
J. DIFFERENTIAL GEOMETRY
32(1990) 491-532

L2-INDEX THEOREMS ON
CERTAIN COMPLETE MANIFOLDS

JOCHEN BRUNING

1. Introduction

Consider a Riemannian manifold M, Hermitian vector bundles E and
F over M, and a first order elliptic differential operator D: C°° (E) —>
C°°(F). Such operators arise naturally from the Riemannian structure
like the Gauss-Bonnet and the signature operator; more generally, one can
consider the Dirac operators in the sense of [10]. Being a differential
operator, D has closed extensions D mapping the Hubert space ϋ

(with the graph norm) to L2(F). In particular, there is the closure D
mm

and the maximal extension Dmaχ = (£>min)*, where Df: C°°(F) -* C°°{E)
is the formal adjoint. If M is complete, then D m a χ = D m i n for all Dirac
operators. Moreover, if M is compact, then Z)maχ is a Fredholm operator,
and its index is given by the celebrated Atiyah-Singer index formula. In
general, D may or may not have a Fredholm extension. In this work we
deal with a class of operators which need not be Fredholm but have a finite
iΛindex in the sense that kerZ) Π L2{E) and kerZ)' n L2{F) both have
finite dimension; then we define

(1.1) L

We will also assume that M is complete and Z>maχ = D m i n . Then if D m i n

is Fredholm, we have indD m i n = L2-indD, but our assumptions will not

imply the Fredholm property. Note that if D has a finite L2-index, then

a closed extension Σ> is Fredholm if and only if the essential spectrum

σe(D*T)) of the self-adjoint operator D*D has a positive lower bound.

Still, the situation which we treat should be regarded as a type I case in

the sense of [13].

Our model case is a complete manifold with finitely many ends which

are all warped products. It follows from simple examples that the L2-

cohomology for such manifolds can be infinite, so we need a condition

on the warping function / (formula (2.14) below) which allows at most
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linear growth. Then we observe that a geometric operator D on a warped
product has a particularly simple normal form, as an operator valued ordi-
nary differential equation (cf. (2.3) and (2.4)). This allows us to construct
a weight function g with the property that gDg is a Fredholm operator,
even if D is not. Moreover, gDg is unitarily equivalent to a regular sin-
gular operator in the sense of [5], which enables us to compute the index
of all closed extensions. This means that we produce a normal form, for
the weighted operators, which does not involve the warping function any
more. On the other hand, we introduce boundary conditions for gDg (in
most cases), but it turns out that we always have a very natural choice.
Moreover, the transformation avoids the analysis of boundary integrals.
To obtain an index formula we have to relate the L2 -index of D to the
index of a suitable closed extension of gDg. Whereas it is easy to see that
under our assumptions the L2-index is always finite we do not succeed in
computing it in all cases. It seems that the difficulty arises whenever D
is itself not Fredholm and the operator *S0 occuring in its normal form
has small eigenvalues. The structure of the index formula is as follows.
It contains interior terms, involving the geometry of the whole manifold,
the spectral invariants of the cross-section such as the ^/-invariant, and the
global contributions which can be expressed in terms of the solutions of
an ordinary differential equation R+ (cf. Theorem 4.3).

We derive an abstract version of the described geometric situation, al-
lowing for perturbations. Then the most definite result is Theorem 4.3.
We apply this to various geometric situations and obtain a unified and
sometimes more general treatment of the known results in these cases.
It may be of interest to note that we also obtain nonlocal contributions
for the iΛindex of the Gauss-Bonnet operator similar to the conic case
treated by Cheeger and, more completely, in [5] (cf. Corollary 5.4).

The plan of the paper is as follows. In §2 we introduce the class of
operators to be considered. Then we reduce the problem to an index
calculation for a regular singular operator in the sense of [5] by introducing
a suitable weight function. The necessary analysis is carried out in §3
and we prove the index theorem in §4. §5 contains the applications to
manifolds which are asymptotically warped products.

List of notations.

M{ c M is a compact manifold with boundary (cf. (2.1));
H is a Hubert space, and Hχ c H is a dense subspace;
E and F are Hermitian vector bundles over M
D: C™(E) —• C™(F) is an elliptic first order differential operator;
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D'\ C O °°(F) -> C™{E) is the formal adjoint;
Dg - gDg is a weighted operator obtained from D

g

J^= L2{E\M{) ΘL2(R+, H), ^ j = LVμi/j) ΘL2(R+, # )

< T = L 2 ( E \ M { ) Θ L 2 ( [ 0 , l ] , H ) , 2 " = L 2 ( F \ M { ) Θ L 2 ( [ 0 , l ] , H ) ;

X is t h e b o u n d e d o p e r a t o r o n L 2 ( [ 0 , I], H) de f ined b y Xf(x) =

xf(x).

2. The class of operators

The class of operators which we consider is suggested by the example of
warped products. Therefore, we describe first the model situation in some
detail. Thus assume that M is complete and that there is an open subset
U c M such that

(2.1) Mχ := M \ U is a compact manifold with boundary,

U is isometric to (0, oo) x N with metric

(2.2) g = dy2 + f(yfgN, where N = dMλ is (compact)
Riemannian with metric gN .

Then it is a matter of calculation to obtain unitary representations of the
geometric operators on U as simple ordinary differential operators with
operator coefficients; this is, of course, done by separating the canonical
variable y on (0, oo). We will present a general scheme for this in a
future publication. For the time being we simply mention two important
examples which will suffice for our applications.

Example 1. Assume m = dimM = 0 mod 2. The Gauss-Bonnet op-
erator

is unitarily equivalent to

(2.3) dy + JJ^ (So + 5, 00) : Co°° ((0, oo) , / / , ) - Co°° ((0, oo) , H) ,dy

where

H := L2 (A'tf) , Hχ := HX

(2.4) S0:=d

5 l ( , ) : =

and n := dimN (cf. [5] for more details).
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Example 2. Assume m = 0 m o d 4 and denote by Ω±(ί/) the ±1
eigenspace of the involution τ on Ω(U) given by multiplication with

i)^ o n QJ^uy Then the signature operator

is unitarily equivalent to an operator of the form (2.3), where H and H{

are as in Example 1, but

( 2 5 ) forωeΩj(N) ,

Again, more details can be found in [5].
In the spirit of [4], [5] we introduce an abstract version of these exam-

ples. We assume again (2.1) and consider a first order elliptic differential
operator D: C°°(E) -> C°°(F) on M. We replace (2.2) by the following
assumption.

There is a Hubert space H with isometries
ΦE: L\E\U) - L2((0, oo), H), ΦF: L2(F\U) - L2((0, oo), H)
such that ΦE, ΦF induce isomorphisms
Hi (E\V) * Hi ([0, oc) , H)ΠL2 ((0, oo) , Hx) * Hx

0 (F\V).
Moreover, there is a self-adjoint operator 5^ in H with
domain 3f(S0) :•= Hχ, a smooth function (0, oo) 3 y *-+
Sx (y) E - ^ ( # 1 , / / ) , a positive function / e C°°(R+), and
smooth functions

(0,oo)3y^Aj(y)e^(H)n^f{Hι) , 7 = 1,2,
such that for w G C£°((0, oo), i/^ and y G (0, oo), we
have

A Dirac operator on a complete manifold has a unique closed extension
[10, Theorem 5.7], so it is reasonable to assume

(2 7 ) Anax = Anin-

This implies that the L2 -kernel and iΛcokernel of D are respectively the
kernel and cokernel of the unique closed extension. In what follows, the
unique closed extension will also be denoted by D. From (2.6) we derive
unitary isomorphisms

Φ: L2(E) - L2 {E\M{)ΘL2((0, 0 0 ) , / / ) = : ^ ,

Φ': L2 (F) -+ L2 (F\MΛ) Θ L2 ((0, 00) , / / ) = : &,
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and the domain 3f{D) of D can be identified with a subspace of βf. In
order to localize the analysis on U, we want to multiply by C°° functions.
As in [4] we put C~(R+) := {φ e C°°(R+)|^ is constant near 0 and near

00} . For φ e C~(R+) and u = (w., uh) e J F ( / ) we define

and require that

(2.9) Φ{/)~lφu

for some ψ e C°°(M), with ψ e C0°°(M) if φ e C0°°[0, 00). Clearly,
elements u = (ui, ub) of ^ ( D ) will have to satisfy a "transmission con-

dition" at N = dMχ. To formulate it we observe that for u e HQ(E)

with Φu = (ui, ub), and for v e HQ(F) with Φ'v = (v{, ^ ) we have

(2.10) = Φ£

l"i N, = ΦF

lvb
N.

Now we define the "boundary space"
(2.11)

{GL^αO, 00), HJΠH^ , oo), H) ΠL2((0, oo),H)

and we obtain that

(2 12)

It is easily checked that in the above examples the assumptions (2.6), (2.7),
and (2.9) are satisfied. In addition, there is a Hermitian vector bundle G
over N such that

(2.13)

H{=Hι(G),
So is a symmetric first order elliptic differential operator
on C°°(G),and

S{ (y) is a smooth family of first order differential opera-
tors on C°°(G).

(2.13) will not be necessary for most of our arguments.
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In the setting just described we now proceed to derive an iΛindex
theorem. This will not hold without further restrictions on our data as can
be seen from the example of the Gauss-Bonnet operator for rotationally
invariant metrics in Rn (cf. [6]). It will be necessary to have

dyf
Jo

= 00,
/o fiy)

which will follow if we assume

(2.14) f'(y) = a + o(l) asy —>oo, for some a > 0.

Moreover, S{ is thought of as a small perturbation of So, which is ex-
pressed by
(2.15)

|| ^ ^

Finally, Ax and A2 have to be close to the identity in the following sense:

) I , + 1 ( / ( y ) d > ) 1 (^ { y ) -7)ω - 7 )
= o (1) as y —• oo for / = 0, 1, j = 1, 2.

Remarks. (1) From (2.14) it follows that

(2.17) f(y) = ay + o{y) as y —• oo.

L

(2) Being elliptic on a compact manifold, SQ has a discrete spectrum.
For a > 0 we may replace / by af and So, Sx by aSQ, aS{ without
changing the assumptions (2.14), (2.15), and (2.16). Thus we may assume
that

(2.18) 0 < α < l a n d ± ^ £ specS0

which will make it possible to apply the analysis of the next section.
(3) All our conditions are translation invariant, i.e., invariant under the

change of variable y »-> y + R, R> 0.
Under these assumptions we are going to show that the zΛindex of D

is finite, and we will obtain an inequality for it which, in some interesting
cases, is an equality. Set

( 2 ' 9 )

and let ~g € C°°(M) be a positive function such that

(2.20) g2{y) = f{y)eF(y) iory sufficiently large,
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using (2.9). A convenient way to construct g2 is as follows. Select yQ > 0
and choose ψ = ψv e C°°(R) such that

•M)

0 < v < l , v(j) = 0 if><y 0, ^00 = 1 ify>2y0.

Then put

(2.20') /(y) := ((1 - ψ)(y)f(0) + ψf(y))eψF{y)

and I|Λ/, := /(0) 1 / 2 .
Lemma 2.1. l i r n ^ ^ /(y) = oo, the function

P.21) •W

is a diffeomorphism (0, c») —• (0, s(0)), and for y sufficiently large we
have

(2.22) S{y)=e-
Fiy).

Moreover,

(2.23) Ψ: Co°° ((0, s (0)) , H) 3 u » ±u o 5 e Co°° ((0, oo) , //)

w unitary with respect to the obvious L2-structures.
Proof. For y large by (2.20) we have

thus

( 1 2 4 )

From (2.17) and (2.18) we conclude that for y sufficiently large

(2.25) F(y)>logyά + C

for some C G R and some ά with a > 1, proving that s: (0, oo) —•
(0, s(0)) is a diffeomorphism. That Φ is unitary is obvious from the
definition, q.e.d.

Next we define a first order elliptic differential operator C™{E) -+
C~(F) by

(2.26) D7:
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and study its transformation under Ψ. If w e C~((0, s(0)),//,), then
Ψ u e C ^ α O . o o ) , ^ ) and

DτΨu(y) = g(y) [A, (y)dyA2(y) + f(y)~l {So + Si (y))] uoS(y)

= g 00~ ! [g2 00 s' (y) AXA2 (y) uΌs (y)

+ (g2/f) (y) (So + S, 00 + AJA'2 (y)) u o s (y)]

Using (2.24) we obtain

Tgu(x) = [-AχA2os~x {x)dχ + a{x) (so + Sι oj"1 (x)

(2.27)

=: - [5, (x) ΘXB2 (x) + a (x) (so + S, (x))] u (x) ,

where we have written

(2.28a) Bj{x) = AjoS-\χ), j = l , 2 ,

(2.28b) SQ = -S0,

(2.28c) Sι(x) = -Sιos'ι(x) ,

(2.28d) a{x)=(g

2/f)oS-
ι(χ).

By (2.24), flg\y) = s(y) = x for y large; so S,(x) = - S ^
-S{(y) for x small. It is apparent from (2.27) that D- satisfies simi-
lar assumptions as D but now the boundary operator Tg is the model
operator for conic singularities as treated in [5]. Somewhat surprisingly,
we will be able to reduce the index calculation for D to this case. The
relevant analysis of such operators will be carried out in §3. Assuming for
the moment that all closed extensions of D- are Fredholm (this will be

g

 2

proved in Theorem 3.3 below) our aim is to compare L -indD with the
index of a suitable closed extension of D-. It follows from (2.20) that

)du f o r l a r g e j ; )

so that by (2.14)

(2.29) g-ιeL°°(M).

Thus the map

(2.30a) β: zΛkerD B f» g~ιfe kerθ ? m a x
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is well defined, and obviously linear and injective. Similarly, we have a
linear injective map

(2.30b) β': iΛkerZ)' -> ker£>i m a χ .

Thus we obtain
Theorem 2.1. Under conditions (2.14) and (2.15) D has a finite L2-

index.
We want to obtain a formula for L2- ind D. The first task is to construct

a suitable closed extension of D-. We define the space

(2.31) W := [<

and the operator

(2.32) DΊW

To see that this makes sense we need
Lemma 2.2. ^ J c ^ ΰ ^ J ί l ^ 1 / .
Proof. We only have to show that gu e %? if u e ^(Pj m i n ) or

gub € L 2 ( R + , H ) . N o w ub = Ψ w b f o r s o m e wb e L 2 ( ( 0 , 1 ) , H ) , a n d ,
by Lemma 3.2 and (3.11) below, u €&(D-9inin) implies

But

Now for large i? it follows from (2.22) that

Γ fos'ι(x)\\ogx\ dx= Γe'F(y)F{y) dy,

and (2.25) implies the convergence of the integral. So gub =

Ψ(goS-
ιwb)eL2(R+,H). q.e.d.

Thus 3t(D-tW) is all u in S r(/> ? ι f n a x) such that ^ ί / e / . We will
show below (Theorem 3.4) that D- w is a closed Fredholm extension of
D- with index

(2.33) indD- w = indD- m i n + dim W.

On the other hand we have
Lemma 2.3. With β, β1 defined in (2.30a,b) we have

β (iΛkerZ)) = kerZ)- w , β' (L2-kerZ)') c kevD^ w.
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Proof. If υ G zΛkeri) , then β(υ) = g'ιv G ̂ ( ^ , m a x ) n g " 1 ^ ,
hence /?(t/) € ker/)- w. Conversely, if u G kerD- w, then v := gu e
k e r Z ) n ^ , s o /? is bijective.

Consider next υ e L2-kerDf'; by (2.30b) we know that ^'(ι;) G
and to obtain β'(υ) G 2(D^ w) it suffices to show that for all

)m a χ

(2.34) (Dju, jS7 (v)) = (u, Z ) ^ 7 (v)) = 0.

Now
(DjU,β'(v))=(Dgu,v)

and gu E ̂  by construction. By interior regularity we may assume in
(2.34) that u = (0, ub). Choose ίί/ G C^°(R) such that

ψ (y) - \

Ky) 1 0 , \y\>29

and put φn{y) := ψ(y/n). Then we find

,v)= / (Dgu(y) ,υ{y))Hdy
Jo

rOO

= lim / (Dgu(y) , Vrt (yMy))//d)>

= lim

= 0.

Hence the proof is complete, q.e.d.
We can treat Df in the same way; we introduce

and

which makes sense by Lemma 2.2 applied to D1. Applying Lemma 2.3 to
D1 we obtain

(2.35) indDΊ w <L2-indD< -indD'- w,.
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In general, it seems quite difficult to compute L2-indD in terms of D,

f, So, and S{. Ind D- w can be computed by the methods in [5], and

this will be carried out in §4. Thus the problem lies with the difference

(2

(2

.36)

Writing

.37)

: = L -indZ)-

= dimkerZ>j

ho:=

indDj w

dimW

:2-kerZ>'

we have by (2.33) and (2.36) the following index theorem:

Theorem 2.2. Assume conditions (2.1), (2.6), (2.7), (2.9), (2.14), (2.15),

and (2.16). Then D has a finite L1-index given by

(2.38) iΛindZ) = mάD-g m i n + Ao + V

A priori, h{ depends on the choice of g. We have, however,

Lemma 2.4. For i = 0, 1, h{ is the same for all positive ~g e C°°(M)

satisfying (2.20) for sufficiently large y.

Proof By (2.31), W, and thus hQ, is independent of ~g\ for g is

fixed for large y, and a change of g in a compact set does not affect

^ ( ^ m a x ) ' - ^ ( ^ m i n ) ' s " 1 ^ 0 Γ indZ)? ^ , so hλ is also independent,

q.e.d.

To obtain a more explicit formula we have to compute the various terms

in (2.38). This will be done below for ind D- m i n and h0 whereas we have

only an inequality for hχ. We will show, however, that h{ = 0 in many

interesting cases; thus we arrive at a satisfying L2-index theorem.

3. Regular singular operators

The operators £>- introduced in the previous section belong to the class
arising from the study of conic singularities (cf. [5]). Though their proper-
ties are quite analogous to our assumptions on D above, we write them out
explicitly for convenience. Thus let M be a Riemannian manifold, not
necessarily complete, let E and F be Hermitian vector bundles over M,
and let D: C°°(E) -> C°°(F) be a first order elliptic differential operator.
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We assume again (2.1) but we replace (2.6) by the following assumption:

there is a Hubert space H with a dense subspace H{ and
2 2 2, ΦF: L2(F\U)

(3.1)

isometries ΦE: L2(E\U) -» L 2 ((0,

L 2 ((0, 1), H) such that ΦE, ΦF induce isomoφhisms

Hi (£|Z7) ~ Hi ( ( 0 , 1 ) , H)ΠL2 ( ( 0 , 1 ) , tfj * Hx

0 (F\U).

Moreover, there is a self-adjoint operator SQ in H with

domain ^ ( S ^ ) := if,, a smooth function (0, 1) 3 x >->

St(x) € 5?{HX, H), and smooth functions

(0, 1) 3 x*Bj(x)€5?(H)n5f ( / / , ) , 7 = 1 , 2 ,

such that for u e Cj°((O, 1), /^,) and x € (0, 1),

= 5 1 ( x ) a x S 2 ( x ) M ( x ) + x ~ 1

As before, we think of
similar to (2.15):

(3.2)

as a perturbation. Thus we require an estimate

(l^hO = 0 ( 1 )

We also need the analogue of (2.16):

= o(l) a s x - ^ O f o r / = 0, 1 a n d / = 1, 2.

As in (2.8) we derive unitary isomoφhisms

Φ: L2 (E) -+ L2 (E\M{) φL2 ((0, 1) , H) := &}

Φ':L2{F) ^ L2 (F\MX) ΘL 2 ((0, 1) , H) :±&,

We need, furthermore, the analogue of (2.9): we put C~[0, 1] := {<p e

C°°[0, l]\φ is constant near 0 and 1} and define for u = (ui9 ub) G ^ ( / )

φu = (φ(\)un φub)

Then we require that

(3.4)
) φu = φΦ u

for some ^ 6 C (M), with p € C0°°(Λf) if ί? € C0°°(0, 1]. Finally, we

have again for u e H^(E) with Φu = (wf., w6), and i; E H^(F) with

(3.5) N.
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Operators D satisfying the above assumptions will be called regular sin-
gular. Thus the geometric operators on manifolds with conic singularities
are regular singular (cf. [5]) but also the weighted operator Dj introduced
in §2. The analysis of [5] has to be extended since we allow much weaker
perturbations. This has to be paid for by assuming that either

(3.6a) ±\ $ specS0

or

(3.6b) js, (x) (\S0\ + l ) ~ ' | + | ( |S 0 | + l)"*5, (x)| = O (*')

and

(3.6c) K (>><*>-') I , + I K iB< w - ' ) I = ° (•*')•
asx-+0, ./ = 1,2,

for some δ > 0." This is not a restriction in dealing with Z>-, in view of
(2.18).

We start our investigation of the closed extensions of D with the ob-
servation that

(3.7a) ( , ~ ~ , •»

= {(«,, ub) e Hι (ElMjφ^luJN = φ-lub\N} ,
where

^, = { " e L L ( ( ° ' nrH^ΠH^KO, ί},H)ΠL2((0, l),H)\

x ~ BγdχB2u (x) + x~' (So + S, (x)) «(x) € L2 ((0, \), H)).

In what follows we identify D with Φ'.DΦ"1.
To construct a boundary parametrix we introduce

(3.8a) PQsf(x):=

(3.8b) P, J(x) := j * (y/xffiy) dy, s<\,

and note that

From Lemma 2.1 in [5] we have the following estimates for x e (0, 1)
and feL2(0, I):

(3.9a)
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(3.9b) Pu-ι/2f(
χ) < ε(jc|logjc|)1/2 if JC < JC (β) , for all ε > 0.

Lemma 2.2 in [5] has to be extended to include the case β = - 1 , at the
expense of loosing the ε-decay.

Lemma 3.1. In L 2(0, 1) we have the norm estimates

(3.10a) | * ~ > o

(3.iob) \\X~{PUS\

/« L 2(0, e), 0 < ε < 1, we have for δ > 0

(3.10c)

Moreover, PQ s and P{ _s are compact for s > -\ .

Proo/ The proof follows as before from Schur's test, with p(x) —

g(x) = χ-
χl2 (Cf. [8]). By [5, (2.8)], P^_s = -POs, and Po 5 is Hubert-

Schmidt for s > -\ , thus Po s and Pχ _s are compact for s > -\ .
In what follows it is convenient to rewrite the operator in (3.1):

Bχ{x)dχB2(x) + χ-1 (SQ + S^X))

= BχB2 (x) dχ+x~X (So + Sx (x) + x ^ j 5 ; (x))

(3.11)

It follows from (3.2) and (3.6) that Sχ satisfies either (3.2) or (3.6b)
whereas B satisfies (3.3b).

Now we define an extension Do of D as a restriction of Z>max to the
domain

(3 12)

We will show below that DQ = Z>min, which in general differs from Dδ

introduced in [5]. The corresponding boundary parametrix is now

(3.13) Po:=

ί€spec50

5>—1/2
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Repeating the proof of Lemma 2.3 in [5] and using (3.9) and (3.10) we
obtain

Lemma 3.2. If ψ e C 0 °°(-l, 1), then ψP0 maps L 2 ( ( 0 , 1),H) into

&{D0).

Lemma 3.3. If u = (un ub) e &(D0) with w. = 0 and ub{\) = 0,
then

Proof Denote by (e ) - an orthonormal basis of H satisfying

Soes = s^ (with a slight abuse of notation in the case of multiple eigen-
values) and put

(3.14) h (x) := (dχ + x~lS0) u (JC) = B~\bu (x) - x~lSι (JC) u (x) ,

hence Λ E L ((0, 1), Z/) by definition of DQ. Proceeding as in Lemma
2.4 of [5] we obtain

us (x) := (u (x) , <?,) = ^ 5Λ5 (x) for all s.

Now if s > - j we find

us W = Λ A (*) = -^" s /' vK (y) dy + ̂ o A (*)

using hse L2. Since ||W(Λ:)||^ = O((JC| logx|) 1 / 2), x —• 0, it follows from

(3.8) that cs = 0, so w = P0Λ = P0Du - P0Sxu and the lemma is proved.
Lemma 3.4. There is 0 < ε < 1 swcA that for φ, ψ e C^°(-ε, ε) with

ψφ = φ and u e

(3.15)

bounded operator V in L ((0, I), H). As a consequence,

/ Note first that φu e ^Φmax) by (3.7a,b), hence f?M
by construction. Then the proof differs from that of Lemma 2.5 in [5]

only in so far that P0X~ιSι is not necessarily bounded in L2. But for

ue&{D0) we have

X~XSxφu,
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where χ e C™(-ε, ε) with χψ = ψ, and hence by iteration

7=0

By Lemma 3.1 and assumption (3.2) or (3.6b), \\ψX~ιSχPoχ\\ < 1 if ε is

sufficiently small, and X~ιS{φu e L2 by definition of Do. So we reach
the same conclusion, q.e.d.

Recalling that Dφu = φbu + C' u for some bounded operator C in

Mf, we obtain exactly as in [5] from Lemmas 3.4 and 3.1, and from (3.8)

Lemma 3.5. Z>D is a closed operator.

Theorem 3.1. DQ = D^.

Proof. Since Do is a closed extension we have DQ D Dmin. It re-

mains to show the reverse inclusion. If u e 3tφm2iX) and ψ e C°°[0, 1]

with ^(0) = 0, then ψu e ^0^) by interior regularity. Therefore,

it is enough to prove the following: if u e &ΦQ) there is a sequence

such that

(3.17a) un -• φu in ^ for some φ € C^° ( - 1 , 1) with φ = 1 near 0,

(3.17b) \Pun) *s a Cauchy sequence in βf'.

Now we proceed as in [4, Theorem 6.1]: choose φ e C£°("-l, 1) with
0 < φ < 1 and φ(x) = 1 if \x\ < 1/2, put

an := ( logn)" 1 / 2 , n > 2 ,

and let

^ Λ (JC) := χα" (1 - φ (nx)) φ (x) , Ψnm(x) •= ̂  (^) ~ Ψm {x)

Then we put wn := ^Λw and unm := ^ Λ W M , such that un e &Φmin) and

satisfies (3.17a), n > 2. It remains to show that \\Dunm\\~, tends to zero

as m > n —• oc. Now
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For 0 < δ < 1 we have

2 / 2 - 1 & 2 1 2

a I x α" logxdϋr = -^ <ϊ α" logί - -rί
Jo Z 4

_ _ I 1 ^gδ/(lognγ/2

2 4J
e

so this term is uniformly bounded in 0 < δ < 1 and n > 2 . Moreover,
2 2

2αM+l i J w - 2 α M - 2 t AZ - 2 α M - 2
x Λ l o g x α x = - ^ --̂ fl π log« τnJo

-2(logn)1/2

Combining these estimates with (3.11) and the obvious fact that
-1 : . ' .

for all δ e (0, 1], we arrive at

lim || u/ ^wlU = 0

as desired, q.e.d.
Since we have only used that ||M(JC)||^ = o(xι/2\ logx|1 / 2) if u e 3r(D0)

we thus obtain
Corollary 3.2. &(DmJ = {u€&{Dmn)\\\u(x)\\H = o(*1/2 |log.x|1/2)}.

If (3.6a) holds, then we can replace " o(xι/2\ logx | 1 / 2 )" by " 0{xι/2)".
Now we are ready to deal with the Fredholm properties of Do .

Theorem 3.3. Z>m i n: &(Dmin) -> #* is a Fredholm operator.

Proof. To show that Dmin is Fredholm it is enough to construct a

right parametrix for Z)min and D^in since D and D1 have the same

structure it is enough to deal with D. So we have to construct an operator

with P(jr') c &(£>.) and

I + K, K compact in JF'*

Since D is elliptic, we have interior parametrices, i.e., given ψ, ψ e

C™(M) with ψ = 1 in a neighborhood of suppy we can find com-

pact operators Pψ e£?(L2(F), L2(E)) and Kψ e5?(L2(F)) such that

Pψ(L2(F))cHi(E)Bnd

(3.18)
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Now let ε be sufficiently small and choose φ G C™(-ε, ε) with φ = 1
in a neighborhood of 0. Put ψ = 1 - φ and pick φ e C£°(-e, ε) such
that φ = 1 in a neighborhood of supp φ . Define

By (3.11) and Lemma 3.2, P e &{&',&) with
Moreover,

DP=ψ + Φ'Kψφ'~l +<p + φfBP0B~lφ + φX~X

=: I + K + φX'lBS{PQB~lφ =: I + K + R.

By (3.18) and Lemma 3.1, £ is compact in ^ ' . If ε is sufficiently small
we conclude from (3.2) or (3.6b) and Lemma 3.1 that | |ϋ | | < 1. Putting

P := P{I + R)~ι and A: := K{I + i?)"1 we obtain DP = I + K which
completes the proof, q.e.d.

Next we study the closed extensions of D besides Dmin .

Theorem 3.4. The closed extensions of D are all Fredholm operators,
which correspond bijectively to the subspaces of the finite-dimensional space

Moreover, denoting by Dw the closed extension corresponding to the space
W c WQ we have

indDw = indί) m i n + dim W.

Proof The proof of Theorem 3.3 actually works for every closed ex-
tension of D. Hence all closed extensions of D are Fredholm operators.
Thus it follows that WQ = 2{Dmax)/[2(£>min) is finite-dimensional. If
W c WQ is an arbitrary subspace, we obtain a closed Fredholm extension
Όw by restricting D m a χ to the inverse image 3φw) of W under the
projection 2φmda) -> Wo. The inclusion map iw\ &Φmin) *-* 3fφw)
is then Fredholm with ind iw = - dim W, and from Z)min = Dw o iw we
find

ind bw = indZ>min + dim W. q.e.d.

In §4 we will use the following facts.
Lemma 3.6. Put

(3-19) P m a i ί : =
s>l/2

If u = ube&b and φ e C^°(-l, 1), then we have

(3.20) P B~lDφu = φu + P X~XS,φu
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Proof. We use the notation introduced in the proof of Lemma 3.3. It

follows from Lemma 3.1 that PmaχX~lSι is bounded in L2. Setting

h (JC) := B~lDφu (x) - X~XSχφu (JC)

we have

(φuj (x) + x~lsφus (x) = hs (x) ,

where hs e L2

QC(0, 1], hence from φus(\) = 0

φus(x) = PUshs(x), xe(0, 1 ] .

Now if 5 > \, then we have Po shs e L2 by (3.2) or (3.6b) and Lemma
3.1. Thus

-1

x~s ί ys

Jo
since the right-hand side is in L2 , but the left-hand side is in L2 only if
the integral is 0.

Lemma 3.7. Let Q be the orthogonal projection in H onto

-ker(So-j)

and assume that

(3.21) L-1

Then for φ e C^°(-l, 1) we have

= (9(1) asx^O.

In particular, D has a unique closed extension if Q = 0.

Proof For u = ube3^b we have

B~XDφ (I-Q)u = (I-Q) B~lDφu + X~l (QS{ - S{Q\ φu

so φ(I - Q)u € 2$b by (3.6b) and (3.21). Observe that in view of (3.13)
and (3.19), (/ - Q)Pmax = P0{I - Q). Multiplying (3.20) by / - Q from
the left and letting f:=B~ιDφueL2 we find

P0(I - Q) f = φ (I - Q)u + P0(I - Q)χ-lBSιΨu.

By Lemma 3.1 we have D(x) := PQ(I - Q)x~ιS{(x) bounded in H, and
from (3.2) it follows that

\\D(x)\\ = o(l) a s x - 0 .
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Hence if φ has sufficiently small support, we obtain as in the proof of

Lemma 3.4 that

9(I-Q)u = P0Wf

for some bounded operator W in L2((0, 1), H). Thus the assertion

follows from Lemma 3.2. q.e.d.

We remark that (3.21) is always satisfied if Sχ(x) commutes with Q

for x near 0 otherwise it is a decay condition on the perturbation Sx.

4. The index formula

Theorem 2.2 will be made more explicit in this section by computing
indD- m i n . This will be done by a Fredholm deformation to an operator
with computable index, using essentially the methods of [5]. To do so it
is convenient to introduce the following assumption:

(4.1) in (2.6) we have Sx (y) = 0 and Aχ (y) = A2 (y) = I for y near 0.

Note that this assumption has also been used in [1] and is satisfied if M
has the product metric near dMχ. In concrete situations, however, it is
easy to remove (cf. §5).

Now construct g2 by (2.20') and 5 by (2.21). Using (2.23) and (2.27)
we find that Z>- m i n transforms unitarily to an operator T in ^ with
boundary part

— ~B [dv + a [>0 + 6 1 ) J > ^0 ~ ~>V

Here Bχ, 5 2 , S j , and a are given by (2.28) which implies (3.2), (3.3),
and (3.6a). Note that

Bχ(x) = B2(x) = 7 , 5j (JC) = 5j (JC) = 0 near 5(0),

and that
x near 5 (0) ,

jx, x near 0.

We can now apply the results of §3 to T, with obvious modifications due
to the fact that xa{x) φ 1 in (0, 5(0)]. Thus with ^ as in (3.12) we
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see that D- m i n is unitarily equivalent to T with domain

We now introduce
(4.4)

l</<2

Theorem 4.1. Assume (2.1), (2.6), (2.7), αnrf (4.1). If A < A(S0), then
each of the operators

(«„ μb) ~ [f{Q)Dui,-Ba

w" α Fredholm operator, where Q E [ 0 , 1] and Ba(x) := aB(x) 4- (1 - a)I.

Moreover, the function [0, l]3a^Tae $?{β{T), &') is continuous.

In particular,

ind T = ind TQ.

Proof. For sufficiently small A, Ba(x) is a continuous family of in-
vertible operators on [0, 1] x [0, 5(0)]. To prove that Ta is well defined

and continuous in a it is thus enough to prove that aS{ is continuous
on 3f(T). Now from (the proof of) Lemma 3.4 we obtain (3.16) for all

φ e C™(-s(0),s(0)) if A(so) is small enough. Since S{{x) = 0 near
s(0), the desired continuity follows from (3.2) and (3.16).

It remains to show that each Ta is a Fredholm operator. As remarked
above, (4.1) implies that for some δ e(0, s(0))

(4.5) Tau = Tu for ύΆue&(T) with supp ubn(0,δ] = 0.

Choose φ e C™{-s{0),s(0)). with φ = 1 in a neighborhood of [-δ, δ]
and ψ E C£°(-.s(0), 5(0)) with ψφ = φ . Since D- is elliptic, we can find

an operator Pφ e &(&', 2{T)) and a compact operator Kφ e ffi

such that

(4.6) TaPr
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Denote next by Pb the boundary parametrix for dχ + aS0, as constructed
in (3.13). Then we find

(4 7) T

=:φ + Ka

φ+aRa

φ.

By Lemma 3.1, Ka

φ is compact in &{&') and \\Ra

φ\\ < 1 if A(S0) is
sufficiently small. Hence

Thus we have constructed a right parametrix for Ta. To complete the
proof we have to construct a right parametrix for T*, too. But our as-
sumptions imply that T* is also regular singular, and the parametrix just
constructed maps into the minimal domain, q.e.d.

We proceed to compute the index of Γo using the heat kernel method
as in [5]. The only modifications in the argument arise from the fact that
xa(x) ψ 1. With the notation in [5, Theorem 4.1] we have

Theorem 4.2. Assume (2.1), (2.6), (2.7), (2.9), and (4.1), and let A in
(AA) be sufficiently small. Then D~min is Fredholm with

Mι

^ dim ker (So - s) - ]jP ak Res ηs {2k).
k>\

Proof. The closed extensions of TQ = TQ m i n are classified by the sub-
spaces of the space

as in [5, Lemma 3.2]. The "Dirichlet extension" TQ δ constructed there
corresponds to

W<:= φ k e r ( 5 0 - j ) ,
-l/2<5<0

SO

(4.9) indΓ0 = i n d Γ 0 , - ^ dim ker (So - s).
-l/2<5<0

It remains to determine the constant term, β(χ), in the asymptotic
expansion as / -» 0 of

(4.10) tr/ (e~tT°>δT°-' - e~
tT°δT^ή := Fχ (ή ,
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for various choices of χ. Choose 0 < sx < s2 < s(0) such that g2 o
s~\x) = /(0) for xe[s2, s(0)] and a{x) = x~ι for JC G (0, s{]. Then
choose *j G C Q V ^ , ^ ) , χ2 G C°°(0, j(0)) such that ^ = 1 in a
neighborhood of 0, and χχ + χ2 = 1 in a neighborhood of [0, s 2 ], and
put χ3 := 1 - χ{ - χ2.

If we let X = X3 in (4.10), then we obtain, by unitary equivalence with
Dj, that the constant term equals

1M

where ωD is the usual index form. The proof of Lemma 4.4 in [5] shows
next that

(4.11) β (χ{) = \ (η (So) - dimker50) - \
k>\

For the remaining coefficient, β(χ2), we use [3, Theorem 4.1] to find that

It is readily seen from the explicit formula for C(χ2) that we can increase
C(χ2) without affecting β(χ3) or β(χx). Thus we conclude

(4.12) β(χ2)=0; β(χ3)= f ωD.

Combining (4.9), (4.11), and (4.12) yields the theorem.
Corollary 4.3. We have

(4.13) indZγ m a x = i n d D ? m i n + £ dimker (50 - s).

Proof. Note that (Dj)' = (D1)- and that Theorem 4.2 applies to -D'Ί
as well, with So replaced by —SQ. Then we compute, recalling ωD> =

V, m a X =iπd(- J D ? i m a x )=ind(-4*, m i n )

f ^ 1
— / CJL) " I/ D 2

J .Mi

dim ker (5 0 - s) - ^ ak Res ηs (2k)

•f ^ dim ker (5 0 - 51). q.e.d.
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Now we turn to the computation of h0 and hχ. Their analysis depends
on the small eigenvalues of So and Sx. We introduce the orthogonal pro-
jection Q onto the eigenspaces of So with eigenvalues φ|5|<i/2ker(S0-s)
between - j and \. By construction, there is sx with 0 < sχ < \ such
that

(4.14) spec^nf-i^ct-^J.

We will use Lemma 3.7 so we want the decay condition (3.21) for the
transformed operator obtained from ~gD~g. In view of (2.23) it takes the
form

(4.15) fx {y)g\y) \\QSX (y)-Sx (y)β|| = 0(1) as y - oo,

and this will be assumed in what follows. Here we have written (cf. (3.13))

with

A(y):=AιA2(y),

Sχ 00 := (A~l (y) -l)so + A~iSι (y) + fA;ιA'2 (y).

We will have to study the reduced matrix operators

(4.16a) DQ := dy + f(y)~l
 (QSQQ + QSλ (y) Q) ,

(4.16b) D'Q := -dy + f(yfl [QS0Q + QSχ (y)* Q) .

For y, y{ > 0 we denote by W(y, y}) and W{y,y{) the respective
solution operators, i.e., the matrix functions with

(417) D%Wi')(y,yl)=0, y>0,

W{'){yι,yι) = I.

Lemma 4.1. (a) For y, y{ > 0 and any s2 € (s{, \) we have

where sχ is defined in (4.14), and F in (2.19).
(b) For y, yχ > 0 we have
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(c) Let v e Cι(R+ , QH) be a solution of the equation

(4.18a) DQv =• g'lw , w e L2(R+ , H).

Then for y{>0 there is γyv e QH and v^ e Cι(R+, QH) such that

(4.18b) v (y) = WQ (y9yx) γyv + vyχ (y) ,

(4.18c) I K ^ I ^
Moreover, the map v ι-+ γy v is linear, and γy v and vy are uniquely

determined by the properties (4.18b) and (4.18c).
Proof (a) Since WQ(y, y{) solves the equation DQWQ(-, yχ) = 0, for

e € Q// from (4.16a), (2.15), and (4.14) we have

Jy\

<\\ef + 2s2j
y2 f(y')~l \\wQ(y' ,y{)e( dy',

if s2 G (Sj, 5), and y , yt are sufficiently large. Hence the assertion
follows from GronwalΓs Lemma (cf. [9, p. 24]). The proof for W'Q is
analogous.

(b) It follows from a straightforward computation that

(4.20) | -
y

(c) We choose yχ = 0, for simplicity of notation. Then

(4.21) v (y) = WQ(y, 0)v (0) + jΓ WQ (y, y') g'xw{y') dy.

Since g~\y) = f(y')~{l2e~F{y>)12 for / large, we deduce from part (a)

and w <E L2(R+, β//) that the integrand in (4.20) is in L1(R+, β//).

Since ^ ( y , / ) = ^ ( ^ , 0 ) ^ ( 0 , / ) , we may write

v (y) =: WQ {y, 0) γov - j WQ(y, y) g~lw ( / ) dy

=:WQ(y,O)γov + vo(y).
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We estimate, again with part (a),

- O(,-™)
γ / I 1/ I N '

which proves (4.18c).

Now assume a second representation

v {y) = WQ(y, O)γjv + vo(y).

It follows from part (b) that

γ^j - γov = w'Q (y, 0)* (υ0 (y) - v0 (y)) ,

hence from part (a) and (4.18c) that

Thus γ^ϋ = γoυ and v0 - v0. q.e.d.
We can now calculate h0 . For some yγ > 0 we introduce

^ := [e E QH\W{/) (., y j ^ E L2} C QH.

Since ίF ( / )(y, ^ ) = W ( 0(^, y2W
{/){y2, y^ , it is easily seen that the di-

mensions of these spaces are independent of yx .
Lemma 4.2. For y{ > 0 w^ Λαv̂

(4.22) h0 = dim^f (D- m a χ ) n g-χ*l9 (D-min) = dim^.

We want to construct a linear map y: 31 (p^ m a x ) —• β// such
^ m a x

that
ker y\2J ( β . m a χ ) Π

To achieve this, observe first that u e 3ϊ(D- m i n ) if and only if u e

(4.23) \\gu(y)\\H = θ(e-Fly)/2)9 y - oo.

In fact, this follows from the remark after Corollary 3.2 and (2.23). Next
we note that for ψ G C™(M) with ~φ = 1 in a neighborhood of Λ/j we
have ^w e 3f{DJtmin) for w e 3f(DlttasJ, by interior regularity. Also,
(/ - Q)(l - 0?)w G ̂ (D g.mϊn), by Lemma 3.7. So it remains to study

:= ύ. We compute

: = tt;
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with w e L2(R+, H). Hence from Lemma 4.1 we obtain the decomposi-
tion

Now choose yχ > 0 such that φ{y) = 0 if y > yχ and define

?(u) ' =yyιgύ = γy^ (g(l -φ)Qu)eQH.

Next we want to show that

Let u e kery. Then we obtain from (4.24) and (4.18c)

hence ύ e &{DΊ m i n ) by (4.23) and u e ^(Djιtojn). Consequently, if
u e &(Dj min), from (4.24) and Lemma 4.1(c) we obtain

γ (U) = W'Q(y, yχY (gύ (y) - v {y)).

If we substitute the above equation in the estimates (4.23) and (4.18c),
and use Lemma 4.1 (a) we obtain for y > yχ

hence γ(u) = 0 as claimed.

It remains to show that imy = Ky . Pick e e Ky and ψ e C°°(R)

such that ψ(y) = 1 for y > yχ/2 and ψ(y) = 0 for y < yχ/3. Define

u(y):= ψg~X (y)WQ{y9yx)e.

Since ψ' has compact support and e e K , we have u e 3f{D- m a x ) and

g M G / . It follows that

gύ(y) = WQ(y,yχ)e + ((l-φ)ψ(y)-l)WQ(y,yχ)e,

so the uniqueness of the decomposition (4.24) implies

e = γ(u). q.e.d.

We can make (4.22) even more precise in the following special case
which covers the examples given in § 1. Thus we now assume the following:

(4.25) 0 i i ]

( 4 26) in (2.6) we have Aχ = A2 = I and Sχ(y) = f'(y)Sχ for
some self-adjoint operator in H with domain Hx.
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(4.27) { I χ

In view of Remark (2) after (2.16), only (4.27) requires verification in the
warped product case. But this is straightforward from the explicit formulas
(2.3) and (2.4). Note that (4.26) implies a = 0 in (2.14).

We write the spectral decomposition of S{ := QS{Q as

(4.28) S

Then we obtain
Lemma 4.3. Under the assumptions (4.25), (4.26), and (4.27) we have

ho=

Proof. It is readily seen that in this case,

Qt

and

Therefore

Qr

Γ'eL2

As mentioned before, hx is more difficult to deal with. So we only
obtain an inequality for this quantity, which implies, however, h{ = 0 in
many interesting cases. To formulate it we observe first that Ky and K'y

are orthogonal: let e{ί) e K^ and put u{f\y) := W{'\y, y{)e{f) * Then

(u(y),u(y))=

by Lemma 4.1(b). Since w, u e L2 we obtain

rT+\

(e9e)=limoj (u{y) , u\y)) dy = 0.

Denote by L, the orthogonal..complement of J£. @K[, in Q//, and by

Q, the orthogonal projection onto L- . It is easy to see (cf. the proof of
1 y\
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Lemma 4.4 below) that with

MT* := ίυ e C°° (F) \g~ιv eJr'9D'υ = 0, (Du, υ) = 0
(4.29) l

for all w e / with gDu EvT J ,

we have

kerDl w = β' (M£) .

With yχ > 0 arbitrary but fixed we introduce the map

where y is the map analogous to γ for D'Q . Note that this is well defined

by g~xv E^{D'- m a χ ) and Lemma 4.1(c).

Lemma 4.4. zAkerD' = kerτ . Consequently,

Λj = dimkerZ)! ^ - d i m L -ker/)'

= dim im τ < dim L .

Proof. Let υ e L2-kerDf. Then clearly υ € C°°(F), g~lv e &,
and D'V = 0. Moreover, it follows as in the proof of Lemma 2.3 that
{Du ,υ) = 0 for all M G / with gDu e Jtf so v e %£ . Next we obtain
D'Q{\ - φ)v = g~ιw with w e L2, hence from (the analogue of) Lemma
4 1 ( )

(4.30)

where v , ϋ e L2. Thus y' g" 1 ^ G Jί' and t; e kerτ

τy

g ^ G Jί and t; e kerτ v .

Conversely, let f E ker τy we have to show that v € %?[. We have

v := g~ιv E ^{Dj m a χ ) and consequently (with $? as in the proof of

Lemma 4.2) by Lemma 3.7 (/ - Q)(\ - φ)v € ^(i>j f i n i n)- which is, by
(4.23), equivalent to

implying (/ - Q){\ - φ)υ e Sf1, by (2.25). From Lemma 4.1 we obtain
the decomposition (4.30) so it remains to show that yv ϋ e K'y . By

assumption, e1 := y' ϋ E Kv Θ K'v . Choose e e Kv then we can find
.y\ y\ . y\ y\

u E 3f(Dj m a x ) Π g~X%f with y u = e . Write u := ^w such that fi.-e /
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and gDύ = Dgu e &1, hence 0 = (Du, v). From Lemma 4.1 again we
g

have Q(l-φ)ύ(y)=:ψ(y)W{y,y{)e+W(y),

so we obtain, in consequence of (4.30), Lemma 4.1 (a), and Lemma 3.7,

0 = (Dύ,v)= lim (fi(Γ), v(Γ)>
T—*oo

{T, y { ) e + W ( T ) , W' (T, y { ) e ' + ϋ {T, y { ) ) + 0(1)lim

Thus e1 JL ΛΓ which completes the proof, q.e.d.

Let us again assume (4.25), (4.26), and (4.27). The proof of Lemma
4.3 shows that

* o = Θ Qt>
Γ'eL2

hence in this case

(4.31) Lo= 0 Qt,

which gives as a useful special case
Lemma 4.5. Suppose that f € L2 or f~ι e L2 for all t Φ 0 and that

β o = {O} in (4.28). Then Aj = 0 .
Note that in the examples of §2, Qo = {0} is always satisfied so that

Lemma 4.5 applies.
We combine the results of this section with Theorem 2.2 to formulate

our main result.
Theorem 4.3. Let M be a complete Riemannian manifold, let E and

F be Hermitian vector bundles over M, and let D: C°°(E) -» C°°(F) be a
first order elliptic differential operator. Assume conditions (2.1), (2.6), (2.7),
(2.9), (2.14), (4.1), (4.15), and that the constant A in (4.4) is sufficiently
small. Then D has a finite L2-index given by

2' indD = ωD + \{η (s0) - dim ker So) - Σ d i m k e r (̂ o ~ s)
^M\ l/2<5<0

o + dim im τ 0 .
k>\

Here ωD is the usual index form, ηs is the η-function associated with the

operator So in (2.6), and Ko and the map τ 0 are defined in Lemmas 4.2

and 4.4 respectively.
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5. Asymptotically warped products

Asymptotically warped products will be studied in this section. By this
we mean a complete orientable Riemannian manifold M with (2.1) and

U is isometric to (0, oo) x N with metric
( 5 . 1 ) . 2 , , ,2 , ,

g = dy +f(y) gN{y).

Here / is a smooth positive function satisfying (2.14), and gN(y) is a

smooth family of metrics on N = dMχ converging to a limiting metric

gN = gN(oo) as y —• oc. This defines a warped metric g° := dy1 +

f{yfgN on ί/. We denote by V and V° the Levi-Civita connections

for the metrics g and g°, and by ω, ω° and Ω, Ω° the respective

connection and curvature forms. Then we want that with θ := ω — ω

(5.2) sup (\g-gθ°f +f(y)\θ\lP))=o(l) a s y • 0 0 .

Here | |° denotes the norm defined by g° . These conditions are enough

to ensure that DGB and Ds have a finite iΛindex. To obtain a more

convenient formula for ind D- m i n in some cases we will need in addition

that

(5.3) sup f(y)2\a\[\P)

To handle h0 and Λj we will also impose the decay condition (4.15). The

calculations for Ds and DGB are almost identical, so we will give proofs

only for the latter operator. We begin by establishing (2.6). We recall first

the method used in [5, §5] for the warped product case (actually only for

f{y) = y 9 but the generalization is obvious). With c. := j - (m - l)/2,

m = d imM, we introduce the maps Φ e v / o d d : C£°((0,oo), Ω(7V)) ->

(5.4a)

j>0
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which define unitary maps between L ( ( 0 , o o ) , L(A*N)) and

LQ(Λ*v/oddί7), where N has the metric gN, and the subscript 0 refers

to the metric g° . Thus we obtain as in Example 1 of §2

where So and Sx are given by (2.3), a > 0 is defined by (2.14), and we

may assume a < 1 and ±\ $. spec*S0. Now we introduce an endomor-

phism B e C°° (End A*U) with the property that

(ω{, ω2) (p) = (ω{, Bω2)0 (p) , ω{, ω 2 e Ω (U) , p e U.

Here ( , •) and ( , ) 0 denotes the point wise scalar product with respect
to g and g0, respectively.

Then we find smooth functions # e v / o d d e C°°((Ό, oo),

where H = L2{A*N), Hχ = Hι(A*N), such that

^ ^ e v / odd = ^ e v / odd^ev / odd *

Moreover, # e v / o d d satisfies (2.16a), i.e.,

(5.6)

To see this we choose a local orthonormal frame (^ /) 1 < / < w_i for (N, gN)

) ~ lsuch that f0 := d/dy , f. := f(y)~lei, / > 1, is a local orthonormal frame

for (U, g°), parallel with respect to V° along the geodesies normal to N.

From this frame we construct a local orthonormal frame (^) 0< /<w_i f°Γ

(U, g) by the Gram-Schmidt procedure. Then it is readily seen that the
coefficients of i?ev j o d d with respect to the frame (ft) are smooth functions
in the variables gij := {ft, f . ) . But

= Σ (θ« Co) «w + ̂  W)
A
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So (5.6) follows from (5.2). Moreover, 5 e v / o d d satisfies (2.16b) which
follows from (5.2) and the explicit formulas for the Levi-Civita connection
V° (cf. [11, p. 206]). Thus we obtain a unitary equivalence

(5.7)
DGB = d + i ,

Recall that [10, Lemma 5.13]

where L denotes interior multiplication, and (/)) is the local orthonormal
frame for (U, g) constructed above. We write

and observe that the akι are smooth functions in the variables gtj. Then
it follows as above that

(5.8) suv(f{y)d)] (akl-δkl)(y,p) = o{\) asy - oo, j < 1.

Hence we have

- Σ K/%'-̂ A/')//

akiaki>cιι>+Σbι,ι/Eι,ι'+δ°
1,1'

So we must study the transformation of C and E under Φ. Note that
C and E are independent of the choice of frame.

Lemma 5.1. We have

:=φ-*άCΦeveC°°((0,oo),

and

(5.10)

as y -+ oc
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Proof. It is enough to prove the assertion locally for each Cιk . Using
the frame (f.) constructed above we have

I f K)i</<ffl-i a n d C/Γ)o<κm-i denote the respective dual frames, f* =
dy, we find

Thus for p E N and 1 < ι, < < ir < m - 1

(5.11a)

(vf-V°f)e*A--Ae*
\ h h) ι\ ιr

IJ

(5.11b)

Combining (5.4a,b) with (5.1 la,b) and (5.2) gives the lemma, q.e.d.
Lemma 5.2. We have, with br in (5.9),

= 600diag ((-1 ) r) dy + f(yΓι b00diag (cr)

+Σ (V/ L 5,+/(y)"1 V/ L diag (c,
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Here Eχ e C°°((0, oo), S?{H)r\2?iflλ)) with
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L

αsy-oo, y<
\\H

EC°°((0,oo), ^{H{,H)) with

- 1

H
Jo α s y - o o .

1//

/ The lemma follows by straightforward computations, together
with (5.4a,b), [11, p. 206] and (5.8).

Now we combine (5.7), (5.5), and (5.9) with Lemmas 5.1 and 5.2 to
derive the unitary representation
(5.12)

1 2

D 1/2,
odd'

1 (5 0 + ̂  (y) + /(y) C (y) + £ 2 (y)) 2?ev

1/2 (y)

ι (5 0 + ̂ (y) + f(y)C(y) + £2(y))] 5e"v

1/2(y)

50 + B~l/1 (y)(y) (S, (y) + /(y) C (y) + ̂ 2 (y))

(y) - /) S0B'l/2 (y) + So (B~i/2 (y) - /)

=:A(y)dy+f(yΓι(s0 + Sι(

where 5Ί(y) satisfies (2.15), and A(y) satisfies (2.16). Now we put E :=
Λ * Λ / F Λ ; Λ / D D d + δ dΛe*vΛ/, F := , D := DGB = d + δ , and

- 1

Then it is easily checked that (2.6), (2.9), and (2.10) are satisfied. (2.7)
holds since M is complete, and (2.1), (2.14) hold by assumption.

Theorem 5.1. Let D = DGB or D = Ds, and assume m = dimM is
even or divisible by four, respectively. Under the assumptions (2.1), (5.1),
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(2.14), and (5.2), D has a finite L1-index, given by

L2-indD

(5.13) = / ωD + ί aD
JdMι

/
Mι ι

- Σ dimker (so - s} + J ^ ak Resη~ (2k) + Ao + Aj,
-l/2<s<0 fc>l

where the various notation (9/(5.13) is defined as follows.
(a) ω D is the "index form" of D (defined in [5] after (4.32)), equal

to the Chern-Gauss-Bonnet form for DGB and to the Hirzebruch Lm/Λ-
polynomial for Ds. aD is the transgression of the characteristic form ωD

from V to Va, where Va is the Levi-Civita connection for the metric
ga := dy2 + faiyγ'gN{oo) with fa(y) := ay if a > 0, and fa(y) := 1 //
a = 0.

(b) 5 0 wg/ven 6y (5.5), with SQ, S{ in (2.3) for DGB and Sf

0, S[ in
(2.5) for Ds.

(c) hQ and hχ are defined by (2.37) and (2.36). If the decay condition
(4.15) holds, then they are given by Lemmas 4.2 and 4.4, respectively. If
g = g°, then Lemmas 4.3 and 4.5 apply.

Proof Again, we consider only the case D = DGB . From the above
considerations and Theorem 2.2 it is clear that D has a finite L -index
given by (2.38). To derive (5.13) we deform the given metric g near dMχ

to the metric ga . By the description of D- m i n resulting from (3.11),
(3.7a), and Corollary 3.2 it is easily seen that this deformation does not
change the index of D- m i n . For the new metric we have (4.1) in view
of (2.3) and (2.5), hence Theorem 4.2 applies. The proof of (5.13) is
completed by recalling the definition of the transgression (cf. [7, Chapter
2.1]). q.e.d.

We can now derive extensions of known L -index theorems in some
special situations.

Corollary 5.2 (the asymptotically Euclidean case). Assume M is asymp-

totically warped with f(y) = y, N = Sm~ι, and m = dimM > 2. If {5.2)

=0(1)

holds and

(5.14)

then

(5.15)

2 ,,-..0

supy \Ω\{yyP)

L2-indDGB = lim /
R-+<X>Jy<R
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and

(5.16) L2-indJ5« = lim [ ω«.
s R-+ooJ<R

 s

Proof. We have a = 1 in (2.14), and, in consequence of [5, Lemma
5.1; 12],

specSon [-£,£] = 0

if m > 2. In view of (2.18) we may thus assume that 0 < a < 1 in (2.14),
and

specS o n [ - £ , £ ] = 0. .

Hence β = 0 in (4.15), and hQ = Aj = 0 by Lemmas 4.2 and 4.4.
Now let R > 0 and apply our construction and Theorem 5.1 to

Λff := ̂  u {p € t/|y (/?) < i?} , UR := {p e U\y (p) > R}

(cf. Remark (3) after (2.16)). Then we obtain (5.13) with M{ replaced by

Aίf and hQ = hχ - 0. We want to prove next that

(5.17) lim

Observe that in this case the metrics g° and ga coincide on U. Thus,
if Ωs denotes the curvature two-form of the connection 5V0 + (1 - s)V,
then

= (m-l) f"P(θ9ns,...,ns)ds,
Jo

where P is the complete polarization of the invariant polynomial defining
ωD (cf. [7, Lemma 2.1.2]) and θ as in (5.2). Since Ω° = 0, it follows
from (5.2) and (5.3) that

sup Rm-l\aD\°{RtP)->09 tf-oo,
pesm~\

which implies (5.17). The proof of (5.15) is completed if we compare the
resulting index formula with the formula for M = Rm .

In the case D = Ds, from [12], and [5, Lemma 5.3] with So = S'o + S[
and S'j as in (2.5), as before we conclude that spec50 n [-{, \] = 0 .
Hence again hQ = h{ = 0 and (5.13) holds. Letting R —• 00 as before and
comparing again with M = Rm we obtain the assertion (5.16). q.e.d.

Corollary 5.2 extends Theorem 5.2 in [2], which in turn extends Theo-
rem 1 in [14]. It should be noted, however, that in [2] the case m = 2 is
also treated but not in [14]. By [5, Lemma 5.1] we have spec5 0Π[-^, \]Φ
0 and consequently Q Φ 0, so we have to deal with Ar. Note that this is
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not a Fredholm problem since in the asymptotically Euclidean case DGB

is not Fredholm in any dimension. We hope to return to this question in
a future publication.

Corollary 5.3 (the cylindrical case). Assume f(y) = 1 in (5.1) and

g = g° on U. Then

L2-indDs = ί ωs + \(η (sQ - dimker^) + hχs = ί ωs + \(η (sQ - dimker^) + hχ

where hx is the dimension of the space of limiting values of elements in the

extended L2-kernel of D's (as defined in [I, p. 58]).

Proof It is clear that (5.2) and (5.3) hold and that as = 0. Thus

Theorem 5.1 applies. By [1, Theorem (4.14)], ηs> is regular in Re z > -j ,

so all residues in (5.10) vanish. Moreover, since a = 0 in (2.14), we

have So = S'o and may assume by the usual scaling that Q - kerSQ =

(&j>0H
j(N). Furthermore, it follows from (2.5) that (4.15) holds, and

Lemma 4.2 gives hQ = 0. To prove the assertion concerning hχ recall the

definition of the extended L2-kernel of D1:

L2ker£>' := [v e C°° (θΓ {λfj) \D'v = 0, lim υ (y) := v^
[ \ / y—>oo °°

exists in H = L2 (λ*Λr) and υ - v^ e L2 ((0, oo) , H)} ,

where we identify v with its image under Φ_ in L2((0, oo), //). We
claim that

(5.18) hx = dim {vjv e L2ker//} .

To see this we show that L2 kerZ)7 = ^ ^ , where ^ is defined in

(4.29), and that the map τ in Lemma 4.4 is given by L2kerD' 9 ί i κ

8~l(y)voo e H ^ 0 Γ a 1 1 V* t h e n (5.18) follows from Lemma 4.4. Con-

sider v e L2kerZ)' we have to show that g~ιυ e L2((0, oo), //) and

(Dsu, v) = 0 for all u € L2((0, oo),H) with gDsu e L2((0, oo), H).

Since Ds = dy + S'Q we can decompose v in the eigenspaces of S'o,

(5.19) v(y)=
A€spec S'o

Since υ e L2 kerZ)', we have υλ = 0 for λ > 0 and v^ = vQ e

kerS'o = Q. Moreover, g(y) = ey/2 so g~ιυ e L2((0, oo), H). Now

consider u as above and assume without loss of generality that u(y) - 0
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for y < 1. By assumption and (2.31), g~ιu e 3ί(Ds-w), and by
(2.37) and Lemma 4.2, Ds - w = DSJnύn. Thus Corollary 3.2 gives

\\u{y)\\fί^_O{e~F{y)/2) = 0{e'y/2), and it follows that (Dsu, v) = 0.

Hence L2 kerZ>' c ^ .

Conversely, if v e %?w , we have the decomposition (5.19) and only have

to show that vλ = 0 for λ > 0. Fix λ > 0 and put u(y) := φ(y)υλe~λy

with 0? e C°°(R) such that ^(y) = 0 for y < 1 and φ(y) = 1 for

y > 2. Clearly, u G L2((0, oo), i/) and gDsw(y) = gφ'(y)vλe'λy e

L 2 ((0,oo),//), hence

Thus L2 kerZ)' = < ^ . We now recall the definition of the map τy : intro-

duce yy'&(Ds-mdiX) -• QH as in Lemma 4.1. Then τy(υ) = γy(g~lv)

since Q = Qx. Choose y{ > 0 such that in (4.18a) φ{y{) = 1 and write

for υ e #£

Qv (y) = Qg ' g~lv (y) = vQ = W (y, y j t;0.

Comparing this with (4.18a) we conclude from the uniqueness of y that

which completes the proof of (5.18). q.e.d.
Corollary 5.3 is Corollary (3.14) in [1]; note the difference in orientation

which leads to A - -S'o in Theorem (3.10). Finally, we treat the cusp
case.

Corollary 5.4 (the cusp case). Assume (2.1), (5.1), (5.2), and in addition

(5.20) vol° U < oo

and

(5.21) Ricc°<0 onU,

where Rice0 denotes the Ricci tensor of the metric g°. Then (2.14) holds

with a = 0 and Theorem 5.1 applies. If g = g° on U, (5.3) holds, and

(5.21) is strengthened to

(5.22) R i c c ° < - ε 2 on U,

then

(5.23) L2-indDs= lim f
R-KX>Jy<R
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and

(5.24) L2-indDGB= lim^f ωGB+ ]Γ (-l)jdimHj (N).

Proof. From (5.21) together with [11, p. 211] we find

(5.25) Ricc°f^-, j-λ =-nlγ(y)<0, n = dimN,

hence / ' is increasing. Since, by (5.20),

Γf(y)ndy<oo,
Jo

we must have f'(y) < 0 for all y, and a = l i m ^ ^ f'(y) = 0 since / is

positive. Thus we may also assume specS0 Π [-\ , \] = {0} .

Assume next g = g° on U and (5.22) instead of (5.21). Then (5.25)

implies nf"(y) > e2f(y), hence

Γf(y)dy<-^ff(0).
Jo ε

Since l i m ^ ^ f(y) = 0, we have /* E L2(0, oo) for all a > \ . As noted

before, (4.15) also holds in this case if D = Ds or D = DGB, so we

obtain (5.13). For R > 0 we can also derive (5.13) with Mχ replaced by

Λ/f = Mχ u {p G U\y(p) < R} . To study the transgression aD we denote

by ω° and ωa the connection one-forms for V° and Va respectively,

and we put θ := ω° - ωa . It follows from [11, p. 206] that
. o

sup/(}0 θ =#(1) as y —• oo.

Moreover, since / is bounded, using (5.3) and [11, p. 211] we conclude
that

2
 ( Ί Ω °sup/(y)2 (ΊΩ °

(y,p) + Ωa ° a s y ^ o c .
PEN

Hence as in the proof of Corollary 5.2 we have l i m ^ ^ J9MR aD • = 0.

Since a = 0, 5 0 = *SQ if D = Ds , and we may assume that

Then it is easily seen that (4.15) holds and h0 and hχ are given by Lemmas
4.3 and 4.4 respectively. Since n — m - \ is odd and N is orientable,

(5.26) dimkerSO = Σ]dim//J'(JV) = 2 X) dim//7 (JV).
7=0 j=m/2
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From (2.5) we have the spectral resolution

7=0

Now j - n/2 > \ if and only if j > ra/2, hence by Lemma 4.3 we
conclude

n

(5.27) ho= Σ dim//7'(TV).
j=m/2

Note that the contributions from h0 and kerS'o to the index cancel with

each other. Moreover, \n/2 - j \ > j for all j , hence / " ' ' ' e L 2(0, oo)

for all t e specQS[Q. Thus Lemma 4.5 implies

(5.28) A, = 0.

Now (5.23) follows from (5.26) through (5.28) since ηs> is regular in

Rez > -\ by Theorem (4.14) in [1].
If D = DGB , from (2.4) as before we have that

(5.29) kerSo = 0 7 '

and

Since (-l)j+\j - n/2) > { if and only if (-l)n~J+ι(n -j - n/2) > \ ,
using Lemma 4.3 we obtain

(5.30) hQ = 2 Σ dim//2 7 (TV).
0<2j<n/2

As before we conclude hx — 0 and l im^^^ SdMRθLD ~ ^ Finally, from

[5, Lemma 5.1] it follows that in this case

(5.31) ηSo = 0.

The proof is completed by combining (5.30) and (5.31). q.e.d.
Corollary 5.4 substantially generalizes Theorem 2 in [14].
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