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THE VIRTUAL SOLVABILITY
OF THE FUNDAMENTAL GROUP

OF A GENERALIZED LORENTZ SPACE FORM

G. TOMANOV

Introduction

Let Affn(R) denote the group of all affine transformations of the real
affine vector space R" . It is well known that Affn (R) is isomorphic to the
semidirect product G1Π(R) x Rπ , where RΛ is identified with the group of
all translations of Rn. Let π: Affπ(R) -• Gln(R) be the natural projec-
tion. A subgroup Γ c Affπ(R) is called G-linear if π(Γ) c G, where G
is a real algebraic group, i.e., G is the group G(R) of R-points of an al-
gebraic subgroup G of Gln(C) defined over R. Let G° be the connected
component of G, and let G° = SR be the Levi decomposition of G°,
where R is the solvable radical of G, and S is a maximal semisimple
subgroup of G° . Let S = S{S2 Sr be an almost direct product of simple
Lie subgroups S(. The group Γ is called a group of generalized Lorentz
motions if every Si is a group of (real) rank rkR S( < I. (By a rank of
Sj we mean the dimension of any maximal R-split torus in the Zariski
closure Sf. of Sf. in G.) Assume that Γ acts properly discontinuously on
Rπ (i.e., the set {γ e Γ\γKnK φ 0} is finite for every compact ί c l " ) ,
and that the quotient R"/Γ is compact. In the case where Γ is a group
of Lorentz motions (that is G - SO(« - 1 , 1 ) ) it was proved in [9] that
Γ is a virtually solvable group, i.e., Γ contains a solvable subgroup of
finite index. The aim of the present paper is to prove similar results for
all groups Γ of generalized Lorentz motions.

Theorem A. Let Γ be a G-linear subgroup of AffΛ(R). Assume that
(a) Γ acts properly discontinuously on Rn , (b) Rπ/Γ is compact, and (c)
Γ is a group of generalized Lorentz motions. Then Γ is a virtually solvable
group.

According to a result of G. A. Margulis [15] if Γ is a group of gen-
eralized Lorentz motions which acts properly discontinuously on Rπ but
Rπ/Γ is not compact, then Γ is not necessarily a virtually solvable group.
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Also, remark that by the recent result of Y. Carriere [6, Theorem 1.2.1]

π~1(π(Γ) Π π(Γ) ), where π(Γ) is the connected component of the clo-

sure of π(Γ) in the Euclidean topology of GL(n, R), is a unipotent group.

Furthermore, [17, Proposition 3.10] implies that Γ is a virtually solvable

group if and only if it is a virtually polycyclic group.
Theorem A has a natural geometrical reformulation. Recall that an

affine manifold is one which admits a covering by a coordinate system
where the overlap homeomorphisms should extend to affine transforma-
tions from Affn(E). An affine space form M is a compact affine manifold
which is also geodesically complete, i.e., the universal covering manifold
M is affinely diffeomorphic to Rn . It is well known (cf. [26, Corollary
1.9.6]) that any affine space form is obtained by forming the quotient R"/Γ
of Rn by a subgroup Γ c Aff̂ (R) which acts on Rn freely, properly dis-
continuously, and with compact fundamental domain. If Γ is (7-linear
and rkR S. < 1 for every simple factor Si of the semisimple part S of
G° , then we shall call M a generalized Lorentz space form (compare [9]).
Since every finitely generated linear group contains a torsion free subgroup
of finite index (a theorem of Selberg, see [19]) Theorem A is equivalent to
the following.

Theorem B. The fundamental group nχ{M) of a generalized Lorentz
space form is virtually solvable. In particular, M has a finite covering
diffeomorphic to a solvmanifold.

Our theorem affirms (for generalized Lorentz space forms) a long stand-
ing conjecture due to L. Auslander (see [1], [15], [16]) that the fundamen-
tal group of any affine space form is virtually solvable. Except for Lorentz
space forms [9] (see, also, the work [7] for n = 4), Theorem A (equiva-
lently, Theorem B) has been established in the following particular cases:
(a) for euclidean space forms, i.e., Γ is a discrete subgroup of O(n) tx Rn

(this is the classical Bieberbach theorem [17, Corollary 8.26]); (b) when
n = 2, 3 [8]; and (c) when G is a reductive group and, furthermore,
rkR G < 1, the result was recently proved by F. Grunewald and G. A.
Margulis [10].

In a somewhat weaker form our result was previously proved in [24].
Finally, note that a slight modification of our method proves the above-
mentioned conjecture for small values of n (at least for n = 4, 5 [25]).

The author is pleased to thank G. A. Margulis for many useful con-
versations, and also the Tata Institute of Fundamental Research for their
hospitality during the preparation of this paper.
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1. On the action of solvable radicals on Rn

In this section Γ is a subgroup of AffΛ(R) such that Γ acts properly
discontinuously on Rn, and RΛ/Γ is compact. Since AffΛ(R) is a real
algebraic group, we can consider the Zariski closure H of Γ in AffΛ(R).
Let R (resp. U) be the solvable (resp. unipotent) radical of H.

The following general fact is well known [20]. If Γ is a discrete group
of automorphisms of a contractible manifold X, and Γ acts freely on X,
then cd Γ < dim X, where cd Γ stands for the cohomological dimension
of Γ the equality cd Γ = dim X holds if and only if X/Γ is compact.
Recall that if Γ is any discrete group, and Γ ' c Γ is a torsion free group
of finite index, then the virtual cohomological dimension vcd Γ of Γ is
equal to cdΓ' [20].

1.1 Lemma.1 With the above notation and assumptions, U acts transi-
tively on Rn.

Proof. The group H is a semidirect product M K U of its reductive
subgroup M and the unipotent radical U. Since AffΛ(R) can be viewed
as a subgroup of G1Π+1(R) acting on a hyperplane xn+χ = 1 in RΛ+1 (see,
for example, [2]), the action of M on RΛ admits a fixed point x0 G RΛ .
Hence Hx0 = UxQ. It is well known that Ux0 is closed in Rn and
homeomorphic to a real vector space [4], [18]. On the other hand, Γ acts
properly discontinuously on Ux0 , and the quotient UxQ/Γ is compact. In
view of the Selberg theorem [19], Γ contains a subgroup of finite index,
which acts freely on Rn . Therefore vcdΓ = dimUxQ = dirnR", i.e.,
Ux0 = Rn . The lemma is proved.

1.2. Let Λ = Γ n R and let R{ be the Zariski closure of Λ in H.
In view of Lemma 1.1 the group H acts transitively on Rn . If x e Rn

and h e H, then h(Rχx) = (hRχh~ι)hx = Rχ{hx). Therefore H acts
transitively on the set X = {R{x\x e Rn} of all orbits of Rχ . In particular,
X can be identified with the homogenous space H/HQ , where Ho is the
isotropy group of an element y0 e X, and H acts on H/Ho by left
multiplications. But H contains a maximal reductive subgroup M fixing
y0 and H = M K U. Therefore H/HQ is isomorphic (as a real algebraic
variety) to U/Uo, where Uo = U ΠH0. Since U/Uo is isomorphic to a
real vector space we obtain the following.

Lemma. X can be identified with a real vector space in such a way that
the real algebraic group H acts algebraically on X.

!This result was first proved by W. Goldman and M. W. Hirsch, Trans. Amer. Math.
Soc. 295 (1986) 175-198 (Theorem 2.6).
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1.3. Lemma. Let Y = Rχx, x e Rn , and Uχ be the maximal unipo-
tent subgroup of Rχ. Then

(a) Uχ acts transitively and freely on Y,
(b) Λ acts properly discontinuously on Y and Y/A is compact.

In particular, A is a finitely generated group.
Proof Let Rχ = TχUχ, where Tχ is a reductive subgroup of Rχ.

There is a point xQ e Rn such that Rχx0 = Uxx0. Since Uχ is a normal
subgroup of H,

Rχ(hx0) = h(Rχx0) = h(Uχx0) = Uχ(hx0)

for every h in H. Hence Uχ acts transitively on Y, and the reductive

subgroup Tχ can be chosen in such a way that Tχx — x . It is well known

that every discrete Zariski dense subgroup of Rk is a cocompact lattice in

Rk . Using this one easily proves (by induction on dimR{ and reducing to

the case when R{ is abelian) that R{ = AKT{ for some compact K c R{.

Hence (b) is proved. In order to prove (a) we assume the contrary, i.e.,

let ux = x for some ueUx, uψ\. Denote Y1 = RJTχ. There is a

continuous i?j-equivariant map <p: Y* —> Y. Let ^JC; = x, x ' e F ' . For

every positive integer /, let ux - λ.c^', where λi e A and ̂ e K. It is

easy to see that {k(\i e N} must be an infinite subset of Λ. On the other

hand, x = uιx = φ^c^') = λ CjX . Since Γ acts properly discontinuously

on E" , the set of pairwise different λ{ must be finite. This contradiction

completes our proof.

1.4. We set f = Γ/Λ and consider the action of f on X.

Proposition, (a) f acts properly discontinuously on X, and the quo-

tient X/f is compact,

(b) d i m * = vcdf,
(c) vcd Γ = vcd Γ/Λ + vcd Λ.

Proof. Assume (a) holds. Then (b) and (c) follow directly from Lemma
1.2 and Lemma 1.3, respectively.

Let us prove (a). The compactness of X/Γ follows from the compact-
ness of •RΛ/Γ. The rest of the proof will be given in several steps. Let
Λ' = R® n Λ, where R°x is the connected component of the identity in
R{ . First note that there is a connected Lie subgroup L of Rχ such that
A' = L Π Λ and L/Λ; is compact. This follows easily by induction on
ά\mRχ (reducing to the case where Rχ is abelian) from the following
facts: (1) the commutator group [Rχ, Rχ] is a real unipotent algebraic
group, (2) Λ Π [Rχ, Rχ] is cocompact in [Rχ, Rχ], (3) Λ is a finitely
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generated group, and (4) the simply connected covering of R°{/[Rχ, Rχ]
is homeomorphic to a real vector space. Next note that Lx = Rχx for
each x e Rn . To see this fix a maximal reductive subgroup Tχ c Rχ

with T{x = x. The group Rχ is a semidirect product of Ux and Tχ.
Let φ: Rχ —• Uχ be the natural projection. It is enough to prove that for
each u e Uχ there exists a g e L such that φ(g) = u. But L contains
[Rχ, Rχ] and, therefore, we can reduce the proof to the trivial case where
Rχ is abelian.

In order to finish the proof of (a) we fix a compact C c L such that
L = Λ 'C. Let ψ: Γ —• Γ be the natural homomorphism and θ: Rn —» X
be the factor map (i.e., θ(x) = Uχx for every x e Rn ). Let K c X be
a compact set. Fix a compact Kf c RΛ with Θ(AΓ') = K. Let y e f and
γKnK ^0. Then y(CiO n CK' / 0 for some γ eΓ with ^(y) = y .
But {γ e Γ\γ(CK') Π CAΓ; ^ 0 } is a finite set. Therefore f acts properly
discontinuously on X. The proposition is proved.

1.5. Denote H{ = H/R. The group Γ can be embedded in Hι .
Note that Γ is a discrete subgroup of H{. This easily follows from the
following theorem due to L. Auslander (see [17, Theorem 8.24]). Let G
be a Lie group, R be a connected solvable normal subgroup of G, and
ψ: G —• G/R be the natural homomorphism. Then if Γ is a discrete

subgroup of G, the connected component ψ(T) of the identity in the

closure of ψ(Γ) in G/R is solvable.

Let K be a maximal compact subgroup of Hχ. Then the quotient

Hχ jK (called the symmetric space of Hχ ) is known to be homeomorphic

to a real vector space. The group Γ acts (by left multiplications) on

H{ jK. Since f is discrete in H{, the action of f on Hχ jK is properly

discontinuous. Hence vcdΓ < dim Hχ/K. Now Proposition 1.4 implies

the following.

Corollary, dim X < dim Hχ jK.

2. Proof of Theorem A

2.1. Let N be the kernel of the action of H on X. Then N is a

normal algebraic subgroup of H. Denote H = H/N. In view of Selberg's

theorem we may, and we will, assume that Γ acts freely on X . Since Rχ c

N we obtain that Γ embeds in H. On the other hand, Γ acts properly

discontinuously on X, and H acts continuously on X. Therefore f is

a discrete subgroup of H.
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2.2. Let R (resp. U) be the solvable (resp. unipotent) radical of H.
Also, denote by S (resp. P) a maximal semisimple (resp. reductive) sub-
group of H. We assume that P D S. In view of the definition of X (see
1.2) there is a point a e X which is fixed by P. Let F be the tangent
space of I at α, and p: P —> G1(F) be the representation of P on V.
Since // acts algebraically and faithfully on X, the representation p is
faithful (see [3]).

Lemma. If x eP, then p{x) has an eigenvalue equal to 1.

Proof. Let φ: H —• P be the projection of H on P. (Recall that

H = P K U is a semidirect product of P and {/.) Since f is Zariski

dense in H, it is enough to prove that pφ(γ) has an eigenvalue 1 for

each γ e Γ. Let γ = γsγu be the Jordan decomposition of γ in // [5,

Chapter 1]. There is an element ueϋ such that y5 e uPu~ι. Let 4̂ be

the smallest (unipotent) algebraic subgroup of H containing γu . Denote

b = ua. Since y5 commutes with every element from A and ysb = b,

we get that y5 fixes the orbit Ab pointwise. On the other hand, the orbit

Ab is y-invariant. In view of Proposition 1.4(a) Ab is homeomorphic to

a vector space Rk with k > 0.

Let γs = w/zw"1, h eP. It is easy to see that h fixes (u~ιA)b point-

wise. Since (u~ιA)b is homeomorphic to a nontrivial vector space and

a e (u~ιA)b, we obtain that p(h) has an eigenvalue equal to 1. Note that

γs = h{h~ιuhu~ι) and h~ιuhu~ι e U. This implies φ{γs) = h. On the

other hand, the homomorphism pφ preserves the Jordan decomposition

(cf. [5, Theorem 4.4]). Therefore pφ(y) has an eigenvalue equal to 1. The

lemma is proved.

2.3. The above lemma, inspired by a conversation with G. A. Soifer, is
designed to replace the strong Jung-van de Kulk theorem (see [12], [14]) in
the initial version [24] of our proof. Since the use of this theorem seems
to be important from a conceptual point of view, we recall its formulation
and sketch how it can be applied to the present situation. Let GA2(C)
be the group of all regular automorphisms of the affine space C 2 . An
automorphism φ of C2 is given by / = (fχ, f 2 ) , where fχ and f2 are
polynomials from C[x{, x2]. (The C-algebra automorphism of C[x{, x2]
corresponding to φ sends xt -> ft , / = 1, 2 .) The triangular ("Borel")
subgroup of GA2(C) is BA2(C) = {/ e GA2(C)\fι = aχx{ +bχ, f2 =
a2x2 +p(x{)} , where a{ e C*, bχ G C, and p(xx) € C[xχ]. The theorem
of Jung-van der Kulk says that GA2(C) is generated by its subgroups
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Aff2(C) and BA2(C). I. R. Shafarevich [22] (see also the later work [13])
proved that GA2(C) = Aff2(C) * c BA2(C) is the amalgamated free product
with C = Aff2(C) Π BA2(C). Note that BA2(C) and GA2(C) are infinite
dimensional algebraic groups in the sense of [22]. On the other hand, if
L c GA2(C) is a finite-dimensional algebraic subgroup of GA2(C), then
in view of a result of J.-P. Serre [21] L is conjugated to a subgroup of
AfF2(C) or BA2(C). It is easy to see that if L is a subgroup of BA2(C),
then it is solvable.

Now we return to our particular situation and assume that dim X = 2
and S = SL2(R). (It follows from 2.5 below that this is the case when the
rank of S does not exceed 1.) We consider the complexification H of H
and the action of H on X ® C (= C 2 ) . Now it easily follows from the
above results and the solution of the Auslander conjecture for n = 2 [8,
§2] that Γ (equivalently, Γ) is a virtually solvable group.

2.4. Next we need the following result. (See [10, Proposition 2.6] for
an independent proof.)

Lemma. Let Q be a simple ( real) algebraic group and rkM Q < 1.
Let d be the dimension of the minimal (nontrivial) representation of Q,
and s be the dimension of the symmetric space of Q. Then d > s and
d = s if and only if Q is isomorphic to SL2(R) and d = s = 2.

Proof Let Q be an R-simple algebraic group (i.e., Q does not contain
any proper infinite normal algebraic subgroup defined over R) such that
Q(R) = Q. Assume that Q is not an absolutely simple algebraic group
(i.e., Q is not a simple algebraic group over C). The algebraic group Q,
admits a simply connected covering Q defined over R [23, Proposition
2.6.1]. There exists an algebraic group P defined over C such that Q =
i ? c / E P , where RC/RP is the restriction of P to R [23, 3.1.2]. But r k R 5 =

rkR S = rk c P = 1, where rk c P is the rank of the algebraic group P over
C. Therefore P = SL2(C) and S(R) is homeomorphic to SL2(C). Hence
the symmetric space of S is homeomorphic to SL2(C)/SU(2). So, if
Q is not an absolutely simple algebraic group, then d = 4 and s = 3.
Assume that Q is an absolutely simple algebraic group. It follows from
the classification results in [11] (or [23]) that Q is locally isomorphic to
SL2(R), SU(1, n) (n > 2), S O ( 1 , Λ ) (n > 4), Sp(l, ή) (n > 2), and
a group of type F4 with rank 1. Let H be one of those groups, and d!
be the dimension of its standard representation. It is well known that df

does not exceed the dimension of the minimal representation of any group
H' locally isomorphic to H. Now our lemma follows from the following
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information about s and df extracted from [11, Table 5, p. 518]:

Symmetric space

SL2(R)/SO(2)

SU(1, n)/S(Uι x U J

Sp(l,«)/Sp(l)xSp(n)

(/4(_20)'SO(9))

2

In

An

16

d'

2

n 4- 1

4(« +

26

1)

1)

The lemma is proved.
2.5. Let iS be a maximal semisimple subgroup of H. Assume that

S Φ {1} , and let S = S{S2 -S be an almost direct product of simple

real algebraic groups S(. Let V = Vx Θ Θ Vk be a decomposition of the

tangent space V (see 2.2) on irreducible 5-submodules. It is well known

that every V. is a tensor product of irreducible nontrivial S^-modules V j ,

i.e., V. = (g)^=1 V.j, r. € N. Let nu = dimR V.. and Λ = dimR V. Then

« = Σ/=i(Πj=i ,̂7) For every 5. let ύf; be the dimension of the minimal

(nontrivial) real representation of S., and let s. be the dimension of the

symmetric space of Sj. Then 5 = 5 ^ + sr will be the dimension of

the symmetric space of S. Since p is a faithful representation,

Λ > dx + rf2 H + rfr.

In view of Corollary 1.5 we have

s{ -h s2 + 4- sr > n > d{ + d2 -h + dr.

According to Lemma 2.4, di > s,. Therefore dt = st = 2 for every
/ = 1, 2, , r (Lemma 2.4). Hence every Vtj is a standard SL2(R)-
module. In particular, there is an element x e S such that p(x) does
not have an eigenvalue equal to 1. The latter contradicts Lemma 2.2. Our
Theorem A is proved.
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