SOME REGULARITY THEOREMS FOR CARNOT-CARATHÉODORY METRICS

URSULA HAMENSTÄDT

1. Introduction

Let M be a smooth connected m-dimensional manifold and Q a smooth q-dimensional distribution on M which is bracket generating, i.e., for every $p \in M$ the local sections of Q near p span together with all their commutators the tangent space $T_{p} M$ of M at p.

A curve φ in M is called horizontal if φ is tangent almost everywhere to Q. It is a classical result of Chow that any two points of M can be joined by a horizontal curve (see e.g. [13, 12]). Thus if Q is equipped with a Riemannian metric \langle,\rangle_{Q}, then the function $d_{c}: M \times M \rightarrow \mathbb{R}$, $(p, u) \rightarrow \inf \{$ length $(\varphi) \mid \varphi$ is horizontal and joins p to $u\}$ is a distance on M, the Carnot-Carathéodory metric induced by $\left(Q,\langle,\rangle_{Q}\right)$.

Let \langle,$\rangle be an extension of \langle,\rangle_{Q}$ to a Riemannian metric on M, and let dist be the induced distance on M. Then $d_{c} \geq$ dist, and any rectifiable curve with respect to d_{c} is rectifiable with respect to dist, hence differentiable almost everywhere and moreover horizontal [13]. Vice versa every horizontal curve is locally rectifiable with respect to d_{c}; its d_{c}-length coincides with its usual length as a curve in (M,\langle,$\rangle) (see [17]; this also$ follows from the general theory of length structures in [6]). Thus (M, d_{c}) is a locally compact length space and complete if this is true for (M, dist).

Let $p \in M$ and $\varepsilon>0$ be such that the closure of the open d_{c}-ball B of radius ε around p is compact. Then it follows from the theory of locally compact length spaces [6] that every $u \in M$ with $d_{c}(p, u)<\varepsilon$ can be joined to p by a minimizing geodesic with respect to d_{c}, i.e., a horizontal curve which realizes locally the d_{c}-distance of its curve points (this is also proved in [17]). Strichartz showed that if Q satisfies the strong bracket generating hypothesis (see [17]), i.e., if $T M$ is generated by Q and $[X, Q]$ for every nonzero local section X of Q, then these geodesics are solutions of a system of Hamilton-Jacobi equations on the cotangent bundle $T^{\prime} M$ of M, in particular they are smooth curves. This

[^0]leads to the definition of an exponential map of an open neighborhood of the zero section of $T^{\prime} M$ onto M; however its restriction to a fiber of $T^{\prime} M$ is not of maximal rank at 0 .

In this paper we give a different approach to the theory of geodesics. We extend \langle,\rangle_{Q} to a Riemannian metric \langle,$\rangle on M$ and consider a variational problem in $(M,\langle\rangle$,$) . We obtain a simple differential$ equation for the critical points of this variational problem and show that these critical points are geodesics with respect to d_{c}, i.e., they are locally minimizing curves (this answers a question in [17]). On the other hand, Bär [1] showed that every geodesic is a critical point; together this gives a complete description of the geodesics.

This leads to the definition of an exponential map $\exp _{p}^{c}$ at a given point $p \in M$ which maps an open neighborhood Ω of 0 in $T_{p} M$ onto an open neighborhood of p in M. We show that $\exp _{p}^{c}$ is of maximal rank on an open and dense subset of Ω. However $\exp _{p}^{c}$ depends on the choice of the extension of \langle,\rangle_{Q} to a Riemannian metric on M and moreover on the choice of a local trivialization of $T M$ adapted to our situation. If the distribution Q satisfies the strong bracket generating hypothesis, then $\left(Q,\langle,\rangle_{Q}\right)$ determines a unique Riemannian metric \langle,$\rangle on M$ extending \langle,\rangle_{Q} and thus $\exp _{p}^{c}$ only depends on the local trivilization. Moreover every d_{c}-geodesic emanating from p is uniquely determined by its tangent and the covariant derivative of its tangent at p, i.e., $\exp _{p}^{c}$ is defined intrinsically.

As an application of the investigation of geodesics we show that any isometry between manifolds with Carnot-Carathéodory (briefly CC-) metrics is necessarily smooth and clearly commutes with the exponential map. We conclude the paper with an example where the geodesics can easily be computed explicitly.

2. The space of H_{1}-curves in M through a given point

Let $p \in M$. We consider the Hilbert manifold $H_{1}^{p}(I, U)$ of all continuous, absolutely continuous curves $\varphi: I \rightarrow U$ through $\varphi(0)=p$ with square integrable derivative, where U is a suitable open neighborhood of p.

Fix a Riemannian metric \langle,$\rangle on M$ extending \langle,\rangle_{Q}. Given $p \in M$ select a local orthonormal basis $\left\{X^{1}, \cdots, X^{q}\right\}$ of Q and a local orthonormal basis $\left\{X^{q+1}, \cdots, X^{m}\right\}$ of the \langle,$\rangle -orthogonal complement Q^{\perp}$ of
Q. The local frame $\left\{X^{1}, \cdots, X^{m}\right\}$, defined on an open d_{c}-ball U of radius $\rho>0$ around p, will be called admissible. Let $\theta^{1}, \cdots, \theta^{m}$ be the dual coframe and let $\theta=\left(\theta^{1}, \cdots, \theta^{m}\right) . \theta$ is a 1 -form on U with values in a Euclidean m-space \mathbb{R}^{m}.

The map Θ, defined on $H_{1}^{p}(I, U)$ by $(\Theta \varphi)(t)=\theta \varphi^{\prime}(t)$, has its image in the Hilbert space $H_{0}\left(I, \mathbb{R}^{m}\right)$ of square integrable curves in \mathbb{R}^{m}.

Lemma 2.1. $\quad \Theta$ is a diffeomorphism of $H_{1}^{p}(I, U)$ onto an open neighborhood of 0 in $H_{0}\left(I, \mathbb{R}^{m}\right)$.

The proof uses the fact that the Banach-manifold of all continuously differentiable curves in U starting at p is diffeomorphic to an open neighborhood of 0 in the Banach space of continuous curves in $T_{p} M \sim \mathbb{R}^{m}$ (see [9]) and a standard completion argument.

There are unique 1 -forms θ_{j}^{i} on U such that
(a) $\theta_{j}^{i}=-\theta_{i}^{j}$,
(b) $d \theta^{i}=\sum_{k=1}^{m} \theta^{k} \wedge \theta_{k}^{i}$
(see [16]).
Let $\varphi \in H_{1}^{p}(I, U)$ and let X be an element of the tangent space $H_{1}^{p}(\varphi)$ of $H_{1}^{p}(I, U)$ at φ, i.e., X is a section of $T M$ over φ of class H_{1} which vanishes at $p=\varphi(0)$. Denote by $\frac{D}{d t} X$ the covariant derivative of X with respect to the Riemannian connection of \langle,$\rangle . Then$

Lemma 2.2.

$$
\theta^{i}\left(\frac{D}{d t} X\right)=\frac{d}{d t}\left(\theta^{i}(X)\right)+\sum_{j=1}^{m} \theta_{j}^{i}\left(\varphi^{\prime}\right) \theta^{j}(X)
$$

Lemma 2.2 is well known and can be found in [16].
Write $d \theta=\left(d \theta^{1}, \cdots, d \theta^{m}\right) ; d \theta$ is a 2 -form on U with values in \mathbb{R}^{m}. As a corollary of 2.2 , the differential $d \Theta_{\varphi}$ of Θ at φ can be computed as follows:

Lemma 2.3. If $x \in H_{1}^{p}(\varphi)$, then $d \Theta_{\varphi} X=\frac{d}{d t}(\theta X)-2 d \theta\left(\varphi^{\prime}, X\right)$.
Proof. Let $\Psi:(-\varepsilon, \varepsilon) \times I \rightarrow U$ be a variation of $\varphi=\Psi_{0}$ with variation vector field $X=\left.\frac{\partial}{\partial s} \Psi\right|_{s=0}$ such that $\Psi(-\varepsilon, \varepsilon) \times\{0\}=p$. Then

$$
\left(d \Theta_{\varphi} X\right)(t)=\left.\frac{\partial}{\partial s} \theta \frac{\partial}{\partial t} \Psi(s, t)\right|_{s=0}
$$

and by Lemma 2.2 the i th component of $\left(d \Theta_{\varphi} X\right)(t)$ equals

$$
\theta^{i}\left(\frac{D}{\partial s} \frac{\partial}{\partial t} \Psi(s, t)\right)_{s=0}-\sum_{j=1}^{m} \theta_{j}^{i}(X) \theta^{j}\left(\varphi^{\prime}\right)
$$

Using $\frac{D}{\partial s} \frac{\partial}{\partial t} \Psi(s, t)=\frac{D}{\partial t} \frac{\partial}{\partial s} \Psi(s, t)$ and again Lemma 2.2 for $\frac{D}{\partial t} \frac{\partial}{\partial s} \Psi(s, t)$ we obtain for the i th component of $\left(d \Theta_{\varphi} X\right)(t)$ the value

$$
\frac{d}{d t}\left(\theta^{i} X\right)(t)+\sum_{j=1}^{m}\left(\theta_{j}^{i}\left(\varphi^{\prime}\right) \theta^{j}(X)-\theta_{j}^{i}(X) \theta^{j}\left(\varphi^{\prime}\right)\right)
$$

which shows the claim. q.e.d.
Now for every $u \in U$ and $X \in T_{u} M$ the assignment $Y \rightarrow 2 d \theta(X, Y)$ is a linear mapping of $T_{u} M$ into \mathbb{R}^{m}. Let $a^{*}(X)$ be its adjoint with respect to the scalar product \langle,\rangle_{u} on $T_{u} M$ and the Euclidean scalar product \langle,$\rangle on \mathbb{R}^{m} . a^{*}(X)$ is a linear map of \mathbb{R}^{m} into $T_{u} M$ which satisfies $\langle 2 d \theta(X, Y), Z\rangle=\left\langle Y, a^{*}(X) Z\right\rangle$ for all $Y \in T_{u} M, Z \in \mathbb{R}^{m}$. Moreover the assignment $X \rightarrow a(X)=\theta a^{*}(X)$ is a smooth 1-form on U with values in the vector space of linear endomorphisms of \mathbb{R}^{m}. For convenience we will also write $a(X, Z)$ instead of $a(X) Z$.

Remark 2.4. The form a can also be computed as follows: Let $b_{j k}^{i}$ $(i, j, k=1, \cdots, m)$ be the unique smooth functions on U which satisfy $d \theta^{i}=\frac{1}{2} \sum_{j, k} b_{j k}^{i} \theta^{j} \wedge \theta^{k}$ and $b_{j k}^{i}=-b_{k j}^{i}$. Then an easy computation shows $\theta^{i} a(X, Z)=\sum_{j=1}^{m} \sum_{k=1}^{m} b_{i k}^{j} \theta^{k}(X) Z_{j}$ for all $Z=\left(Z_{1}, \cdots, Z_{m}\right) \in \mathbb{R}^{m}$. However we do not need this formula in the sequel (compare [16]).

The pullback via Θ of the L^{2}-scalar product of $H_{0}\left(I, \mathbb{R}^{m}\right)$ is a Riemannian structure g on $H_{1}^{p}(I, U)$ which induces for every compact neighborhood A of p in U a complete metric on $H_{1}^{p}(I, A) \subset H_{1}^{p}(I, U)$. If $\varphi \in$ $H_{1}^{p}(I, U)$ and $X, Y \in H_{1}^{p}(\varphi)$, then $g_{\varphi}(X, Y)=\int_{0}^{1}\left\langle d \Theta_{\varphi} X(t), d \Theta_{\varphi} Y(t)\right\rangle d t$.

The linear subspace $\left\{X \in H_{1}^{p}(\varphi) \mid X(1)=0\right\} \subset H_{1}^{p}(\varphi)$ is closed in $H_{1}^{p}(\varphi)$; hence its g_{φ}-orthogonal complement $J(\varphi)$ is an m-dimensional linear subspace of $H_{1}^{p}(\varphi)$. We have

Lemma 2.5. $J(\varphi)=\left\{X \in H_{1}^{p}(\varphi) \left\lvert\, \frac{d}{d t}\left(d \Theta_{\varphi} X\right)(t)-a\left(\varphi^{\prime}(t),\left(d \Theta_{\varphi} X\right)(t)\right) \equiv\right.\right.$ $0\}$.

Proof. Let $Y \in H_{1}^{p}(\varphi)$ be the preimage under $d \Theta_{\varphi}$ of a curve of class H_{1} in \mathbb{R}^{m}. By Lemma 2.3 for every $X \in H_{1}^{p}(\varphi)$ we have

$$
\begin{aligned}
g_{\varphi}(X, Y)= & \left\langle\theta X(1),\left(d \Theta_{\varphi} Y\right)(1)\right\rangle \\
& -\int_{0}^{1}\left\langle\theta X(t), \frac{d}{d t}\left(d \Theta_{\varphi} Y\right)(t)-a\left(\varphi^{\prime}(t),\left(d \Theta_{\varphi} Y\right)(t)\right)\right\rangle d t
\end{aligned}
$$

Thus any solution $c: I \rightarrow V$ of the differential equation

$$
\begin{equation*}
c^{\prime}(t)=a\left(\varphi^{\prime}(t)\right) c(t) \tag{1}
\end{equation*}
$$

is the image under $d \Theta_{\varphi}$ of an element of $J(\varphi)$. Now (1) is a linear differential equation whose coefficients (i.e., the entries of the matrix rep-
resenting $a\left(\varphi^{\prime}(t)\right)$) are as regular in t as the map $t \rightarrow \theta \varphi^{\prime}(t)$, i.e., they are square integrable. Thus (1) admits precisely m linear independent solutions which shows the lemma. q.e.d.

If φ has a continuous derivative, the existence of an m-dimensional space of solutions of (1) follows from the standard theory for solutions of ordinary differential equations with continuous coefficients. We include a proof for the general case since it provides us with norm estimates which are needed later.

For a curve φ of class H_{1} in U and an element c of the Banach space $L^{\infty}\left(I, \mathbb{R}^{m}\right)$ of essentially bounded maps $I \rightarrow \mathbb{R}^{m}$ provided with the norm $|c|=\operatorname{ess}^{\sup }{ }_{t \in I}\|c(t)\|$, define $T_{\varphi} c(s)=\int_{0}^{s} a\left(\varphi^{\prime}(t)\right) c(t) d t$. Thus c is a solution of (1) with $c(0)=c_{0}$ for some $c_{0} \in \mathbb{R}^{m}$ if and only if $c-T_{\varphi} \equiv c_{0}$.

Let $\|L\|$ be the operator norm of a linear endomorphism L of the Euclidean space \mathbb{R}^{m}. Then $\varphi \in H_{1}^{p}(I, U)$ means $\nu(\varphi)=\int_{0}^{1}\left\|a\left(\varphi^{\prime}(t)\right)\right\| d t<$ ∞.

Lemma 2.6. For every $\varphi \in H_{1}^{p}(I, U)$, Id $-T_{\varphi}$ is a continuous invertible linear automorphism of $L^{\infty}\left(I, \mathbb{R}^{m}\right)$. The operator norm of $\left(\operatorname{Id}-T_{\varphi} c\right)^{-1}$ does not exceed $(2 \nu(\varphi)+2)^{2 \nu(\varphi)+1}$.

Proof. Let $c \in L^{\infty}(I, V)$; then $\left\|T_{\varphi} c(s)\right\|=\left\|\int_{0}^{s} a\left(\varphi^{\prime}(t)\right) c(t) d t\right\| \leq$ $\nu(\varphi)|c|$, i.e., T_{φ} is a continuous linear endomorphism of $L^{\infty}\left(I, \mathbb{R}^{m}\right)$ whose operator norm does not exceed $\nu(\varphi)$.

Let $k>0$ be the smallest integer which is not smaller than $2 \nu(\varphi)$ and choose a partition $0=s(0)<s(1)<\cdots<s(k)=1$ of I such that $\int_{s(j)}^{s(j+1)}\left\|a\left(\varphi^{\prime}(t)\right)\right\| d t \leq \frac{1}{2}$ for all $j<k$. Define $\psi_{j}(t)=s(j)+t(s(j+1)-$ $s(j))$ and $\varphi_{j}(t)=\varphi\left(\psi_{j}(t)\right)$, for $t \in I$, and let $c \in L^{\infty}\left(I, \mathbb{R}^{m}\right), c_{j}(t)=$ $c\left(\psi_{j}(t)\right)$. Since the operator norm of $T_{\varphi_{j}}$ is not larger than $\frac{1}{2}$, Id $-T_{\varphi_{j}}$ is invertible (see [15, p. 231]) and ($\left.\operatorname{Id}-T_{\varphi_{j}}\right)^{-1}=\sum_{i=0}^{\infty} T_{\varphi_{j}}^{i}$, in particular the operator norm of $\left(\operatorname{Id}-T_{\varphi_{j}}\right)^{-1}$ does not exceed $\sum_{i=0}^{\infty} 2^{-i}=2$. Hence there is a unique $\alpha \in L^{\infty}\left(I, \mathbb{R}^{m}\right)$ such that we have $\left(\operatorname{Id}-T_{\varphi_{j}}\right) \alpha_{j}=c_{j}+$ $\int_{0}^{s(j)} a\left(\varphi^{\prime}(t)\right) \alpha(t) d t$ with $\alpha_{j}(t)=\alpha\left(\psi_{j}(t)\right) \quad(j<k)$. Then

$$
\begin{aligned}
c\left(\psi_{j}(t)\right)=c_{j}(t) & =\alpha_{j}(t)-\int_{0}^{t} a\left(\varphi_{j}^{\prime}(s)\right) \alpha_{j}(s) d s-\int_{0}^{s(j)} a\left(\varphi^{\prime}(s)\right) \alpha(s) d s \\
& =\alpha\left(\psi_{j}(t)\right)-\int_{0}^{\psi_{j}(t)} a\left(\varphi^{\prime}(s)\right) \alpha(s) d s
\end{aligned}
$$

which means $\left(\mathrm{Id}-T_{\varphi}\right) \alpha=c$. This shows that $\mathrm{Id}-T_{\varphi}$ is invertible. Moreover we have

$$
\left|\alpha_{j}\right| \leq 2\left(\left|c_{j}\right|+\left\|\int_{0}^{s(j)} a\left(\varphi^{\prime}(t)\right) \alpha(t) d t\right\|\right) \leq 2\left(|c|+\nu(\varphi) \sup _{i<j}\left|\alpha_{i}\right|\right),
$$

and inductively $|\alpha|=\sup _{j<k}\left|\alpha_{j}\right| \leq 2^{k}(1+\nu(\varphi))^{k}|c|$. This means that the operator norm of $\left(\operatorname{Id}-T_{\varphi}\right)^{-1}$ does not exceed $2^{k}(1+\nu(\varphi))^{k}$ which is the claim.

Remark 2.7. Let $S \subset U$ be a smooth k-dimensional submanifold with tangent bundle $T S$. Then $\left\{\varphi \in H_{1}^{p}(I, U) \mid \varphi(1) \in S\right\}$ is a smooth submanifold of $H_{1}^{p}(I, U)$ of codimension $m-k$. Its tangent space at φ consists of all $X \in H_{1}^{p}(\varphi)$ with $X(1) \in T S$. Lemma 2.5 thus shows that the g_{φ}-orthogonal complement of this tangent space is just the $(m-k)$ dimensional vector space $\left\{X \in J(\varphi) \mid\left(d \Theta_{\varphi} X\right)(1) \in(T S)^{\perp}\right\}$.

Remark 2.8. If M is a Lie group with identity $e=p$, and the vector fields X^{1}, \cdots, X^{m} are left-invariant, then the Lie algebra \mathfrak{M} of M can naturally be identified with \mathbb{R}^{m}. With this identification, θ is the canonical left-invariant 1 -form on M with values in \mathfrak{M} (see [9]). Thus $2 d \theta(X, Y)=(\operatorname{ad} X)(Y)$, where as usual ad denotes the adjoint representation of \mathfrak{M}. Let $A d$ be the adjoint representation of M in \mathfrak{M}, and denote by Ad_{u}^{*} the adjoint of Ad_{u} for $u \in M$. If $\varphi \in H_{1}^{e}(I, M)$, then for every $c_{0} \in \mathfrak{M}$ the curve $t \rightarrow \operatorname{Ad}_{\varphi(t)}^{*} c_{0}$ satisfies the differential equation (1) of Lemma 2.5. Thus in this case $J(\varphi)=\left\{X \in H_{1}^{e}(\varphi) \mid\left(d \Theta_{\varphi} X\right)(t)=\operatorname{Ad}_{\varphi(t)}^{*} c_{0}\right.$ for some $\left.c_{0} \in \mathfrak{M}\right\}$.

3. The manifold of curves tangent to Q

In this section we begin to investigate the submanifold $H Q$ of $H_{1}^{p}(I, U)$ of curves which are tangent almost everywhere to Q.

Identify Q with the subspace $\theta(Q) \cong \mathbb{R}^{q}$ of \mathbb{R}^{m}. The set $H Q=$ $\Theta^{-1} H_{0}(I, Q)$ of curves which are tangent almost everywhere to Q is a closed submanifold of $H_{1}^{p}(I, U)$. If $\widetilde{P}: V \rightarrow Q$ denotes the \langle,$\rangle -$ orthogonal projection, then for every $\varphi \in H Q$ the g_{φ}-orthogonal projection P of $H_{1}^{p}(\varphi)$ onto the tangent space $H Q_{\varphi}$ of $H Q$ at φ is defined by $P X=\left(d \Theta_{\varphi}\right)^{-1} \widetilde{P} d \Theta_{\varphi} X$.

Let $K(\varphi) \sim H_{0}\left(I, Q^{\perp}\right)$ be the kernel of the projection P, and define $\Omega(\varphi)=\left\{X \in H Q_{\varphi} \mid X(1)=0\right\}$. Then $H_{1}^{p}(\varphi)=\Omega(\varphi) \oplus(J(\varphi)+K(\varphi))$, and the g_{φ}-orthogonal complement $\Omega(\varphi)^{\perp}$ of $\Omega(\varphi)$ in $H Q_{\varphi}$ is contained in $P(J(\varphi)+K(\varphi))=P J(\varphi)$. Thus $\Omega(\varphi)^{\perp}=\left\{X \in H Q_{\varphi} \mid\left(d \Theta_{\varphi} X\right)(t)=\widetilde{P} c(t)\right.$ for $c \in H_{1}(I, V)$ with $\left.c^{\prime}(t)=a\left(\varphi^{\prime}(t)\right) c(t)\right\}$.

Let $R: H Q \rightarrow U, \varphi \rightarrow \varphi(1)$ be the endpoint map. Then the rank of R at φ equals the dimension of $\Omega(\varphi)^{\perp}$, and this dimension varies between $q=\operatorname{dim} Q$ at the constant curve $\varphi(I)=p$ and $m=\operatorname{dim} M$. In particular for $u \in U$ the closed subset $R^{-1}(u)$ of $H Q$ may not be a submanifold.

However the set $\left\{\varphi \in H Q \mid \operatorname{rank} R_{\varphi}=m\right\}$ is clearly open in $H Q$. If M is a Lie group, then Remark 2.8 shows that it is even open as a subset of $H Q$ with the C^{0}-topology. A similar property holds in general. For its formulation let dist again be the distance on M induced by the Riemannian metric, and recall that the space $C^{0}(I, M)$ of continuous curves in M with the distance $d_{\infty}(\varphi, \psi)=\sup \{\operatorname{dist}(\varphi(t), \psi(t)) \mid t \in I\}$ is a Banach manifold, in particular a locally complete metric space. Let $E: H Q \rightarrow \mathbb{R}$ be the restriction to $H Q$ of the energy function $\varphi \rightarrow \frac{1}{2} \int_{0}^{1}\left\|\varphi^{\prime}(t)\right\|^{2} d t$. First we have

Lemma 3.1. Let $\mu>0$ and $\varphi \in H Q \cap E^{-1}[0, \mu)$. Then for every $\varepsilon>0$ there is $\delta>0$ such that $\sup _{t \in I}\left\|\int_{0}^{t}\left(\theta \gamma^{\prime}(s)-\theta \varphi^{\prime}(s)\right) d s\right\|<\varepsilon$ for all $\gamma \in H Q \cap E^{-1}[0, \mu)$ with $d_{\infty}(\gamma, \varphi)<\delta$.

Proof. Let $U, X^{1}, \cdots, X^{m}, \theta$ be as before and assume without loss of generality that there is a diffeomorphism Ψ of \mathbb{R}^{m} onto U with $\Psi(0)=$ p. Define $c(t)=\Psi^{-1} \varphi(t)$ and denote by $\|L\|$ its operator norm for a linear map L between Euclidean vector spaces.

Let A be a compact neighborhood of $c(I)$ in \mathbb{R}^{m} and let

$$
\rho=\sup \left\{\left\|d \Psi_{u}\right\|,\left\|d \Psi_{\Psi(u)}^{-1}\right\| \| u \in A\right\}<\infty
$$

By the smoothness of Ψ there is then $\sigma>0$ such that for every $t \in I$ and every $u \in U$ with $\operatorname{dist}(\varphi(t), u)<\sigma$

$$
\left\|\theta(d \Psi)_{c(t)}-\theta(d \Psi)_{\Psi^{-1} u}\right\|<\varepsilon / 8 \rho \sqrt{\mu}
$$

Choose $n \geq 2$ such that $\operatorname{dist}(\varphi(s), \varphi(t))<\sigma$ for $|s-t|<1 / n$, and let $\delta<\sigma$ be sufficiently small that $d_{\infty}(\varphi, \gamma)<\delta$ implies $\left\|c(t)-\Psi^{-1} \gamma(t)\right\|<$ $\varepsilon / 16 n \rho$ for all $t \in I$. Let $\gamma \in H Q \cap E^{-1}[0, \mu)$ with $d_{\infty}(\gamma, \varphi)<\delta$ and
define $\bar{c}(t)=\Psi^{-1} \gamma(t)$. Then

$$
\begin{aligned}
\sup _{t \in I} \| & \int_{0}^{t}\left(\theta \gamma^{\prime}(s)-\theta \varphi^{\prime}(s)\right) d s \| \\
\leq & \sup _{t \in I}\left\|\int_{0}^{t}\left(\theta(d \Psi)_{\bar{c}(s)}-\theta(d \Psi)_{c(s)}\right) \bar{c}^{\prime}(s) d s\right\| \\
& +\sup _{t \in I}\left\|\int_{0}^{t} \theta(d \Psi)_{c(s)}\left(\bar{c}^{\prime}(s)-c^{\prime}(s)\right) d s\right\| \\
\leq & \int_{0}^{1}\left\|\left(\theta(d \Psi)_{\bar{c}(s)}-\theta(d \Psi)_{c(s)}\right) \bar{c}^{\prime}(s)\right\| d s \\
& +\sup _{k \leq n-1}\left\|\sum_{j=0}^{k} \theta(d \Psi)_{c(j / n)} \int_{j / n}^{(j+1) / n}\left(\bar{c}^{\prime}(s)-c^{\prime}(s)\right) d s\right\| \\
& +\sup _{k<n} \sup _{r<1 / n}\left\|\theta(d \Psi)_{c(k / n)} \int_{k / n}^{k / n+r}\left(\bar{c}^{\prime}(s)-c^{\prime}(s)\right) d s\right\| \\
& +\sum_{j \geq 0} \int_{j / n}^{(j+1) / n}\left\|\left(\theta(d \Psi)_{c(s)}-\theta(d \Psi)_{c(j / n)}\right)\left(\bar{c}^{\prime}(s)-c^{\prime}(s)\right)\right\| d s \\
\leq & \frac{\varepsilon \rho \sqrt{\mu}}{8} \int_{0}^{1}\left\|\bar{c}^{\prime}(s)\right\| d s \\
& +2 \sum_{j=0}^{n} \rho\|\bar{c}(j / n)-c(j / n)\| \\
& +\rho \sup _{j \leq n} \sup _{r<1 / n}(\|\bar{c}(\tau+j / n)-c(\tau+j / n)\|+\|\bar{c}(j / n)-c(j / n)\|) \\
& +\frac{\varepsilon \rho \sqrt{\mu}}{8} \int_{0}^{1}\left\|\bar{c}^{\prime}(s)-c^{\prime}(s)\right\| d s .
\end{aligned}
$$

Since $\int_{0}^{1}\left\|c^{\prime}(s)\right\| d s \leq \rho \sqrt{\mu}$ and $\int_{0}^{1}\left\|\bar{c}^{\prime}(s)\right\| d x \leq \rho \sqrt{\mu}$, the latter sum does not exceed ε which yields the claim. q.e.d.

Recall the definition of the automorphisms T_{γ} of $L^{\infty}(I, V) \quad(\gamma \in$ $\left.H_{1}^{p}(I, U)\right)$ preceding Lemma 2.6. From Lemma 3.1 we obtain

Corollary 3.2. Let $\mu>0$ and $\varphi \in H Q \cap E^{-1}[0, \mu)$. Then for every $\varepsilon>0$ there is $\delta>0$ such that $\mid\left(\left(\operatorname{Id}-T_{\varphi}\right)^{-1}-\left(\operatorname{Id}-T_{\gamma}\right)^{-1} c \mid<\varepsilon\right.$ for all $c \in \mathbb{R}^{m}$ with $\|c\|=1$ and all $\gamma \in H Q \cap E^{-1}[0, \mu)$ with $d_{\infty}(\gamma, \varphi)<\delta$.

Proof. Choose a compact neighborhood B of $\varphi(I)$ in U. Since a is a smooth 1 -form on U with values in the linear space of endomorphisms of \mathbb{R}^{m}, there is $\alpha>0$ such that $\|a(X)\| \leq \alpha\|X\|$ for all $u \in B$ and
$X \in T_{u} M$. This means $\nu(\gamma) \leq \alpha \sqrt{\mu}$ for all $\gamma \in H Q \cap E^{-1}[0, \mu) \cap$ $H_{1}^{p}(I, B)=\widetilde{H}$.

Let $\varepsilon>0$ and choose $\bar{\varepsilon}<\varepsilon / 2(2 \sqrt{\mu}+2)^{2 \sqrt{\mu}+1}$. Let Σ be the unit sphere in \mathbb{R}^{m}. Then the map $\psi: \Sigma \times I \rightarrow V,(c, t) \rightarrow\left(\left(\operatorname{Id}-T_{\varphi}\right)^{-1} c\right)(t)$ is continuous. Hence there is $\rho>0$ such that $\left\|\psi_{c}(t)-\psi_{c}(s)\right\|<\bar{\varepsilon} /(\alpha \sqrt{\mu}+1)$ for all $c \in \Sigma$ and $s, t \in I$ with $|s-t|<\rho$. Moreover

$$
\sigma=\sup \left\{\left\|\psi_{c}(t)\right\| c \in \Sigma, t \in I\right\}<\infty
$$

Let $k>1 / \rho$ and define $\tilde{\psi}_{c}(t)=\psi_{c}([k t] / k)$ for $c \in \Sigma$. Then $\tilde{\psi}_{c} \in$ $L^{\infty}\left(I, \mathbb{R}^{m}\right)$ and $\left|\tilde{\psi}_{c}-\psi_{c}\right|<\bar{\varepsilon} /(\alpha \sqrt{\mu}+1)$, where $|\mid$ is the norm in $L^{\infty}\left(I, \mathbb{R}^{m}\right)$ as before. Let $\gamma \in \widetilde{H}$; since the operator norm of Id $-T_{\gamma}$ does not exceed $\alpha \sqrt{\mu}+1$, we have $\left|\left(\operatorname{Id}-T_{\gamma}\right)\left(\psi_{c}-\tilde{\psi}_{c}\right)\right|<\bar{\varepsilon}$.

For $\gamma \in \widetilde{H}$ and $t \in I$, define a linear endomorphism $A_{\gamma}(t)$ of \mathbb{R}^{m} by $A_{\gamma}(t)=\int_{0}^{t} a\left(\gamma^{\prime}(s)\right) d s$ which means $\lambda A_{\gamma}(t)=\int_{0}^{t} \lambda\left(a\left(\gamma^{\prime}(s)\right)\right) d s$ for every linear functional λ on the vector space of linear endomorphisms of \mathbb{R}^{m}. Then

$$
\begin{aligned}
T_{\gamma} \tilde{\psi}_{c}(t)= & \int_{[t k] / k}^{t} a\left(\gamma^{\prime}(t)\right) \psi_{c}([t k] / k) d t \\
& +\sum_{j=0}^{[t k]-1} \int_{j / k}^{(j+1) / k} a\left(\gamma^{\prime}(t)\right) \psi_{c}(j / k) d t \\
= & \left(A_{\gamma}(t)-A_{\gamma}([t k] / k)\right) \psi_{c}([t k] / k) \\
& +\sum_{j=0}^{[t k]-1}\left(A_{\gamma}(j+1) / k-A_{\gamma}(j / k)\right) \psi_{c}(j / k) .
\end{aligned}
$$

Since $a\left(X_{u}, \theta Y_{u}\right) \in \mathbb{R}^{m}$ depends smoothly on $u \in U$ for smooth vectors fields X, Y on U, Lemma 3.1 shows that there is $\delta>0$ such that for all $\gamma \in H Q \cap E^{-1}[0, \mu)$ with $d_{\infty}(\varphi, \gamma)<\delta$ we have $\gamma \in \widetilde{H}$ and

$$
\sup _{t \in I}\left\|A_{\gamma}(t)-A_{\varphi}(t)\right\|<\bar{\varepsilon} / 2(k+1) \sigma .
$$

By the definition of σ this means

$$
\left|T_{\varphi} \tilde{\psi}_{c}-T_{\gamma} \tilde{\psi}_{c}\right| \leq 2 \sum_{j=0}^{k}\left\|A_{\varphi}(j / k)-A_{\gamma}(j / k)\right\| \sigma<\bar{\varepsilon}
$$

hence

$$
\begin{aligned}
\left|\left(\operatorname{Id}-T_{\gamma}\right) \tilde{\psi}_{c}-c\right| \leq & \left|\left(\operatorname{Id}-T_{\gamma}\right) \tilde{\psi}_{c}-\left(\operatorname{Id}-T_{\varphi}\right) \tilde{\psi}_{c}\right| \\
& +\left|\left(\operatorname{Id}-T_{\varphi}\right) \tilde{\psi}_{c}-\left(\operatorname{Id}-T_{\varphi}\right) \psi_{c}\right|<2 \bar{\varepsilon}
\end{aligned}
$$

Now by Lemma 2.6 the operator norm of $\left(\operatorname{Id}-T_{\gamma}\right)^{-1}$ does not exceed $(2 \alpha \sqrt{\mu}+2) 2^{2 \sqrt{\mu}+1}$; from this we obtain

$$
\left|\left(\operatorname{Id}-T_{\gamma}\right)^{-1} c-\psi_{c}\right| \leq\left|\left(\operatorname{Id}-T_{\gamma}\right)^{-1} c-\tilde{\psi}_{c}\right|+\left|\tilde{\psi}_{c}-\psi_{c}\right|<\varepsilon
$$

which is the claim.
Corollary 3.3. For every $\mu>0$ and every $k \leq m$ the set $\{\varphi \in$ $\left.H Q \mid \operatorname{rank} R_{\varphi} \geq k\right\} \cap E^{-1}[0, \mu)$ is open in $H Q \cap E^{-1}[0, \mu) \subset$ $\left(C^{0}(I, U), d_{\infty}\right)$.

Proof. Let $\varphi \in H Q$ with $E(\varphi)<\mu$ and $\operatorname{rank} R_{\varphi}=k$. Let $\Sigma \subset \mathbb{R}^{m}$ be the unit sphere in the orthogonal complement of the intersection of V with $\left(\operatorname{Id}-T_{\varphi}\right) L^{\infty}\left(I, Q^{\perp}\right)$. Then there is by Lemma 2.5 a number $\varepsilon>0$ such that $\sup _{t \in I}\left\|\widetilde{P}\left(\operatorname{Id}-T_{\varphi}\right)^{-1} c_{0}\right\|>2 \varepsilon$ for all $c_{0} \in \Sigma$. By Lemma 3.2 we can find $\delta>0$ such that $\left|\left(\operatorname{Id}-T_{\gamma}\right)^{-1} c_{0}-\left(\mathrm{Id}-T_{\varphi}\right)^{-1} c_{0}\right|<\varepsilon$ for all $c_{0} \in \Sigma$ and all $\gamma \in H Q \cap E^{-1}[0, \mu)$ with $d_{\infty}(\varphi, \gamma)<\delta$. For such a γ we have $\sup _{t \in I}\left\|\widetilde{P}\left(\mathrm{Id}-T_{\gamma}\right)^{-1} c_{0}\right\|>\varepsilon$ for all $c_{0} \in \Sigma$, which means by Lemma 2.5 that rank $R_{\gamma}=m$.

4. Critical points of the energy function

Let $\psi:(-\varepsilon, \varepsilon) \rightarrow H Q$ be a variation of $\varphi=\psi_{0}$ with variation vector field $X=\left.\frac{\partial}{\partial s} \psi\right|_{s=0}$. For the derivative at $s=0$ of the energy function E on $H Q$ we obtain

$$
\left.\frac{\partial}{\partial s} E\left(\psi_{s}\right)\right|_{s=0}=\int_{0}^{1}\left\langle\left(d \Theta_{\varphi} X\right)(t), \theta \varphi^{\prime}(t)\right\rangle d t
$$

i.e., $\left(d \Theta_{\varphi}\right)^{-1} \theta \varphi^{\prime}$ is the gradient of E at φ.

Call $\varphi \in H Q$ a critical point of E if $\left(d \Theta_{\varphi}\right)^{-1} \theta \varphi^{\prime} \in \Omega(\varphi)^{\perp}$. If the rank of R at φ is maximal, then there is a neighborhood A of φ in $H Q$ such that $R^{-1}(\varphi(1)) \cap A$ is a smooth submanifold of A, and φ is thus critical for the restriction of E to this submanifold in the usual sense.

This immediately shows that every minimizing d_{c}-geodesic φ with rank $R_{\varphi}=m$ is necessarily a critical point for E.

Define a smooth (2,1)-tensor field \bar{a} on U by $\theta \bar{a}_{u}(X, Y)=a(X) \theta Y$ $\left(u \in U, X, Y \in T_{u} M\right)$.

Lemma 4.1. The critical points of E are smooth curves parametrized proportional to arc length.

Proof. If $\varphi \in H Q$ is a critical point of E, then $\left(d \Theta_{\varphi}\right)^{-1} \theta \varphi^{\prime}$ is the projection in $H Q_{\varphi}$ of an element of $J(\varphi)$. Thus by Lemma 2.5 there is
a function $\alpha: I \rightarrow Q^{\perp} \subset \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\frac{d}{d t} \theta \varphi^{\prime}(t)+\frac{d}{d t} \alpha(t)-a\left(\varphi^{\prime}(t), \theta \varphi^{\prime}(t)+\alpha(t)\right) \equiv 0 \tag{2}
\end{equation*}
$$

If, by abuse of notation, we denote by \widetilde{P} the \langle,$\rangle -orthogonal projection$ of $T M$ onto Q, then (2) transforms to

$$
\frac{d}{d t} \theta c(t)=\theta \bar{a}(\widetilde{P} c(t), c(t))
$$

which is a system of first order differential equations on $T U$ with C^{∞} coefficients. Thus every solution of (2^{\prime}) is smooth, and moreover (2) shows $\left\langle\frac{d}{d t} \theta \varphi^{\prime}(t), \theta \varphi^{\prime}(t)\right\rangle \equiv 0$, i.e., critical points of E are parametrized proportional to arc length. q.e.d.

Now for every initial condition $X \in T_{p} M$ there is a unique maximal solution $\tilde{\lambda}(X)$ of $\left(2^{\prime}\right)$ which depends smoothly on $X . \tilde{\lambda}(X)$ projects onto a smooth curve $\lambda(X)$ in U which is tangent to Q and parametrized proportional to arc length. Since, by definition, U is just the open d_{c}-ball of radius ρ around $p=\lambda(X)(0)$, for every $X \in T_{p} M$ with $\|\widetilde{P} X\|<\rho$ the curve $\lambda(X)$ is defined on I and $\left.\lambda(X)\right|_{I} \in H Q$ is a critical point of E. Hence $X \rightarrow \lambda(X)(1)$ defines a smooth map $\exp _{p}^{c}$ of $\widetilde{U}=\{X \in$ $\left.T_{p} M \mid\|\widetilde{P} X\|<\rho\right\}$ into U. Now $\theta \frac{d}{d t} \lambda(X)(b t)=b \theta \lambda(X)^{\prime}(b t)$ shows $\theta \tilde{\lambda}(b X)(t)=b \tilde{\lambda}(X)(b t)$ or $\lambda(b X)(t)=\lambda(X)(b t)$ for all $b \in \mathbb{R}$. Thus for every $X \in \widetilde{U}$ we have $\exp _{p}^{c}(t X)=\lambda(X)(t) \quad(t \in I)$, i.e., $t \rightarrow \exp _{p}^{c}(t X)$ ($t \in I$) is a critical point of E.

Lemma 4.2. Let $X \in T_{p} M$ be such that $\lambda(X)$ is defined on I and $\operatorname{rank} R_{\lambda}(X)=m$. Then for every $\mu>\|\widetilde{P} X\|$ there is $\delta>0$ and $\beta<\infty$ such that $d_{\infty}(\lambda(X), \lambda(Y))<\delta$ and $\|\widetilde{P} Y\|<\mu$ implies $\|Y\|<\beta$.

Proof. Let Σ be the unit sphere in \mathbb{R}^{m}. Since rank $R_{\lambda(X)}=m$, there is then $\alpha>0$ such that $\left|\widetilde{P}\left(\mathbf{I d}-T_{\lambda(X)}\right)^{-1} c\right|>\alpha\left|\left(\operatorname{Id}-T_{\lambda(X)}\right)^{-1} c\right|$ for all $c \in \Sigma$.

Let $\sigma_{1}=\inf \left\{\mid\left(\operatorname{Id}-T_{\lambda(X)}\right)^{-1} c \| c \in \Sigma\right\}$ and $\sigma_{2}=\sup \left\{\mid\left(\operatorname{Id}-T_{\lambda(X)}\right)^{-1} c \| c \in\right.$ $\Sigma\}$. By Corollary 3.2 we can choose $\delta>0$ such that

$$
\sup _{c \in \Sigma}\left|\left(\left(\operatorname{Id}-T_{\lambda(X)}\right)^{-1}-\left(\mathrm{Id}-T_{\gamma}\right)^{-1}\right) c\right|<\alpha \sigma_{1} / 2
$$

for all $\gamma \in H Q \cap E^{-1}\left[0, \mu^{2}\right)$ with $d_{\infty}(\lambda(X), \gamma)<\delta$. For such a γ we then have

$$
\left|\widetilde{P}\left(\operatorname{Id}-T_{\gamma}\right)^{-1} c\right|>\alpha \sigma_{1} / 2>\alpha \sigma_{1} \sigma_{2}\left|\left(\operatorname{Id}-T_{\gamma}\right)^{-1} c\right| / 4
$$

for all $c \in \Sigma$. Hence if $Y \in T_{p} M$ with $\|\widetilde{P} Y\|<\mu$ and $d_{\infty}(\lambda(X), \lambda(Y))<$ δ, then $E(\lambda(Y))<\mu^{2}$ and

$$
\begin{aligned}
\left|\widetilde{P}\left(\mathbf{I d}-T_{\lambda(Y)}\right)^{-1} \theta Y\right| & =\|\widetilde{P} Y\|>\alpha \sigma_{1} \sigma_{2}\left|\left(\mathbf{I d}-T_{\lambda(Y)}\right)^{-1} \theta Y\right| / 4 \\
& \geq \alpha \sigma_{1} \sigma_{2}\|Y\| / 4
\end{aligned}
$$

This yields the claim. q.e.d.
Recall that a d_{c}-geodesic is a curve φ in M, which is parametrized proportional to arc length and realizes locally the d_{c}-distance of its curve points. If the closure of U in M is compact (which is always true if we choose U small enough), then every $u \in U$ can be joined to p by a minimizing d_{c}-geodesic (see $[6,17]$).

Any such geodesic which is parametrized on I is necessarily a critical point of E. This was stated in [17], however the proof provided there is only valid in the strong bracket generating case (where it also follows from the fact that the map R is of maximal rank on each nontrivial curve in $\left.H_{1}^{p}(I, U)\right)$. The general case was established by Bär [1]. In particular the map $\exp _{p}^{c}: \widetilde{U} \rightarrow U$ is surjective.

Corollary 4.3. Let $u \in U$ be a regular value of $\exp _{p}^{c}$. Then the set $\left(\exp _{p}^{c}\right)^{-1}(u) \cap\left\{Y \mid\|\widetilde{P} Y\|=d_{c}(p, u)\right\}$ is finite.

Proof. The set $A=\left(\exp _{p}^{c}\right)^{-1}(u) \cap\left\{Y \mid\|\widetilde{P} Y\|=d_{c}(p, u)\right\}$ is nonempty and closed in $T_{p} M$. Since u is a regular value for $\exp _{p}^{c}, A$ is moreover discrete. Assume that there is a sequence $\left\{X_{k}\right\} \subset A$ such that $\left\|X_{k}\right\| \rightarrow \infty$ $(k \rightarrow \infty)$. Then $\lambda\left(X_{k}\right)$ is a minimizing geodesic joining p to u; its energy equals $d_{c}(p, u)^{2}$. Thus by passing to a subsequence we may assume that the curves $\lambda\left(X_{k}\right)$ converges in $\left(C^{0}(I, U), d_{\infty}\right)$ to a curve φ which is necessarily a minimizing d_{c}-geodesic joining p to u. Then $\varphi=\lambda(X)$ for some $X \in A$ and Lemma 4.2 shows that there is $k_{0}>0$ and $\beta<\infty$ such that $\left\|X_{k}\right\|<\beta$ for all $k>k_{0}$. This contradicts the assumption that $\left\|X_{k}\right\| \rightarrow \infty$ and shows that A is bounded, hence finite.

5. Calculus of variation

Since the rank of $\exp _{p}^{c}$ at $0 \in T_{p} M$ is not maximal the above considerations do not necessarily imply that $\lambda(X)$ is a d_{c}-geodesic for every $X \in \widetilde{U}$, i.e., is locally minimizing with respect to d_{c}. To show that this is nevertheless true we compute the variation of the energy at the critical point $\lambda(X) \quad(X \in \widetilde{U})$.

Lemma 5.1 (First variational formula). Let $X \in T_{p} M$ be such that $\lambda(X)$ is defined on I and let $\psi:(-\varepsilon, \varepsilon) \rightarrow H Q$ be a variation of $\lambda(X)=$ ψ_{0} with variation vector field $Y=\left.\frac{\partial}{\partial s} \psi\right|_{s=0}$. Then $\left.\frac{d}{d s} E\left(\psi_{s}\right)\right|_{s=0}=\langle Y(1)$, $\tilde{\lambda}(X)(1)\rangle$.

Proof. With $\varphi=\lambda(X)$ we have

$$
\begin{aligned}
\left.\frac{d}{d s} E\left(\psi_{s}\right)\right|_{s=0}= & \int_{0}^{1}\left\langle\left(d \Theta_{\varphi} Y\right)(t), \theta \varphi^{\prime}(t)\right\rangle d t \\
= & \int_{0}^{1}\left\langle\left(d \Theta_{\varphi} Y\right)(t), \theta \tilde{\lambda}(X)(t)\right\rangle d t \\
= & \int_{0}^{1}\left\langle\frac{d}{d t} \theta Y(t), \theta \tilde{\lambda}(X)(t)\right\rangle d t \\
& +\int_{0}^{1}\left\langle\theta Y(t), a\left(\varphi^{\prime}(t), \theta \tilde{\lambda}(X)(t)\right)\right\rangle d t \\
= & \langle Y(1), \tilde{\lambda}(X)(1)\rangle . \quad \text { q.e.d. }
\end{aligned}
$$

Recall that $d \theta$ is a smooth 2-form on U with values in \mathbb{R}^{m}. Hence for $u \in U$ and every tangent vector $Y \in T_{u} M$ the derivative $Y(d \theta)$ of $d \theta$ in the direction of Y is a bilinear mapping of $T_{u} M$ into \mathbb{R}^{m} depending smoothly on Y.

It will be convenient, furthermore, to use the following notational convention: Recall that for every $u \in U$ the restriction of θ to $T_{u} M$ is a linear isomorphism of $T_{u} M$ onto \mathbb{R}^{m}, i.e., for every $W \in \mathbb{R}^{m^{u}}$ there is a unique $W(u) \in T_{u} M$ such that $\theta W(u)=W$. Thus whenever no confusion about the base point u is possible we can write $d \theta(W, Z)$ or $d \theta(W, Z(u))$ or $d \theta(W(u), Z)$ to denote the vector $d \theta(W(u), Z(u)) \in$ \mathbb{R}^{m}. Similarly we denote by $a(W)$ the linear map $a(W(u)) \quad(u \in U, W$, $Z \in \mathbb{R}^{m}$). With this convention the second variational formula for E can be expressed as follows:

Lemma 5.2 (Second variational formula). Let $X \in T_{p} M$ be such that $\lambda(X)$ is defined on I, and let $\psi:(-\varepsilon, \varepsilon)^{2} \rightarrow H Q$ be a 2-parameter variation of $\varphi=\psi(0,0)$ with fixed endpoints $\psi(-\varepsilon, \varepsilon)^{2}(1)=\varphi(1)$ and variation vector fields $Y=\left.\frac{\partial}{\partial s} \psi\right|_{u=s=0}, Z=\left.\frac{\partial}{\partial u} \psi\right|_{u=s=0}$. Then

$$
\begin{aligned}
& \left.\frac{\partial}{\partial u} \frac{\partial}{\partial s} E(\psi(u, s))\right|_{u=s=0} \\
& \quad=\int_{0}^{1}\left\langle\left(d \Theta_{\varphi} Z\right)(t),\left(d \Theta_{\varphi} Y\right)(t)-a(Y(t), \theta \tilde{\lambda}(X)(t))\right\rangle d t \\
& \quad+\int_{0}^{1} 2\left\langle(Z(t) d \theta)\left(\varphi^{\prime}(t), Y(t)\right), \theta \tilde{\lambda}(X)(t)\right\rangle d t
\end{aligned}
$$

Proof. Since

$$
\begin{aligned}
\left.\frac{\partial}{\partial u} \frac{\partial}{\partial s} E(\psi(u, s))\right|_{u=s=0}= & \int_{0}^{1}\left\langle\frac{\partial}{\partial u} \frac{\partial}{\partial s} \theta \frac{\partial}{\partial t} \psi, \theta \frac{\partial}{\partial t} \psi\right\rangle_{u=s=0} d t \\
& +\int_{0}^{1}\left\langle\left(d \Theta_{\varphi} Y\right)(t),\left(d \Theta_{\varphi} Z(t)\right)\right\rangle d t
\end{aligned}
$$

we have to transform the first integral. Define $W(t)=\left.\frac{\partial}{\partial u} \theta \frac{\partial}{\partial s} \Psi\right|_{u=s=0}$; then

$$
\frac{\partial}{\partial s} \theta \frac{\partial}{\partial t} \Psi=\frac{\partial}{\partial t} \theta \frac{\partial}{\partial s} \Psi+2 d \theta\left(\frac{\partial}{\partial t} \Psi, \frac{\partial}{\partial s} \Psi\right)
$$

yields

$$
\begin{aligned}
\left.\frac{\partial}{\partial u} \frac{\partial}{\partial s} \theta \frac{\partial}{\partial t} \Psi\right|_{u=s=0}= & \frac{d}{d t} W(t)+2 d \theta\left(\varphi^{\prime}(t), W(t)\right)+2 d \theta\left(d \Theta_{\varphi} Z(t), Y(t)\right) \\
& +2(Z(t) d \theta)\left(\varphi^{\prime}(t), Y(t)\right)
\end{aligned}
$$

Since $W(1)=0$ we have $\int_{0}^{1}\left\langle\left(d \Theta_{\varphi} W\right)(t), \theta \tilde{\lambda}(X)(t)\right\rangle d t=0$, i.e.,

$$
\begin{aligned}
\int_{0}^{1} & \left\langle\left(d \Theta_{\varphi} W\right)(t), \theta \varphi^{\prime}(t)\right\rangle d t \\
& =-\int_{0}^{1}\left\langle\left(d \Theta_{\varphi} W\right)(t),(\operatorname{Id}-\widetilde{P}) \theta \tilde{\lambda}(X)(t)\right\rangle d t
\end{aligned}
$$

But $\frac{\partial}{\partial u} \frac{\partial}{\partial s} \theta \frac{\partial}{\partial t} \psi \subset Q=\widetilde{P} \mathbb{R}^{m}$ shows

$$
\begin{aligned}
& \left(\widetilde{P}-\operatorname{Id}\left(d \Theta_{\varphi} W\right)(t)\right. \\
& \quad=(\operatorname{Id}-\widetilde{P})\left(2 d \theta\left(d \Theta_{\varphi} Z(t), Y(t)\right)+2(Z(t) d \theta)\left(\varphi^{\prime}(t), Y(t)\right)\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\int_{0}^{1} & \left\langle\left.\frac{\partial}{\partial u} \frac{\partial}{\partial s} \theta \frac{\partial}{\partial t} \Psi\right|_{u=s=0}, \theta \varphi^{\prime}(t)\right\rangle d t \\
& =\int_{0}^{1}\left\langle 2 d \theta\left(d \Theta_{\varphi} Z(t), Y(t)\right)+2(Z(t) d \theta)\left(\varphi^{\prime}(t), Y(t)\right), \theta \tilde{\lambda}(X)(t)\right\rangle d t
\end{aligned}
$$

and from this the lemma follows.
Remark 5.3. Assume again that M is a Lie group and that the vector fields X^{1}, \cdots, X^{m} are left-invariant. By Remark 2.8 we have $J(\varphi)=$ $\left\{X \in H_{1}^{e}(\varphi) \mid\left(d \Theta_{\varphi} X\right)(t)=A d_{\varphi(t)}^{*} c_{0}\right.$ for some $\left.c_{0} \in \mathfrak{M}\right\}$. For $Y \in \mathfrak{M}$ let $(\operatorname{ad}(Y))^{*}$ be the adjoint of the linear endomorphism $\operatorname{ad}(Y)$ of \mathfrak{M}. Then the formula of Lemma 5.2 reduces to

$$
\begin{aligned}
& \left.\frac{\partial}{\partial u} \frac{\partial}{\partial s} E(\Psi(u, s))\right|_{u=s=0} \\
& \quad \quad=\int_{0}^{1}\left\langle\left(d \Theta_{\varphi} Z\right)(t),\left(d \Theta_{\varphi} Y\right)(t)-(\operatorname{ad}(\theta Y(t)))^{*}(\theta \tilde{\lambda}(X)(t))\right\rangle d t
\end{aligned}
$$

Thus if Y is contained in the zero space of the Hessian of E at φ, then Y is a solution of the differential equation

$$
\begin{equation*}
\left(d \Theta_{\varphi} Y\right)(t)=\widetilde{P}\left(\operatorname{Ad}_{\varphi(t)}^{*} c_{0}+(\operatorname{ad}(\theta Y(t)))^{*}(\theta \tilde{\lambda}(X)(t))\right) \tag{3}
\end{equation*}
$$

for some $c_{0} \in \mathfrak{M}$. Every solution of (3) is uniquely determined by the choice of c_{0} and the initial condition $Y(0)$; in particular the dimension of the vector space of solutions of (3) vanishing at $t=0$ equals rank $R_{\varphi}=$ $\operatorname{dim} \Omega(\varphi)^{\perp}$ which in contrast to the fact that the Riemannian situation may be strictly smaller than $\operatorname{dim} M$.

Next we want to compute the zero space of the Hessian of E. For this the following notation will be useful: Given $\varphi \in H Q$ and $Z \in H_{0}\left(I, \mathbb{R}^{m}\right)$ there is a unique vector field $f Z \in H_{1}^{p}(\varphi)$ such that $Z(t)=\frac{d}{d t} \theta(f Z)(t)-$ $a\left(\varphi^{\prime}(t), \theta(f Z)(t)\right)$. Write also $(f Z)(t)=f_{0}^{t} Z(\tau) d \tau$. For every $W \in$ $H_{1}^{p}(\varphi)$ we then have

$$
\frac{d}{d t}\langle W(t),(f Z)(t)\rangle=\left\langle d \Theta_{\varphi} W(t), \theta(f Z)(t)\right\rangle+\langle\theta W(t), Z(t)\rangle
$$

Now if ω is a $(2,0)$-tensor on U with values in \mathbb{R}^{m}, then for each $u \in U$ and $X \in T_{u} M$ the assignment $Y \rightarrow \omega(X, Y)$ is a linear map of $T_{u} M$ into \mathbb{R}^{m}. We denote by $(\omega(X))^{*}$ its adjoint. With these notation we obtain

Corollary 5.4. Under the assumptions of Lemma 5.2 we have

$$
\begin{aligned}
& \left.\frac{\partial}{\partial u} \frac{\partial}{\partial s} E(\psi(u, s))\right|_{u=s=0} \\
& \quad=\int_{0}^{1}\left\langle d \Theta_{\varphi} Z(t), d \Theta_{\varphi} Y(t)-\theta f_{0}^{t} a\left(d \Theta_{\varphi} Y(\tau), \theta \tilde{\lambda}(X)(\tau)\right) d \tau\right. \\
& \left.\quad-\theta f_{0}^{t} 2\left((Y(\tau) d \theta)\left(\varphi^{\prime}(\tau)\right)\right)^{*} \theta \tilde{\lambda}(X)(\tau) d \tau\right\rangle d t
\end{aligned}
$$

Proof. The claim follows from Lemma 5.2 and the following computation:

$$
\begin{aligned}
& -\int_{0}^{1}\left\langle d \Theta_{\varphi} Y(t), a(Z(t), \theta \tilde{\lambda}(X)(t))\right\rangle d t \\
& \quad=\int_{0}^{1}\left\langle\theta Z(t), a\left(d \Theta_{\varphi} Y(t), \theta \tilde{\lambda}(X)(t)\right)\right\rangle d t
\end{aligned}
$$

and since $Z(1)=0$, integration by parts shows that the latter integral equals

$$
-\int_{0}^{1}\left\langle d \Theta_{\varphi} Z(t), \theta f_{0}^{t} a\left(d \Theta_{\varphi} Y(\tau), \theta \tilde{\lambda}(X)(\tau)\right) d \tau\right\rangle d t
$$

Analogously

$$
\begin{aligned}
\int_{0}^{1} & \left\langle(Y(t) d \theta)\left(\varphi^{\prime}(t), Z(t)\right), \theta \tilde{\lambda}(X)(t)\right\rangle d t \\
& =\int_{0}^{1}\left\langle\theta Z(t),\left((Y(t) d \theta)\left(\varphi^{\prime}(t)\right)\right)^{*} \theta \tilde{\lambda}(X)(t)\right\rangle d t \\
& =-\int_{0}^{1}\left\langle d \Theta_{\varphi} Z(t), \theta f_{0}^{t}\left((Y(\tau) d \theta)\left(\varphi^{\prime}(\tau)\right)\right)^{*} \theta \tilde{\lambda}(X)(\tau) d \tau\right\rangle d t . \quad \text { q.e.d. }
\end{aligned}
$$

Corollary 5.4 shows that if a field $Y \in H Q_{\varphi}$ is contained in the zero space of the Hessian of E at φ, then there is $\widetilde{Y} \in J(\varphi)$ such that

$$
\begin{align*}
& d \Theta_{\varphi} Y(t)=\tilde{P}\left(d \Theta_{\varphi} \tilde{Y}(t)+\theta f_{0}^{t} a\left(d \Theta_{\varphi} Y(\tau), \theta \tilde{\lambda}(X)(\tau)\right) d \tau\right. \\
&\left.+\theta f_{0}^{t} 2\left((Y(\tau) d \theta)\left(\varphi^{\prime}(\tau)\right)\right)^{*} \theta \tilde{\lambda}(X)(\tau) d \tau\right) \tag{4}
\end{align*}
$$

This differential equation can be transformed to a differential equation of the form $c^{\prime}(t)=f(t, c(t))$ for some smooth function $f: I \times V \rightarrow V$ which is linear in the second variable as follows (then $c(t)$ is interpreted as $\theta Y(t))$: We have

$$
\begin{aligned}
& a\left(d \Theta_{\varphi} Y(t), \theta \tilde{\lambda}(X)(t)\right) \\
&= \frac{d}{d t} a(Y(t), \theta \tilde{\lambda}(X)(t))-\left(\varphi^{\prime}(t) a\right)(Y(t), \theta \tilde{\lambda}(X)(t)) \\
&-a\left(Y(t), a\left(\varphi^{\prime}(t), \theta \tilde{\lambda}(X)(t)\right)\right) \\
& \quad+2 a\left(d \theta\left(\varphi^{\prime}(t), Y(t)\right), \theta \tilde{\lambda}(X)(t)\right),
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \theta f_{0}^{t} a\left(d \Theta_{\varphi} Y(t), \theta \tilde{\lambda}(X)(\tau)\right) d \tau \\
& \qquad \begin{aligned}
&=a(Y(t), \theta \tilde{\lambda}(X)(t))+\theta f_{0}^{t}\left(a\left(\varphi^{\prime}(\tau), a(Y(\tau), \theta \tilde{\lambda}(X)(\tau))\right)\right. \\
& \quad-\left(\varphi^{\prime}(\tau) a\right)(Y(\tau), \theta \tilde{\lambda}(X)(\tau)) \\
&-a\left(Y(\tau), a\left(\varphi^{\prime}(\tau), \theta \tilde{\lambda}(X)(\tau)\right)\right) \\
&\left.+2 a\left(d \theta\left(\varphi^{\prime}(\tau), Y(\tau)\right), \theta \tilde{\lambda}(X)(\tau)\right)\right) d \tau
\end{aligned} \\
& =\tilde{f}(t, \theta Y(t)),
\end{aligned}
$$

where $\tilde{f}: I \times V \rightarrow V$ is clearly linear in the second variable. Thus

$$
\begin{align*}
\frac{d}{d t} \theta Y(t)= & \widetilde{P}\left(d \Theta_{\varphi} \widetilde{Y}(t)+\tilde{f}(t, \theta Y(t))\right. \\
& \left.+\theta f_{0}^{t}\left((Y(\tau) d \theta)\left(\varphi^{\prime}(\tau)\right)\right)^{*} \theta \tilde{\lambda}(X)(\tau) d \tau\right) \\
& -2 d \theta\left(\varphi^{\prime}(t), Y(t)\right)
\end{align*}
$$

is clearly an equation of the required form.
Thus for every $\widetilde{Y} \in J(\varphi)$ and every $Y_{0} \in T_{p} M$ there is a unique solution Y of (4) with initial condition $Y(0)=Y_{0}$. Such a field is called a Jacobi field along φ.

By the linearity of $\left(4^{\prime}\right)$ the Jacobi fields along φ form a vector space of dimension $m+\operatorname{rank} R_{\varphi}$, and the zero space of the Hessian of E at φ consists exactly of the space of Jacobi fields along φ vanishing at $t=0$ and $t=1$.

As in the Riemannian situation the space of Jacobi fields vanishing at $t=0$ equals the space of variational vector fields along φ of variations by geodesics.

Lemma 5.5. Let $\psi(s, t)=\lambda\left(X_{1}+s X_{2}\right)(t)$ for some $X_{1}, X_{2} \in V$. Then $\left.\frac{\partial}{\partial s} \psi\right|_{s=0}$ is the Jacobi field Y along $\varphi=\psi_{0}$ with initial condition $Y(0)=0$ which is determined by the field $\widetilde{Y} \in J(\varphi)$ with $d \Theta_{\varphi} \widetilde{Y}(0)=X_{2}$.

Proof. Let $\alpha(s, t)=(1-\widetilde{P}) \theta \tilde{\lambda}\left(X_{1}+s X_{2}\right)(t)$ and define $Y(t)=$ $\left.\frac{\partial}{\partial s} \psi(s, t)\right|_{s=0}$. Since

$$
\frac{\partial}{\partial t} \theta \frac{\partial}{\partial t} \psi+\frac{\partial}{\partial t} \alpha-a\left(\frac{\partial}{\partial t} \psi, \theta \frac{\partial}{\partial t} \psi+\alpha\right) \equiv 0
$$

and

$$
\left.\frac{\partial}{\partial s} \theta \frac{\partial}{\partial t} \psi\right|_{s=0}=d \Theta_{\varphi} Y
$$

we have

$$
\begin{aligned}
\left(\frac{\partial}{\partial s} \frac{\partial}{\partial t} \theta \frac{\partial}{\partial t} \psi+\frac{\partial}{\partial s} \frac{\partial}{\partial t} \alpha\right)_{s=0}= & \frac{d}{d t} d \Theta_{\varphi} Y+\left.\frac{\partial}{\partial t} \frac{\partial}{\partial s} \alpha\right|_{s=0} \\
= & (Y(t) a)\left(\varphi^{\prime}(t), \theta \varphi^{\prime}(t)+\alpha(0, t)\right) \\
& +a\left(d \Theta_{\varphi} Y(t), \theta \varphi^{\prime}(t)+\alpha(0, t)\right) \\
& +a\left(\varphi^{\prime}(t), d \Theta_{\varphi} Y(t)+\left.\frac{\partial}{\partial s} \alpha\right|_{s=0}\right)
\end{aligned}
$$

which means

$$
\begin{gathered}
\frac{d}{d t}\left(d \Theta_{\varphi} Y(t)+\left.\frac{\partial}{\partial s} \alpha\right|_{s=0}\right)-a\left(\varphi^{\prime}(t), d \Theta_{\varphi} Y(t)+\left.\frac{\partial}{\partial s} \alpha\right|_{s=0}\right) \\
\quad=(Y(t) a)\left(\varphi^{\prime}(t), \theta \tilde{\lambda}\left(X_{1}\right)(t)\right)+a\left(d \Theta_{\varphi} Y(t), \theta \tilde{\lambda}\left(X_{1}\right)(t)\right)
\end{gathered}
$$

Let $\widetilde{Y} \in J(\varphi)$ be such that $d \Theta_{\varphi} \widetilde{Y}(0)=X_{2}=d \Theta_{\varphi} Y(0)+\frac{\partial}{\partial s} \alpha(0,0)$. Since by Lemma $2.5 \frac{d}{d t} d \Theta_{\varphi} \widetilde{Y}(t)-a\left(\varphi^{\prime}(t), d \Theta_{\varphi} \widetilde{Y}(t)\right)=0$, it follows from the above equation that

$$
\begin{aligned}
d \Theta_{\varphi} Y(t)+\frac{\partial}{\partial s} \alpha= & \theta f_{0}^{t}\left((Y(\tau) a)\left(\varphi^{\prime}(\tau), \theta \tilde{\lambda}\left(X_{1}\right)(\tau)\right)\right) d \tau \\
& +\theta f_{0}^{t} a\left(d \Theta_{\varphi} Y(\tau), \theta \tilde{\lambda}\left(X_{1}\right)(\tau)\right) d \tau+d \Theta_{\varphi} \tilde{Y}(t)
\end{aligned}
$$

hence we only have to show that $(Y(t) a)(Z, W)=2((Y(t) d \theta) Z)^{*} W$ for all $Z, W \in \mathbb{R}^{m}$. Let $X \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
\frac{\partial}{\partial s}\left\langle a_{\psi(s, t)}(Z, W), X\right\rangle_{s=0} & =\langle(Y(t) a)(Z, W), X\rangle_{s=0} \\
& =2 \frac{\partial}{\partial s}\left\langle W, d \theta_{\psi(s, t)}(Z, X)\right\rangle_{s=0} \\
& =2\langle W,(Y(t) d \theta)(Z, X)\rangle \\
& =2\left\langle((Y(t) d \theta) Z)^{*} W, X\right\rangle
\end{aligned}
$$

which implies $(Y(t) a)(Z, W)=2((Y(t) d \theta) Z)^{*} W$ as required.
Remark 5.6. (a) For $X \in T_{p} M$ let $\operatorname{null}(X)$ be the dimension of the vector space of Jacobi fields along $\lambda(X)$ vanishing at $\lambda(X)(0)$ and $\lambda(X)(1)$. It then follows from Corollary 5.4 and Lemma 5.5 that the rank of $\exp _{p}^{c}$ at X equals rank $R_{\lambda(X)}-\operatorname{null}(X)$. In particular if $\widetilde{X} \in T_{\lambda(X)(1)} M$ is such that $\lambda(\widetilde{X})(t)=\lambda(X)(1-t)$, then the rank of $\exp _{\lambda(X)(1)}^{c}$ at \widetilde{X} equals the rank of $\exp _{p}^{c}$ at X.
(b) By Sard's theorem almost every $u \in U$ is a regular value for $\exp _{p}^{c}$. If $u \in U$ is such a point, then (a) shows that p is a regular value for $\exp _{u}^{c}$. Let $X \in T_{p} M$ be such that $t \rightarrow \exp _{p}^{c} t X$ is a minimizing geodesic joining p to u. Then $\exp _{p}^{c}$ has maximal rank at X and hence by (a) and 5.4 and 5.5 the zero space of the Hessian of E at $\lambda(X)$ vanishes. Since $\lambda(X)$ is minimizing, this means that the Hessian of E at $\lambda(X)$ is positive definite.

We now have a closer look at the Hessian of E at the critical point φ. Assume that $\rho \leq 2$ as in the beginning of this section is sufficiently small such that the closed d_{c}-ball of radius ρ around p is compact. For
$X \in T_{p} M$ with $\|\widetilde{P} X\|<\rho, \varphi=\lambda(X)$ is defined on I and thus can be viewed as an element of $H Q$. For $Y, Z \in H Q_{\varphi}$ define

$$
\begin{aligned}
I_{X}(Y, Z)= & \int_{0}^{1}\left\langle\left(d \Theta_{\varphi} Z\right)(t),\left(d \Theta_{\varphi} Y\right)(t)-a(Y(t), \theta \tilde{\lambda}(X)(t))\right\rangle d t \\
& +\int_{0}^{1} 2\left\langle(Z(t) d \theta)\left(\varphi^{\prime}(t), Y(t)\right), \theta \tilde{\lambda}(X)(t)\right\rangle d t
\end{aligned}
$$

Then we have
Lemma 5.7. There is $\kappa \in(0, \rho / 2]$ such that $I_{X}(Y, Y)>0$ for all $X \in T_{p} M$ with $\|X\|<\kappa$ and all $0 \neq Y \in H Q_{\lambda(X)}$.

Proof. Since $\lambda(s X)(t)=\lambda(X)(s t)$ for all $X \in T_{p} M$ and $s, t \in I$, it suffices to show that there is $\kappa \in(0, \rho / 2]$ such that for all $X \in T_{p} M$ with $\|\widetilde{P} X\|=\rho / 2$, all $\delta<\kappa /\|X\|$, and all $Y \in H Q_{\lambda(X)}$ which do not vanish identically on $[0, \delta]$ we have

$$
\begin{aligned}
I_{\delta}(Y, Y)= & \int_{0}^{\delta}\left\langle\left(d \Theta_{\varphi} Y\right)(t),\left(d \Theta_{\varphi} Y\right)(t)-a(Y(t), \theta \tilde{\lambda}(X)(t))\right\rangle d t \\
& +\int_{0}^{\delta} 2\left\langle(Y(t) d \theta)\left(\varphi^{\prime}(t), Y(t)\right), \theta \tilde{\lambda}(X)(t)\right\rangle d t>0
\end{aligned}
$$

where as before $\varphi=\lambda(X)$. To show this let B be the compact d_{c}-ball of radius $\rho / 2$ around p. Then there is $c \geq 1$ such that for all $u \in B$, all $W, \widetilde{W} \in \mathbb{R}^{m}$, and $Z \in T_{u} M$
(i) $\left\|d \theta_{u}(W, \widetilde{W})\right\| \leq c\|W\|\|\widetilde{W}\|$,
(ii) $\left\|a_{u}(W, \widetilde{W})\right\| \leq c\|W\|\|\widetilde{W}\|$,
(iii) $\|(Z d \theta)(W, \widetilde{W})\| \leq c\|Z\|\|W\|\|\widetilde{W}\| / 2$.

Now if $Y \in H Q_{\varphi}$, then $Y(0)=0$ and consequently $\theta Y(t)=\int_{0}^{t} \frac{d}{d s} \theta Y(s) d s$ for all $t \in I$. Since $\varphi(I) \subset B$ and $\frac{d}{d s} \theta Y(s)=\left(d \Theta_{\varphi} Y\right)(s)-2 d \theta\left(\varphi^{\prime}(s), Y(s)\right)$ it follows from (i) and $\left\|\theta \varphi^{\prime}(s)\right\|=\rho / 2 \leq 1$ for all $s \in I$ that

$$
\int_{0}^{t}\left\|\frac{d}{d s} \theta Y(s)\right\| d s \leq \int_{0}^{t}\left\|\left(d \Theta_{\varphi} Y\right)(s)\right\| d s+c \int_{0}^{t}\|Y(s)\| d s
$$

For $s \leq t$ we have $\|Y(s)\| \leq \int_{0}^{t}\left\|\frac{d}{d u} \theta Y(u)\right\| d u$, hence

$$
\int_{0}^{t}\left\|\frac{d}{d s} \theta Y(s)\right\| d s \leq \int_{0}^{t}\left\|\left(d \Theta_{\varphi} Y\right)(s)\right\| d s+c t \int_{0}^{t}\left\|\frac{d}{d s} \theta Y(s)\right\| d s
$$

Thus if $t \leq 1 / c$, then

$$
\begin{aligned}
\|Y(t)\|^{2} \leq\left(\int_{0}^{t} \| \frac{d}{d s}\right. & \theta Y(s) \| d s)^{2} \\
& \leq(1-c t)^{-2}\left(\int_{0}^{t}\left\|\left(d \Theta_{\varphi} Y\right)(s)\right\| d s\right)^{2} \\
& \leq \frac{t}{(1-c t)^{2}} \int_{0}^{t}\left\|\left(d \Theta_{\varphi} Y\right)(s)\right\|^{2} d s
\end{aligned}
$$

Now (ii) and (2) for $\theta \tilde{\lambda}(X)$ show $\left\|\frac{d}{d t} \tilde{\lambda}(X)(t)\right\| \leq c\|\tilde{\lambda}(X)(t)\|$ and consequently $\|\tilde{\lambda}(X)(t)\| \leq e^{c t}\|X\|$. Thus for $\delta<1 / c$ we obtain

$$
\begin{aligned}
& \left|\int_{0}^{\delta}\left\langle\left(d \Theta_{\varphi} Y\right)(t), a d^{*}(\theta Y(t), \theta \tilde{\lambda}(X)(t))\right\rangle d t\right| \\
& \quad \leq\left(\int_{0}^{\delta}\left\|\left(d \Theta_{\varphi} Y\right)(t)\right\|^{2} d t\right)^{1 / 2}\left(\int_{0}^{\delta}\left\|a d^{*}(\theta Y(t), \theta \tilde{\lambda}(X)(t))\right\|^{2} d t\right)^{1 / 2} \\
& \quad \leq c e^{c \delta}\|X\|\left(\int_{0}^{\delta}\left\|\left(d \Theta_{\varphi} Y\right)(t)\right\|^{2} d t\right)^{1 / 2}\left(\int_{0}^{\delta}\|Y(t)\|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

Inserting $\|Y(t)\|^{2} \leq\left(\delta /(1-c \delta)^{2}\right) \int_{0}^{\delta}\left\|\left(d \Theta_{\varphi} Y\right)(s)\right\| d s \quad(t \leq \delta)$, this yields

$$
\begin{aligned}
& \left|\int_{0}^{\delta}\left\langle\left(d \Theta_{\varphi} Y\right)(t), a d^{*}(\theta Y(t), \theta \tilde{\lambda}(X)(t))\right\rangle d t\right| \\
& \quad \leq(\delta /(1-c \delta)) c e^{\delta \delta}\|X\| \int_{0}^{\delta}\left\|\left(d \Theta_{\varphi} Y\right)(t)\right\|^{2} d t
\end{aligned}
$$

On the other hand it follows from (iii) that

$$
\begin{aligned}
& \left|\int_{0}^{\delta} 2\left\langle(Y(t) d \theta)\left(\varphi^{\prime}(t), Y(t)\right), \theta \tilde{\lambda}(X)(t)\right\rangle d t\right| \\
& \quad \leq c\left(\int_{0}^{\delta}\|Y(t)\|^{2} d t\right)\left(\int_{0}^{\delta}\|\tilde{\lambda}(X)(t)\| d t\right) \\
& \quad \leq\left(\delta^{3} /(1-c \delta)^{2}\right) c e^{c \delta}\|X\| \int_{0}^{\delta}\left\|\left(d \Theta_{\varphi} Y\right)(t)\right\|^{2} d t
\end{aligned}
$$

Thus if we choose $\delta>0$ sufficiently small that

$$
\delta /(1-c \delta)<\min \left\{1,(2 c\|X\|)^{-1}\right\}
$$

then $I_{\delta}(Y, Y)$ is not smaller than a positive multiple of $\int_{0}^{\delta}\left\|\left(d \Theta_{\varphi} Y\right)(t)\right\|^{2} d t$ which is positive for all $Y \in H Q_{\varphi}$ not vanishing identically on $[0, \delta]$. This is the claim.

Corollary 5.8. $\exp _{p}^{c}$ is of maximal rank on an open and dense subset of $\left\{X \in T_{p} M \mid\|X\|<\kappa\right\}$.

Proof. We argue by contradiction and assume that there is an open subset U of $\left\{X \in T_{p} M \mid\|X\|<\kappa\right\}$ such that $\exp _{p}^{c}$ is singular at every $X \in U$. By ev. diminishing the size of U we may assume that the rank of $\exp _{p}^{c}$ is constant on U and that $\exp _{p}^{c} U$ is a smooth embedded submanifold N of M of dimension $n=\left.\operatorname{rank} \exp _{p}^{c}\right|_{U}<m$. For $X \in U$ the tangent space of N at $u=\exp _{p}^{c} \quad X$ equals the vector space of all endpoints of Jacobi fields along $\lambda(X)$, which vanish at $p=\lambda(X)(0)$, and by 5.6,5.7, and the choice of U this space is just $\left\{Y(1) \mid Y \in H Q_{\lambda(X)}\right\}$. This means in particular that Q_{u} is contained in $T_{u} N$ for all $u \in N$. Hence for all $u \in N, T_{u} N$ contains the span at u of the Lie algebra generated by Q_{u}. This span is $T_{u} M$ since Q is bracket generating which implies the contradiction $m>\operatorname{dim} N=\operatorname{dim} T_{u} N \geq \operatorname{dim} T_{u} M=m$.

Corollary 5.9. Every critical point of E is a geodesic with respect to d_{c}.
Proof. Let $X \in T_{p} M$ with $\|X\|=\kappa$, let $\varphi=\lambda(X)$, and assume $\operatorname{rank} R_{\varphi}=n \leq m$. Then $W=\left\{d \Theta_{\varphi} Y(1)_{\varphi(1)} \mid Y \in J(\varphi), P Y=0\right\}$ is an ($m-n$)-dimensional subspace of $T_{\varphi(1)} M$.

Choose a smooth ($m-n$)-dimensional submanifold S of U containing $\varphi(1)$ with the property that W is the tangent space of S at $\varphi(1)$. Then $\Lambda=\left\{\psi \in H_{1}^{p}(I, U) \mid \psi(1) \in S\right\}$ is a smooth submanifold of $H_{1}^{p}(I, U)$. By Remark 2.7 for every $\psi \in \Lambda$ the g_{ψ}-orthogonal complement of the tangent space Λ_{ψ} of Λ at ψ consists of all $Y \in J(\psi)$ with $d \Theta_{\psi} Y(1)_{\psi(1)} \in(T S)^{\perp}$. By the definition of W this means that $H Q$ meets Λ transversally at φ. Moreover the g_{φ}-orthogonal complement of the intersection $\Lambda_{\varphi} \cap H Q_{\varphi}$ in $H Q_{\varphi}$ is just $\Omega(\varphi)^{\perp}$. Thus there is an open neighborhood A of φ in $H Q$ such that $A \cap \Lambda$ is a smooth submanifold of $H Q$ and φ is a critical point of the restriction of E to $A \cap \Lambda$.

By Lemma 5.7 the Hessian of $\left.E\right|_{A \cap \Lambda}$ at φ is positive definite. Hence there is an open neighborhood B of φ in $A \cap \Lambda$ such that $E(\psi)>E(\varphi)$ for all $\psi \in B$, say B is the intersection of $A \cap \Lambda$ with the preimage under Θ of a 2ε-neighborhood of $\theta \varphi^{\prime}$ in the Hilbert space $H_{0}(I, Q)$ for some $\varepsilon>0$.

Assume that there is $\tau \in[0,1-\varepsilon]$ such that $d_{c}(\varphi(\tau), \varphi(\tau+\varepsilon))<$ $\|\widetilde{P} X\| \varepsilon$. Let $\psi:[\tau, \tau+\varepsilon] \rightarrow U$ be a minimizing geodesic joining $\psi(\tau)=$ $\varphi(\tau)$ to $\psi(\tau+\varepsilon)=\varphi(\tau+\varepsilon)$. Then the curve

$$
t \rightarrow \begin{cases}\varphi(t) & \text { if } t \in[0, \tau] \cup[\tau+\varepsilon, 1] \\ \psi(t) & \text { if } t \in[\tau, \tau+\varepsilon]\end{cases}
$$

is contained in B (recall $\|X\|=\kappa \leq 1$) and its energy is strictly smaller than $E(\varphi)$. This is a contradiction.

6. Isometries

In this section we investigate isometries of CC-metrics and show that they are necessarily smooth maps. Let $f:\left(M, d_{c}\right) \rightarrow\left(\widetilde{M}, \widetilde{d}_{c}\right)$ be an isometry. Then f is a homeomorphism which maps the space of H_{1} curves in M which are tangent almost everywhere to Q onto the space of H_{1}-curves in \widetilde{M} which are tangent almost everywhere to the distribution \widetilde{Q} inducing \tilde{d}_{c}.

Let $p \in M$ and let U be an open neighborhood of p in M such that $\left.T M\right|_{U}$ and $\left.T \widetilde{M}\right|_{f(U)}$ admit admissible trivializations X^{1}, \cdots, X^{m} and $\widetilde{X}^{1}, \cdots, \tilde{X}^{m}$ as before. Then the assignment $\varphi \rightarrow f \circ \varphi$ is a bijection of $H Q=\left\{\varphi \in H_{1}^{p}(I, U) \mid \varphi^{\prime}(t) \in Q\right.$ for almost all $\left.t \in I\right\}$ onto

$$
H \widetilde{Q}=\left\{\varphi \in H_{1}^{f(p)}(I, f(U)) \mid \varphi^{\prime}(t) \in \widetilde{Q} \quad \text { for almost all } t \in I\right\}
$$

Now if $\varphi: I \rightarrow U$ is an element of $H Q$, then φ is rectifiable with respect to d_{c}, and moreover $\left\|\varphi^{\prime}(t)\right\|$ equals the dilation of φ at t for almost every $t \in I$, i.e.,

$$
\left\|\varphi^{\prime}(t)\right\|=\limsup _{\varepsilon \rightarrow 0} \frac{d_{c}(\varphi(t), \varphi(t+\varepsilon))}{\varepsilon}
$$

(see $[14,17]$). Since f is an isometry, this means $\left\|(f \varphi)^{\prime}(t)\right\|_{\widetilde{Q}}=\left\|\varphi^{\prime}(t)\right\|$ for almost every $t \in I$, i.e., the map $\varphi \rightarrow f \circ \varphi$ commutes with the energy function.

The above trialization of $T M$ on U gives rise to an exponential map $\exp _{p}^{c}$ at p as before, which is defined on an open star-shaped neighborhood W of 0 in $T_{p} M$. In the same way an exponential map $\exp _{f(p)}^{c}$ at $f(p)$ is defined on an open neighborhood \widetilde{W} of 0 in $T_{f(p)} \widetilde{M}$. For $X \in W$, define $\lambda(X) \in H Q$ by $\lambda(X)(t)=\exp _{p}^{c} t X \quad(t \in I)$, i.e., we assume in the sequel always that $\lambda(X)$ is parametrized on I. It follows from Corollary 5.9 that for every $X \in W$ there is $\widetilde{X} \in \widetilde{W}$ such that $F \lambda(X)=f \circ \lambda(X)=\lambda(\widetilde{X})$, i.e., the map $F: \lambda(X) \rightarrow f \circ \lambda(X)$ is a bijection of the space of geodesics in U, which emanate from p and are parametrized on I onto the space of geodesics in $f(U)$ which emanate from $f(p)$ and are parametrized on I. Notice that $\widetilde{X} \in T_{f(p)} \widetilde{M}$ with $\lambda(\widetilde{X})=F \lambda(X)$ is not necessarily unique.

Lemma 6.1. Let $X \in T_{p} M, \widetilde{X} \in T_{f(p)} \widetilde{M}$, and $F \lambda(X)=\lambda(\widetilde{X})$. If $\exp _{p}^{c}$ is of maximal rank at X and $\exp _{f(p)}^{c}$ is of maximal rank at \tilde{X}, then:
(i) $f \exp _{p}^{c} t X=\exp _{f(p)}^{c} t \tilde{X}$ for all t for which $\exp _{p}^{c} t X$ is defined,
(ii) there is an open neighborhood Ω of X in $T_{p} M$, which is mapped by $\exp _{p}^{c}$ diffeomorphically into U, and a diffeomorphism Ψ of $f\left(\exp _{p}^{c} \Omega\right)$ into $T_{f(p)} \widetilde{M}$ such that $F \lambda(Y)=\lambda\left(\Psi \circ f \circ \exp _{p}^{c} Y\right)$ for all $Y \in \Omega$.

Proof. (i) Assume that there is $\nu>1$ such that $f \exp _{p}^{c} \nu X \neq \exp _{f(p)}^{c} \nu \widetilde{X}$. Since $t \rightarrow f \exp _{p}^{c} t X \quad(t \in[0, \nu])$ is a geodesic in \widetilde{M} there is $Y \in T_{f(p)} \widetilde{M}$ such that $f \exp _{p}^{c} t X=\exp _{f(p)}^{c} t Y$ for all $t \in[0, \nu]$. Now $\exp _{f(p)}^{c} \nu Y \neq$ $\exp _{f(p)}^{c} \nu \widetilde{X}$ shows $\tilde{X} \neq Y$. On the other hand $\lambda(Y)=F \lambda(X)=\lambda(\tilde{X})$ which means $\widetilde{P}\left(\operatorname{Id}-T_{\lambda(\widetilde{X})}\right)^{-1} Y=\widetilde{P}\left(\operatorname{Id}-T_{\lambda(\widetilde{X})}\right)^{-1} \widetilde{X}$ (compare Lemma 2.6) or $\widetilde{P}\left(\operatorname{Id}-T_{\lambda(\widetilde{X})}\right)^{-1}(Y-\widetilde{X})=0$ in contradiction to rank $R_{\lambda(\widetilde{X})}=m$.
(ii) By the assumptions on X and $\widetilde{\sim}$ there are open neighborhoods B of X in $T_{p} M$ and \widetilde{B} of \widetilde{X} in $T_{f(p)} \widetilde{M}$ with the following properties:
(i) $\exp _{p}^{c}$ maps B diffeomorphically onto an open neighborhood A of u in U.
(ii) There is a diffeomorphism $\bar{\Psi}$ of $f A$ onto \widetilde{B} such that $\exp _{f(p)}^{c} \propto \bar{\Psi}$ $=\mathrm{Id}_{f A}$.

Assume that \widetilde{B} contains the 2δ-neighborhood of \widetilde{X} in $T_{p} \widetilde{M}$. If the lemma does not hold, then there is a sequence $\left\{X_{k}\right\} \subset B$ with $X_{k} \rightarrow X$ $(k \rightarrow \infty)$ such that $F \lambda\left(X_{k}\right)=\lambda\left(Y_{k}\right)$ for some $Y_{k} \in T_{f(p)} \widetilde{M}$ with $\| Y_{k}-$ $\tilde{X} \|>\delta$ for all $k>0$. Since $d_{\infty}\left(\lambda(\tilde{X}), \lambda\left(Y_{k}\right)\right) \rightarrow 0(k \rightarrow \infty)$, Lemma 4.2 shows that the sequence $\left\{Y_{k}\right\} \subset T_{f(p)} \widetilde{M}$ is bounded; hence passing to a subsequence we may assume that $\left\{Y_{k}\right\}_{k}$ converges to some $Y \in T_{f(p)} \widetilde{M}$. Clearly $\|Y-\widetilde{X}\| \geq \delta$. Since $d_{\infty}\left(\lambda\left(Y_{\tilde{k}}\right), \lambda(Y)\right) \rightarrow 0(k \rightarrow \infty)$, it follows that $\lambda(Y)=\lambda(\widetilde{X})$. But this means $\widetilde{P}\left(\operatorname{Id}-T_{\lambda(\widetilde{X})}\right)^{-1} Y=\widetilde{P}\left(\operatorname{Id}-T_{\lambda(\widetilde{X})}\right)^{-1} \widetilde{X}$ or $\widetilde{P}\left(\operatorname{Id}-T_{\lambda(\widetilde{X})}\right)^{-1}(Y-\widetilde{X})=0$ in contradiction to rank $R_{\lambda(\widetilde{X})}=m$. This shows the claim. q.e.d.

Now we are ready to show
Theorem 6.2. An isometry $\left(M, d_{c}\right) \rightarrow\left(\widetilde{M}, \tilde{d}_{c}\right)$ is smooth.
Proof. We show first that an isometry $f:\left(M, d_{c}\right) \rightarrow\left(\widetilde{M}, \tilde{d}_{c}\right)$ is smooth on an open dense subset of M. This follows from a successive application of the following.

Sublemma. Let $N \subset M$ be a smooth embedded submanifold of dimension $n<m$. Assume that the restriction of f to N is smooth. Then for
every point p of an open dense subset of N there is an open neighborhood U of p in N and a smooth $(n+1)$-dimensional embedded submanifold \bar{N} of M containing U such that the restriction of f to \bar{N} is smooth.

To show the sublemma observe that since Q is bracket generating, N contains an open dense subset with the property that for every p of this set the tangent space $T_{p} N$ of N at p does not contain Q_{p}.

Since, as an isometry of $\left(M, d_{c}\right)$ onto $\left(\widetilde{M}, \tilde{d}_{c}\right), f$ is absolutely continuous with respect to Lebesgue measure (compare [12]), there is $Y \in T_{p} M$ such that $\widetilde{P} Y$ is transversal to N at $p, u=\lambda(Y)(1)$ is a regular value for $\exp _{p}^{c}$, and $f(u)$ is a regular value for $\exp _{f(p)}^{c}$. Let $X \in T_{u} M$ be such that $\lambda(X)(t)=\lambda(Y)(1-t)$. By Remark $5.6 p$ is a regular value for $\exp _{u}^{c}$, and $f(p)$ is a regular value for $\exp _{f(u)}^{c}$. Choose $\Omega \subset T_{u} M$ and $\Psi: f\left(\exp _{u}^{c} \Omega\right) \rightarrow T_{f(u)} \widetilde{M}$ as in Lemma 6.1. Then $\Omega \cap\left(\exp _{u}^{c}\right)^{-1}(N)=W$ is a smooth submanifold of Ω. Since the restriction of f to N is smooth, the same is true for the restriction of $D f=\Psi \circ f \circ \exp _{u}^{c}$ to W. Since $\lambda(X)$ meets N transversally at $\lambda(X)(1)$, there is an open neighborhood B of X in W and a number $\varepsilon>0$ such that $\bar{N}=\left\{\exp _{u}^{c} t Y \mid Y \in\right.$ $B, t \in(1-\varepsilon, 1+\varepsilon)\}$ is a smooth embedded submanifold of M. But $f \exp _{u}^{c} t Y=\exp _{f(u)}^{c} t(D f Y)$ for all $Y \in B$ and $t \in(1-\varepsilon, 1+\varepsilon)$ shows that the restriction of f to \bar{N} is smooth. This finishes the proof of the sublemma.

To finish the proof of the theorem let $p \in M$ be arbitrary. Then there is a regular value $w \in M$ of $\exp _{p}^{c}$ such that $f(w)$ is a regular value of $\exp _{f(p)}^{c}$ and f is smooth near w. Let $\lambda(Y)\left(Y \in T_{p} M\right)$ be a minimizing geodesic joining p to w, and let Ω and Ψ be as in Lemma 6.1. If we choose Ω sufficiently small, then $D f=\Psi \circ f \circ \exp _{p}^{c}$ is a diffeomorphism of Ω into $T_{f(p)} \widetilde{M}$ such that $F \lambda(Z)=\lambda(D f Z)$ for all $Z \in \Omega$. Lemma 6.1 shows $f \exp _{p}^{c} t Z=\exp _{f(p)}^{c} t(D f Z)$ for all $Z \in \Omega$ and all t for which both sides are defined.

For $Z \in \Omega$, define $\alpha(Z)=-\tilde{\lambda}(Z)(1)$ and $\beta(Z)=-\tilde{\lambda}(D f Z)(1)$, where $\tilde{\lambda}(Z)$ is as before. Then α and β are smooth maps of Ω into $T M$ and $T \widetilde{M}$, resp., and $\exp _{\lambda(Z)(1)}^{c}$ is of maximal rank at $\alpha(Z)$ and $\exp _{f \lambda(Z)(1)}^{c}$ is of maximal rank at $\beta(Z)$. Hence there is a compact neighborhood K of Y in Ω and $\varepsilon>0$ such that, for every $Z \in K$, $\exp _{\lambda(Z)(1)}^{c}$ and $\exp _{f \lambda(Z)(1)}^{c}$ are of maximal rank at $(1+\varepsilon) \alpha(Z)$ and $(1+\varepsilon) \beta(Z)$ respectively.

Since $\{\varepsilon Z \mid-Z \in K\}$ has nonempty interior, Corollary 5.8 shows that there is $W \in K$ such that $\lambda(-\varepsilon W)(1)=u$ is a regular value for $\exp _{p}^{c}$, and $f(u)$ is a regular value for $\exp _{f(p)}^{c}$.

Let $X=-(1+\varepsilon) \tilde{\lambda}(W)(-\varepsilon)$ and $\tilde{X}=-(1+\varepsilon) \tilde{\lambda}(D f W)(-\varepsilon)$. We have $\lambda(X)(t)=\exp _{p}^{c}((1+\varepsilon) t-\varepsilon) W$ and $\lambda(\tilde{X})(t)=\exp _{f(p)}^{c}((1+\varepsilon) t-\varepsilon)(D f W)$, and consequently $F \lambda(X)=\lambda(\widetilde{X})$.

By Lemma 6.1 there is an open neighborhood B of X in $T_{u} M$ and a diffeomorphism Φ of B into $T_{f(u)} \widetilde{M}$ such that $F \lambda(Z)=\lambda(\Phi Z)$ for all $Z \in B$. Since $\exp _{u}^{c}$ is of maximal rank at $\varepsilon X /(1+\varepsilon)$, for sufficiently small B the map $Z \rightarrow \lambda(Z)(\varepsilon /(1+\varepsilon))$ is a diffeomorphism of B onto an open neighborhood of p. But $f \lambda(Z)(t)=\lambda(\Phi Z)(t)$ for all $t \in I$ and $Z \in B$ then implies that f is smooth near p. Hence the proof of the theorem is finished.

7. The strong bracket generating case

In this section we investigate the group of isometries of a CC-metric d_{c} which is induced by a distribution Q satisfying the strong bracket generating hypothesis (see [17]), i.e., for every nonzero section X of Q, $T M$ is generated by Q and $[X, Q]$.

Let N be the annihilator of Q in the cotangent bundle $T^{*} M$ of M. N is a smooth $k=(m-q)$-dimensional subbundle of $T^{*} M$.

Lemma 7.1. Every Riemannian metric on Q gives rise to a unique Riemannian metric on N.

Proof. Let $p \in M, 0 \neq \omega_{p} \in N_{p}$, and let ω be a local section of N through ω_{p}. If X, Y are local sections of Q near p, then

$$
d \omega(X, Y)=\frac{1}{2}\{X(\omega(Y))-Y(\omega(X))-\omega([X, Y])\}=-\frac{1}{2} \omega([X, Y])
$$

in particular $d \omega\left(X_{p}, Y_{p}\right)$ only depends on ω_{p}, not on the choice of the extension ω. Since the commutators of sections of Q span $T M$, the restriction of $d \omega$ to Q_{p} does not vanish. This means that there is a natural injective bundle map J of N into the exterior product $Q^{*} \wedge Q^{*}$. Since a Riemannian metric on Q induces a Riemannian metric on $Q^{*} \wedge Q^{*}$, this metric can be pulled back via J to a metric on N. q.e.d.

For a section ω of N, define a map $J \omega: Q \rightarrow T^{*} M$ by $(J \omega(X))(Y)=$ $d \omega(X, Y)$. Since Q satisfies the strong bracket generating hypothesis, $J \omega$ is an injective bundle map and $J \omega(Q)$ is complementary to N.

Lemma 7.2. Let $\omega^{1}, \cdots, \omega^{k}$ be a local orthonormal basis of N with respect to the metric of 7.1. Then for every $i \in\{1, \cdots, k\}$ the $(m-1)$ dimensional subspace of $T_{p}^{*} M$, which is spanned by $J \omega^{i}\left(Q_{p}\right) \cup\left\{\omega_{p}^{j} \mid i \neq j\right\}$, only depends on $\omega_{p}^{1}, \cdots, \omega_{p}^{k}$ and is transversal to $\left\{\lambda \omega_{p}^{i} \mid \lambda \in \mathbb{R}\right\}$.

Proof. Clearly $A_{p}^{i}=\operatorname{span}\left(J \omega^{i}\left(Q_{p}\right) \cup\left\{\omega_{p}^{j} \mid i \neq j\right\}\right)$ is transversal to ω_{p}^{i}. To show that A_{p}^{i} only depends on $\omega_{p}^{1}, \cdots, \omega_{p}^{k}$ let $\bar{\omega}^{1}, \cdots, \bar{\omega}^{k}$ be another local orthonormal basis of N near p with $\bar{\omega}_{p}^{i}=\omega_{p}^{i}$. Then there is a smooth function $\left(g_{i j}\right)$ of a neighborhood of p in M into the special orthonormal group $\mathrm{SO}(k)$ such that $\left(g_{i j}\right)(p)=\mathrm{Id}$ and $\bar{\omega}^{i}=\sum_{j} g_{i j} \omega^{j}$. We have $\left(d g_{j j}\right)_{p}=0$ for $j=1, \cdots, n$. Let X^{1}, \cdots, X^{q} be a local orthonormal basis of Q near p and let $\sigma^{j}=J \omega^{i}\left(X^{j}\right)$. Then $d g_{i j}=$ $\sum_{\alpha} a_{\alpha}^{i j} \sigma^{\alpha}+\sum_{\beta} b_{\beta}^{i j} \omega^{\beta}$ with smooth functions $a_{\alpha}^{i j}$ and $b_{\beta}^{i j}$, and

$$
\begin{aligned}
d \bar{\omega}^{i} & =\sum_{j} d g_{i j} \wedge \omega^{j}+\sum_{j} g_{i j} d \omega^{j} \\
& =\sum_{\alpha, j} a_{\alpha}^{i j} \sigma^{\alpha} \wedge \omega^{j}+\sum_{\beta, j} b_{\beta}^{i j} \omega^{\beta} \wedge \omega^{j}+\sum g_{i j} d \omega^{j}
\end{aligned}
$$

Since $a_{\alpha}^{j j}=0$ for $j=1, \cdots, n$, this implies $\left(J \bar{\omega}^{i}\right)(X)=\left(J \omega^{i}\right)(X)+$ $\sum_{i \neq j} \sum_{\alpha} a_{\alpha}^{i j}(X) \omega^{j}$ for every $X \in Q_{p}$, i.e., $\left(J \bar{\omega}^{i}\right)(X)-\left(J \omega^{i}\right)(X) \in$ $\operatorname{span}\left\{\omega^{j} \mid i \neq j\right\}$ as claimed.

Corollary 7.3. If Q satisfies the strong bracket generating hypothesis, then every Riemannian metric \langle,\rangle_{Q} on Q can intrinsically be extended to a Riemannian metric on M.

Proof. Let $p \in M$. By 7.2 the choice of an orthonormal basis $\omega_{p}^{1}, \ldots \omega_{p}^{k}$ of N_{p} determines for every $i \in\{1, \cdots, k\}$ an $(m-1)$-dimensional subspace of $T_{p}^{*} M$, which annihilates a 1-dimensional subspace A^{i} of $T_{p} M$ transversal to the kernel of ω_{p}^{i}. Let $Z^{i} \in A^{i}$ be such that $\omega_{p}^{i}\left(Z_{i}\right)=1$.

The vectors Z^{1}, \cdots, Z^{k} span a k-dimensional subspace of $T_{p} M$ which is complementary to Q_{p}; we thus can define an extension $g\left(\omega_{p}^{1}, \cdots, \omega_{p}^{k}\right)$ of $\left(\langle,\rangle_{Q}\right)_{p}$ by choosing the vectors Z^{1}, \cdots, Z^{k} orthonormal and perpendicular to Q_{p}.

Now the space of orthonormal bases of N_{p} can be identified with the orthogonal group $\mathrm{O}(k)$. Let μ be the normalized Haar measure on $\mathrm{O}(k)$ (which satisfies $\mu(\mathrm{O}(k))=1$), and define $\langle X, Y\rangle_{p}=\int_{\mathrm{O}(k)} g(\xi)(X, Y) d \mu(\xi)$ for $X, Y \in T_{p} M$. Then \langle,\rangle_{p} is a scalar product on $T_{p} M$ extending the product on Q_{p} and moreover is defined intrinsically by $\left(Q,\langle,\rangle_{Q}\right)$. q.e.d.

The Riemannian metric \langle,$\rangle on M$ defined in 7.3 will be called the canonical extension of \langle,\rangle_{Q}.

Since every isometry of d_{c} is smooth, 7.3 yields
Corollary 7.4. The group of isometries of d_{c} is a closed subgroup of the Lie group of isometries of the canonical extension of \langle,\rangle_{Q}.

Lemma 7.5.

$$
\begin{aligned}
\left.\theta \frac{D}{d t} \lambda(X)^{\prime}(t)\right|_{t=0}= & \widetilde{P} a d^{*}(\widetilde{P} \theta X,(1-\widetilde{P}) \theta X) \\
& -(1-\widetilde{P}) a d^{*}(\widetilde{P} \theta X, \widetilde{P} \theta X)
\end{aligned}
$$

Proof. Let $\varphi=\lambda(X)$. Then $\theta \varphi^{\prime}(0)=\widetilde{P} \theta X,\left.\frac{d}{d t} \theta \varphi^{\prime}(t)\right|_{t=0}=$ $\widetilde{P} a d^{*}(\widetilde{P} \theta X, \theta X)$, and, moreover by Lemma 2.3, $\theta \frac{D}{d t} \varphi^{\prime}(t)=\frac{d}{d t} \theta \varphi^{\prime}(t)-$ $a d^{*}\left(\theta \varphi^{\prime}(t), \theta \varphi^{\prime}(t)\right)$. Together this yields the claim.

Corollary 7.6. If Q satisfies the strong bracket generating hypothesis, then every d_{c}-geodesic through p is uniquely determined by its tangent and its covariant derivative at p. In particular $\exp _{p}^{c}$ is intrinsically defined.

Proof. For $Y \in Q_{p}$ the map $\alpha_{Y}: Q_{p}^{\perp} \rightarrow Q_{p}, Z \rightarrow \widetilde{P} a_{p}(\theta Y, \theta Z)$ does not depend on the choice of the local trivialization of $T M$ near p, and is injective. The corollary thus follows from 7.5 and the fact that every Riemannian metric on a strong bracket generating distribution can intrinsically be extended to a Riemannian metric on M.

8. Nilpotent homogeneous Lie groups

In this section we investigate the group of isometries of a left-invariant CC-metric d_{c} on a nilpotent homogeneous Lie group. Thus let N be a nilpotent homogeneous simply connected Lie group whose Lie algebra \mathfrak{M} is generated by a complement Q of its derived algebra [$\mathfrak{M}, \mathfrak{M}$], i.e., if $Q^{1}=Q$ and $Q^{i+1}=\left[Q, Q^{i}\right]$, then there is $k \geq 1$ such that $\mathfrak{M}=\bigoplus_{i=1}^{k} Q^{i}$ (direct sum). For every $r>0$ the assignment $\delta_{r}: \sum_{i=1}^{k} X^{i} \rightarrow \sum_{i=1}^{k} r^{i} X^{i}$ $\left(X^{i} \in Q^{i}\right.$) is a Lie algebra automorphism of \mathfrak{M} which integrates to an automorphism Δ_{r} of N. Let d_{c} be a left-invariant CC-metric on N induced by a scalar product \langle,\rangle_{Q} on Q. Then $\left\{\Delta_{t} \mid t>0\right\}$ is a 1parameter group of homotheties with respect to d_{c}, i.e., $d_{c}\left(\Delta_{r} p, \Delta_{r} u\right)=$ $r d_{c}(p, u)$ for all $p, u \in N, r>0$ (compare [13]).

Choose an extension of \langle,\rangle_{Q} to a scalar product \langle,$\rangle on \mathfrak{M}$ such that the decomposition $\mathfrak{M}=\bigoplus_{i=1}^{k} Q^{i}$ is \langle,$\rangle -orthogonal and a left-$ invariant \langle,$\rangle -orthonormal trivialization of T N$. Denote as before by $\lambda(X)(X \in \mathfrak{M})$ the geodesic through the identity $\lambda(X)(0)=e$ with respect to these data. Since $\theta \frac{d}{d s}\left(\Delta_{t} \lambda(X)(s)\right)=t \theta\left(\frac{d}{d s} \lambda(X)(s)\right)$ for all $t>0$ and $s \in \mathbb{R}$, we have $\Delta_{t} \lambda(X)=\lambda\left(t^{2} \delta_{1 / t} X\right)$.

Lemma 8.1. Every isometry of $\left(N, d_{c}\right)$ fixing the identity e permutes the 1-parameter subgroups of N which are tangent to Q.

Proof. For every $X \in Q$ the geodesic $\lambda(X)$ is the 1-parameter subgroup in N defined by X and is globally minimizing since the 1-parameter subgroups tangent to Q are globally minimizing geodesics with respect to the Riemannian metric \langle,$\rangle on N$. Since f is smooth, $f \lambda(X)$ is a globally minimizing geodesic in $\left(N, d_{c}\right)$ with $\operatorname{rank} R_{f \lambda(Y)}=\operatorname{rank} R_{\lambda(X)}=$ k for some $k \leq m$.

For $Y \in Q$, define $\operatorname{rank}(Y)$ to be the dimension of the smallest ad Y invariant subspace of \mathfrak{M} containing Q. Remark 2.8 shows rank $R_{\varphi} \geq$ $\operatorname{rank}\left(\varphi^{\prime}(0)\right)$ for every smooth curve $\varphi: I \rightarrow N$ through $\varphi(0)=e$ which is tangent to Q, and moreover the rank is preserved by every diffeomorphism of N which leaves Q invariant and fixes e. If φ is a 1-parameter subgroup of N tangent to Q then $\operatorname{rank} R_{\varphi}=\operatorname{rank}\left(\varphi^{\prime}(0)\right)$.

For every $r>0, f(r)=\Delta_{r} f \Delta_{1 / r}$ is an isometry of $\left(N, d_{c}\right)$ fixing e. Let B be the compact d_{c}-ball of radius $2\|X\|$ around e. By Ascoli's theorem there is a sequence $r_{i}(i>0)$ such that $r_{i} \rightarrow 0(i \rightarrow \infty)$ and that the sequence of maps $f\left(r_{i}\right)$ converges uniformly on B to a map \bar{f}. Since \bar{f} is an isometry of $\left(B, d_{c}\right)$ fixing e, by 7.2 a diffeomorphism of B, and $\bar{f} \lambda(X)$ is a minimizing geodesic in $\left(N, d_{c}\right)$ with $\operatorname{rank} R_{\bar{f} \lambda(X)}=$ $\operatorname{rank}\left(\bar{f} \lambda(X)^{\prime}(0)\right)=k$.

Let $A \subset \mathfrak{M}$ be the \langle,$\rangle -orthogonal complement in \mathfrak{M}$ of $\mathfrak{M} \cap$ (Id$\left.T_{\bar{f} \lambda(X)}\right) L^{\infty}\left(I, Q^{\perp}\right)$, and let $\bar{P}: \mathfrak{M} \rightarrow A$ be the \langle,$\rangle -orthogonal projection.$ Since $\operatorname{rank} R_{\bar{f} \lambda(X)}=\operatorname{rank}\left(\bar{f} \lambda(X)^{\prime}(0)\right)$, Remark 2.8 shows that A equals the smallest $\operatorname{ad}\left(\bar{f} \lambda(X)^{\prime}(0)\right)$-invariant subspace of \mathfrak{M} containing Q and hence is invariant under the automorphisms $\delta_{r}(r>0)$. By 3.2, A is transversal to $\mathfrak{M} \cap\left(\mathrm{Id}-T_{f\left(r_{i}\right) \lambda(X)}\right) L^{\infty}\left(I, Q^{\perp}\right)$ for all sufficiently large $i>0$; we may assume that this is true for all i. This means that there is a unique $Y \in A$ such that $f \lambda(X)=\lambda(Y)$. Now $f(r) \lambda(X)=\lambda\left(r \delta_{1 / r} Y\right)$ for all $r>0$, and since A is invariant under the automorphisms $\delta_{r} \quad(r>0)$, we have $\left\|\bar{P}\left(r \delta_{1 / r} Y\right)\right\|=\left\|r \delta_{1 / r} Y\right\|$, and hence by Remark 4.3 the sequence $\left\|r_{i} \delta_{1 / r_{i}} Y\right\|$ is uniformly bounded. But if $Y=Y_{1}+Y_{2}$ with $Y_{1} \in Q$ and $Y_{2} \in Q^{\perp}$, we have $\left\|r \delta_{1 / r} Y\right\| \geq\left\|Y_{2}\right\| / r$ for all $r>0$ and consequently since $r_{i} \rightarrow 0$ necessarily $Y_{2}=0$, i.e., $\lambda(Y)$ is a 1-parameter subgroup in N as claimed. q.e.d.

For $i \geq 1$, denote by H_{i} the Lie subgroup of N whose Lie algebra is the ideal $\mathfrak{h}_{i}=\bigoplus_{j=i}^{k} Q^{j} .\langle,\rangle_{Q}$ induces a left-invariant CC-metric d_{i}
on the factor group N / H_{i} in such a way that the canonical projection $\pi_{i}:\left(N, d_{c}\right) \rightarrow\left(N / H_{i}, d_{i}\right)$ is distance decreasing.

Let \exp be the exponential map of N and call two pairs (u, X), $(v, Y) \in N \times Q$ parallel if the function $t \rightarrow d_{c}(u \exp t X, v \exp t Y)$ is bounded on \mathbb{R}.

Lemma 8.2. If (u, X) and (v, Y) are parallel, then $X=Y$.
Proof. Let Ψ be the restriction to Q of the map $\pi_{2} \circ \exp . ~ \Psi$ is an isometry of $\left(Q,\langle,\rangle_{Q}\right)$ onto $\left(N / H_{2}, d_{2}\right)$. The Campbell-Hausdorff formula [5] shows $\pi_{2}(u \exp t X)=\Psi\left(\left(\Psi^{-1} \pi_{2} u\right)+t X\right)$ for all $u \in N$ and $X \in Q$, and hence

$$
\begin{aligned}
& d_{2}\left(\pi_{2}(u \exp t X), \pi_{2}(v \exp t Y)\right) \\
& \quad=\left\|\left(\Psi^{-1} \pi_{2} u-\Psi^{-1} \pi_{2} v\right)+t(X-Y)\right\| \geq|t|\|X-Y\|-\text { const. }
\end{aligned}
$$

Since the latter expression is uniformly bounded for all $t \in \mathbb{R}$ whenever (u, X) and (v, Y) are parallel, the lemma follows. q.e.d.

Let Z be the center of N. Then we have
Lemma 8.3. $\quad p \in Z$ if and only if (p, X) is parallel to (e, X) for all $X \in Q$.

Proof. If $p \in Z$ then $d_{c}(\exp t X, p \exp t X)=d_{c}(e, p)$ for all $t \in \mathbb{R}$, i.e., (p, X) is parallel to (e, X) for all $X \in Q$.

On the other hand, if $u=\exp \left(\sum_{i=1}^{k} X^{i}\right) \notin Z\left(X^{i} \in Q^{i}\right)$, then there is $X \in Q$ such that $\left[X, \sum_{i=1}^{k} X^{i}\right] \neq 0$. Let $j-2=\min \left\{i \geq 1 \mid\left[X, X^{i}\right] \neq 0\right\}$ and let Ψ be the restriction to $S=\bigoplus_{i=1}^{j-1} Q^{i}$ of the map $\pi_{j} \circ \exp$. Under the identification of S with $\mathfrak{M} / \mathfrak{h}_{j}, \Psi$ can be viewed as the exponential map of N / H_{j}, i.e., group multiplication in N / H_{j} can be computed via the Campbell-Hausdorff formula in S. This means

$$
d_{j}\left(\pi_{j} \exp t X, \pi_{j}(u \exp t X)\right)=d_{j}\left(\pi_{j} e, \Psi\left(\left(\Psi^{-1} \pi_{j} u\right)+t\left[X^{j}, X\right]\right)\right)
$$

which is unbounded in $t \in \mathbb{R}$. Since π_{j} is distance-decreasing, (u, X) is not parallel to (e, X). q.e.d.

A special case of the following corollary is due to Pansu [13, Proposition 18.5]:

Corollary 8.4. Every isometry of $\left(N, d_{c}\right)$ fixing the identity e is a Lie group automorphism of N.

Proof. By a theorem of Pansu [13] there is an automorphism Ψ of N such that $\left.d_{e}(\Psi \circ f)\right|_{Q}=\left.\operatorname{Id}\right|_{Q} . \Psi$ is necessarily an isometry with respect to d_{c}; hence we only have to show that there is no nontrivial isometry f of $\left(N, d_{c}\right)$ with $f(e)=e$ and $\left.d_{e} f\right|_{Q}=\left.\operatorname{Id}\right|_{Q}$.

We proceed by induction on the degree of nilpotency of N. If this degree equals 1 , then $\left(N, d_{c}\right)$ is Euclidian and hence there is nothing to show. Thus let $k \geq 2$ and assume the claim is known for all groups of degree $\leq k-1$. Let N be a group of degree k and let f be as above. By $8.1, f$ permutes the integral curves of left-invariant vector fields and hence maps parallel elements (u, X) and (v, X) of $N \times Q$ onto parallel elements. Since $f(e)=e$ and $f \exp t X=\exp t X$ for all $X \in Q, t \in \mathbb{R}$, this implies by 8.2 and 8.3 the following:
(i) f preserves the center Z of N,
(ii) $f(p \exp t X)=f(p) \exp t X$ for all $p \in Z, X \in Q$, and $t \in \mathbb{R}$.

For every $p \in Z$ the map $f_{p}: u \rightarrow f(p)^{-1} f(u p)$ is an isometry of $\left(N, d_{c}\right)$ fixing e which by (ii) satisfies $\left.d_{e} f_{p}\right|_{Q}=\left.\mathrm{Id}\right|_{Q}$. By (i) f_{p} preserves the center Z of N and hence induces a transformation \bar{f}_{p} of the factor group N / Z which is an isometry with respect to the induced CC-metric. Since the degree of nilpotency of N / Z equals $k-1$, by the induction hypothesis \bar{f}_{p} equals the identity of N / Z. This is true for every $p \in Z$. Thus the differential of f preserves the left-invariant vector fields tangent to Q. Since Q generates \mathfrak{M}, f is the identity. Hence the proof is finished. q.e.d.

We conclude this work with the following example.
Example 8.5. (a) The Lie algebra \mathfrak{H} of the 3-dimensional Heisenberg group H^{3} is spanned by vectors X, Y, and Z which satisfy the relations $[X, Y]=Z$ and $[X, Z]=[Y, Z]=0$. Let \langle,$\rangle be the scalar product$ on \mathfrak{H} for which this basis is orthonormal, and let d_{c} be the left-invariant Carnot-Carathéodory metric on H^{3} induced by $\stackrel{c}{Q}=\operatorname{span}\{X, Y\}$ and $\langle,\rangle_{Q}=\left.\langle\rangle\right|_{Q$,$} . We want to compute the geodesics \lambda(W): t \rightarrow \exp _{e}^{c} t W$ of d_{c} through the identity e (compare [10]). For $x_{0}, y_{0}, z_{0} \in \mathbb{R}$ write $\theta \tilde{\lambda}\left(x_{0} X+y_{0} Y+z_{0} Z\right)(t)=x(t) X+y(t) Y+z(t) Z$. By using the relations $(\operatorname{ad} X)^{*} Z=Y$ and $(\operatorname{ad} Y)^{*} Z=-X$ equation (2) of Lemma 4.1 transforms into the following system of differential equations for the coordinate functions x, y, z :

$$
\begin{array}{ll}
x^{\prime}(t)=-y(t) z(t), & x(0)=x_{0} \\
y^{\prime}(t)=x(t) z(t), & y(0)=y_{0} \\
z^{\prime}(t)=0, & z(0)=z_{0}
\end{array}
$$

Hence

$$
\begin{aligned}
& \theta \lambda\left(x_{0} X+y_{0} Y+z_{0} Z\right)^{\prime}(t) \\
& \quad=\left(x_{0} \cos z_{0} t-y_{0} \sin z_{0} t\right) X+\left(x_{0} \sin z_{0} t+y_{0} \cos z_{0} t\right) Y
\end{aligned}
$$

The Lie group exponential map exp of H^{3} induces global coordinates on H^{3} via the identification of $\exp \left(x_{1} X+x_{2} Y+x_{3} Z\right)$ with $\left(x_{1}, x_{2}, x_{3}\right) \in$ \mathbb{R}^{3}. In these coordinates the vector fields X, Y, and Z are given by [14]

$$
X=\frac{\partial}{\partial x_{1}}-\frac{1}{2} x_{2} \frac{\partial}{\partial x_{3}}, \quad Y=\frac{\partial}{\partial x_{2}}+\frac{1}{2} x_{1} \frac{\partial}{\partial x_{3}}, \quad Z=\frac{\partial}{\partial x_{3}}
$$

Thus for $z_{0} \neq 0$ the geodesic $\lambda\left(X+z_{0} Z\right)$ has the coordinate representation

$$
\lambda\left(X+z_{0} Z\right)(t)=z_{0}^{-1}\left(\sin z_{0} t, 1-\cos z_{0} t, t / 2-\sin z_{0} t / 2 z_{0}\right)
$$

in particular $\lambda\left(X+z_{0} Z\right)\left(2 \pi / z_{0}\right)=\left(0,0, \pi / z_{0}^{2}\right)$. For every $\alpha \in S^{1} \sim$ $[0,2 \pi]$ the isometry of $(\mathfrak{H},\langle\rangle$,$) which fixes the center of \mathfrak{H}$ and acts as a rotation of angle α in the plane Q is an automorphism of \mathfrak{H} which integrates to an automorphism Ψ_{α} of $H^{3} . \Psi_{\alpha}$ is an isometry with respect to d_{c} which maps for every $W \in \mathfrak{H}$ the geodesic $\lambda(W)$ onto $\lambda\left(d \Psi_{\alpha} W\right)$. Thus for every $s>0$ there is a S^{1}-family $\left\{\lambda\left(d \Psi_{\alpha}(X+\sqrt{\pi / s} Z)\right) \mid \alpha \in S^{1}\right\}$ of minimizing d_{c}-geodesics joining e to $\lambda\left(d \Psi_{\alpha}(X+\sqrt{\pi / s} Z)\right)(2 \sqrt{\pi s})=$ $(0,0, s)$. In particular each of the d_{c}-geodesics $\{\lambda(W)\|\widetilde{P} W\|=1\}$ minimizes exactly on the interval $\left[0,2 \pi\left(\|W\|^{2}-1\right)^{-1 / 2}\right]$.
(b) Let $\bar{H}=H^{3} \times H^{3}$ be the direct product of two copies of H^{3} with Lie algebra $\overline{\mathfrak{H}}=\mathfrak{H} \times \mathfrak{H}$, equipped with the left-invariant Riemannian metric \langle,\rangle^{0} which is the product of the metrics \langle,$\rangle on \mathfrak{H}$ above. Let \bar{d}_{c} be induced by $\left(Q \times Q,\left.\langle,\rangle^{-}\right|_{Q \times Q}\right)$. Then the map $\left(H^{3}, d_{c}\right) \rightarrow\left(\bar{H}, \bar{d}_{c}\right)$, $u \rightarrow(u, e)$ is an isometric embedding. In particular for every $X \in Q$ the 1-parameter subgroup in \bar{H}, which is tangent to $(X, 0)$ at e, is a minimizing \bar{d}_{c}-geodesic in \bar{H}. However the rank of R along this geodesic equals 5 , i.e., the exponential map $\exp _{e}^{c}$ of $\left(\bar{H}, \bar{d}_{c}\right)$ at e is singular along $\{(t X, 0) \in \overline{\mathfrak{H}} \mid X \in Q, t \in \mathbb{R}\}$.

References

[1] C. Bär, Carnot-Coratheodory-Metriken, Diplomarbeit, Bonn, 1988.
[2] J. Cheeger \& D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
[3] H. Federer, Geometric measure theory, Grundlehren 153, Springer, New York, 1969.
[4] P. Flaschel \& W. Klingenberg, Riemannsche Hilbertmannigfaltigkeiten, periodische Geodätische, Lecture Notes in Math., Vol. 282, Springer, New York, 1972.
[5] R. W. Goodman, Nilpotent Lie groups, Lecture Notes in Math., Vol. 562, Springer, New York, 1976.
[6] M. Gromov, J. Lafontaine \& P. Pansu, Structure métriques pour les variétés Riemanniennes, Paris, Cedic, 1981.
[7] U. Hamenstädt, Zur Theorie von Carnot-Carathéodory Metriken und ihren Anwendungen, Bonner Math. Schriften, Univ. Bonn, No. 180, 1987.
[8] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1962.
[9] S. Koboyashi \& K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[10] A. Koranyi, Geometric aspects of analysis on the Heisenberg group, Topics in Modern Harmonic Analysis, Vol. II (Proc. Sem. Torino and Milano, May-June 1982), 209258.
[11] G. Métivier, Fonction spectrale et valeurs propres d'operateurs non elliptiques, Comm. Partial Differential Equations 1 (1976) 467-519.
[12] J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geometry 21 (1985) 35-45.
[13] P. Pansu, Quasiisométries des variétés à courbure négative, Thesis Ecole Polytechnique, Paris, 1987.
[14] L. P. Rothschild \& E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta. Math. 155 (1985) 103-147.
[15] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
[16] M. Spivak, A comprehensive introduction to differential geometry. II, Publish or Perish, Berkeley, 1979.
[17] R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geometry 24 (1986) 221263.
[18] S. M. Webster, Pseudo-hermitian structure on a real hypersurface, J. Differential Geometry 13 (1978) 25-41.
[19] E. N. Wilson, Isometry groups on homogeneous nilmanifolds, Geometriae Dedicata 12 (1982) 337-346.

California Institute of Technology

[^0]: Received February 12, 1988 and, in revised form, March 1, 1989. The author is grateful to P. Pansu for helpful discussions.

