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A FAKE COMPACT CONTRACTIBLE
4-MANIFOLD

SELMAN AKBULUT

Here we construct a fake smooth structure on a compact contractible
4-manifold W4 , where W4 is a well-known Mazur manifold obtained by
attaching in two-handle to Sι x B3 along its boundary as in Figure 1. *
Here we use the conventions of [2].

The results of this paper imply:
Theorem 1. There is a smooth contractible 4-manifold V with dV =

d W, such that V is homeomorphic but not diffeomorphic to W relative
to the boundary.

Let a be the loop in dW given by Sι x p c Sι x S2 = d{Sι x B3) as
in Figure 2. Zeeman raised the question whether a is slice in W [12],
i.e., if a bounds an imbedded smooth D2 in W. Even though it turned
out that a is slice in another smooth contractible manifold with the same
boundary [2], the original question has remained open. Let / : d W —• d W
be the diffeomorphism, obtained by first surgering Sι x B3 to B2 xS2 in
the interior of W, then surgering the other imbedded B2 x S2 back to
Sι x B3 (i.e., replacing the dots in Figure 2.)

Clearly this diffeomorphism extends to a self-homotopy equivalence of
W. In fact, by [9], / extends to a homeomorphism F: W —• W. In
[2, p. 279] the question of whether / extends to a diffeomorphism of W
was posed. If it did, a would be slice in W since f(a) is clearly slice in
W. Here we answer these questions negatively:

Theorem 2. α is not slice in W, in particular f does not extend to a
self-diffeomorphism of W.

Theorem 1 follows from Theorem 2 as follows: Let F: W —• W be
a homeomorphism extending / . Let V be the smooth structure on W
obtained by pulling back the smooth structure of W by F . This gives a
diffeomorphism F: V —> W extending / on the boundary. If G: W -> V
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were any diffeomorphism extending the identity on the boundary, then
F o G would be a diffeomorphism extending / , contradicting the exis-
tence of G. In particular, Theorem 1 implies that there is a nontrivial
/z-cobordism from F to W rel d. This /z-cobordism will be explicitly
discussed in §6. So V is diffeomorphic to W but no such diffeomorphism
can extend the identity map on the boundary.

We now summarize the proof. We use the conventions ~ forhomotopy
equivalence and « for diffeomorphism. The orientation of CP2 comes
from the complex orientation, i.e., it has the intersection form (4-1). CP2

denotes CP2 with the opposite orientation. We also use the convention
that if M is an oriented manifold, then -M is M with the opposite
orientation.

We first construct a compact 1-connected smooth 4-manifold Mχ with
a homology sphere boundary dMχ = Σ. Mχ is even with .signature 16
and has the second betti number b2(Mχ) = 22. We also construct two
more compact smooth 4-manifolds Wχ and Q such that:

(1)
(2) Wχ is contractible.

(3) Q~Wχ#CP2.
(4) If a is slice in W, then Σ bounds a contractible manifold W2 with

We define M = Mχ Ud {-Wχ) and M = MχUd ( - β ) . Then we show:

Clearly M ~ M # C P 2 , and Λ/ is homotopy equivalent to the Kummer
surface. Let g: d(-Wx) -> d(-Q) be the restriction of the identity map
Mχ —• Mχ to its boundary (see the diagram). Hence if / extends to a
diffeomorphism -Wχ # C P 2 -> - β , then Λf would be diffeomorphic to

-Q

M # c F
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M # CP2. It turns out that g extends across a two-handle; that is, there
are two-handles Hk = iκι(hk), k = 1, 2, where

hχ\ {D2 xD2,Sl xD2)-+(-Wχ#CP2, - Σ ) ,

h2: (D2 x D2, Sl x D2) ^ (-Q, -Σ)

such that g extends to a diffeomorphism Hχ —• H2.
Then we show the surprising fact that

-W = (-Wχ #CP 2 ) - int(Hχ) = (-(?) - int(Jf2)

and the map d(-W) —• d(-W) induced by g is / . Hence, by turning
- W upside down, we conclude that if / : d W —• d W extends to a diffeo-
morphism W —• W, then M & M# CP2 . More generally, if α is slice in
W , then

= M'#CP2,

where M' = MχΌd(-W2) is a homotopy Kummer surface. On the other
hand this contradicts Gauge theoretic results discussed in §5 (the last para-
graph of §5). More specifically, since M decomposes, its Donaldson poly-
nomial invariants must vanish [4]. On the other hand in [7] Fintushel
and Stern showed that a particular Donaldson invariant of a homotopy
Kummer surface is nonzero if it contains a copy of the Brieskorn homol-
ogy sphere Σ(2, 3, 7). We show that Mχ contains Σ(2, 3, 7). Hence
M1 has a nonzero Donaldson invariant. Since these invariants persist un-
der connected summing with C P 2 , Mf # CP2 has a nontrivial Donaldson
invariant. So M' # CP 2 φ M and, more generally,

(M'#CP2) #{kCP2) φ M# (kCP2).

Because this argument is independent of the contractible manifold W2

which Σ bounds. We conclude that Q cannot be decomposed as V # C P 2 ,
where V is any contractible manifold. In particular Q and Wχ # CP 2 are
homeomorphic but not diffeomorphic to each other. We use this in the
construction of [1]. An interesting corollary is the following.

Corollary. Mχ cannot be diffeomorphic to N#Wχ for any compact
complex manifold N.

This is because Qχu(-Wχ) = CP2 (§6). Hence if Mχ « N# Wχ, then

N#CP2 « N#(WχU -Qχ) « MχU{-Qx) = M « (3CP 2)#(20CP 2).
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Again contradicting a result of Donaldson in §5, i.e., complex surfaces can-
not admit such splitting (since N is complex, so is N#CP2 ). Notice also
that, if we could extend f to W, then M could not be a complex mani-
fold, since M#CP2 would have such a splitting. (Here the author would
like to thank John Morgan for explaining Donaldson's results on relating
his polynomial invariants to the Floer homology, and also thank R. Fin-
tushel and R. Stern for making available their calculation of Donaldson's
polynomial on the particular type of four-manifolds [7].)

1. Construction of Q and Mχ

To simplify the steps in our construction, we first construct a diffeo-
morphism between the boundary of the four-manifold in Figure 3 and the
boundary of the manifold in Figure 6. We accomplish this by first blowing
up Figure 3 to Figure 4, then blowing it up more in a similar way to Figure
5, and then blowing down the three + l-framed circles (compare [10]).

We can now start with our main construction. We define Q4 to be the
manifold in Figure 7. In Figures 7-33 we modify the interior of Q4 to
obtain Mχ. Along the way we carry along a loop a cdQ as indicated in
Figure 8 in order to see where it will end up in dM{ (Figure 33) under
the diffeomorphism dQ « dMχ. This diffeomorphism might twist the
neighborhood of the loop a to keep track of this we start out with a ref-
erence framing (zero) and denote it by α(0). Figures 8-18 are obtained
either by blowing up, or an isotopy of the previous figure. We apply the
modification of Figure 3 —• Figure 6 to Figure 18 to arrive at Figure 19.
Notice that this diffeomorphism twisted the framing of the loop a to - 1 .
Figure 20 is obtained by introducing of pair of two-handles to Figure 19
in order to change the left-handed twist to a right-hand twist. Blowing up
+ 1 and blowing down - 1 gives Figures 21 and 22. Sliding a -2-framed
handle over the 0-framed handle gives Figure 23. We now modify the
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handle corresponding to the left-handed trefoil knot with +1-framing in
Figure 23. To save space, from Figures 24-32 we only draw the modifi-
cation of the part of the picture in Figure 23. Modification from Figures
24-32 is exactly the same modification as Figures 9-19, except here during
the modification we carry along the other two two-handles tangled to the
+ 1-framed left-handed trefoil knot. Figure 32 is only part of the picture.
In Figure 33 we draw the whole picture; that is we go back to Figure 23 and
install Figure 32 into it by recalling; the positions of the 0- and -2-framed
handles (notice that the -2-framed handle was the -1-framed handle in
Figure 23). We call the manifold in Figure 33 Mχ .

2. M « ( 3 C P 2 ) # ( 2 0 C P 2 )

Recall M = Mχ Ud (-Q). To see the handlebody of M we must turn
Q upside down and attach it to Mχ. Upside down -Q is obtained by
attaching a two-handle to Σ = dQ along a with 0-framing (Figure 8),
and then capping it off with B4. Hence M is obtained by attaching
Mχ (Figure 33) a two-handle along the loop a with -1-framing. Then
by sliding three two-handles (three loops that are linked to a) over the
handle a we get Figure 34. By consequently sliding -2-framing handles
over the -1-framed handles we get Figure 35 and by more handle slides
we get Figure 36. Figure 36 is obviously (3CP2)#(20CJP2).

3. Construction Wχ

We attach a two-handle to Σ = dQ as in Figure 37, then we see that
this makes the boundary Sι x S2 (e.g., blow down + 1-framed unknotted
circle). Then attach a three-handle and a four-handle to get a compact
manifold -Wχ with d{-Wι)=Σ:
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Clearly Wχ is a contractible manifold. We turn Wχ upside down. We do

this by turning the three-handle into a one-handle (i.e., B2 x S2 of Figure

38 to Sι x B3) and attaching a two-handle along h(y), where h is the

diffeomorphism between the boundaries of Figure 37 and Figure 38 and γ

is the dual circle. This gives us Figure 40. Similarly we turn -Q upside

down by attaching a two-handle to B4 along the image h'{δ) as in Figure

42, which is the same as Figure 43. Again, here h' is the diffeomorphism

between the boundaries of Figure 41 and B4, and δ is the dual circle.

We can now see the diffeomorphism dQ& dWχ between Figures 43 and

44, namely surger Figure 44 (i.e., replace the dot on the unknotted circle

with 0 and blow down - 1 ) .

4. Diffeomorphism /

We start with Q (Figure 45), which is clearly diffeomorphic to Figure
46 (by cancelling the one-handle with the +1-framed two-handle). Now
the 'flip' diffeomorphism / described in the introduction induces a diffeo-
morphism between the boundaries of Figures 46 and 47. By a handle slide
Figure 47 is diffeomorphic to Figure 48, which is Wχ # C P 2 . Hence, if /
extends to a self-diffeomorphism of W, it would induce a diffeomorphism
between Figures 46 and 47, hence we would have Q^Wχ #CP2.

It is also clear that if a was slice in W, the +1-framed handle in Figure
46 would be represented by an imbedded two-sphere. Hence Q would be
W2#CP2 for some contractible W2 with dW2 = dQ.

5. Donaldson polynomials

In this section we summarize Donaldson's theory of polynomial invari-
ants of four-manifolds, and indicate a calculation of them due to Fintushel
and Stern. We follow [4], [5], [11].

Let M4 be a one-connected closed smooth four-manifold, and let P Λ
M4 be a principal SU(2)-bundle with c2(P) = k. Let

s/*(P) = Space of all irreducible connections on P
= The gauge group Aut(P)

After completing with an appropriate Sobolev norm, 38(P) becomes a

Hubert manifold. Fix a Riemannian metric g on M4 and let J?k(M, g)
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be the moduli space of anti-self-dual connections in £B(P), i.e.,

4 ( M , g) = {[A]e&(P) I *FA = -FA}9

where FA is the curvature of the connection A. According to [8], for
generic metrics g, Jίk(M, g) is a manifold of dimension d{k) = Sk -
3(b2 + 1), and usually it is not compact. Here b2 denotes the number
of positive terms in a diagonalization of the intersection form of H2(M).
Jtk(M, g) has a compactification

k g) C f[Jti{M9 g) x &
ι=0

where S\M) denotes the 7 th symmetric product and ~ denotes identi-
fications, which make Jtk{M, g) a stratified space with strata contained

m J T i { M , g ) x S k - i { M ) , 1 = 0 , 1 , •-• , f c :

/=0

When fc > 1(36^" + 5) all strata except the top stratum Jtk(M, g) has
codimension > 2 in Jtk(M9g). Also an orientation of H*(M,R)
gives an orientation on Jίk(M', g), hence it induces a fundamental class
on Jfk(M, g). Furthermore every homology class a e H2(M) induces
a codimension-two submanifold Va «-• Jίk{M, g). Now assume A: >
\{}b2 + 5) and 6̂ " is odd; then d(k) is even. So if we choose any
at e H2(M), i = 1, 2 , rf/2, the corresponding submanifolds ^. c
Jt^M 9 g), i = 1, 2, , rf/2, generically intersect along points and give
rise to the intersection number VχC\ Π t ^ / 2 . Denote this intersection
number by γk(M)(aι, , ad,2) this turns out to be independent of the

metric g. Hence it induces a map γk(M): Sdll(H2(M)) —• Z . Further-

more γk(M) has the property that if γk(M) Φ 0, then γk(M#CP2) φ 0.

If M has a homology sphere boundary Σ = dM, then as outlined in

[3], the above process generalizes to give homomorphisms

γk(M): Sr(H2(M)) -> HFm(Σ), r = 1, 2, • • • , d/2,

where HF denotes the Flower homology group of Σ. Donaldson has
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shown that if H^(M) has the intersection form Es θ i(°x

 ι

0), where / =
0, 1, or 2, then under some restrictions of Σ HF^Σ) Φ 0. Furthermore
if dMχ = Σ, dM2 = -Σ, and M = MχUdM2 , i.e., M is obtain by glueing
two four-manifolds along a common homology sphere boundary Σ, then
we can pair these invariants and get a homomorphism, as indicated in [3]:

γk(M): S\H2{Mχ)) ®Sd/2-r(H2(Mχ)) -> Z.

So for example if

γk(Mχ)(aχ,. ,ar) p

γk(M2)(ar+{, • • , ad/2) = Σ mpM € HF,(-Σ),

then

(here [p] denotes the conjugacy class of generic representations πx(Σ) —•
SU(2)). So having explicit knowledge of the Floer homology groups
HFΦ(Σ) is helpful to compute yk{M). In [6] Floer homology groups of
Seifert homology spheres Σ(p, q, r) have been explicitly computed. As a
corollary, Fintushel and Stern [7] showed that if Σ(2,3,7) imbeds into
a homotopy Kummer surface M, then γ4(M) Φ 0. In this case we take
k = 4, d = 20, and r = 4. The idea is that such an imbedding de-
composes M = Mχ Ud M2, with H^(M.) having the intersection form
£ 8 θ / ( f j ) , / = 1, 2. Now, the Donaldson type of arguments applied to
each side M , / = 1, 2, coupled with the knowledge of HFΦ(Σ(2,3,7))
gives the result [7].

The manifold Mχ of Figure 33 contains Σ(2, 3, 7), since Σ(2, 3, 7)
is the boundary of the plumbing:

- 2 - 2 - 2 - 2 -2 - 2 - 2 - 2 - 2

-2

Hence if W2 is any contractible manifold with d W2 — Σ, the homotopy

Kummer surface Mf = Mχ \Jd {-W2) contains Σ ( 2 , 3 , 7 ) . Consequently,



A FAKE COMPACT CONTRACTIBLE 4-MANIFOLD 343

γ4{Mf) φ 0, so γ4(M'#CP2) φ 0. Since y4(3CP2#20CP2) = 0 [5],

3CP2 # 20CP2 cannot be diffeomorphic to Mf #CP2.

6. The nontrivial Λ-cobordism and the conclusion

Here we will describe the nontrivial Λ-cobordism Z 5 between W and
V rel d and prove some miscellaneous facts. The A-cobordism Z can be
described by attaching an algebraically cancelling pair of two- and three-
handles to the interior of W:

three-handle

two-handle

W

We first attach a two-handle to W along a (Figure 2), obtaining W4

(Figure 49). So W4 is obtained by surgering the loop a in W. We then
attach a three-handle along the imbedded two-sphere ξ in W obtaining
V. Hence V is obtained by surgering the two-sphere { in W as indicated
in Figure 49. So, in particular, V « W, but this diίfeomorphism cannot
extend the identity on the boundary. In particular, V \Jd {-V) « S4 .

We also have
Proposition, (a) V Ud (-W) « S4.

(b) Qud(-W{)*CP2.
Proof, (a) holds since V ud {-W) = W \jf (-W) and the handlebody

of W Uy (-W) is obtained by attaching a two-handle to W along a c
d W, and a three-handle. So it is Figure 50 with a three-handle, which
is the same as Figure 51 with a three-handle, which is S4. To draw the
handlebody of Wχ Όd (-Q) we simply add a two-handle to Figure 44
along <p(β), where φ is the diffeomorphism between the boundaries of
Figures 43 and 44, and β is the dual circle in Figure 43. We get Figure
52, which is diffeomorphic to Figure 53, which is CP2. Hence we have
shown (b). q.e.d.

M # CP2 is obtained from M by removing W and reglueing it with
the diffeomorphism / (i.e., Gluck construction to W). This operation
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changes the smooth structure of M#CP . To demonstrate this better
we will draw the handlebody of M#CP2 and indicate this with pictures.
Recall M = Mχ u (-Wχ). M is obtained by attaching upside down Wχ

to M. Upside down Wχ is obtained by attaching a two-handle to Σ as
in Figure 37, along with a three-handle and a four-handle. Therefore if we
ignore three- and four-handles, M is obtained by attaching a two-handle
to Mχ along h(δ), where h is the diffeomorphism between the boundaries
of Q (Figure 7) and Mχ (Figure 33), where δ is the -hl-framed loop in
Figure 54. Hence the handlebody of M#CP2 is obtained by attaching
two-handles to Mχ along h(δ) and h(p), where p is the -1-framed
unknot in Σ as indicated in Figure 55. By sliding the handle h{δ) over
h(p) we can assume that the positions of δ and p (in Σ = dQ) are as
in Figure 56.

w

We claim that the two-handle h(p) along the three-handle and the four-
handle give W:

Af#cF2
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The effect of removing W from M # CP and putting it back with the
diffeomorphism / i s attaching Mχ two-handles along h(δ) and h(a)
(instead of h(p)) (Figure 57). Figures 57 and 58 show how / throws the
handle p to a. Here we view:

f:d[Mx\j(2-hanaie h(δ))]ϊ

In Figure 59 we draw the pictures of A(α), h(δ), and h(p) in dM{

(Figure 33). For simplicity, in the figure we continued to denote them by
a, δ , and p. We also indicated their change of framings under h . So
Figure 33 along with two-handles attached to δ and p gives M # C P 2 , as
indicated in Figure 59. Removing W from M#CP2 and regluing back
with / gives Figure 33 along with two-handles attached to δ and a as in
Figure 59. So twisting M#CP2 along W has the effect of throwing the
handle p to α. The -1-framed handle a then decomposes the manifold!
That is, by sliding the other handles over this handle (as in Figures 33-
36) we get 3CP2#20CP2#S2 x B2, along with a three-handle, which is
3CP 2 #20CP 2 .

Finally we point out that the map f:dW^dWisa branched covering

involution. That is, there is a knot K c S3 such that dW is the two-

fold branched cover of S3 branched along K, and / is the branched

covering transformation. In fact, there is a properly imbedded D2 c

CP2 = CP2 - int{B4) such that the manifold W (recall dW = dW)

is the two-fold branched cover of CP0

2 branched along D2. Figure 60 is

the picture of D2 ^ CPQ (in particular, the picture of K c S3). Figure

61 is the two-fold branched cover of CPQ , which is W.

FIGURE 1

β : : I :

FIGURE 2
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