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CONFORMAL INVARIANTS
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Abstract

A distinguished class of differential invariants of conformal structures
is constructed using homomorphisms of Verma modules and Cartan's
conformal connection. This class reduces to a large subset of the class
of differential operators invariant by conformal translations on flat con-
formal manifolds and operators in it may be expressed in terms of the
Levi-Civita connection and Ricci curvature of a metric on the conformal
class. Composition of these differential operators yields further differ-
ential invariants which depend on the conformal curvature. In all even
dimensions, a tracefree symmetric rank two tensor is obtained which is
an analogue of the conformally invariant Bach tensor in four dimensions,
as a consequence of the structure theory of Verma modules.

1. Introduction

The invariant linear differential operators on a Riemannian manifold
which depend polynomially on the metric g, finitely many of its deriva-
tives, (det g)~~ι, and finitely many derivatives of a spinor or tensor field are
well understood. They are obtained by repeated applications of the Levi-
Civita connection, symmetrization, antisymmetrization, and contraction,
a result which follows from the classical invariant theory of the orthogonal
group. This characterization is a key ingredient in the proof of the Index
Theorem by heat kernel methods [1].

The situation is less clear for such operators on a conformal manifold.
Several partial results are known, with many examples [10], [20], [21],
[37], and when the conformal structure is flat, a complete theory of such
operators exists [17], [26] using result from representation theory on ho-
momorphisms of Verma modules. The purpose of this paper is to give
an extension of this theory in the curved case using Cartan's conformal
equivalent of the (affine) Levi-Civita connection.

Let X be a manifold equipped with a conformal structure. This should
be thought of as a distinguished line subbundle, L*2 of © 2 Ωχ , the sym-
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metric square of the cotangent bundle of X. Then sections of V1 are
metrics on X differing only in overall scale. Such sections constitute the
conformal class of metrics on X. The question of the existence of canon-
ically defined differential invariants of this structure is a local one. So
assume that a square root, L, of the dual L2 exists and is fixed. Powers
Lk of L are defined as usual, setting Lk = {L*)~k if k < 0. Sections
of Lk are called conformal weight k functions. They are given locally by
specifying a choice of metric g in the conformal class and a function φ .
When g is rescaled to Ω2g, then φ is replaced by Ω φ .

The best known differential invariant of the conformal structure on X,
of even dimension 2n > 4, is the conformally invariant Laplacian,

Choose a metric in the conformal class, let Va be its Levi-Civita connec-
tion, and let R be its scalar curvature. Then

depends only on the conformal class—a different choice of scale for the
metric alters the Levi-Civita connection and the scalar curvature in pre-
cisely opposite ways so that D is unchanged. This cancellation depends
essentially on the fact that D is applied to sections of L~n + 1 it fails on
any other power of L and in particular on functions. It is rather remark-
able, therefore, that, in four dimensions, the operator

on functions given by

is conformally invariant [18], [37]. Here, Φab is (half) the tracefree Ricci
tensor and Λ = R/24. The direct verification of this fact relies on some
quite remarkable cancellations and strongly suggests that some underlying
principle is at work. (Indeed, once this is understood (Theorem 5.1.1),
it will follow that on a conformal manifold of dimension In there is a
conformally invariant operator ϋf:Lp~n -+ L~p~n whose highest order
term is (VαVJ for 1 < p < r.)

Eastwood and Singer discovered D 2 after finding that (V*VJ2 was
conformally invariant in the flat case which followed from certain con-
siderations in the twistor theory of R. Penrose [32]. This led Eastwood
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and Rice [17] to investigate the question of conformally invariant differ-
ential operators on Minkowski space more closely, characterizing them in
terms of homomorphisms of (generalized) Verma modules (see also [26]).
Such homomorphisms have been studied in considerable detail, recently
[9], [28], so that this characterization determines all such operators. More-
over, the characterization determines all differential operators between ho-
mogeneous sheaves on compact homogeneous complex manifolds which
are invariant under homogeneous translations.

The characterization follows from a study of the local geometry of a
principal fiber bundle

G-+G/P,

where G is a complex semisimple Lie group and P is a parabolic sub-
group. For the purposes of this paper, the reader may take G to be the
conformal group SO(m + 2, C) of the m-dimensional complex sphere
and P to be the conformal Poincare subgroup (or coverings of these).
This identifies the formal jet bundle of a homogeneous vector bundle as
a homogeneous vector bundle induced by the algebraic dual of a Verma
module. Since linear differential operators are defined as linear maps from
a jet bundle to the image bundle, and since invariant operators are deter-
mined by their action on the fiber of a jet bundle over a base point, it
follows that invariant operators between sections of homogeneous vector
bundles correspond to homomorphisms of Verma modules. The crucial
point in the characterization is the identification of the differential opera-
tors on G at the identity with the universal enveloping algebra ^(g) of
the Lie algebra g of G.

In the curved case, the group of conformal motions, G, is lost. Nonethe-
less, in dimensions three or more, there is a uniquely defined P-principle
bundle

9 -+ g/p = x

and a g-valued one-form ω, the normal Cartan connection, which is an

isomorphism of vector spaces

When X is flat, 2? = G and ω is the Maurer-Cartan form identifying g
with left invariant vector fields on G. The properties of ω and Verma
modules in general turn out such that most homomorphisms of Verma
modules induce differential invariants of the conformal structure, even
though this is curved (Theorem 5.1.1).

The Cartan connection ω is constructed by suitably modifying the
affine Levi-Civita connection of any metric in the conformal class [29].
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This modification, which is the source of lower order "curvature correc-
tion terms", involves Ricci curvature so that only Ricci curvature and its
derivatives can appear in such terms. It follows that most translation in-
variant linear differential operators on sections of a homogeneous vector
bundle over a conformally flat manifold give rise to differential invari-
ants of a curved conformal structure which may be constructed from the
Levi-Civita connection and Ricci curvature of any metric in the conformal
class.

In an earlier version of this paper it was thought that invariant curved
analogues of powers p > r of the Laplacian in dim In existed. C. R.
Graham has shown that the operator D 3 :L —> L~s in four dimensions
has no analogue; I am very grateful to him for drawing my attention to
this. The error lies in that part of 4.7.1 concerned with such operators.
These, and others obtained from them, are the only flat operators which
do not appear to admit curved analogues.

More important than the precise form of such invariants is the fact
that they are constructed from a systematic theory which is based on the
structure theory of Verma modules. This theory is now well understood
and immediately suggests further results. For instance, homomorphisms
of Verma modules occur in certain exact sequences, due to Bernstein,
Gelfand, and Gelfand [7], [28]. The exactness of such sequences is de-
pendent on the algebra structure of ^ ( g ) . This is not available in the
curved case; the obstruction is the extent to which

is not a homomorphism of Lie algebras, which is determined by the con-
formal curvature. Indeed, the Bernstein-Gelfand-Gelfand sequence on a
curved manifold is not even a complex, so that concatenation of differen-
tial invariants yields yet more invariants, which now involve Weyl curva-
ture. The Weyl tensor itself is obtained in this way. A little careful study
of the structure of the jet of the Weyl tensor using a particular Verma mod-
ule shows that the Weyl tensor in dimension 2n > 4 is the subject of a
(2τz-2)-order invariant differential operator. The result is a tracefree, sym-
metric, covariant rank-two tensor Bab of conformal weight 2 - In which
is conformally invariant, generalizing the Bach tensor in four dimensions.

It will be convenient but by no means necessary to work in the complex
category throughout. The results obtained immediately generalize to the
real situation (where some interesting new phenomena occur, because there
fractional conformal weights are allowed [15]).
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The techniques of this paper are not confined to the conformal situation.
Using [29] they extend to projective structures. They will also extend to
structures locally modelled on any Hermitian symmetric space [4].

I should like to thank Michael Eastwood, Robin Graham and Ed Dunne
for their encouragement and many useful conversations.

2. Invariant linear differential operators

on homogeneous spaces

This section is devoted to the algebraic construction of differential op-
erators on a flat conformal manifold which are invariant under confor-
mal translations. Any flat conformal manifold in dimension at least three
is locally isomorphic to a sphere, with its usual conformal structure; in
this case, the conformal motions are readily checked to be the Lie group
SO(ra + 2, C), and the stabilizer of any point is a subgroup isomorphic
to the conformal Poincare group P = (SO(m, C) x C x ) K Cm realizing
CSm = G/P as a complex homogeneous space. The differential operators
of interest act between sections of homogeneous vector bundles on this and
intertwine the left translation action of G. The first step is to character-
ize such operators as adjoints of homomorphisms of {generalized) Verma
modules for the conformal Lie algebra, so(m + 2, C), and the second is to
use this characterization to classify them. The appendix contains a brief
review of the basic representation theory which is used.

2.1. Differential operators. To begin with, recall the invariant defi-
nition of differential operators acting between sections of vector bundles
over a complex manifold X. This is most easily stated using the language
of locally free sheaves over the sheaf (9χ of holomorphic functions on X,
that is, in terms of sheaves of holomorphic sections of vector bundles. So
let SF denote the sheaf of holomorphic sections of a vector bundle «£
over a manifold X. Let ^ be the stalk of & at x e X, i.e., the set of
germs of holomorphic sections of &_ near x. Set

J^ r (F) = set of germs in &χ vanishing to order r at x .

Then the r th Jet bundle of &_ is defined by specifying its fiber at x to
be

Let <yr(F) be the associated locally free sheaf. The quotient mapping
induces a homomorphism of C-sheaves

which is evidently a universal r th-order differential.



856 R J. BASTON

Taking a projective limit under the natural surjections / ' G S -* J~
gives the formal jet bundle

J°°{F) = lim Jr(F)

whose associated locally free sheaf is

S°°{F) = lim J^r{F).

Again, there is a universal differential operator

which gives the following definition [33].
Definition 2.2.1. A linear differential operator Ό: & -> 3F1 between lo-

cally free sheaves on X is a sheaf homomorphism Dorf00 where D:JΓ°°(iΓ)
—• y ' is a homomorphism of locally free sheaves which factors through
*fr9F for some finite r. The order of D on a connected component of
X is the least such r.

Remark 2.1.2 If Qr Ωι

χ denotes the r th symmetric power of the sheaf
of holomorphic one-forms on X, then there are short exact sequences, the
jet exact sequences [33]

(1) 0 - OrΩ^ ® ̂  - J\F) - C ^ - ^ F ) -> 0.

If D is of order r, then the composition

is the symbol σD of D.
Such technology is to be applied to vector bundles induced from a P-

principal bundle *§ —• X whose structure group P is a Lie group. These
are constructed by specifying a representation π: P —• End(iΓ) and setting
^ = GxpF. Sections of 21 are F-valued functions f on G satisfying

(2) l

This has a useful differential form; for each u e p, the Lie algebra of P ,
there is a natural realization of u as a fiberwise vector field on & —> ^Γ.
Call this w also. Then (2) implies

(3) uf=-dπ(u).f.

2.2. Characterization of invariant operators on homogeneous spaces.

Restrict the discussion of the previous section by supposing that & = G, a
simply connected, semisimple, complex Lie group, and let P be a (simply
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connected) parabolic subgroup. Then the quotient X = G/P is a complex
manifold which is compact, simply connected, Kahler, and projective. Its
points correspond to subalgebras of g, the Lie algebra of G, conjugate to
p. Induced vector bundles on X are usually referred to as homogenous
vector bundles. Since right and left translations on G commute, it is clear
that the left translation action of G on X = G/P lifts to an action of G
on sections of a homogeneous vector bundle by

(4) L*gf(g') = f{g-lg9)

for g, g' eG.
Definition 2.2.1. A translation invariant linear differential operator D

between homogeneous sheaves over X = G/P is a linear differential op-
erator satisfying D o L * = L * o D .

Remark 2.2.2. Equation (4), differentiated, implies that the sheaf of
sections of a homogeneous vector bundle is a sheaf of left ^(g)-modules.
To say that a differential operator is invariant is to say that it intertwines
this structure.

Evidently, such an operator is determined by its action on the fiber of
J°°(F) at a fixed base-point, say the identity coset eP. The first step in
characterizing invariant differential operators is to identify this stalk. To
do this, consider differential operators on G sending F-valued functions
on G to functions on G. If the universal enveloping algebra ^(g) is
identified with left invariant differential operators on G, then the desired
operators have the form

(5) /-</%"/}

for /* an F*-valued function on G, u e %/(g)9 and ( , ) the natural
pairing. When / is a section of &_ and w e p , (3) implies

(/*, uf) = (/*, -dπ(u) f) = (dπ{u) •/*,/},

where π* is the contragredient representation of π . Identifying the germ
of the operator in (5) at the identity with an element of ^(g)®F* observe
that w®/* and \®dπ*{u)-f* agree on sections of F. Let / be the left
^(g)-submodule of ^(g) <8> F* generated by elements of the form

u® f* - 1 <8>dπ*(u) •/*

for u e &(p). Then

F*)/I = W{%) ® \ } f
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is the space of differential operators from & to (9 at the identity coset,
i.e.,

(6) MV(F*) = lim Homc(Jr(F)eP, C).

M (F*) is a left g-module by the left multiplication action of g on

2^(g). It is the g-module induced from the p-module F*. By the Poincare-

Birkhoff-Witt theorem, if g = p 0 u_ , then

(7) Mp(F*) = W(u_)®cF*

as a module for a reductive Levi factor 1 of p (which acts by the tensor
product action deduced from its action on u_) and for u_ , acting by left
multiplication on the left factor. In the conformal case, u_ is abelian and
^(u_) is the symmetric algebra on u_ .

If F* is an irreducible finite-dimensional representation of P, then
Mp(F*) is a generalized Verma module [28]. By the general theory of
irreducible representation of p (see the appendix), F* is generated by a
single highest weight space, F^ , and the decomposition (7) shows that,
for any f*eF^, 1 0 /* generates Mp(F*). Accordingly, denote it by
MJλ) in the sequel. If h is a Cartan subalgebra of g (contained in p),
then the decomposition shows also that a Verma module is a direct sum of
weight spaces. The generating weight space is distinguished by the fact that
its weight is highest amongst all nontrivial weights for the Verma module
(in the usual partial order on weights determined by the choice of a Borel
subalgebra contained in p). There exist weight spaces in a Verma module
which are maximal but not highest—these are most significant, as will be
seen.

The grading on ^(g) induces a filtration on Mp(F*), which is exactly
that at (6). This identifies

J£(F) = lim Homc(Mp '(n, C) = (Mp(F*))\

The identification at (6) depends on working at the identity of G. Un-
der the right action of P on G this varies by the adjoint action of P.
Therefore, the sheaf of differential operators from y to & is induced by
Mp(F*). Similarly, the jet sheaf S°°{F) is induced by (Mp{F*))* with
the evident projective limit structure. The associated composition series
induces the jet exact sequences (1).

It follows that an invariant differential operator D: ̂  —> &' between
homogeneous sheaves induced by representations F, F1 of P corre-
sponds contragrediently to a p-module homomorphism

(8) Ό*:F''*
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Now restrict F, F1 to be irreducible and let 1 ® v and 1 ® v' be max-
imal highest weight generating vectors of Mp(μ) = Mp(F*) and Mp(μ) =
M (F'*). Then w = D*l ® τ/ is maximal and of weight // in Λf (μ).
Any such iϋ , on the other hand, generates a copy of Ff* in Mp(μ) under
the action of 2^(p) and so determines a D*, hence an invariant differen-
tial operator. Finally, under the action of ^ ( g ) , w generates a copy of
M (F1*) in Af (μ) and all such copies arise this way (see [17, 26]).

Theorem 2.2.3. The translation invariant linear differential operators
between irreducible homogeneous sheaves over a complex homogeneous va-
riety X = G/P are characterized by homomorphisms of Verma modules
for g induced from irreducible representations of p.

2.3. An example on CP 1 . Let G = SL(2, C) and P = B = upper
triangular matrices. Then G acts transitively on CP1 and the stabilizer
of a point is conjugate to B. So X = G/B = C P 1 . The irreducible
homogeneous bundles on X are all line bundles (since the irreducible
representations of the Borel group B are all one-dimensional). They may
be identified with powers of the tautological bundle; obtain bundles L(n)
for integral n , induced by the representation of B on C in which ( Q 2-i)
acts by multiplication by z~n and ( J j ) acts as the identity. Denote
the sheaves of holomorphic sections of these bundles by <9{ri). The Lie
algebra g = sl(2, C) is generated by

x = { o o j ' y = { ι o j h = { o - i j

which satisfy

[x,y] = h, [h,x] = 2x, [h9y] = -2y

all other commutators are zero, b may be taken to be the span of x, h
whilst h spans a Cartan subalgebra of g. The Verma module whose
algebraic dual is the stalk at the identity coset of the formal jet bundle of
L(n) is then

M(n) = C[y]®cC(n),

where C(n) is a copy of C on which h acts by multiplication by n and x
trivially. A highest weight vector in M(n) has the form l<g>v for nonzero
v eC{n).
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Let a and β be highest weight vectors in M(n - 1) and M(-n - 1),
respectively. Then calculate

xyna = {[x, y]yn~ι + y(xyn~2)}a

= hy a + yhy a H \-y ha

= {(1 - n) + (3 - ri) + + (n - l)}a = 0

and
hyna = (-n - l)yna

so that yna is maximal in M{n - 1) of weight -n - 1. Thus the assign-
ment β »-• y"α yields a homomorphism of Verma modules M(-n - 1) —•

- 1) and a corresponding «th order invariant deferential operator

These are the conformally invariant powers ofedth described in [19]. They
may be determined as follows: let [πA] be homogeneous coordinates on
CP1 and represent a section of &(n) by a function / on C 2 , homoge-
neous of degree n . Then

A, AΊ A ~n r d d d

π ιπ 2" π nd f=—-A -Δ
Δ r f .

dπ>dπA> dπA»
2.4. Symbols of invariant operators. Any translation invariant differ-

ential operator D : ^ -+ 3F1 has a symbol σ D : O r Ω ^ 0 ^ -> y ; . By
Schur's lemma, since Ω^ is a homogeneous vector bundle, this corre-
sponds to a projection under the decomposition of Qr u_ <8>F into a direct
sum of irreducibles for 1. This fact, which might jocularly be called a sym-
bol principle, is very useful. On the one hand, it often eliminates several
possibilities; on the other hand, if a possible symbol exists between irre-
ducible homogeneous sheaves *fp(λ) and &v(μ), then a vector of weight
μ in Mp(λ) is determined by the symbol, using the usual Clebsch-Gordon
decomposition formulas. It is automatically maximal for 1, and it remains
to check that it is annihilated by u. In the conformal case, u is irreducible
as an 1 module, and so there is only one condition to check.

3. The four-dimensional case

The next example, following [17], is the physically most interesting case
originally studied using the twistorial techniques of R. Penrose. This con-
cerns the complexified four-sphere, sometimes referred to as complexified,
compactified Minkowski space. It will form the basis of explicit calcula-
tions in the curved situation later on in this paper and so it will be treated
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in some detail. The group of conformal motions of the complex four-
sphere is SO(6, C) and the stabilizer of a point is the conformal Poincare
group, {SO(4, C ) x C x } κ C 4 . As remarked above, any conformally flat
complex four-manifold is locally conformal to this conformal manifold.
Let G be the simply connected covering of SO(6, C), P be the corre-
sponding simply connected stabilizer, and X = G/P. Then G = SL(4, C)
and P consists of the subgroup of matrices of the form

which realizes X = Gr2(C4) as the Klein quadric.
3.1. Notation. Fix generators of the Lie algebra gl(4, C) by writing

a symbol from the following matrix for the generator which has a one in
the corresponding position and zeros elsewhere:

(Hx Xχ x2

Yχ H2 xχ

The off diagonal generators together with ht = H( - Hi+ι for / = 1, 2, 3
form generators of g = sl(4, C). Let h = spanj/zj , n = span{Xz, x.} ,
u = span{^.}, 1 = ®span{Xi9 Γ J , u_ = spanty.}, b = h φ n , and
p = 10 u. Then h is a Cartan subalgebra of g, n is a choice of positive
roots spaces, and p is the parabolic subalgebra corresponding to P, with
a fixed Levi decomposition. If α; a

%

2 α

t

3 indicates the nodes associated to
the simple roots of g, then the simple roots spaces are

Recall that [hp] = (A, af)v for v e gλ. Clearly, p = — x — • , and
Mp(λ) = C[u] ® c Fp(λ) (for the notation see the appendix).

3.2. Homogeneous bundles. Irreducible homogeneous vector bundles
on X are specified by symbols of the form p

t % [ , for integers p, q, r with
p, r > 0. The holomorphic cotangent bundle Ω^ of X is a homogeneous
bundle corresponding to the representations of p on its nilpotent Levi
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factor u u is irreducible and

_ 1 - 2 1

(9) ® * Λ

vl/ X

/ O 4 f V 4 —8 4 /τ\ 2 —6 2 & 0 —4 0 ~fP

2 = \ ~4 ? Θ ° ~2 °

21 = \ ~? I Θ { ~4 ι

whilst

= 2 - 3 0 ^ 0 - 3 2

(10) Ω'. = i - 4 .

Ω 4 = 9 - 4 9.

The sheaf of conformal weight « functions, which scale by / —• Ωnf
under a rescaling # —> Ω 2 ^ of a local choice of metric within the confor-
mal class, is

and the spinor sheaves are

α?+ _ /&A' _ 1 0 0 a?- _ J&A _ o 0 1
— — )( t ' — — > X 9

following the abstract index notation of [31]. Indices may be "lowered" at
the expense of acquiring a conformal factor:

and generally
ΛA\>-A'p){A{"Άr)rλ _ p q r

3.3. Invariant operators on forms. First attempt to compute the in-
variant differential operators from functions to forms. (Functions are sec-
tions of the trivial homogeneous bundle j) ?°( ^.) Using symbols from (2.4)
and (9), (10), the only possibilities for invariant differential operators are
the following:

( 1 1 ) o o o ̂  I τ c

2 1 = Ω 1 .

(12) o o o ^ i -4 i = Ω

3 ,

(13) o o o - ^ Q-40 = Ω

4

Let a e Λ/p( ^ ^ ^) be a highest weight vector. Clebsch-Gordon decom-
position yields vectors

yi <*>
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for (11), (12), and (13), respectively. These are maximal for 1 (i.e., anni-
hilated by Xt) and so yield homomorphisms of Verma modules as 2̂ (1)
modules. To promote these to ^(g)-module homomorphisms requires
that these vectors be annihilated by xχ, hence by all xz (11) and (13) are
whilst (12) is not. It follows that there are translation invariant differential
operators

d: (9 —• Ωι

χ (the usual exterior differential)

and

Π2 = (V V ) 2 : ^ -+ Ω^ (for any flat Levi-Civita connection V).

It is easy [17] to check that the remaining invariant operators between
forms are the usual exterior differentials together with the composition

For example, if β is a highest weight vector of M (\ ~ 2 \ ) , then a maxi-

mal vector of weight 2 ~3 j) in Mp( [ ~ 2 ) ) , given by (-y3 -h yx Y2)β, in-

duces the operator d+ , whilst for γ a highest weight vector of M () ~ 4 ))

a maximal vector (y{Y{Y2 - y3Y{ + yxY2 - y4)y of weight °t ~
4 ^ in

Λ/p( I 7(

4 I) induces d: Ω3 -• Ω 4 .
In summary, the following is an exhaustive list of invariant differential

operators between forms on Minkowski space:

s 2 ~3 ° \
(λά\ 0 0 0 . 1 - 2 1 / >< N 1 - 4 1 0 - 4 0

I ^ ^ T,3 2 / i

D2

Indeed, it will be shown in §4.2 that any translation invariant differential
operator on forms must be one of those in (14).

3.4. A third order operator on spinors. In the extension of these results
to curved conformal structures it will be useful to give some nontrivial
examples. One of these will be based on a third order operator \ ~2 3 —•
4 ~ 5? given by

A' —A _—Z? __C

\ABC) ~* ^{A'^B'^C'^D')ABC

and induced by the following maximal vector:
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3.5. Powers of the Laplacian. There is an infinite family of operators
which are powers of the Laplacian VαVfl , acting on conformally weighted
functions:

0 q-2 0 _> 0 -q-2 0 ? <7 E Z + ,

by / -> (VαVα)V induced by the maximal vector

Each of these will give rise to a differential invariant of a curved conformal
structure in four dimensions.

4. Homomorphisms of Verma modules

Much is known about the existence of homomorphisms of generalized
Verma modules. This section gives a brief review of the relevant aspects
of the subject. (A brief review of the Weyl group Wg of a semisimple Lie
algebra g and a subgraph Wv associated to a parabolic subalgebra p is
given in the appendix.)

Any Verma module Mp(λ) has a unique maximal submodule; the quo-
tient by this submodule, L(λ), is independent of p and is the unique
irreducible g-module generated by a highest weight space of weight λ.
The unique maximal submodule is a sum (not usually direct) of M (μ) it
follows [28] that each Mp(λ) has Jordan-Holder composition series whose
subquotients have the form L(μ) for appropriate μ .

4.1. Infinitesimal character. The first important fact is the notion of
infinitesimal character. Since M (λ) is generated over ^(g) by a single
highest weight space, an element z of the center JΓ(g) of ^(g) must act
by a scalar ζλ(z) determined by λ. ξλe -2*(g)* is called the infinitesimal
character of λ. Clearly, a homomorphism Afp(λ) —• Mp(μ) can exist only
if ξλ = ξμ. It is a classical theorem of Harish-Chandra [23] that this is
possible if and only if λ + p and μ + p are conjugate under the action of
the Weyl group W^ of g. Here, p = ^ Σ α € Δ + ( g ) α ^s represented in the
weight notation of the appendix by inscribing a one over every node of the
Dynkin diagram for g. For w e W and a weight λ, the affine action of
Wg is defined by w λ = w(λ + p) - p.

Lemma 4.1.1. A translation invariant linear differential operator
D: #p(μ) —> ^p(λ) may exist only ifμ = wλ for some w e W .

Example 4.1.2. In §3, the use of symbols suggests a possible invariant
operator ff —> \ ~4 \ (for instance). It is easy to check, however, using the
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recipe for reflections in the appendix, that there does not exist an element
w of Wg with w β β β = I ~* ] .

The easiest situation in which to apply the lemma is for λ dominant
for g. Then λ + p is nonsingular and any weight μ dominant for p with
infinitesimal character ξλ is said to have regular infinitesimal character
and the bundle <fp(μ) is called regular. A complete list of such μ is given
by

{w λ I w e Wp},

where Wp is the Hasse subgraph of Wg associated to the parabolic p.
4.2. The general regular case in dimension four. Consider the case of

four-dimensions, again, with λ = p

% % \ , where p, q, r > 0 so that λ is
dominant for g. Applying the elements of Wv to λ and retaining the
directed graph structure of Wp yields the following list of regular bundles
with infinitesimal character ξλ :

p+q+r+2 —q—r—3 q
x « * v

P q r p+q+\ —q-2 q+r+\ / N q+r+\ —p—q-r—4p+q+\
q-p-q-3p+q-3

_, r -p-q-r-4 p

'

In particular, the only invariant operators on forms are those of (14), [17],
The arrows in this list indicate all the invariant differential operators

between the bundles appearing in the list; this is a consequence of the
earlier classification of the invariant operators on forms and the translation
principle of Jantzen and Zuckerman [3], [17], [36].

4.3. The Borel case. The original study of Verma modules [35], [7]
was made for p = b a Borel subalgebra of g there is a complete classifi-
cation of all homomorphisms between these modules, due to Verma and
Bernstein, Gelfand, and Gelfand [7], [35]:

Theorem 4.3.1. The following are equivalent

(i) There exists a translation invariant linear differential operator D :
<fh(λ) —• <fh(μ) on G/B, unique up to scale.

(ii) There is a sequence {/?,} of positive roots of g such that
(a) μ = σβσβn^' σχ-' λ,

(b) (λ + //?f)>0,
(c)foreach p=l,2,'- ,n, ((σβ σ ...σ λ) + p , βw) > 0 .

(iii) L(μ) is a subquotient of Mh(λ).
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In the realm of regular infinitesimal character this becomes:
Corollary 4.3.2. Let λ be a dominant weight for g. There exists a

translation invariant linear differential operator Ό:<fh(w λ) —• #h{w' X)
on G/B if and only if w ^w1 in the Weyl group Wg of g.

Example 4.3.3. Consider λ = ff ~ ι

 ?°c defining a line bundle on the

complete flag manifold Fl23 of C4 . Labelling the simple roots of sl(4, C)

by % "I "3 , compute σx λ = ~ 2 ° ° , σ3σ{ λ = " 2 A " 2 , and σ2σ3σx λ =

β ~3 j) . It follows from the theorem that there is an invariant differential

operator D: Pc ~(* ff —> ^ ~(

3

}°( . These line bundles are the pull backs

of the conformal line bundles j) ~1 ^ and ^ ~(

3 ^ on Minkowski space.

The homomorphism of induced modules is given by the maximal vector

y\YχY2a (where a is highest in Mh(
0

9^
0

9)). Let V, d, and a' be the

relative differentials along the projections to the spaces of partial (1, 3),

(1,2), and (2, 3) flags. Then D = V2ddf.
4.4. The case of a general parabolic. Unfortunately, the parabolic sub-

algebras of interest in conformal geometry are far from being Borel and
the theory of homomorphisms of generalized Verma modules (when p is
not Borel) is far more complicated.

Certain homomorphisms, known as standard homomorphisms [28], may
be deduced from the Borel case as follows. There is a natural fibration
G/B - ^ G/P if p is chosen to contain b . Then a section of (9AK) on

G/P may be pulled back to a section of τ " Vp(λ) on G/B. This injects

onto τ*<^p(λ) which has a composition series by homogeneous line bun-

dles, one for each weight of Fp(A)*, taken with multiplicity. The highest

of these is a single occurrence of <?h(λ). So obtain a section of this line

bundle. This may be the subject of an invariant operator

for some μ which is dominant for p. This yields an invariant differential
operator

(An algebraic interpretation of this geometric construction is easily given.)
The difficulty is that this new invariant differential operator may well be

zero—ΌB may annihilate the image of τ~ι<fp{λ) Example 4.3.3 is a case
in point. Nonetheless, a nonzero invariant differential operator may still
exist: in the example, this is provided by the Laplacian D: °t ~

ι β -+ j) ~ 3 ^ .
The corresponding homomorphism and this new operator are called non-
standard] Όp and its homomorphism are called standard [28].
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Remark 4.4.1. (i) It is easy to determine when Όp = 0. In particular, if
λ is dominant, μ - wλ, v = w'λ with w = wσa , and l(w') = l(w)+l,

then D p φ 0 [3], [28].
(ii) If a nontrivial homomorphism Mp(μ) —• M (λ) exists then L(μ) is

a composition factor of Mh(λ) so by Theorem 4.3.1, there is a nontrivial
invariant differential operator #b(λ) —• #h(μ). The occurrence of non-
standard homomorphisms then corresponds to the multiple occurrence of
L(μ) as a subquotient of Mh(λ). Determining these multiplicities is the
subject of the Kahzdan-Lusztig conjecture [6], [11] and is an extremely
subtle question.

(iii) Nonstandard invariant differential operators are not direct images
of invariant operators on G/B however, it seems that some, if not all, can
be constructed by taking direct images of certain complexes of invariant
operators on G/B. This construction is a form of the Penrose transform
[5], [14], [16].

4.5. The regular conformal case. Boe and Collingwood [9] have de-
termined all the homomorphisms of generalized Verma modules of regular
infinitesimal character for g and p as in the conformal situation.

Recall (see appendix) that if w e Wg then w λ is dominant for p
if and only if w e Wv, the Hasse subgraph of W% associated to p. In
odd dimensions In + 1, there is exactly one such w with length / for
0 < / < 2n 4-1. In even dimensions 2n , the same is true for 0 < / < n - 1
and n + 1 < / < In , with two possible w 's of length n . Labelling the
simple roots of g as in the appendix, let

w° = σ σ --σ σ σ σ σ

be the longest element of Wv in even dimensions 2n . Then, in the lan-
guage of invariant different operators, Boe and Collingwood have proved

Theorem 4.5.1. Let λ be a dominant integral weight for g. Then there
is a nontrivial invariant differential operator

if and only if l(w) < l(wr) and

(i) in odd dimensions, l(w') = l(w) + 1,

(ii) in even dimensions, l(w') = l(w) + 1 or w' = w°w, in which case

l(w') = 2n-l(w).

The differential operator is unique up to scale.
All of these operators are standard, except for the second possibility in

(ii) with l(w) <n-2 which yields nonstandard operators. The operator
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in (ii) with l(w) = n - 1 is either composition,

λ) λ) λ),

where tu" has length n . All other compositions are zero.
The theorem may be represented pictorially by letting represent

<Pp(w -λ), l(w) increasing from left to right across the diagram, and letting
arrows represent invariant differential operators.

The odd dimensional case:

The even dimensional case:

/

t

Only the long operators, corresponding to the longest arrow in this dia-
gram in nontrivial regular integral infinitesimal character, will fail to admit
curved analogues.

Example 4.5.2. If λ is the zero weight, then & {w λ) ranges over
the irreducible components of the forms on X (of degree l(w)). In odd
dimensions, the only invariant differential operators between these are the
usual exterior differentials. In even dimensions, the exterior differentials
are augmented by the differentials

Λ2n-p
•Ωί

2(n—p) factors of d

0<p<n-

where * is the Hodge star operator for a flat metric in the conformal class.
In particular,

Π2n =
v2«

(Vα a flat Levi-Civita connection) is conformally invariant.
Example 4.5.3. Let

- P 0 0

so that & (λ) = IF and & (w° • λ(= L
ant power of the Laplacian:

D(p+n) = ( y β

-p-in .
t conformally invari-

{(P+n). rP r-p-2n
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Remark that all of these operators will yield conformally invariant differ-
ential operators on an arbitrary conformal manifold, by virtue of Theorem
5.1.1.

4.6. The singular conformal case. Rather less is known about the pos-
sible homomorphisms between Verma modules of singular infinitesimal
character; there are several ways of generating these, however, the Pen-
rose transform [5] being particularly good. For example, the series of
conformally invariant powers of the Laplacian in Example 4.5.3 may be
continued to allow p > -n + 1, and there is a second order operator

-p-n+l p 0 0 θ/° _> -p-n-l p 0 0 θ/° n G Z+

x— — — ^ 0 x—•-• —*^ 0 ' y *=
sending a totally symmetric p-form of conformal weight p - n + 1 to one
of weight p - n - 1 a formula for the curved space extension of this is
given in [37].

4.7. The translation principle. One of the ways of generating new ho-
momorphisms from old is by means of the Jantzen-Zuckerman translation
functor [36]. This depends on decomposing a ^(g)-module as a direct sum
of submodules each of which is a generalized eigenvspace for the action
of the center 2T(g) of

Thus Vλ is a submodule on which (z - ξλ (z))d acts by zero for all
z G «SΓ(g), where £λ is the infinitesimal character of the Verma module
A/b(λf.). Any finitely generated g-module admits such a decomposition
and the λ( are in distinct affine orbits of the Weyl group. (Recall that
ξλ = ξw λ for every w G W.) Let Pλ denote the projection onto Vλ and
let Mλ be the full subcategory of finitely generated g-modules on which
Pλ is the identity. This is usually called the category of g-modules of
infinitesimal character ξλ.

Now we can define the translation functor. Let μ, λ be weights such
that μ-λ is integral and let F(μ-λ) be the finite-dimensional g-module
with extremal weight μ — λ. Define

ψλ

μV = Pμ(F(μ-λ)®PλV)

so that ψλ:Tλ -> T . The standard theorem on these functors [36] states

that if both λ and μ are dominant, then ψμ and ψ% are inverse func-
tors, providing equivalences of categories. In other words, to understand
homomorphisms of Verma modules in general regular integral character it
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suffices to understand these homomorphisms for trivial infinitesimal char-
acter, given by λ = 0. For us, this means that invariant operators between
forms on a conformal manifold generate all others of integral regular in-
finitesimal character, by translation.

We shall now carry this out in some detail. The reason for doing this
is that we shall need some detailed control over the structure of these
homomorphisms when we introduce conformal curvature.

First define an algebra A(g) to be

Λ(g) = Tg/({x ® y - y ® x - [x, y] \ x e p, y e g}>

(where ( ) means "ideal generated by"). This will be needed in the next
section where the Cartan connection preserves only commutators of the
form [x, y] for x e p and y e g. 2^(g) is a quotient of A{g) which is in
turn a ^(p)-bimodule. Evidently, as a vector space A{g) = T(u_)<g>^(p),
where g = p θ u _ , and one may form induced modules which over Verma
modules as left p-modules:

Maximal elements are defined in A(g) <8wp) Fp(λ) and must cover maxi-
mal elements in Mp(λ). The important (and remarkable) fact is that the
reverse is true, except for the extremal or "long" case.

Lemma 4.7.1. Let λ be a dominant integral for

= — —
let

p = x

and let w,w' eWp. If

is a homomorphism of Verma modules, then the image of Mp(wf X) is
generated by a maximal vector v which can be lifted to a maximal vector
in A(p) ®g,(p) Fp(w - λ), unless l{w') = 2n, w = id.

A similar lemma holds in odd dimensions.
Proof We need to write an expression for v which is a sum of terms

of the form P ®v' (where P e T(u_) and υ' e Fp(w λ)) and whose
maximality can be proved using only commutators of the form [x, y] for
x e p and y Eg. Put \λ\ = £ ( λ , αV> for {αf.} a set of simple roots for
g. We proceed by induction on |A|.
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Induction step. Let λt be dual to af under the Killing form so that
(λz, αj) = dtj. We may suppose that λ = μ + λ for some j and μ
dominant. Let u e Mp(w μ) be maximal of weight wf μ and satisfy the
condition of the lemma.

To find v we use translation by the g-module F(λj). As a p-module,
this has a composition series as follows:

0 _+ Fp(λj) -• F(λj) -+ Q, -• 0 ,

0-

etc., where each Ff is an irreducible p-module of highest weight λik.
Furthermore, if p = lθu is the Levi decomposition of p with 1 reductive
and if e € h* is the unique element in the center of 1 such that ade acts
by 1 on u, then λj(e)-λik(e) = k. Thus k denotes the level of Ff in the
natural 1 grading of F(λj). Now tensor through by Fp(w' μ) and apply
^(B)®^( P )

 a n d finally apply Pλ to project out the desired new infinitesimal
character. To deduce v , let a be a highest weight vector for F (w'λ),

which occurs as one of the F. 's. Then w®α e ^(g)Θ^(p) (/^(w' /
Push this forward to obtain

which is g-maximal modulo Σ / < A : Σ/ ^ Because of infinitesimal char-
acter, we may lift uk to

by adding terms of the form y ® (β(Γ)w ® a) where

1. y e u _ ,
2. <2(7)e^(l),
3. a eF^k~ι) for some i,

and uk_{ is g-maximal modulo ]C/<it-i Σ / ^ Continuing this process
ultimately yields the desired element

t; =

At each step un is deduced from wΛ+1 by a maximality requirement and
this uniquely determines un . Notice that each lifting introduces only
linear factors in y e u_ .
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We now need a further crucial

Lemma 4.7.2. Fp(w'λj) c Σ/ ^ ® Σ , ^ 2

(This is easily proved by direct calculation, using the fact that w =
σχw , where w lies in the Weyl group of 1.)

It follows that u ® α lifts to i> which can be expressed as a sum of
terms of the form

P(Qu)®P'{Q'θ),

where P, Pf e Tu_ have degree at most two (in fact dP + dP' < 2,
Q, Q' e &(l), and 0 is a highest weight vector in F(λj)). The maximality
of such an expression depends only on the required commutators, given
that u is already maximal. That projection to the desired infinitesimal
character does not depend on commutators in w_ follows from a splitting
lemma analogous to 4.7.2.

Start of induction. It remains to prove that the induction can begin.
This is evident (from the de Rham complex) for standard homomorphisms
and so all that remains is to obtain the nonstandard operators between
differential forms. It is easy to check that an invariant wave operator
Ώ:(?[-n + 1] —• &\—n - 1] exists; the formula for the corresponding ho-
momorphism of Verma modules is

for a suitable (null) basis of weight vectors y. e u
Put F = F{λχ) where

_ 1 0 0 0 0
1 t t t

Repeated translation by F yields operators

ΐf:ffi[-n+p]-+ffi[-n-p] for 1 <p<n- 1.

The next translation, for p = n — 1, is from singular to nonsingular in-
finitesimal character: on tensoring F(-λ{), F((—2n+l)λ{) with F we
obtain the following composition series of p-modules:

and

0 - Fp((-2n + 2)λ{) -> F((-2n + l)λx)
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Here,
.. _ - 2 1 0 0 0

and
„ _ -2/1 1 0 0 0

are the weights inducing the 1-forms and (2n - l)-forms respectively. Ap-
plying ^(g)<8Wp) and projecting out infinitesimal characters we deduce
the following diagram from the original homomorphism:

(15)
0 - Mp(0) - P^F^M^-λ,)) - Mp(μι) -> 0

T
0 -> Λ/p(/ι2) - />0(F® ^ ( ( - 2 / 1 + 1)^)) - M p ( - 2 ^ ) -> 0

The composition Mp(μ2) -> M^(μχ) is nonzero and provides the nonstan-

dard invariant differential Ω1 —• Ω 2 " " 1 . Further translation by F leads
to all the remaining operators Ω? —• Q2n~p with p > 2. The operator
@ >-> Ω2" does not arise by translation from simpler operators. We shall
call this operator/homomorphism and those deduced from it by further
translation, long (following a suggestion of Eastwood) since they corre-
spond to the case Wx — longest element of Wv and w = id the shortest.
Because these are excluded from 4.7.1 we will not be able to construct
curved analogues of long operators.

5. General conformal structures

It is now time to extend the results of the previous sections to arbitrary
conformal structures.

5.1. The central theorem. The construction of the previous section
relies on the following differential-geometric ingredients. First, in order
to be able to define homogeneous bundles a P-principal bundle structure
G —• G/P is required. Second, to identify the jet bundles as homogeneous
bundles requires the identification of the Lie algebra g with the Lie algebra
of left invariant vector fields on G. This is provided by the Maurer-Cartan
form ω e T(G, g ® Ω^) which provides an isomorphism of each tangent
space θ with g. Its inverse is an injective linear map

This is compatible with the P-principal structure when restricted to p and
intertwines the adjoint representation of p on g, namely,

(16) ω~ι[υ, w] = [w~ v, w~ιw] Vvep,weg.
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It extends to a linear map of p-modules

(17) aΓι Tt-+3ΓG

from the tensor algebra on g to the differential operators on G. Because
in fact ω~ι is a homomorphism of Lie algebras, this factors through an

injection 2^(g) —• 3G in particular, the fibre of 3fG at the identity is
2^(g), from which the results of the previous sections follow.

For a general conformal manifold X there are no conformal motions;
but an analogue of G exists (at least in dimension > 3). This is a P-
principal bundle 9 —> X. The analogue of the Maurer-Caitan form is the
normal admissible Cartan connection ω e kΓ(&, Ω^ ® g) which mimics
the properties of the Maurer-Cartan form as follows:

1. ωg: θ 3? —• g is an isomorphism for all g e 9.

2. If v e p , then ω~ιv is the corresponding fiberwise vector field
on 9.

3. For p e P and R the right translation by p on 3?, i?*ω =

Adίp"1)^), or, infinitesimally, (16) holds.

^ and ω are uniquely defined [4], [24], [29] (there is a small subtlety
in three dimensions—see Remark 5.3.3). In particular, any P-module
induces a bundle over X thus &pλ is defined over X.

Again ω~ι extends as in equation (17):

This time, however, ω~ι may not be a homomorphism of Lie algebras,
so the mapping only factors through A(g) by (3). Let g e 9 be a fixed
base point and examine the stalk 3 = {β$)g - This is a quotient of A(g)
and we have morphisms of left p-modules

\

It now follows from Lemma 4.7.1 that any p-maximal element a in the
Verma module can be lifted to an element of A(g)®#^Fp(λ) whose image
in 3fg ®^/(p) Fp(λ) is p-maximal and so generates a p-submodule. Thus
we have our main result:

Theorem 5.1.1. Let X be a complex conformal manifold of dimen-
sion m and let *§ —• X be the P-principal bundle determined by the con-
formal structure, where P is a covering of the conformal Poincare group
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CPO(ra, C). Let F, F' be P-modules. Then, apart from long homomor-
phisms, each homomorphism of Verma modules (of regular infinitesimal
character) M (λf) —• M (λ) yields an invariant differential operator

depending only on the conformal structure of X.
Corollary 5.1.2. Every (regular) translation invariant differential opera-

tor on aflat conformal complex manifold of dimension at least three corre-
sponds to a differential invariant of the conformal structure on an arbitrary
conformal manifold of the same dimension, apart from long operators in
even dimensions.

Remark 5.1.3. The symbols of the flat and corresponding curved dif-
ferential operators formally have the same principal symbols; thus the
operators have similar leading order terms, when expressed in terms of
the Levi-Civita connection of a metric in the conformal class.

Remark 5.1.4. Eastwood and Rice [ 17] have established Corollary 5.1.2
in four dimensions using the local twistor bundle and the local twistor
transport of R. Penrose [32]. Indeed, the local twistor bundle is the bundle
induced from 9 —• X by a spinor representation of SO(6, C) restricted to
P. & is a subbundle of its frame bundle and then local twistor transport
is essentially the Cartan connection. Our argument is a formalization of
their four-dimensional result. In that paper, and an earlier version of this
one, it was mistakenly believed that all long operators also admit curved
analogues. C. R. Graham has shown that no analogue of D 3 :^ [ l ] —•
&\—s\ in four dimensions exists. Our error lies in supposing that the first
long operator @ —• Ω n could be obtained by translation from something
simpler. Nonetheless, calculations of Graham, Mason and Sparling show
that (9 —• Ω2/I does have a curved analogue.

It remains to construct these differential invariants explicitly in terms of
the Levi-Civita connection and curvature of any metric in the conformal
class. To do this it will be necessary to review briefly the construction of
& and its Cartan connection ω.

Remark 5.1.5. As we have said, the mapping

inverse to the Cartan connection ω of a conformal manifold is not in
general a homomorphism of Lie algebras. The extent of its failure is the
curvature Ω e T(^, Ω^ ® g) defined by

Ω = dω + j[ω, ω].
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so that for u, v e g

Ω(ω~ u, ω~ υ) = [u, v] - ω([ω~ιu, ω~ιv]).

5.2. The construction of 9. Up to this point it has been useful to
gloss over the connectivity of G and P, assuming them to be simply con-
nected so that the finite-dimensional representation theories of P and p
agree. In this section, however, G = S0(m+2, C) and P = CPO(m, C) =
L tx Cm , where the conformal group L = SO(m, C) x C x corresponds to
a reductive Levi factor 1 c p . Fix g = u_ Θ g.

For an ra-dimensional manifold X, let F\X) denote the /th frame
bundle of X and let G\m) = /-frames at the origin of C m , i.e., the
origin preserving diffeomorphisms of Cm modulo the normal subgroup
consisting of those which are the identity to order / at the origin. Then
G\m) is a Lie group and Fι{X) is a Gz(X)-principal bundle over X.
There is a natural epimorphism

(18) G\X) -> G\X) = GL(m, C)

which splits because the linear transformations are distinguished amongst

the diffeomorphisms. The natural projection Fi+ι(X) - ^ F\X) is com-

patible with GM{m) -U G\m).

F\X) comes equipped with a natural one-form Θ(z)—the canonical or

soldering one-form—taking values in the Lie algebra g'~ \m) of Gι~ι (m).

Forif feF^X),then f induces an isomorphism f^~x{m) -> Fι

π~
x (X)

and for ueΘfF\X),

θ = θ ( 1 ) is the usual soldering form. Identifying u_ = C m , obtain

g(m) = u_ θ gl(m, C) and decompose θ ( 2 ) = θ_j 0 θ 0 . The prop-

erties of θ ' are summarized in the following lemma [24].

Lemma 5.2.1. (ϊ) If v* is a fiberwise vector field on F\X) correspond-

ing to v G g'(m), then θ(/)(i>*) = i^v .

(ii) If g G G\m) and Rg denotes right translation on Fι(X), then

R*gθ
{i)=Ad(ι(gΓl)θ.

(iii) π*θ = θ_{ and there is a structure equation

(19)
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Now a conformal structure on X is equivalent to a distinguished L-

principal subbundle & c Fι(X). & is constructed, following [29], by

finding a natural extension of S to a P-principal subbundle of F2(X).

A local section s:Fι(X) -> F2(X) is admissible if, for g e GL(ra, C)

and / E 1

(using the splitting of (18)). Kobayashi [24] has shown
Theorem 5.2.2. There is a one-to-one correspondence between local tor-

sion free connections Γ on Fι(X) and local admissible sections sΓ by

Since the Levi-Civita connection of a metric in the conformal class is

torsion free and preserves (S, (S may be lifted locally to S{T) = sγS

which, by virtue of the admissibility of sΓ, is a CO(m, C)-principal sub-

bundle of F2(X). Now [3], [29]

Lemma 5.2.3. P is a subgroup of G2(n).
Then, at least locally, the orbit < (̂Γ) of &{Γ) under P gives a P-

principal bundle over X. To construct G globally it is sufficient to show
that <^(Γ) is independent of the choice of Γ.

To do this recall the bigraded Spencer cohomology of g with respect to
the \l\-grading

(20) g _ ! = u _ , go = l> and g{ = u

so that g = g_j Θ g0 Θ g{ and [g., g.] c gi+j. Define

and d: Cp'q -+ Cp~Uq+x, satisfying d2 = 0, by the formula
p

d c { u o , u l 9 ••• , u p ) = Σ { - l ) J [ U j , c { u 0 , ••• , U j , ' - , u p ) } .
7=1

Spencer cohomology Hp'q(u_, g) is the (bigraded) cohomology of this
complex. Observe that the adjoint action of the reductive group L inter-
twines d and so descends to an action on cohomology. The cohomology
is easily computed using Kostant's theorem [36]; in particular we have

Lemma 5.2.4. // g = so(ra + 2, C) with m>4 and if g is \ 1 \-graded
with respect to the conformal Poincare parabolic subalgebra p as at (20),
then // 1 ' 1 (u_,g) = // 2 ' 1 (u_,g) = 0.

Let Γ, Γ7 be torsion free connections on Fι(X). &(Γ) = &(?) if and
only if there is a u-valued function / on @ with sΓ = sΓ> exp(/) in this
case, ^(Γ) and ^(Y1) are called equivalent [29].
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Theorem 5.2.5. Locally on X, equivalence classes of g(Γ) are parame-

trized by sections of the bundle induced over X by the L-principal bundle

@ and the representation of L on Hl{ (u_ , g) .

Corollary 5.2.6. Over a complex conformal manifold X of dimension at

least four, there is a naturally defined P-principal subbundle &* c F2(X).

Remark 5.2.7. If P, L are replaced by simply connected covering
groups, then the obstruction to lifting & and & to principal bundles
with the new structure groups is the second Stiefel-Whitney class of X.
Since differential operators are local, it is no loss of generality to suppose
this vanishes and so to suppose, where necessary, that the structure group
of 9 is again simply connected.

This is a good point to recall the Hodge theory of Spencer cohomology
which will be required in the next section. Pick any basis {y.} of u_ and

let {x.} be the dual basis of u under the Killing form. Define d*\Cp'q —•
C P + I , * - I b y

m

d*c{u{, . . . , u q _ ι ) = Σ[Xj9c(yj,ul9 .' ,uq_{)].
7 = 1

d* is of course independent of the choice of basis. It is possible to equip
g with a Hermitian form so that d* is the adjoint of d [25]. This leads
to a Hodge theory for H*(u_ , g). Define D = d*d+dd* then there is a
unique harmonic representative / , satisfying Ώf = 0, in each cohomol-
ogy class of Hp' *(u_ , g). D acts by scalars on irreducible representations
of 1. Specifically, if F — F (λ) is the irreducible representation of 1 with
highest weight μ and if F* occurs in //*'*(u_ , g) then D acts on F*
by the scalar

(21) i « Λ + />, A + p)-(μ + p, μ + p)),

where p is the semisum of the positive roots of g and Λ is the highest
root of g.

5.3. The construction of ω. With respect to the decomposition (20),
any Cartan connection ω on 3? and its curvature Ω may be decomposed
as

ω = ω_{ φ ω 0 θω{, Ω = Ω _ 1 θ Ω o θ Ω 1 .

Notice that this decomposition is not p-invariant, but only 1-invariant.
For p e P and JR* the right translation action of P on 9,

R*pω = Ad(p~l)ω and i?*Ω = Ad(p - 1)Ω

by virtue of condition (3) in §5.1. This also implies that if u is a fiberwise
vector field on 9, so that θ_ι{u*) = 09 then Ω(w*, •) = 0.
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The admissible Cartan connections are those of the form

ω = θ_j θ θ 0 0 ω{

(restricting θ_{ and θ 0 to &, the latter now taking values in 1). ωχ

is a u-valued one-form on &. For such ω, by virtue of the structure
equation (19), Ω_} = 0 and Ωo satisfies

)Ω0 modu.

Let u, v eu_{ and define a C 1 2 ( u _ , g)-valued function W on 9 by

W(u, v) = Ω0(ω V co ιv).

Then W transforms by

where μ is the irreducible representation of 1 on C 1 '2(u_ , g), extended
trivially to p . So W defines a section of the bundle on X induced by μ
which will be denoted by the same symbol. It should be thought of as a
generalization of the Weyl conformal curvature of X—this is made precise
below.

Now consider dW. Supposing that ω(w) € u_ , obtain

(22) dW{ω~ιu, ω~ιv,ω~ιw) = [θ_{, Q0](u9υ9w).

But then,

[θ_{, Ωo] = [θ_{, dθ0 + ̂ [ θ 0 , θ 0 ] + [ θ . , , ωx]].

The only piece of this which might make a contribution to the right-hand
side of (22) is [ θ _ j , dθ0]. Differentiating the structure equation (19)
shows this to be [dθ_{, θ 0 ] so that it, too, makes no contribution. So

dW = 0 and W defines a class in Hι'2(u_ , g).
Now the scheme is to show that this class is independent of Wp for

then, ω may be fixed as an invariant of the conformal structure of X by
adjusting ωχ so that W becomes the unique harmonic representative in
its class. Such an ω is called a normal Cartan connection. This readjust-
ment is the crucial ingredient in giving explicit formulas for the differential
invariants of Theorem 5.1.1. It is achieved in the following theorem [34]
which depends on the fact that H2'ι (u_ , g) = 0.

Theorem 5.3.1. If ω is any admissible Cartan connection on &, the
class of W(ω) in Hlj2(u_ , g) is independent of ω and there exists a
unique admissible Cartan connection ω with W{ω) harmonic.
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Proof. This is best taken in two steps:
Uniqueness of class. Let ω and ω" be two admissible Cartan connec-

tions on *§ ω~ι and ω"~ι differ only on u and then by an element of
ω'~ιu. Thus there exists a C 2 ' \u_ , g)-valued function / on & defined
by

u =u =ω f(u),

where ω{u) = ω"(u") = u e u_ . If v, v , v" are similarly defined then

the fact that ΩQ and ΩQ are zero on ω~ιp implies that

{W{ω)-W{ω ) } ( M , « ) = Ω 0 ( M ,υ)-Ω0(u ,υ ) = ( Ω 0 - Ω 0 ) ( « , v )

= [ θ _ 1 ? ωx -ω{](u ,υ ) = df(u,v).

Existence and uniqueness of ω. To establish the existence of an admis-
sible Cartan connection, locally pick a connection Γ so that & - &(Γ).
Let g = qae &(Γ), where q e sγ@ and α e e x p u . If Ye Ωg(&), then
uniquely

for X e θq(svS) and x*, the fiberwise vector field corresponding to some

x E u. Define an admissible ω by setting

ω\(X) = 0, ω\Y) = Ad(a~l){ω(X)) + jr.

It is straightforward to check that ω so defined is a Cartan connection. It
should be thought of as a lifting of the connection Γ which in the sequel
will be the Levi-Civita connection of some metric in the conformal class.
To construct a normal Cartan connection let

(23) Πf=-d*W(ω).

Since, by Lemma 5.2.4, Z/2' *(u_ , g) = 0, this has a unique solution for
/ . So define admissible ω by

(24) ω~ y = ω~ y + ω~ f(y)

for y eu_ . Then, as in the first part of the proof,

(25) W{ω) = df+W(ω)

so that dW(ω) = d*W(ω) = 0 and Dω = 0. It is easy to check that ω
is a Cartan connection.

Finally, since the solution of (23) is unique, ω is unique and globally
defined, q.e.d.
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Remark 5.3.2. The class of W(ω) defines a section of the bundle on
X induced by Hι '2(u_ , g) this is the Weyl conformal curvature of X.
In even and odd dimensions above five this is a section of the bundles

- 4 0 2
x # '

and
- 4 0 2 0 0

If four dimensions, the Weyl curvature has two irreducible components:

4 - 4 0 φ 0 - 4 4

whilst in five dimensions, the Weyl curvature is a section of

- 4 0 4

Remark 5.3.3. The case of three dimensions is special; for one
H2Λ{\y_, g) does not vanish but H{'2(u_, g) does! It turns out that
a unique Cartan connection does exist [4], although the methods of [29]
are not sufficient to establish this. Only // 2 ' 2(u_ , g) is nonzero, amongst
second cohomology. This is related to the fact that in three dimensions the
Weyl tensor is replaced by a third order invariant tensor, the Cotton-York
tensor.

5.4. Explicit computations. Let Γ be the Levi-Civita connection of
some metric in the conformal class on X, and let ω be the admissible
Cartan connection on & constructed from it in Theorem 5.3.1. Let ω
be the unique normal Cartan connection on *§ and for y e u_ , define
vector fields y , y* on g by ω(yf) = ω(y*) = y. With / defined as in
the second part of the proof of Theorem 5.3.1, f(y) e u and

(26) / = y + ω"1(/(y)).

If φ:Mp(μ) —> M (λ) is a homomorphism of Verma modules, then φ is
determined by a mapping of a highest weight vector γ of Mp(μ) to a

maximal vector in Afp(λ) of weight μ of the form Σp'CVy)^., where

{/cz} is a weight basis of Fp(λ) and the pι are homogeneous polynomials
in the y which form a roots space basis of u_ . These must be chosen
according to Lemma 4.7.1. To obtain a differential operator, each yi must
be replaced by a vector field y*.

To obtain differential operators expressed in terms of the Levi-Civita
connection Γ, simply substitute the y* in terms of y\ using (26), noting
that the y\ will induce the differential operator obtained from projecting
Va - Va ψ into its irreducible factor #p{μ), where ψ is a section of
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*?p(λ) and V is the covariant differential of Γ. The terms ω
will construct suitable correction terms needed to make the resulting dif-
ferential operator invariant.

To compute / , let sτ be the (local) admissible section associated to Γ
by Kobayashi's Theorem 5.2.2. Let i?(Γ) denote the curvature form of Γ
on &. Then, on (§,

Thus if u and v are horizontal vector fields on S with θ(u) = u and
θ(v) = v , then

W(u, v) = s^Ω(u, ϋ).

By means of the fact that s^ω\ = 0 and Γ = s^θ0, this yields

Writing r(Γ)(u, v) = R(Γ)(u, v) and making use of the normality of ω

together with H2'ι (u_ , g) = 0, we have

Thought of as a section of an induced bundle over X, d*r(Γ) is the Ricci
curvature of Γ [29] and so / is easily obtained, using the scalars of (21).

Remark 5.4.1. (i) The correction terms computed from / above in-
volve only the Ricci curvature of Γ and its derivatives. So the differential
invariants may be expressed in a form involving only the Levi-Civita con-
nection of a metric in the conformal class and its Ricci curvature. The
formal expressions for the invariants will always appear as the same com-
bination of covariant derivatives and Ricci curvature, irrespective of Γ.

(ii) The highest order part of these operators is formally as in the flat
case, the Levi-Civita connection replacing the flat connection. If {Yj}
is a basis of the negative root spaces of 1, then in an expansion of an
expression of the form

in terms of y.,

(a) y* gives rise to no curvature correction terms,

(b) for each occurence of a curvature correction term in the expansion
there are two fewer occurrences of y\ than y* in the original expression.

It follows from (a) that all first order invariant differential operators can
include no curvature terms and are formally as in the homogeneous case,
as originally proved in [21]. From (b) it is clear that the first curvature
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correction term is associated to a differential operator of order at least two
less than that of the leading term.

It is easiest to display further properties of the construction in the con-
text of an actual example.

6. Calculations in four dimensions

Let X be a four-dimensional complex conformal manifold. Locally,
pick a metric in the conformal class and let Γ be its Levi-Civita connec-
tion. The aim of this section is to compute the differential invariants of
the conformal structure of X in terms of the covariant derivative V of
Γ. As in §3, free use will be made of the abstract index notation of R.
Penrose [31].

Now r(Γ) is an (l<g)/\2(u_)*)-valued function on the CO(4, C)-principal
bundle & it represents a section of the induced bundle

(2-10ffi0-12\o/2-30ffi0-32\
/ \

on X . Because the Levi-Civita connection is torsion free, the projections
of r(Γ) into certain of the irreducible components of this bundle vanish;
r(Γ) is actually a section of

(comprising self- and anti-dual Weyl curvature, tracefree Ricci curvature

and scalar curvature). (The Spencer cohomology i / 1 2 ( u _ , g ) induces the

bundle \~*\ Θ ?~4?.) Then d*r(Γ) gives a section of

2 - 4 2 φ 0 - 2 0

i.e., Ricci curvature, as claimed, since d* intertwines the action of 1.

Write this as

Rab=(Rab - \RSab) © \RSab = ~2Φab ©

D"1 acts by \ on ^ J and by £ on l ^ so that /=-D~ 1 a*r(Γ)
induces the tensor

&ab=Φab-ASab

Recall that if dμ is the irreducible representation of p on C 1 ' 2(u_ , g),

then

u f=-dμ(u)f

for ω(u*) = u e p . It follows that / may be thought of as an element

of the dual representation [C1 '2(u_ , g)]* under the differential action of
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p , via ω_j . Split / into its irreducible parts, and let Φ and -Λ denote
the highest weight components under the differential action of p. Using
the notation of §3, write

then ^ . . is as in Table 1. (To form ^ . . , think of

of Fp(l

/ϋ>,) =

- 2 \

c. as an element

F(\χl) and compute

highest weight. Then lower to find

) in the tensor product F {

xt as :' * '

TABLE 1. Curvature correction terms

i

j

1

2

3

4

1

Φ

— ~y Φ
2 1

ϊ*i*
-Λ-iy,y2Φ

2

— ~y Φ

Iy φ

Λ-iy,y2Φ

\*i*i*

3

iy2Φ

Λ-iyΛΦ

ΐ y 2 2 φ

- |y,y 2

2 φ

4

-Λ-iy,y 2 Φ

iy2y2Φ

ly,2y2

2φ

It is now time for concrete examples.
6.1. Local twistor transport. This first example relates the present

construction to local twistor transport [32]. Let !Ta , the local twistor bun-
dle, be induced by restricting the self-representation Ta of g = sl(4, C)
to p. Let Ta be the dual of this representation, using Penrose's abstract
index notation. Then there is a homomorphism of induced modules

(28) ,®id I

where C is the trivial module and φ is generated by y{ —• y{\_; i and

yx are highest weight vectors in C and F^(\ ~f \) respectively.

Let Ta be spanned by weight vectors as in Table 2. Fixing a local metric

in the conformal class is equivalent to restricting to the action of I5 = [1,1]

on Ta . Do this and so split the sequence

Ό 0 1(29) 0 -

by thinking of the spans of

{a,β}^{a,β,γ,δ}->{γ,δ}.

Splitting Γ ® F . ( i τ l i ) obtains irreducibles / Γ

n ( lτ i i )θF I , ( !- ( l?) and

) generated by the following highest weight vectors2 - 3 1 ' 0 - 2 1
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over {)

\ <g> β - 3

®S-y2®γ).

Under (28), for instance,

1 > (y{ϊ) ® α = ̂ j (1 ® α) - I ® ̂ j α = y{ (1 (8) α).

TABLE 2. Weight vectors in Ta

Vector Weight

0 0 1

• X
1 - 1 0

Vector

β = Y2a

δ = Y{γ

Weight

0 1 - 1

• X
- 1 0 0

• X

Replacing y( by y* written in terms of y\, using Table 1, (28) gives
the mapping induced by the direct sum of

y{ - y ί α ,

y{ ® β - y3® a -+ y\β - y3a - 2γ,

y{®γ

y{ 0 δ - y2 0 γ -> y\δ - y2y - 2(&>l4a - &>nβ).

Overall, on induced bundles, this gives the conformally invariant operator

{ωA , πAΊ -+ {VBB,ω
Λ + εΛ

BπB., VBB,πΛ, - &BB>AA>ωA),

that is, local twistor transport.
6.2. The conformally invariant Laplacian. Recall from §3 that

induces the Laplacian
and expanding obtain

[-3]. Writing this in terms of y*

from Table 1, yields the conformally in-which, on substituting for
variant Laplacian

6.3. The Bach tensor. The irreducible components of the Weyl con-
formal curvature are sections of the induced bundles j ~4 I? and ? T4? ,
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usually called the self- and anti-self-dual Weyl spinors [32] and denoted by
totally symmetric spinors ΨA>B>C>D> and ΨABCD - By the general theory,
there is a second order differential invariant 4 ~ 4 ^ —• \ ~c

6 \ induced by
the following expression:

(30)

= \\2y\ + ?>yxy2Yx + 3y2y{Y{

where ψ is an appropriate highest weight vector. Replacing y. by y* =

' 'ijXj in this expression yields

The terms involving ^ . . simplify to

f 1 Ψ)
which induces the projection 2

t T
4 \ <8> * ~*t ""* ~t I a n c ^ s o ^ follows

that the invariant operator is given by the formula

c' D' C'D'
V + φ )<PA'B'C'D'

c D CD
VA'B'C'D' - * ( V μ VB) + φ ^ 5 )<PA'B'C'D'

where φA>B>C'D> is a section of 4 ~ 4 ^ . In particular, this operator may be
applied to the self-dual Weyl curvature; the resulting symmetric, tracefree
tensor,

BABA'B' = 2 ( V M V £ ) + Φ ί / ) ̂ 'IT'C'D' >

is an invariant of the conformal structure of X known as the Bach tensor
[2], [27]. The anti-self-dual Weyl curvature is similarly the subject of
an invariant differential operator; by symmetry this is obtained from the
above operator by interchanging primed and unprimed indices. By virtue
of the Bianchi identities, the invariant tensor so obtained is again the Bach
tensor.

The Bach tensor is itself the subject of the first order invariant differen-
tial operator \ ~6 \ -• \ ~6 \ by B , -• VaB . . But, as a consequence ofJab

the Bianchi identity, this is zero and no new conformally invariant tensor
is obtained.

6.4. Speeding calculation. The process just illustrated is certain to
produce differential invariants of the conformal structure of X from ho-
momorphisms of Verma modules; of course, as the order of the operator
increases, the calculation becomes tedious. Remark 5.4.1 suggests a more
efficient method. Any "curvature correction term" in a differential invari-
ant Ό:&(F) —• #(F') must be a combination of derivatives of Φab and
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Λ and must arise from a projection onto an irreducible subbundle in the
tensor product:

(31)

where 2i + 2j + p = order of D. (Of course, several correction terms
involving varying degrees of derivatives of Φab and Λ may arise from one
such projection.) It is a simple matter to calculate highest weight vectors in
such a tensor product; a suitable combination of these will give the terms
arising from the substitution y* = y'i+Σ&jjXj Clearly, this combination
must be maximal under the action of p this is true if it is annihilated
by xχ (since it is already annihilated by Xχ and X2). This condition
determines the linear combination. All that remains is to obtain the correct
multiple of this combination to add to the leading order term. This is
most easily accomplished by a judicious partial expansion of the inducing
maximal vector or by a judicious inspection of the terms generated by
the leading order covariant differential under a conformal rescaling ([32]
contains useful formulas for this purpose). The following two examples
illustrate this technique.

6.5. A third order operator on spinors. The expression

(32) ψ = {-y3 + yχ Y2)(-2y3 + yχ Y2)(-3y3 + yx Y2)λ

induces a differential invariant ) ~(

2] —> \ ~* j) whose leading order term
is

2 —^ T7A X7β 2
AD'(ABC) V { A ' V C ' A D ' ) A B C

The only possibility in equation (31) with / + y > 0 is / = 1, p = 1
accordingly, correction terms must have the form

^(A'ΦB'C')ΛD')ABC 0 Γ Φ(A'B'VC'λD')ABC

corresponding to highest weight vectors

χ =

\ Y2λ - 60>33y'3λ

in the expansion of (32); requiring that χ + a • τ be annihilated by xλ

easily yields a = 2 and so, if φ* and φ denote φ with yt replaced by

y* or y\, then
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To determine b, multiply φ* out; {y3&33)λ can occur only in the expan-

sions of {y*3)
3λ and {y\)2yχY2λ\ this gives -\2{y3&33)λ in all, so that

b = 2. This yields the operator

Λ Jf^AB

6.6. Powers of the Laplacian. By the general theory, there is a con-
formally invariant differential operator in 2n dimensions:

•*. 0 -2+g 0 _^ 0 -2-g 0 ? 1 < tf < fl

whose highest order term is (V V)q . To calculate the full operator for
the case q = 2 observe that the only possibilities from (31) are

(33) (Vα

(34) (VVΦJ/, (V'ΦJVV, Φfl,vV/.

The terms in (33) correspond to the inducing expressions

II I I

θ2 = {(y\A)y'4 + (y'4A)y[ - (y'2A)y3 - (y'3A)y'2}a,
II 1 1 \ Ί

- y2yi - yiy2)a).
11 II

y y

calculation for (34) reveals that D 2 must be of the form

Then xι{aθι + bθ2 + cθ3) = 0 if and only if b = c and a = 0. A similar

4) reveals that D 2 must be of the f

(V V)2 + d{{V2λ)VJ + ΛVαVα/}
( 3 5 )

To determine d and e, compute how (V V)2 varies under a rescaling

of the metric gab —• gab = Ω2^α^ . Formulas for this are given in [32]. If

Ύa = Ω~WaΩ, where Va is the Levi-Civita connection of gab , then the



VERMA MODULES AND DIFFERENTIAL CONFORMAL INVARIANTS 889

Levi-Civita connection Va of gab is given by

VaΨ{A[-A'j){AΓ.Ak)

= VAA'(P(A\...Af

j)(Aι. .Ak) ~ ΎAA\(P(AtA'2-A'J)(Aι-Ak)

ΎAKφ(A'ι A'n-ιA'An+ι A'j)(Aι Ak)

ΎAA'j

(P(A\.. Aj_iA
/)(Aϊ.-Ak)

ΎAnA'(P(A[ ..A'j)(Aι.-An_ιAAn+ι...Ak)

ΎAkA
/(P(A'ι..-A'j)(Ai :Ak_ιA) >

whilst

ΦA'B' ~ ΦA'B' ~ V{A'ΎB') + Ύ{A'ΎB') '

Employing these in (35), and ignoring all terms but those of the form
TTTV/, yield d = e = 4 so that

D 2 / = V,(V V + 4Φab + 4gabΛ)Vbf.

Remark 6.6.1. This quartic differential operator may be found in [30],
[37], [18]; the last reference inspired the work of Eastwood and Rice and
this paper.

7. Conclusions

To conclude we shall remark briefly on two consequences of the above
theory.

7.1. An algebra of invariants. Let λ be dominant for g and T let
<%ι

λ = ®weWp.l{w)=i&p(w - λ) on G/P. There are invariant differential

operators between subsheaves of 3ί[ and 3ίι^x, and it is always possible

to add these with appropriate signs to give differentials dι:<9ίι

λ —> ^ z + 1 so

that {β*, dΦ) is a resolution of (F(λ))*, i.e.,

(36) 0-+{F{λ))*-+X;

is exact. This resolution (in its algebraic form for Verma modules) is called
the Bernstein-Gelfand-Gelfand resolution [5], [28]. Whilst the existence
of ^ and d* depend only on the structure of Verma modules as p-
modules; the fact that (36) is a complex depends on the structure of
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as an algebra. So sequences such as (36) will exist over a generic curved
conformal manifold, but may no longer be a complex. The composition
dι+ι odι and, indeed, compositions

with /(tϋ3) = l(w2) + 1 = l{w{) + 2, are new invariants of the conformal
structure. These depend on the extent to which

is not a homomorphism of Lie algebras and hence on the conformal cur-
vature.

Example 7.1.1. In four dimensions, let λ = ) ^°9 , wχ = id, w2 = σ2,
and w3 = σ2σ3, where σf. = σa , and simple roots are labelled Q

g'
 aJ Q.3 .

Then there are invariant differential operators

1 0 0 <* 2 - 2 1 d\ 3-3 0

A'

induced by β -±yxa and γ -> (-y 3 +y 1 l r

2 )^ for α, j8 , and 7 appropriate
highest weight vectors. On 9, the composition of these two operators is
induced by

Letting ψ induce the self-dual Weyl curvature ΨA>B>C'D> (as Φ induces
tracefree Ricci curvature) it is easy to check that

\y\, y;] = 2ψYx - i ( η ψ)hx = \{Y2

XΨ)XX + V,

where V is a function on ^ taking values in u. So

which induces the projection \ ~4 ^ ® | ^ ^ —• ̂  ~3 ^ . Therefore (up to
scale) the composition d' o d consists of tensoring with the self-dual Weyl
curvature followed by projection. (This is evident anyway from the for-
mulas for d and d1.) A similar calculation yields the anti-self-dual Weyl
curvature and the Weyl curvature, W, in higher dimensions as invariants
of the conformal structure.

For further examples of this see [13].
7.2. A Bach tensor in even dimensions. There is a natural analogue

of the Bach tensor of four dimensions in even dimension In. This is
obtained by viewing the formal jet of the Weyl tensor as a element of a
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dual Verma module and decomposing under the action of the appropriate
parabolic p . To avoid the slight speciality of six dimensions suppose
2 n > 8 .

Let λ be the highest root of g so

i 0 1 0 0 0

Label the simple roots of g from left to right as in the appendix and let w°
be the longest element of Wp. Then the Weyl curvature W is a section
of ^{oχσ2 λ) and there are invariant differential operators

• -> <f9(σx λ) - ^{σχσ2 λ) - ^ ^(σ{σ2σ3 λ) -> - •

corresponding at the level of Verma modules to the p-module extension

0-> imMp(σισ2σ3λ) -> M(σxσ2 λ) -> N -• 0

II

where N is the image of M (σχσ2 λ) in M (σx • λ).

Now dW is the projection of V [ f lR^c]^ into <^p(σ1σ2 A) and it is easy

to check that this coincides with the projection of V[aRbc]de and is hence

zero by the Bianchi identity. Thus if we let / c A(g) <8> (̂p) ^,(^1^2 ' ^)

cover / , then the image of 7 in the differential operators on &(σxσ2 λ)

annihilates W.
On the other hand, as a p-module, iV is a sum of irreducible quotients

of Verma modules [9]

N = L(w σχ λ) Θ L(σχσ2 λ).

So there is an element β e A(g) <8> (̂p) FV(G\02 ' ^) m a χ i m a l modulo /

which lifts a maximal element of L(w°σχ). By the previous paragraph
the differential operator this induces, when applied to the Weyl tensor,
yields a new conformally invariant tensor, Bab, which is symmetric and
tracefree with conformal weight -In + 2, i.e., a section of

-2/2-2 2 0

Bab depends on the derivatives of a metric in the conformal class up
to order 2n. A similar argument works in six dimensions, and in four
dimensions produces the ordinary Bach tensor.

Remark 7.2.1. A similar tensor occurs in the work of Fefferman and
Graham [20]; it is almost certainly the same tensor. On the other hand,
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Bab is evidently not the fourth order differential operator proposed as a
generalization of the Bach tensor in [10], [37].

Appendix

This appendix summarizes the basic structure and representation theory
of semisimple Lie algebras which is required in this paper.

A.I. Structure theory of semisimple Lie algebras. Let g be a semisim-
ple complex Lie algebra with a distinguished Cartan subalgebra h and set
of roots Δ(g, h). The root space decomposition of g is

= h ( θ g Q ) .
\αEΔ(g,h) V

Fix a set S? of simple roots in Δ(g, h) and let Δ+(g) be the correspond-
ing set of positive roots. Then any maximal solvable subalgebra of g is
conjugate to the standard Borel algebra

Let 5^ c S? and let Δ(l) be the span of <9^ in Δ(g, h) and Δ(u) =

Δ+(g)\Δ(l). So define subalgebras

= h θ ( θ g j , u = θ ga

\α€Δ(l) / α€Δ(u)

and

(37) p = l θ u .

Any parabolic subalgebra of g is conjugate to such a p for an appropriate
choice of S^v.

The Cartan-Killing form on g induces a bilinear form ( , ) on h*.
Restricted to the real span h^ of the simple roots this form is positive
definite. For any root a define its coroot by

v 2a
a = τ -

(a, α) '

Then for at e. S^ the Cartan matrix of integers (αf., αj) determine and
are determined by g. They are recorded by means of a Dynkin diagram
for g. Recall that this is a partially directed graph with a node for each
simple root and edges determined by the Cartan integers according to the
following:

1. <α,.,αY) = 2.
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2. a. Φ a- are connected iff (at, αj) Φ 0.

3. ^ ^ ( α , ^ v ) = - l ,

To specify a standard parabolic subalgebra of g by giving S? it will be
convenient to give the Dynkin diagram for g with the nodes corresponding
to simple roots of g not in ^ crossed through.

Example A.I.I. The conformal motions of the complex sphere of di-
mension m > 3 are given by SO(ra + 2, C). The stabilizer of a point is a
subgroup isomorphic to the conformal Poincare group P = (SO(m, C) x
C x ) t x C m . Then, for m > 5 ,

g = % % % ... « «<^~

V for m =
p = x— — ^

g-
p = x

(both diagrams have n + 1 nodes). The case m = 4 is special, for
so(6,C) = sl(4, mC). So

A.2. Representation theory. Let F be a finite-dimensional irreducible
representation of g. Under the action of h, F decomposes as a direct
sum of simultaneous eigenspaces or weight spaces:

F=
AGΔ(F)

Those λ e h* such that FA ^ {0} are called the weights of F. Amongst
these there is an unique one, λ, such that (λ, α v ) is a nonnegative integer
for all a e J?7, and this correspondence between irreducible representa-
tions and such dominant integral weights classifies all finite-dimensional
irreducible representations. Denote by F(λ) the irreducible g-modules
with highest weight λ.

Now let F be a finite-dimensional irreducible representation of p. Let
1 and u be as in the Levi decomposition (37) of p so that 1 is reductive
and u is nilpotent. By EngePs theorem [23] u acts on F by nilpotent
endomorphisms and hence, by irreducibility, by zero. F is therefore a
trivial extension of a finite-dimensional irreducible representations of 1.
Now

5
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where Is = [1,1] is semisimple and l z is the center of 1. So an irreducible
representation of 1 is specified by a dominant integral weight for Is and an
element of 1*. Since it is always possible to arrange that h = h Π Is Θ l z ,
such a representation is specified by a weight λ such that (λ, α v ) is a
nonnegative integer for all a e 5? . A weight dominant for Is is called
dominant for p. Denote by F (λ) the irreducible p-module with highest
weight λ.

In both preceding paragraphs, Fλ is one-dimensional and maximal, i.e.,
annihilated by all positive weight spaces of g (which all occur in p). λ is
highest amongst all weights in F with respect to the usual partial ordering
of weights (given S?). Fλ generates F under the action of 2^(g) or
2f (p), respectively.

A weight μ eh* for g may be indicated by inscribing over a node of
the Dynkin diagram of g corresponding to a simple root a the coefficient
(μ, α v ) . Generally it will be necessary only to consider integral weights,
i.e., weights for which these coefficients are integers. If an irreducible
representation of p exponentiates to a representation of the corresponding
parabolic subgroup ? of C, then necessarily its weights are integral. This
condition is sufficient if G and hence P are simply connected.

A.3. The Weyl group and parabolic Hasse subgraphs. A hyperplane

Wa in h^ perpendicular to a root a e Δ(g, h) is called a wall; the Weyl
group Wg of g is the group of reflections σa in these walls. It is gener-
ated by simple reflections, i.e., reflections σa in walls Wa for α/ eS*.
Any element w of the Weyl group has a minimal length expression in
terms of simple reflections; the length l(w) of w is the length of such an
expression.

It is useful to have a means of realizing the action of a simple reflection
on a weight, expressed in the above notation:

Recipe for the action of a simple reflection.

To compute σa(λ), let c be the coefficient of the node associated
to a. Add c to the adjacent coefficients, with multiplicity if there
is a multiple edge directed towards the adjacent node, and, finally,
replace c by -c.

Example A.3.1. Apply the reflection σa in the simple root a indicated
by the ]\

a b c μ_» a+b —b b+c

μ_» —ajLa+b

a+b —b
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The Weyl group JFg admits the structure of a directed graph as follows:
let w, w' € W and set w —• w' if l(wf) = /(#) + 1 and wf = σaw for

some α e Δ(g). Set no other edges in Wg. This directed graph structure

gives a partial ordering [8]: we write w <w' if either w = w1 or there

exists a directed path from w to w' in W(g).
Remark A.3.2. For a discussion and examples of the directed graph

structure of Weyl groups, see [22], [5].
For the purposes of this paper, a subgraph of the Weyl group associated

to a parabolic subalgebra is more important than the Weyl group itself.
This subgraph, Wp, is the subset of W whose reflection action sends a
weight λ, dominant for g, to a weight dominant for p. Define

A(w) = {ae Δ+(g) w~la e -Δ+(g)}.

Then it can be shown that

Wp = {w e Wg A(w) c Δ(u)}.

|Δ(ιu)| = l(w) and the subgraph structure is induced on Wp. Detailed
calculations of Wp may be found in [22], [5]; the following examples
suffice for the purposes of this paper.

Example A.3.3. If p = — x — then Wv is

(213)-(2132)

Here, {ij--k) = σaσa -σa and the simple roots of g are Q; Q.2 Q.3 .

Example A.3.4. If

then, in the notation of the previous example, Wp is:

( 1 2 - - - ( Λ - l ) ( / i ) ) χ

( 1 2 (n - 1)) ( ) ( 1 2 (n - l)(n)(n + 1))
N ( 1 2 ( A 2 l ) ( / 2 + l ) ) X

Example A.3.5. If

P = '̂

then H^p is

-21).
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A.4. Homogeneous bundles. The homogeneous vector bundle over
G/P induced by the representation F*, where F = Fp(λ), has highest
weight λ, or its sheaf of holomorphic sections will be denoted by either
#(λ) or the Dynkin diagram for p with the coefficients (λ, α ;) inscribed
over the nodes. Thus, for example, the reduced spinor bundles on the
complex spheres of even dimension are

ς^?+ _ 0 0 0 0 0

and
cp- _ o o o oo

The tangent bundle on this manifold is

0 _ 0 10 0 0

whilst the cotangent bundle is

Ω = " 2 - - _ _
•o

The odd dimensional spheres have a single spinor bundle

ς ^ ? _ 0 0 0 0 1

with tangent bundle

Θ _ 0 1 0 0 0

and cotangent bundle
O _ - 2 1 0 0 0

The conformal line bundles are, in even dimensions,

j n __ n 0 0 0 1

and, in odd dimensions

τn _ n 0 0 0 0

Recall that sections of these bundles may locally be represented by func-
tions / on X which rescale as / —• Ω,nf, when a local choice of metric
within the conformal class is rescaled by g —> Ω2g .

This notation will also denote vector bundles and sheaves similarly in-
duced using the P-principal bundle 9 -• &/P = X.
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