cide with φw outside of Bχ(0). Note that w' Φ φw since φw vanishes
on a proper open subset of MΠ B{(0). Thus

Q{φw)-Q{w') = e > 0 ,

hence

Q(w') = Q(φw) - e <
lni?

Note that w'\M Γ\Bχ(0) and therefore e is independent of the choice of
R > 1. Thus by choosing R large we can make Q(w') < 0. Hence M is
unstable.

4.2. Theorem. Let F be a parametric elliptic functional on R3, B
be a ball in R3, and Ω c R3 an open set with smooth boundary. Let
M c B\Ω be a C 1 immersed surface such that

(1)
(2) M is F-stationary for the obstacle Ω,
(3) M \ Ω is F-stable, and
(4) the density ratios of M are bounded above:

Area(MnJ?(;c, r)) u

sup 7 = b < oc.
πr

Then there exist 0 < a < 1 and C < oc, depending only on F, B, Ω,
and b (not on M), such that

, t λa\n(x) - n(y)\ . ~
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where

dB(x, y) = min{dist(x, dB), dist(y, dB)}.

Proof. Fix an a e (0, 1) (to be specified later), and suppose the re-
sult is false. Then there exists a sequence Mt of surfaces satisfying the
hypotheses above and sequences xt, y. e M. such that

x \n.(χ.) - n . ( y . ) \ ι / a

1 1 • o o .\γ _

Choose e. > 0 such that

< * •

We may suppose that x. and y. have been chosen so that

attains its maximum (among x, y e Mt) at (x, y) = (jcf., y^).

(Note that f({x9y) is negative if x or y is near 9 5 , and that

1™*-^ •//(*> J>) = 0 because Afz is a C 1 ' 1 surface (Proposition 1.4).

Thus f. does have a maximum.)
Translate xf., yi, Af/, 5 , and Ω by -x and then dilate by

_

to get x\ = 0, y), Λf;, 5 ;', and Ω|. Thus the inequality ft(x,y) <
fiix^y ) becomes



EXISTENCE OF SMOOTH EMBEDDED SURFACES 433

or
(1) /

x'-y'\ ~ dB(x,y)-ei

dB(Xj, y,) - ef

/ / ( γ Λ) \ £ V V \"\J V V Λ) \
O v I ^ I' I ' I' '^ I' ' I •' I'

(by the triangle inequality)

= HtVB(xityt)-€t)

"fiίxj'/'i) ;

Note that

(2) =(rfΛ(Jf /,y /)-c /)|n /(JC /)-/i /ϋ' |.) | 1 / o

< diam(5)2 1 / α,

so that (1) becomes

\n-ix') - Kiyψ" ,
Mi, Vi) - \x'\ - I/I - 21 / Q diam(5)'

Thus (since f^x^y^ -* oo), the Mi are uniformly C 1 > α bounded on

compact subsets of R3. Hence there is a subsequence (which we may take

to be the original sequence) of the M that converges uniformly in C ' p

for every β < a on compact subsets of R3 to a surface M.
Now the Ω^ converge nicely on compact subsets of R3 either to a half-

space H or to the empty set by wandering off to oo. If x e M \ H,
then the Mt converge smoothly to M near x. Thus M\H is a smooth
.F-stationary and F-stable surface. If MnH ^ 0 , then M = d # by the
Hopf maximum principle [13, 3.4 and 17.1]. If MnH = 0 , then M is
a complete F-stable surface with bounded density ratios and hence is a
plane by Theorem 4.1. Thus M is a plane. Without loss of generality we
may assume it is the horizontal plane.

For every R < oo, for / sufficiently large there is a C*'α function ui

such that
{(x9ui(x)):xeB(09R)cR2}cMi

and \\ui\\ι n —• 0 for β < α. Note also that <9Ω' can (unless it moves
off to infinity) be represented near 0 by the graph of a function φ. such
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that the φ 's converge smoothly to a linear function. Now ut satisfies
the Euler-Lagrange variational inequality corresponding to F! and the
obstacle φ.. Thus we have the estimate \\ui\\ι < C, where γ and C
depend only on F and Ω. (See Theorem 13.1 of [13] and Remark 1 after
Proposition 1.4 of this paper.) Thus if we choose a to be less than γ,
then M. converges to 0 in C 1 > α on compact subsets of R2. But that is
impossible because

,
\y--oi

by choice of μt, and \y\\ is bounded by (2).

5. Boundary estimates for F-stable surfaces

5.1. Theorem. Let I be the line of intersection of two planes in R3,
and let 3ί be one of the four regions into which the planes divide R3.
Let M be a complete connected orientable surface-with-boundary properly
immersed in R3 such that int(Aί) c 31 and dM = I. Suppose that M
is stable with respect to a constant coefficient parametric elliptic functional
F and that the density ratios are uniformly bounded above:

Area(Mn^(x))
sup 2— < C < oo.
r>o πr

Then M is a half-plane.
Proof We may assume that dM is the z-axis, and that 31

is given in cylindrical coordinates by -θ0 < θ < θ0 where 0 < θ0 < π/2 .
Let n(x) be the unit normal to M at x, and let υ = (0, 0, 1) be

the unit vector that points up along the z-axis. Then, as in the proof of
Theorem 4.1, u(x) = v n(x) is a Jacobi field. Note that u(x) = 0 for
x € dM. The proof of Theorem 4.1 shows that u cannot change sign
in the interior of M . If u = 0, then M is translation invariant in the
z-direction, and it follows easily that M is a half-plane.

Thus suppose that u(x) > 0 for every x in the interior of M.
Without loss of generality we may assume that (1, 0, 0) € M. Note

that the projection Π: M c i?3 —• R2 is locally a diffeomorphism. Let
(a, b) be the largest open interval containing 1 such that there is a func-
tion φ: (a, b) —• R with

(r ,O,0(r))eΛ/, 0(1) = 0.
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For each r e (a, b), let (θ~(r), θ+(r)) be the largest open interval such
that the path

θ e (0~(r), θ+(r)) .-> {rcosθ, rsinθ)

in i?2 lifts to a path in M passing through (r, 0, φ{r)).
Thus there is a smooth real-valued function w defined on

Ω = {{r,θ):a<r<b, 0~(r) < θ < θ+{r)}

such that

(rcos0, rsinθ, w(r9 0)) eM if (r, fl)eΩ.

Now suppose that (r,, 07) G Ω and (rf., 0.) -• (r, 0+(r)). If Z)w(r., (9)

stays bounded, then (since by Theorem 4.2 the curvature of M is uni-

formly bounded on compact subsets of R3 \ I) there is a p > 0 such

that (for sufficiently large /) a neighborhood in M of (rf. cos 0Z, r. sin 0z ,

w(r.,θ )) projects diffeomorphically onto a disk in R2 of radius p cen-

tered at ( ^ c o s ^ , ^ s i n ^ ). But this contradicts the choice of θ+{r).

Thus \Dw(r., fl^l —• oc. It also follows from the properness of M that

Mr,., 0, .) !-oo.
Note that by the curvature estimates 4.2, a subsequence of the surfaces

Mi = M - (0, 0, w(r., θj)) converges to a surface Mf. Since n v > 0
(where Λ;(p) is the unit normal to M1 at p) and

n{rcosθ+{r), rsinθ+{r), 0) υ = 0,

we have (by the maximum principle) that n - v = 0 and thus M1 is a
half-plane with boundary /. It follows that the level set of w containing
(r., 0f.) becomes closer and closer to the ray θ = 0. as / —• oo. Hence θ+

is constant. Likewise θ~ is also constant.
Thus

Ω = {(r, θ):a<r<b, θ~ < θ < θ+}.

The same reasoning shows that if b < oo, then

| ( , )| | ( , 0)| = oo,
r-+b r^b

and that the level set of w containing (r, 0) tends to the ray 0 = 0 as
r ^ b . But that would imply that \w{r, 0)| = oo, a contradiction. Thus
b = oo. Likewise a = 0.

Hence we have shown that M \ I is the graph of a function defined
on a wedge shaped region U of R2. But the graph of any F-stationary
function defined on a convex domain must be absolutely F-minimizing
(by the argument of [9, 5.4.18] together with the convex hull property



436 BRIAN WHITE

[17, 4.2], or by [17, 4.3]). Thus M is F-minimizing and hence M is a
half-plane by the work of R. Hardt (see (4) in the proof of Theorem 6.3).

5.2. Theorem. Let N be a compact 3-manifold with boundary, F be
a parametric elliptic functional such that N is strictly F-convex, and Γ be
a (possibly empty) C2'a embedded curve in ΘNΓ\B(x, R). Let M be a
compact F-stable surface in N such that dMnB(x, r) = Γ and such that
the density ratios are bounded above:

AreaίΛ/ ΠB(x9r)) „
sup - 7 = C < oc.

B(x,r)cB πr

Then the principal curvatures of MnB(x, r/2) are bounded by a constant
depending only on F, N, r, C, and Γ.

Proof This follows from Theorem 5.1 in essentially the same way that
Theorem 4.2 follows from Theorem 4.1.

6. Regularity of integral current solutions

to obstacle problems

In this section we show that ^-dimensional integral currents minimizing
parametric elliptic functionals in Rn+ι with smooth obstacles have small
singular sets; in particular, the singular sets are empty if n = 2. We
also extend Hardt's boundary regularity theorem to nonconstant coefficient
functionals.

Definition. Let T and R be /c-dimensional (integer multiplicity) rec-
tifiable currents. We say that R is a piece of T if | |Γ| | = ||i?|| + \\T - R\\,
where | |5 | | is the radon measure determined by the current S.

Definition. Let c > 0, δ > 0, and 0 < a < 1, and let F be a
parametric elliptic functional. We say that the rectifiable current T is
(F, cf, δ)-minimal if for every piece R of T supported in a ball of
radius r < δ , we have

F(R)<(l+cra)F(S)

whenever dS = dR.

6.1. Proposition. Let F be a smooth parametric elliptic functional on

Rn+ι. Let Ω = Ω{ u U Ωk, where each Ω. is an open subset of Rn+ι

with Cι'a boundary. If T is a compactly supported rectifiable current that

minimizes F among rectifiable currents supported in i ?" + 1 \Ω, then T is

(F, Cf, δ)-minimal for suitable C and δ.

Proof Choose δ > 0 small enough (as in the proof of Lemma 3.3)
that if B is a ball of radius r < δ that intersects support (T), then the
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following hold:
(1) If S is an F-minimizing ^-current with boundary in B, then S is

supported in B, and

(2) for each /, there is a hyperplane Pt such that B n dΩ,i is the graph

over P. of a CUa function f. with \Df.\ < 1.
Now let B(x,r) be any ball of radius < δ that intersects Support

(T). Let R be a piece of T in B(x, r), and let S be the F-minimizing
current with boundary dT. We must show that F(R) < (1 + Cra)F(S).
By choice of J , S is supported in B(x, r). Thus there is an (n + 1)-
dimensional current ^ in B(x, r) such that 5 = i? + 9 ^ . Now for
/ = 1, , k, let ^ ^ j Π Ω ' . W e claim that

F(R + dVt) < (1 + Crα)F(i? + β ^ ) ,

from which it follows that

<{\+ cra)kF(R + ΘV0) = (1 + cra)kF{S).

Note that ^ and hence i? + 9 ^ are supported in Ω c . Thus (assuming
the claim) we have

F(R) <F(R + dVk)<(l+ cra)k'F(S) < (1 + Cra)F(S)

as desired. Hence, it remains only to prove the claim.
It suffices to prove the claim for a single obstacle Ω, which we may

assume to be of the form {(x,z) £ Rn xR: z < f(x)} , where / is C 1 ' α

and \Df\ < 1. Let R be an ^-current in 5(0, r) \ Ω, and let V be an
(n + l)-current in B(0, r). By the change of coordinates (x, z) ι-» (JC , z -
/ ( * ) ) , we may assume that / = 0. Of course in the new coordinates F
need not be smooth, but it still must be locally C ° ' α . Also, R and V will
still be contained in some ball B(p, 2r) of radius 2r. Now by ellipticity,

where /^ is the constant coefficient functional F (υ) = F(p,υ). Hence

+ \F(R + d(V ΠΩC)) - Fp{R + d(V ΠΩC))|

< F(R + d V) + KraM(R + dV) + KraM(R + d{Vn

+ 9 F) + 2KraM(R + ΘV)

K'raF(R + dV)
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Remark. More care in proving the claim shows that T is actually
(F, Ctβ , J)-minimal where β = min{2α, 1} .

For the next proposition we refer to the basic regularity theorem for
parametric elliptic functionals (due to Almgren [1]) as proved in [30].
The proof there is for minimizing currents, but it is easily modified for
(F, cf, <J)-minimal currents. Indeed, for the case a = 1 (the case we
need for the obstacle problem), one need only change the two inequalities
preceding line (57) of [30]; the extra terms can easily be absorbed in line
(57).

6.2. Theorem. Let F be a smooth parametric elliptic functional on
B c Rn+ι. Let T be an n-dimensional ( F , Cf, δ)-minimal rectifiable
current in B with dTnB = 0 and 0 < a < 1. Then the support of T
is the union of Cx'a/1 submanifolds of B together with a singular set of
Hausdorff dimension < n - 2. No two of the submanifolds cross each other
(though they may partially coincide). If T is the boundary of a set, then
the submanifolds are disjoint.

Proof. Note that there is a BV function / such that

T = d([B]Lf)= f ) d[f>k].
k=-oo

Each of the currents d[f > k] is a piece of T and is therefore also
(F, ct, J)-minimal. Thus we may as well assume that T is one of these
pieces, i.e., that T = d[U] for some set U c B of finite perimeter.

Without loss of generality we may take B to be the ball 5(0, 2). It
suffices to show that the intersection of the singular set sing(Γ) of T with
B(0, 1) has Hausdorff dimension < n - 2. Note that if X ^ J C G B(0, 1)
and r( —• 0, then a subsequence (which we will take to be the original
sequence) of ηχ r # Γ converges to a F(x, )-minimizing current T^,

where ηXiΓ:R
n+l -> Rn+l is the map defined by ηχ r(y) = r~\y-x). By

[2] and [33, 5.2] we know that there is an s < n - 2 such that the singular
set of every such T^ has Hausdorff ^-dimensional measure 0. Also if
W is an open set containing sing(Γχ )), then for sufficiently large /

ύng((ηXi^T)nB(0, 1)) c W

(cf. 4.5 and 5.2 of [33] for a proof in the mod p setting). The theorem
is thus an immediate consequence of the following lemma.

Lemma. Let K be a compact subset of Rn such that if r( —• 0 and

ηχ r K n B(0, 1) converges in the Hausdorff topology to a set Kf, then
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Remark. The conclusion of this lemma can be strengthened. It is easy
to see that the set of all such K1 n 5(0, 1) satisfy the hypotheses of the
Work-Raccoon Theorem [33, 5.1], according to which there is then an
e > 0 such that β?s~e{K') = 0 for every such K1. Hence the lemma then
implies that J^s~e{K) = 0.

Proof of Lemma. Let

\ = inf

Note that for each 0 < δ < oc, ^S(X) = 0 if and only if hs'δ{X) = 0.
Note also that there is a δ > 0 so that if r < δ, then

hs'ι((ηXtrKnB(0,l)))<$.

For if not, there would be sequences x. and ri —• 0 with

Since the collection of compact subsets of 5(0, 1) is compact in the
Hausdorff topology, a subsequence (which we will take to be the origi-
nal sequence) of the (ηχ r K n B(0, 1)) converges to a limit K1. Since

hsΛ(K') = 0, we can find open balls B(yj, Pj) such that

K'c\jB(yj,Pj) and σp)<\.

For large enough /,

so

a contradiction. Thus there does exist a δ as claimed.
Now suppose that hs'δ(K) φ 0. Then we can find balls B(xi9 r() of

radii less than δ such that K c U/*(•*/> r, ) a n d Σ , ̂  < 2hS'\κ) BY
choice of 5,

i.e.,

Thus there are balls B(xij, rf..) of radii less than δ such that
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and

Thus

Kc\J(KΠB{x,, r.)) C UU*(*i i rij)

i j

and

hs>(

a contradiction.
Remark. The definitions and propositions of this section apply equally

well to flat chains mod 2 provided F is even. In this case the submani-
folds in the statement of Theorem 6.2 are disjoint.

6.3. Theorem. Let N be an {n + \)-manifold with boundary, and F
be a smooth parametric elliptic functional on N such that dN is strictly
F-convex. Let M be an n-dimensional F-minimizing surface {integral
current or flat chain mod 2) such that spt(<9M) is a smooth submanίfold
{with multiplicity 1) of dN. Then there is a neighborhood U ofspt{dM)
such that (spt A/) Γ\U is a smooth manifold with boundary.

Proof From the work of R. Hardt [17] we know the following facts:
(1) If the portion of M in a small neighborhood of x e dM is weakly

close enough to an w-dimensional half-disk with multiplicity 1, then M
is a smooth manifold with boundary in a neighborhood of x.

(2) Suppose that Ft is a sequence of functional on an open set Ω con-
verging smoothly to a parametric elliptic functional F^ , M is a sequence
of Fi -minimizing hypersurfaces converging weakly to M^ , and that the
ΘM. and dM^ are smooth submanifolds (with multiplicity 1) such that
dMi —• dM^ smoothly. Let U be an open set such that U c Ω is a com-
pact set not containing any singular points of M^ . Then for sufficiently
large /, the Mi Π U are smooth manifolds-with-boundary that converge
smoothly to M^ n U.

(3) Let F o be a constant coefficient parametric elliptic functional on
Rn+ι. Let P{ and P2 be distinct nonparallel hyperplanes in Rn+ι, and
31 be one of the connected components of Rn+ι \(Pχ\jP2). Suppose that
Mo is an /^-minimizing hypersurface in 31 such that dMQ is Pχ Π P2

with multiplicity 1. Then in a neighborhood of dMQ9 MQ is a smooth
manifold with boundary.
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(4) If, in addition to the hypotheses of (3), we have

Mass(Λ/nn5(0,r))
sup 2-ji <oo,
r>0 T

then Mo is a half-plane.
Fact (1) is Theorem 3.4 of Hardt's paper [17]; see the statement of the

theorem for the precise meaning of "weakly close enough". Fact (2) is not
stated in Hardt's paper, but follows in a standard way from (1) and the
analogous interior estimates ([9, 5.3.15] or [30]; see also the proofs of [9,
5.3.18], [9, 5.3.19], or [33, 5.2]). Fact (3) is an immediate consequence of
Theorems 3.6 and 4.6 of [17]. To see (4), let hf. be the surface obtained
from MQ by dilation by Γι about the origin. The density hypothesis
and the compactness theorem for integral currents [37] imply that a subse-
quence of the Mt converges weakly to a current M^ . By (3) the surface
M^ must be smooth near the origin. But if M were not totally geodesic,
then the curvatures of the Mi near 0 would blow up, contradicting (2).

Since the result is local, we may assume that N is a subset of Rn+ι. Let
x edM and choose a sequence £• of (n - 1)-dimensional submanifolds
of dN such that S( Π dM = {x} and so that if we dilate S. to get a
manifold S[ of unit volume, then S'( converge smoothly to a sphere S^
with multiplicity one. Let F^ be the corresponding constant coefficient
functional on Rn+ι. In other words, F^ is the functional obtained by
freezing F at x: F^z, υ) = F(x, v).

Let Γz be the ^-minimizing surface in N with boundary Si, and let
T[ be the corresponding dilated surface. Note that a flat «-disk is the
unique F^ -minimizing surface with boundary S^ . Thus the T[ must
converge weakly to a flat disk. Hence by (2), for sufficiently large /, T[
will be a smooth manifold with boundary that is very nearly a flat rc-disk.
Fix such an / and let T = Tr Of course T is a nearly flat regular «-disk.
A simple cut and paste argument shows that M cannot cross T.

Now let Mt be the surface obtained by dilating M by / about x . Note
that the density of M at X is finite by the argument used in the proof of
the Corollary to Lemma 3.3, so by the compactness theorem for integral
currents, a subsequence of the Mt (for simplicity let us suppose the origi-
nal sequence) converges weakly to an F^ -minimizing surface M^ . Note
that by the F-convexity of dN and (for instance) the Hopf boundary
point lemma [13, 3.4 and 17.1], T is not tangent to dN at x . It follows
that M^ satisfies the hypotheses of (3) above. Thus M^ is regular at its
boundary, and in particular near x .
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By (2), M{ is regular near x for sufficiently large i. But M{ is just a
dilation of M, so M is also regular near x.
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