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A FAKE COMPACT CONTRACTIBLE
4-MANIFOLD

SELMAN AKBULUT

Here we construct a fake smooth structure on a compact contractible
4-manifold W* , where w* is a well-known Mazur manifold obtained by
attaching in two-handle to S 'x B} along its boundary as in Figure 1."
Here we use the conventions of [2].

The results of this paper imply:

Theorem 1. There is a smooth contractible 4-manifold V with 0V =
OW , such that V is homeomorphic but not diffeomorphic to W relative
to the boundary.

Let o be the loop in OW givenby S' xp c S' x §2 =9(S' x B%) as
in Figure 2. Zeeman raised the question whether o is slice in W [12],
i.e., if a bounds an imbedded smooth D? in W. Even though it turned
out that a is slice in another smooth contractible manifold with the same
boundary [2], the original question has remained open. Let f: W — 0W
be the diffeomorphism, obtained by first surgering S 'xB® to B*xS? in
the interior of W, then surgering the other imbedded B* x S? back to
s'xB? (i.e., replacing the dots in Figure 2.)

Clearly this diffeomorphism extends to a self-homotopy equivalence of
W . In fact, by [9], f extends to a homeomorphism F: W — W . In
[2, p. 279] the question of whether f extends to a diffeomorphism of W
was posed. If it did, o would be slice in W since f(a) is clearly slice in
W . Here we answer these questions negatively:

Theorem 2. « is not slice in W, in particular f does not extend to a
self-diffeomorphism of W .

Theorem 1 follows from Theorem 2 as follows: Let F: W — W be
a homeomorphism extending f. Let V' be the smooth structure on W
obtained by pulling back the smooth structure of W by F. This gives a
diffeomorphism F: V — W extending f on the boundary. If G: W — V
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were any diffeomorphism extending the identity on the boundary, then
F o G would be a diffeomorphism extending f, contradicting the exis-
tence of . In particular, Theorem 1 implies that there is a nontrivial
h-cobordism from V to W rel 8. This h-cobordism will be explicitly
discussed in §6. So V is diffeomorphic to W but no such diffeomorphism
can extend the identity map on the boundary.

We now summarize the proof. We use the conventions ~ for homotopy
equivalence and ~ for diffeomorphism. The orientation of CP? comes
from the complex orientation, i.e., it has the intersection form (+1). cP’
denotes CP? with the opposite orientation. We also use the convention
that if M 1is an oriented manifold, then —M is M with the opposite
orientation.

We first construct a compact 1-connected smooth 4-manifold M, with
a homology sphere boundary M, = £. M, is even with signature 16
and has the second betti number b,(M,) = 22. We also construct two
more compact smooth 4-manifolds W| and Q such that:

(1) oW, =0Q =X.

(2) W, is contractible.

(3) Q= W, #CP*.

(4) If « isslicein W, then X bounds a contractible manifold W, with
Q~ W,#CP*.

We define M = M, U, (-W,) and M= M, U, (—Q). Then we show:

(5) M ~ (3CP*)#(20CP?).

Clearly M~ M#CP* ,and M is homotopy equivalent to the Kummer
surface. Let g: 9(—W,) — 0(—Q) be the restriction of the identity map
M, — M, to its boundary (see the diagram). Hence if f extends to a
diffeomorphism —W, 4#CP* - —Q, then M would be diffeomorphic to

% ~W # CP* , —Q

Id

M # CP° M
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M #CP?. It turns out that g extends across a two-handle; that is, there
are two-handles H, =im(h,), k =1, 2, where

hy: (D' x D, 8" x D*) = (W, #CP", -3),
h,: (D’ x D, 8" x D*) = (-Q, -%)

such that g extends to a diffeomorphism H, — H,.
Then we show the surprising fact that

—W = (-W,#CP’) — int(H,) = (-Q) — int(H,)

and the map 9(—W) — 9(—W) induced by g is f. Hence, by turning
—W upside down, we conclude that if f: W — 8 W extends to a diffeo-
morphism W — W, then M ~ M#CP*?. More generally, if « is slice in
W, then

M~ M, U, (-Q) ~ M, U, (W, #CP")
~ [M, U, (~W,)|#CP’ = M'#CP°,

where M' = M, U, (-W,) is a homotopy Kummer surface. On the other
hand this contradicts Gauge theoretic results discussed in §5 (the last para-
graph of §5). More specifically, since M decomposes, its Donaldson poly-
nomial invariants must vanish [4]. On the other hand in [7] Fintushel
and Stern showed that a particular Donaldson invariant of a homotopy
Kummer surface is nonzero if it contains a copy of the Brieskorn homol-
ogy sphere X(2, 3, 7). We show that M, contains X(2, 3, 7). Hence
M’ has a nonzero Donaldson invariant. Since these invariants persist un-
der connected summing with CP>, M’ #CP* has a nontrivial Donaldson
invariant. So M’ #CP* % M and, more generally,

(M’ #CP*) # (kCP*) o M # (kCP").
Because this argument is independent of the contractible manifold W,
which X bounds. We conclude that Q cannot be decomposed as V' #CP? R
where V' is any contractible manifold. In particular Q and W, #CP? are
homeomorphic but not diffeomorphic to each other. We use this in the
construction of [1]. An interesting corollary is the following.

Corollary. M, cannot be diffeomorphic to N#W, for any compact
complex manifold N .

This is because Q, U (—=W)) = cp? (§6). Hence if M, ~ N#W,, then

N#CP ~ N#(W,U-Q,) ~ M, U(-Q,) = M ~ (3CP*) #(20CP").
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Again contradicting a result of Donaldson in §5, i.e., complex surfaces can-
not admit such splitting (since N is complex, so is N#CP? ). Notice also
that, if we could extend f to W, then M could not be a complex mani-
fold, since M #CP> would have such a splitting. (Here the author would
like to thank John Morgan for explaining Donaldson’s results on relating
his polynomial invariants to the Floer homology, and also thank R. Fin-
tushel and R. Stern for making available their calculation of Donaldson’s
polynomial on the particular type of four-manifolds [7].)

1. Construction of Q and M,

To simplify the steps in our construction, we first construct a diffeo-
morphism between the boundary of the four-manifold in Figure 3 and the
boundary of the manifold in Figure 6. We accomplish this by first blowing
up Figure 3 to Figure 4, then blowing it up more in a similar way to Figure
5, and then blowing down the three +1-framed circles (compare [10]).

We can now start with our main construction. We define Q4 to be the
manifold in Figure 7. In Figures 7-33 we modify the interior of Q4 to
obtain M, . Along the way we carry along a loop a C 9Q as indicated in
Figure 8 in order to see where it will end up in M, (Figure 33) under
the diffeomorphism 6Q ~ 0M,. This diffeomorphism might twist the
neighborhood of the loop «; to keep track of this we start out with a ref-
erence framing (zero) and denote it by «(0). Figures 8-18 are obtained
either by blowing up, or an isotopy of the previous figure. We apply the
modification of Figure 3 — Figure 6 to Figure 18 to arrive at Figure 19.
Notice that this diffeomorphism twisted the framing of the loop o to —1.
Figure 20 is obtained by introducing of pair of two-handles to Figure 19
in order to change the left-handed twist to a right-hand twist. Blowing up
+1 and blowing down —1 gives Figures 21 and 22. Sliding a —2-framed
handle over the O-framed handle gives Figure 23. We now modify the
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handle corresponding to the left-handed trefoil knot with +1-framing in
Figure 23. To save space, from Figures 24-32 we only draw the modifi-
cation of the part of the picture in Figure 23. Modification from Figures
24-32 is exactly the same modification as Figures 9-19, except here during
the modification we carry along the other two two-handles tangled to the
+1-framed left-handed trefoil knot. Figure 32 is only part of the picture.
In Figure 33 we draw the whole picture; that is we go back to Figure 23 and
install Figure 32 into it by recalling; the positions of the 0- and —2-framed
handles (notice that the —2-framed handle was the —1-framed handle in
Figure 23). We call the manifold in Figure 33 M14 .

2. M ~ (3CP*)# (20CP?)

Recall M = M, U, (—Q). To see the handlebody of M we must turn
Q upside down and attach it to M, . Upside down —Q is obtained by
attaching a two-handle to X = 6Q along a with O-framing (Figure 8),
and then capping it off with B*. Hence M is obtained by attaching
M, (Figure 33) a two-handle along the loop a with —I-framing. Then
by sliding three two-handles (three loops that are linked to «) over the
handle o we get Figure 34. By consequently sliding —2-framing handles
over the —1-framed handles we get Figure 35 and by more handle slides
we get Figure 36. Figure 36 is obviously (Z‘}CP2 )# (20.6132) .

3. Construction W,

We attach a two-handle to £ = 8Q as in Figure 37, then we see that
this makes the boundary S I'x s2 (e.g., blow down +1-framed unknotted
circle). Then attach a three-handle and a four-handle to get a compact
manifold —W, with 6(-W,) = X:

- three-handle |

.-two-handle .
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Clearly W, is a contractible manifold. We turn W, upside down. We do
this by turning the three-handle into a one-handle (i.e., B*x 8% of Figure
38t S'xB’ ) and attaching a two-handle along 4(y), where A is the
diffeomorphism between the boundaries of Figure 37 and Figure 38 and y
is the dual circle. This gives us Figure 40. Similarly we turn —Q upside
down by attaching a two-handle to B* along the image 4'(d) as in Figure
42, which is the same as Figure 43. Again, here k' is the diffeomorphism
between the boundaries of Figure 41 and B*, and & is the dual circle.
We can now see the diffeomorphism 0Q ~ 0 W, between Figures 43 and
44, namely surger Figure 44 (i.e., replace the dot on the unknotted circle
with 0 and blow down —1).

4. Diffeomorphism f

We start with Q (Figure 45), which is clearly diffeomorphic to Figure
46 (by cancelling the one-handle with the +1-framed two-handle). Now
the “flip’ diffecomorphism f described in the introduction induces a diffeo-
morphism between the boundaries of Figures 46 and 47. By a handle slide
Figure 47 is diffeomorphic to Figure 48, which is W] #CP? . Hence, if f
extends to a self-diffeomorphism of W , it would induce a diffeomorphism
between Figures 46 and 47, hence we would have Q ~ W, #CP?,

It is also clear that if o was slice in W , the +1-framed handle in Figure
46 would be represented by an imbedded two-sphere. Hence Q would be
W,#CP* for some contractible W, with W, =0Q.

5. Donaldson polynomials

In this section we summarize Donaldson’s theory of polynomial invari-
ants of four-manifolds, and indicate a calculation of them due to Fintushel
and Stern. We follow [4], [5], [11].

Let M* be a one-connected closed smooth four-manifold, and let P 5
M* be a principal SU(2)-bundle with ¢,(P) = k. Let

&/ (P) = Space of all irreducible connections on P;

Z(P) = The gauge group Aut(P);

& (P)="(P)/Z(P).
After completing with an appropriate Sobolev norm, % (P) becomes a
Hilbert manifold. Fix a Riemannian metric g on M 4 and let M (M, g)
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be the moduli space of anti-self-dual connections in Z(P), i.e.,
M (M, g)={[A]€ B (P)|+F, =—F;},

where F, is the curvature of the connection 4. According to [8], for
generic metrics g, .# (M, g) is a manifold of dimension d(k) = 8k —
3(b; + 1), and usually it is not compact. Here b, denotes the number
of positive terms in a diagonalization of the intersection form of H,(M).
M (M, g) has a compactification

k
—_ k—i
(M, g) cI]#4M, g) xS M)/ ~,
i=0
where S’ (M) denotes the j th symmetric product and ~ denotes identi-
fications, which make .# (M, g) a stratified space with strata contained
in (M, g)xSI(M), i=0,1,-, k:

N

k—1
L1 #(2, 8) x S5~/ (M)/ ~
i=0

7k(M’ g)

When k > %(3b;' +5) all strata except the top stratum .# (M, g) has
codimension > 2 in #,(M,g). Also an orientation of H(M,R)
gives an orientation on .# (M, g), hence it induces a fundamental class
on Zk(M , &) . Furthermore every homology class o € H,(M) induces
a codimension-two submanifold V, — # (M, g). Now assume k >
-!4-(3b;' + 5) and b; is odd; then d(k) is even. So if we choose any
a, € Hy(M), i =1,2---,d/2, the corresponding submanifolds v, C

M(M,g),i=1,2,---,d/2, generically intersect along points and give
rise to the intersection number ¥, N---NV; 2 Denote this intersection
number by 7, (M)(a,, -, o, /2) ; this turns out to be independent of the

metric g. Hence it induces a map y,(M): 5912 (Hy(M)) — Z. Further-
more 7, (M) has the property that if y, (M) # 0, then y (M #CP*) #0.
If M has a homology sphere boundary ¥ = M, then as outlined in
[3], the above process generalizes to give homomorphisms
Ve(M): S"(Hy(M)) —» HF,(2), r=1,2,---,d/2,

where HF, denotes the Flower homology group of X. Donaldson has
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shown that if H,(M) has the intersection form E; @ i(9]), where i =
0, 1, or 2, then under some restrictions of ¥ HF,(XZ) # 0. Furthermore
if oM, =X, O0M, =-X,and M = MU, M, ,ie., M isobtain by glueing
two four-manifolds along a common homology sphere boundary X, then
we can pair these invariants and get a homomorphism, as indicated in [3]:

v, (M): S'(H,(M,)) ® S~ (H,(M,)) — Z.

So for example if

n(My)(e,, -, a)=> n[pl€ HF,(Z)
BMy)(@, s s ag,) =D m[pl€ HF,(-X),
then
n(M)=) "n,m,

(here [p] denotes the conjugacy class of generic representations x,(Z) —
SU(2)). So having explicit knowledge of the Floer homology groups
HF, (%) is helpful to compute y,(M). In [6] Floer homology groups of
Seifert homology spheres X(p, ¢, r) have been explicitly computed. As a
corollary, Fintushel and Stern [7] showed that if X(2, 3, 7) imbeds into
a homotopy Kummer surface M, then y,(M) # 0. In this case we take
k =4, d =20, and r = 4. The idea is that such an imbedding de-
composes M = M, U, M,, with H, (M,) having the intersection form
Eg®i(%)), i=1,2. Now, the Donaldson type of arguments applied to
each side M;, i =1, 2, coupled with the knowledge of HF,(Z(2, 3, 7))
gives the result [7].

The manifold M, of Figure 33 contains X(2, 3, 7), since X(2, 3, 7)
is the boundary of the plumbing:

L

Hence if W, is any contractible manifold with O0W, = X, the homotopy
Kummer surface M’ = M, U, (-W,) contains X(2, 3, 7). Consequently,
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(M) # 0, so y,(M #CP?) # 0. Since y,(3CP*#20CP°) = 0 [5],
3CP?#20CP? cannot be diffeomorphic to M’ #CP-.

6. The nontrivial /4-cobordism and the conclusion

Here we will describe the nontrivial 4-cobordism Z> between W and
V rel 8 and prove some miscellaneous facts. The h-cobordism Z can be
described by attaching an algebraically cancelling pair of two- and three-
handles to the interior of W :

three-handle
N Y — W

two-handle

ZS

‘We first attach a two-handle to W along a (Figure 2), obtaining w*
(Figure 49). So W* is obtained by surgering the loop o in W . We then
attach a three-handle along the imbedded two-sphere ¢ in W obtaining
V . Hence V is obtained by surgering the two-sphere ¢ in W as indicated
in Figure 49. So, in particular, V' ~ W, but this diffeomorphism cannot
extend the identity on the boundary. In particular, V' U, (-V) ~ st

We also have

Proposition. (a) V U, (-W) =~ st

(b) QU, (-W,) ~ CP*.

Proof. (a) holds since V U, (-W) = WU 7 (=W) and the handlebody
of Wu ; (=W) is obtained by attaching a two-handle to W along a C
OW , and a three-handle. So it is Figure 50 with a three-handle, which
is the same as Figure 51 with a three-handle, which is S*. To draw the
handlebody of W, U, (~Q) we simply add a two-handle to Figure 44
along ¢(fB), where ¢ is the diffeomorphism between the boundaries of
Figures 43 and 44, and p is the dual circle in Figure 43. We get Figure
52, which is diffeomorphic to Figure 53, which is CP?. Hence we have
shown (b). q.e.d.

M#CP? is obtained from M by removing W and reglueing it with
the diffeomorphism f (i.e., Gluck construction to W ). This operation
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changes the smooth structure of M #CP’. To demonstrate this better
we will draw the handlebody of M #CP’ and indicate this with pictures.
Recall M = M, U(-W,). M is obtained by attaching upside down W,
to M. Upside down W, is obtained by attaching a two-handle to X as
in Figure 37, along with a three-handle and a four-handle. Therefore if we
ignore three- and four-handles, M is obtained by attaching a two-handle
to M, along h(d), where £ is the diffeomorphism between the boundaries
of Q (Figure 7) and M, (Figure 33), where ¢ is the +1-framed loop in
Figure 54. Hence the handlebody of M #CP’ is obtained by attaching
two-handles to M, along h(é) and h(p), where p is the —1-framed
unknot in X as indicated in Figure 55. By sliding the handle 4(d) over
h(p) we can assume that the positions of d and p (in £ = §Q) are as
in Figure 56.

£ :
w
.three-handle
two-handle p

.-two-handle &

We claim that the two-handle 4(p) along the three-handle and the four-
handle give W :

M # CP*
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The effect of removing W from M 4CP? and putting it back with the
difftomorphism f is attaching M, two-handles along A(J) and h(a)
(instead of A(p)) (Figure 57). Figures 57 and 58 show how f throws the
handle p to a. Here we view:
f:0[M, U (2-handle A(d))]>

In Figure 59 we draw the pictures of h(a), h(d), and h(p) in M,
(Figure 33). For simplicity, in the figure we continued to denote them by
a, 0,and p. We also indicated their change of framings under 4. So
Figure 33 along with two-handles attached to 6 and p gives M 4#CP° , as
indicated in Figure 59. Removing W from M #CP° and regluing back
with f gives Figure 33 along with two-handles attached to § and « asin
Figure 59. So twisting M #CP> along W has the effect of throwing the
handle p to a. The —1-framed handle a then decomposes the manifold!
That is, by sliding the other handles over this handle (as in Figures 33-
36) we get 3CP*#20CP°#S* x B, along with a three-handle, which is
3CP*#20CP*.

Finally we point out that the map f: W — W is a branched covering
involution. That is, there is a knot K C S3 such that W is the two-
fold branched cover of S° branched along K, and f is the branched
covering transformation. In fact, there is a properly imbedded D’ ¢
CPO2 = CP? — int(B*) such that the manifold W (recall OW = W)
is the two-fold branched cover of CP(f branched along D’. Figure 60 is
the picture of D’ CPO2 (in particular, the picture of K C s ). Figure
61 is the two-fold branched cover of CP02 , which is W .
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