SPACE OF SOULS IN A COMPLETE OPEN MANIFOLD OF NONNEGATIVE CURVATURE

JIN-WHAN YIM

0. Introduction

Let M be a complete open Riemannian manifold of nonnegative curvature. The most significant result in the study of the differential structure of this type of manifold is due to Cheeger and Gromoll. In [3] they produced a totally geodesic submanifold S_{0}, a soul of M, and showed that M is diffeomorphic to the normal bundle $\nu\left(S_{0}\right)$ of S_{0}. Following this work, Sharafutdinov and, independently, Croke and Schroeder showed that there exists a strong deformation retraction $f: M \rightarrow S_{0}$ which is distance nonincreasing [4, 8]. Using this retraction one can show that if a soul is not unique, then they are all isometric and homologous to each other. Moreover, there are infinitely many isometric copies of a soul in M, which are not necessarily souls. This observation leads us to the following definition.

Definition. A subset $S \subset M$ is called a pseudo-soul if it is homologous and isometric to a soul S_{0} with respect to the induced metric.

In particular, it is clear that all souls are pseudo-souls, and the definition is independent of a soul S_{0}. If a soul is not unique, then there are infinitely many pseudo-souls. The purpose of this paper is to investigate the union \mathscr{H} of all pseudo-souls in M. In fact, we will prove the following theorem.

Theorem. $\mathscr{H} \subset M$ is a totally geodesic embedded submanifold which is isometric to a product manifold $S_{0} \times N$, where N is a complete manifold of nonnegative curvature diffeomorphic to a Euclidean k-space \mathbf{R}^{k} and k is the dimension of the space of all parallel normal vector fields along the soul S_{0}. Furthermore any pseudo-soul in M is of the form $S_{0} \times\{p\}$ for some $p \in N$.

As an immediate corollary of this theorem, if the normal bundle itself is parallel, we obtain the splitting $M=S_{0} \times N$. This special case has been independently studied in [6].

There are two trivial examples of M for which one can easily find pseudo-souls and the space \mathscr{H}. If M is a paraboloid, then every point

[^0]$p \in M$ is a pseudo-soul, and hence $\mathscr{H}=M$. The other case is a flat cylinder $S^{1} \times \mathbf{R}$, in which $S^{1} \times\{t\}, t \in \mathbf{R}$, is a soul (and hence a pseudosoul) and $\mathscr{H}=M$. Until recently, partially due to insufficient examples, it was suspected that if \mathscr{H} is not trivial (i.e., $\mathscr{H} \neq S_{0}$ or M), then M should be a product $M_{1} \times N$, where M_{1} has a unique soul S_{0} and $\mathscr{H}=$ $S_{0} \times N$. However, as pointed out by M. Strake, there does exist an example which is not a product but has nontrivial \mathscr{H}. It is still unanswered what is the best metric structure of M one can expect when \mathscr{H} is not trivial.

The definition of a pseudo-soul was first introduced by C. Croke and V. Schroeder by whom the statement in the theorem was conjectured and has been studied. Some of the techniques used in this paper are due to them.

The author would like to express his thanks to Professor Croke for his assistance in the preparation of this paper.

1. Preliminaries

The proof of our main theorem is rather technical and requires a knowledge of the geometry of convex sets, which may not be familiar to some readers. In the present section, for this reason, we provide a brief outline of the proof we will establish, and recall some notation and results from [3], [8].

As might be expected from the statement of the theorem, a parallel section in the normal bundle $\nu\left(S_{0}\right)$ of a soul is a key tool in the construction of the space \mathscr{H}. In fact, it was shown in [8] that the exponential image $\exp _{S_{0}} F$ of any parallel normal vector field F along S_{0} is a pseudo-soul. We aim to prove that in this fashion one can produce all the pseudo-souls in M, and then use a local argument to accomplish the final goal.

By the construction of the Sharafutdinov retraction f (Theorem A.1), there exists a homotopy $H: M \times[0,1] \rightarrow M$ such that $H(\cdot, 0)=\mathrm{id}$ on M and $H(\cdot, 1)=f$. One can further show that for any pseudo-soul $S \subset M$, $\{H(S, t)\}_{t \in[0,1]}$ is a family of pseudo-souls continuously parametrized by $t \in[0,1]$ such that $H(S, 0)=S$ and $H(S, 1)=S_{0}$ is a soul. We first replace this continuous family by a broken geodesic's worth of pseudosouls, and then use a curve shortening process (Lemma 3.2) to prove that the connection between S_{0} and S can be done by a family $\left\{\gamma_{p}\right\}_{p \in S_{0}}$ of geodesics emanating from S_{0} such that $\gamma_{p}(t)=\exp _{p} F(p)$, where F is a parallel normal vector field along S_{0}.

Although the homotopy H is only continuous, it can be shown in Proposition A. 8 that for each $p \in M$ the curve $t \rightarrow \varphi_{p}(t)=H(p, t), t \in[0, \varepsilon)$,
has a right tangent vector $\nabla \psi(p)=\varphi_{p}^{\prime}(0+)$. Therefore, $\nabla \psi$ is by definition a (not necessarily smooth) vector field on M. Along any pseudo-soul S, since $H(S, t), t \in[0, \varepsilon)$, is an isometric variation through pseudosouls, the variational vector field $\nabla \psi$ is a global normal Jacobi field, which we will show to be parallel. In §2, we will prove one of the most important properties of a pseudo-soul. Along a pseudo-soul the mixed curvatures vanish (Corollary 2.7), which implies that a global normal Jacobi field along a pseudo-soul is in fact parallel (Corollary 2.5). For any fixed pseudo-soul S, once we have this parallel normal vector field along each pseudo-soul $S_{t}=H(S, t), t \in[0,1]$, we can locally approximate the continuous 1-parameter family of pseudo-souls by the exponential images $\exp _{S_{t}} s \nabla \psi, 0 \leq s<\varepsilon$, which are pseudo-souls as well. We thus obtain a connection between S_{0} and S by a parallel family of broken geodesics (a (P)-connection), which will then be followed by curve shortening.

As we have to apply the curve shortening process to a family of broken geodesics, we need a local product structure in a neighborhood of every pseudo-soul. It is shown in $\S 2$ as another application of the vanishing mixed curvatures along pseudo-souls. Let F be a parallel normal vector field along a pseudo-soul S, and let $S_{1}=\exp _{S} F$ be a pseudo-soul connected to S by F. If F_{1} is another parallel normal vector field along S, then $\exp _{S}\left(F+s F_{1}\right), 0 \leq s<\varepsilon$, is an isometric variation of S_{1}, and hence there exists a corresponding global Jacobi field along S_{1}, which is again parallel. Consequently one can see that the dimensions of the spaces of all parallel normal vector fields along S and S_{1} are the same (Corollary 2.7), which implies the dimension is constant in \mathscr{H} because every pseudo-soul is connected to a fixed soul by a family of broken geodesics generated by parallel vector fields as above. This number will be of course the dimension k of the submanifold N in the main theorem, and the tangent space of N is the set of vectors which can be extended to parallel normal vector fields along pseudo-souls. It also proves that for any pseudo-soul $S \subset \mathscr{H}$, the orthogonal decomposition $T_{p} S \oplus T_{p} N$ into the tangent space of S and its orthogonal complement in \mathscr{H} is invariant under parallel translation, which will give us a local product structure (Proposition 2.8).

In the remainder of this section, we will recall the construction of a soul S_{0} [3], and formally introduce the concept of a pseudo-soul.

Definition 1.1. A nonempty subset C of M will be called totally convex if for any $p, q \in C$ and any geodesic $\gamma:[0,1] \rightarrow M$ from p to q, we have $\gamma[0,1] \subset C$.

For any compact subset D of M let K be the supremum of sectional curvatures at points of D and let R denote the infimum of injectiv-
ity radii of points in D. Let $\varepsilon_{D}>0$ be a number such that $\varepsilon_{D}<$ $\frac{1}{2} \min \{\pi / \sqrt{K}, R\}$. Then, by [2, Theorem 5.14, Lemma 5.15], for all $x \in D$ and $r \in\left(0, \varepsilon_{D}\right.$] the metric ball $B_{r}(x)$ is strongly convex, i.e., for any $p, q \in \bar{B}_{r}(x)$ there is a unique minimal geodesic $\sigma_{p q}$ between p and q such that the interior of $\sigma_{p q}$ is contained in $B_{r}(x)$. Moreover, for any geodesic segment $\tau:[0,1] \rightarrow B_{r}(x), d(\tau(s), p)$ has at most one critical point, and such a critical point must be a minimum.

This number $\varepsilon_{D}>0$ has been used for the construction of a soul S_{0} and the deformation retraction f, and will be used again throughout this paper.

In [3, Proposition 1.3], it was shown that for any $p \in M$ there exists a family of compact t.c.s. (totally convex sets) $C_{t}, t \geq 0$, such that
(1) $t_{2} \geq t_{1}$ implies $C_{t_{2}} \supset C_{t_{1}}$, and

$$
C_{t_{1}}=\left\{q \in C_{t_{2}} \mid\left(q, \partial C_{t_{2}}\right) \geq t_{2}-t_{1}\right\} ;
$$

in particular, $\partial C_{t_{1}}=\left\{q \in C_{t_{2}} \mid d\left(q, \partial C_{t_{2}}\right)=t_{2}-t_{1}\right\}$.
(2) $\bigcup_{t \geq 0} C_{t}=M$.
(3) $p \in \partial C_{0}$.

Put $C=C_{0}$, and let $a_{0}=\sup \{d(q, \partial C) \mid q \in C\}$. Then $C^{a_{0}}=\{q \in$ $\left.C \mid d(q, \partial C)=a_{0}\right\}$ is totally convex and $\operatorname{dim} C^{a_{0}}<\operatorname{dim} C$ [3, Theorem 1.9]. This contraction can be iterated until we obtain a totally convex set without boundary, and therefore we may construct a flag of t.c.s.

$$
C_{0}=C(0) \supset C(1) \subset \cdots \supset C(k)=S_{0}
$$

where $C(i+1)=C(i)^{a_{i}}$, and $a_{i}=\sup \{d(q, \partial C(i)) \mid q \in C(i)\}$. Thus we have:

Theorem [3, Theorem 1.11]. $\quad M$ contains a compact totally geodesic submanifold S_{0} (a soul) without boundary which is totally convex, $0 \leq$ $\operatorname{dim} S_{0}<\operatorname{dim} M$.

Note that the basic construction of a soul may depend on the starting point $p \in \partial C_{0}$ in [3, Proposition 1.3], which means a soul may not be unique. In any case, if S_{0} is a soul of M, we can construct a deformation retraction $f: M \rightarrow S_{0}$.

Theorem [8, Theorem 2.3]. For any soul S_{0} of M there exists a homotopy $H: M \times[0,1] \rightarrow M$ such that $H(\cdot, 0)=$ id on M and $H(\cdot, 1)=f$, where $f: M \rightarrow S_{0}$ is a strong deformation retraction. Further, for each $t \in[0,1], H(\cdot, t)$ is distance nonincreasing.

If a soul is not unique, we may construct a deformation retraction for each soul in M. Let S_{0}, S_{1} be two different souls, and let $\left(f_{0}, H_{0}\right)$, $\left(f_{1}, H_{1}\right)$ be the corresponding retractions. Then it was shown in [8] that
$f_{0}\left(S_{1}\right)=S_{0}$ and $f_{1}\left(S_{0}\right)=S_{1}$, and for each $t \in[0,1], H_{0}\left(S_{1}, t\right)$ and $H_{1}\left(S_{0}, t\right)$ are isometric and homologous to S_{0} (and also S_{1}). Therefore, we have the following definition.

Definition 1.2. A subset $S \subset M$ is called a pseudo-soul if it is homologous and isometric to a soul with respect to the induced metric.

With this definition we further have:
Proposition 1.3 [8, Proposition 3.1]. Let $f: M \rightarrow S_{0}$ be given as above.
(1) For any pseudo-soul S we have $f(S)=S_{0}$, and for any $t \in[0,1]$, $H(S, t)$ is a pseudo-soul; hence there is a continuous 1-parameter family of pseudo-souls between S and the soul S_{0}.
(2) For any pseudo-soul S and $p, q \in S$, the distance between p and q in S is the same as in M. In particular S is totally geodesic.

Corollary 1.4. If S_{1}, S_{2} are two pseudo-souls such that $S_{1} \cap S_{2} \neq \varnothing$, then we have $S_{1}=S_{2}$.

Proof. Suppose $S_{1} \neq S_{2}$ and $q \in S_{1} \cap S_{2}$. Since S_{1}, S_{2} are complete totally geodesic submanifolds, we have $T_{q} S_{1} \neq T_{q} S_{2}$ (otherwise, $S_{1}=S_{2}$). However, $f: M \rightarrow S_{0}$ is a distance nonincreasing retraction, and hence $f: S_{i} \rightarrow S_{0}, i=1,2$, is an isometry. Thus $d f: T_{q} S_{i} \rightarrow T_{f(q)} S_{0}$ is a linear isometry. Let $v_{1} \in T_{q} S_{1}, v_{2} \in T_{q} S_{2}$ be two vectors such that $v_{1} \neq v_{2}$ and $d f\left(v_{1}\right)=d f\left(v_{2}\right)=v \in T_{f(q)} S_{0}$. Let γ_{1}, γ_{2} be the geodesics such that $\gamma_{i}(0)=q$ and $\gamma_{i}^{\prime}(0)=v_{i}, i=1,2$. Then it is obvious that $f\left(\gamma_{i}(t)\right)=\gamma(t)$ for the geodesic γ in S_{0} with $\gamma_{0}=f(q)$ and $\gamma^{\prime}(0)=v$. Since $v_{1} \neq v_{2}$, it follows that $\angle\left(v_{1},-v_{2}\right) \neq \pi$, and hence for any $\tau>0$ we have $d\left(\gamma_{1}(\tau), \gamma_{2}(-\tau)\right)<2 \tau$. On the other hand, in S_{0}, we have for small $\tau>0$

$$
d\left(f\left(\gamma_{1}(\tau)\right), f\left(\gamma_{2}(-\tau)\right)=d(\gamma(\tau), \gamma(-\tau))=2 \tau\right.
$$

which is a contradiction since f is distance nonincreasing.

2. Properties of pseudo-souls

One of the most important properties of a soul S_{0} is that the mixed curvature terms vanish along S_{0}, i.e., the sectional curvature $K(u, v)=$ 0 for any tangent vector u of S_{0} and any normal vector v of S_{0} [3, Theorem 3.1]. In this section we will show that this property also holds for pseudo-souls, and see what this implies about the metric structure of pseudo-souls. We first require the following lemma which can be proved by a standard comparison theorem [8].

Lemma 2.1. Let M be a complete Riemannian manifold with sectional curvature K_{M} bounded above by $K \geq 0$, and let $\gamma:[0,1] \rightarrow M$ be a
geodesic. If $c:[0,1] \rightarrow M$ is a piecewise smooth curve from $\gamma(0)$ to $\gamma(1)$ such that $d(c(t), \gamma[0,1])<r, r \in\left(0, \varepsilon_{\gamma[0,1]}\right]$, then the lengths of c and γ satisfy

$$
L[c] \geq(\cos \sqrt{K} r) L[\gamma]
$$

Proof. By [2, Lemma 5.15], for each $t \in[0,1]$, there exists a unique number $s_{t} \in[0,1]$ such that $d(c(t), \gamma[0,1])=d\left(c(t), \gamma\left(s_{t}\right)\right)$. Then it is easy to see that $s(t)=s_{t}$ is a piecewise smooth function of t and we can apply [8, Corollary 2.2] to obtain the above inequality.

Lemma 2.2. Let M be a Riemannian manifold with nonnegative curvature, and let $p, q \in M$ be such that $d(p, q)=d$ for a fixed number $d>0$. If γ_{0} is a minimal geodesic from p to q, then for any geodesic γ with $\gamma(0)=p, \gamma^{\prime}(0) \perp \gamma_{0}^{\prime}(0)$, and $\left\|\gamma^{\prime}(0)\right\| \leq D$, there are positive numbers A and s_{0}, which depend only on D, such that $d(q, \gamma(s))<d+A s^{2}$ for all $s \in\left[0, s_{0}\right]$.

Proof. For each $s \geq 0$ let γ_{s} be a minimal connection from $\gamma(s)$ to q. Consider the geodesic triangle $\left(\gamma, \gamma_{0}, \gamma_{s}\right)$ with the angle $\angle\left(\gamma^{\prime}(0), \gamma_{0}^{\prime}(0)\right)=$ $\pi / 2$. By Toponogov's theorem, the length $L\left[\gamma_{s}\right]$ is not larger than the corresponding length of the Euclidean triangle. Therefore it follows that

$$
d(q, \gamma(s))=L\left[\gamma_{s}\right] \leq \sqrt{L\left[\gamma_{0}\right]^{2}+L\left[\left.\gamma\right|_{[0, s]}\right]^{2}} \leq \sqrt{d^{2}+D^{2} s^{2}}
$$

Hence we can find A and s_{0} depending only on D such that $d(q, \gamma(s))<$ $d+A s^{2}$ for all $s \in\left[0, s_{0}\right]$.

Theorem 2.3. Let M be a complete open manifold of nonnegative curvature, and let S_{0} and S be a soul and a pseudo-soul of M, respectively. If $\gamma:[0,1] \rightarrow S$ is a geodesic in S and V is a piecewise smooth vector field along γ such that $V(t)$ is perpendicular to S and vanishes at the end points, then the index form $I(V, V)$ is nonnegative.

Proof. Suppose there exists a vector field V along γ such that $I(V, V)$ <0. Then clearly V is not identically zero since otherwise $I(V, V)=0$. Let $c:[-\delta, \delta] \times[0,1] \rightarrow M$ be the variation of the geodesic γ such that for each $t \in[0,1]$ the curve σ_{t} defined by $\sigma_{t}(s)=c(s, t)$ is a geodesic with $\sigma_{t}^{\prime}(0)=V(t)$. For each $s \in[-\delta, \delta]$, let $c_{s}:[0,1] \rightarrow M$ be the curve defined by $c_{s}(t)=c(s, t)$. Then $c_{0}(t)=\gamma(t)$ and c_{s} is a piecewise smooth curve from $\gamma(0)$ to $\gamma(1)$. Since the index form $I(V, V)$ is negative and $V(t)$ is perpendicular to γ with $V(0)=V(1)=0$, it follows from the first and second variational formulas that

$$
\left.\frac{d}{d s}\right|_{s=0} L\left[c_{s}\right]=0,\left.\quad \frac{d^{2}}{d s^{2}}\right|_{s=0} L\left[c_{s}\right]<0
$$

where $L\left[c_{s}\right]$ is the arclength of c_{s}. Hence there are two positive numbers B and s_{1} such that $L\left[c_{s}\right] \leq L[\gamma]-B s^{2}$ for all $s \in\left[0, s_{1}\right]$.

We now consider the deformation retraction $f: M \rightarrow S_{0}$ and the image $f\left(c_{s}\right)$ of the variation under the retraction f. Since $f \mid s: S \rightarrow S_{0}$ is an isometry, the curve $f \circ \gamma:[0,1] \rightarrow S_{0}$ is a geodesic in S_{0}. Denote $\tilde{\gamma}=f \circ \gamma, \tilde{c}=f \circ c$, and $\tilde{c}_{s}=f \circ c_{s}$. Then $\tilde{c}_{s}:[-\delta, \delta] \times[0,1] \rightarrow S_{0}$ is a continuous variation of the geodesic $\tilde{\gamma}$. We first claim that there are positive numbers A and s_{0} such that, for each $s \in\left[0, s_{0}\right], \tilde{c}_{s}$ is contained in $B_{\rho}(\tilde{\gamma})$, where $B_{\rho}(\tilde{\gamma})$ is a ρ-tubular neighborhood of $\tilde{\gamma}$ and $\rho(s)=A s^{2}$. One can verify this claim using the fact that $f: M \rightarrow S_{0}$ is distance nonincreasing. Put $D=\sup \|V(t)\|$, and let $d>0$ be such that $d<\frac{1}{2} \min \left\{\varepsilon_{S}, \varepsilon_{S_{0}}\right\}$. It follows from Proposition 1.3(2) that for any $p, q \in$ S with $d(p, q)=d$ the minimal geodesic from p to q is contained in S. By Lemma 2.2 we can find positive numbers A and s_{0} such that for any $t \in[0,1]$ and $q \in S$ with $d(q, \gamma(t))=d$ we have $d\left(\dot{q}, \sigma_{t}(s)\right)<d+A s^{2}$ for all $s \in\left[0, s_{0}\right]$. In particular, for the fixed number d, we choose $s_{0}>0$ so that $D s_{0}$ (and hence $A s_{0}^{2}$) is smaller than d.

We are now ready to prove our claim. Suppose that $d\left(\tilde{c}_{s}\left(t_{1}\right), \tilde{\gamma}[0,1]\right) \geq$ $\rho=A s^{2}$ for some $t_{1} \in[0,1]$. Then we have $d\left(\tilde{c}_{s}\left(t_{1}\right), \tilde{\gamma}\left(t_{1}\right)\right)=r_{1} \geq \rho$. If $\gamma_{1}:\left[0, r_{1}\right] \rightarrow S_{0}$ is the minimal geodesic from $\tilde{c}_{s}\left(t_{1}\right)$ to $\tilde{\gamma}\left(t_{1}\right)$, we then extend γ_{1} on S_{0} and let $\tilde{q} \in S_{0}$ be such that $\tilde{q}=\gamma_{1}\left(r_{1}+d\right)$. Since $r_{1} \leq d\left(c_{s}\left(t_{1}\right), \gamma\left(t_{1}\right)\right) \leq D s<d$, we see that $\gamma_{1}\left[0, r_{1}+d\right]$ is contained in the strongly convex set $B_{2 d}\left(\gamma_{1}\left(r_{1}\right)\right)$, and it follows that $d\left(\tilde{q}, \tilde{c}_{s}\left(t_{1}\right)\right)=$ $r_{1}+d$. If $q=f^{-1}(\tilde{q})$ is a preimage of \tilde{q} in S, then $d\left(q, \gamma\left(t_{1}\right)\right)=d$ and $d\left(q, c_{s}\left(t_{1}\right)\right)=d\left(q, \sigma_{t_{1}}(s)\right)<d+\rho$. Hence,

$$
d\left(\tilde{q}, \tilde{c}_{s}\left(t_{1}\right)\right)=d\left(f(q), f \circ c_{s}\left(t_{1}\right)\right) \leq d\left(q, c_{s}\left(t_{1}\right)\right)<d+\rho,
$$

which is a contradiction since $d\left(\tilde{c}_{s}\left(t_{1}\right), \tilde{\gamma}\left(t_{1}\right)\right)=r_{1} \geq \rho$.
For each $s \in\left[0, s_{0}\right]$, we choose a partition $0=t_{0}<t_{1}<\cdots<t_{m}=$ 1 such that the broken geodesic $\tilde{\gamma}_{s}:[0,1] \rightarrow S_{0}$, which is defined to minimize the distance between $\tilde{c}_{s}\left(t_{i-1}\right)$ and $\tilde{c}_{s}\left(t_{i}\right)$ for each i is contained in $B_{2 \rho}(\tilde{\gamma})$. By construction, f is distance nonincreasing, and therefore it follows that $L\left[\tilde{\gamma}_{s}\right] \leq L\left[c_{s}\right]$ for each $s \in\left[0, s_{0}\right]$. Set $K=\sup \left\{K_{S_{0}}\right\}$. Since $2 A s_{0}^{2}<2 d<\varepsilon_{S_{0}}$, by Lemma 2.1 we obtain for all $s \in\left[0, s_{0}\right]$:

$$
\begin{aligned}
L\left[\tilde{\gamma}_{s}\right] & \geq(\cos 2 \sqrt{K} \rho) L[\tilde{\gamma}] \\
& =\left(\cos 2 \sqrt{K} A s^{2}\right) L[\gamma] \\
& \geq\left(1-2 K A^{2} s^{4}\right) L[\gamma],
\end{aligned}
$$

where the last inequality is from $\cos x \geq 1-\frac{1}{2} x^{2}$. Hence, for each $s \leq$ $\min \left\{s_{0}, s_{1}\right\}$, we have

$$
L[\gamma]-2 K A^{2} L[\gamma] s^{4} \leq L\left[\tilde{\gamma}_{s}\right] \leq L\left[c_{s}\right] \leq L[\gamma]-B s^{2} .
$$

The last inequality implies $B s^{2} \leq 2 K A^{2} L[\gamma] s^{4}$, or

$$
1 \leq 2 K A^{2} B^{-1} L[\gamma] s^{2}=C s^{2} \text { for } C>0,
$$

which is a contradiction.
Corollary 2.4 [3, Lemma 3.3]. With M and S as above, all sectional curvatures vanish for planes spanned by a tangent vector of S and a normal vector of S in M. Equivalently,

$$
R(u, v) v=R(v, u) u=0
$$

where u is any tangent vector of S, and v is any normal vector of S in M.

With this corollary, we obtain the following, as was shown in the proof of [5 , Theorem 2].

Corollary 2.5. Let M and S be as above. If $J: S \rightarrow T M$ is a global normal Jacobi field, i.e., if J is a Jacobi field along any geodesic in S, then J is a parallel vector field along S.

Proof. Suppose $\nabla_{u} J \neq 0$ for $u \in T_{p} S$. Consider the geodesic γ : $(-\infty, \infty) \rightarrow S$ with $\gamma(t)=\exp _{p}(t u)$, and the Jacobi field J along γ. From the Jacobi equation, $J^{\prime \prime}+R(J, \dot{\gamma}) \dot{\gamma}=0$, and Corollary 2.4, it follows that

$$
\begin{aligned}
\langle J, J\rangle^{\prime \prime} & =2\left\langle J^{\prime}, J^{\prime}\right\rangle+2\left\langle J^{\prime \prime}, J\right\rangle \\
& =2\left\langle J^{\prime}, J^{\prime}\right\rangle-2\langle R(J, \dot{\gamma}) \dot{\gamma}, J\rangle=2\left\|J^{\prime}\right\|^{2} \geq 0,
\end{aligned}
$$

so that $\|J(t)\|^{2}$ is a convex function from \mathbf{R} to \mathbf{R}, and

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}\|J(t)\|^{2}=2\left\|\nabla_{u} J\right\|^{2}>0
$$

Therefore the function $\|J(t)\|^{2}$ is unbounded, which is a contradiction since S is compact.

Let S be a pseudo-soul and let F be a unit parallel normal vector field along S. In [8, Proposition 3.6], it was shown that for each $t \in \mathbf{R}$ the function $\phi_{t}: S \rightarrow M$, defined by $\phi_{t}(p)=\exp _{p} t F(p)\left(F(p) \in T_{p} M\right.$ will denote the restriction of F at p), is an isometric embedding, and the union $\bigcup_{t \in \mathbf{R}} \phi_{t}(S) \subset M$ is an immersed totally geodesic submanifold which is isometric to $S \times \mathbf{R}$.

For any pseudo-soul S let $\mathscr{P}(S) \subset \Gamma(\nu(S))$ denote the subspace of all parallel sections of $\nu(S)$, and let $\Phi(S) \subset \nu(S)$ be the subbundle with the fiber $\Phi_{p}(S)=\left\{F(p) \in T_{p} M \mid F \in \mathscr{P}(S)\right\}$ at $p \in S$. With this observation we prove the following application of Corollary 2.5.

Proposition 2.6. Let S and S_{1} be pseudo-souls such that $S_{1}=\exp _{S} F$ for some $F \in \mathscr{P}(S)$. If $\left.d \exp _{p_{0}}\right|_{F\left(p_{0}\right)}$ is nonsingular for some $p_{0} \in S$, then $d \exp$ preserves parallel sections, i.e.,

$$
d \exp _{p}\left(T_{F(p)} \Phi_{p}(S)\right)=\Phi_{q}\left(S_{1}\right)
$$

where $q=\exp _{p} F(p)$.
Proof. It suffices to show that for any $p \in S$ the linear map $d \exp _{p}$: $t T_{F(p)} \Phi_{p}(S) \rightarrow T_{q} M$ is an injection with its image in $\Phi_{q}\left(S_{1}\right)$ since we can then interchange the roles of S and S_{1} to prove that it is an isomorphism.

Let $\left\{F_{1}, F_{2}, \cdots, F_{m}\right\}$ be an orthonormal basis of $\mathscr{P}(S)$ with $F_{m}=$ $F /\|F\|$, i.e., for each $i=1, \cdots, m-1, F_{i}$ is a unit parallel normal vector field along S such that $F_{i}(p) \perp F(p)$. For each i consider the family of vector fields $c_{i}(s) \in \mathscr{P}(S), s \in(-\varepsilon, \varepsilon)$, such that $c_{i}(s)=$ $F+s F_{i}$. Since $c_{i}(0)=F$ and $c_{i}^{\prime}(0)=F_{i}$ (when $T_{F(p)} \Phi_{p}(S)$ is identified with $T_{0} \Phi_{p}(S)$ for each $p \in S$), we have to show that the set $\left\{J_{i}=\right.$ $\left.\left.d \exp \right|_{F}\left(F_{i}\right)\right\}$ is linearly independent and contained in $\mathscr{P}\left(S_{1}\right)$. However, the linear map $d \exp : T_{F}\left(T_{p_{0}} M\right) \rightarrow T_{q_{0}} M$ is nonsingular, and hence the set of vectors $\left\{J_{i}\left(q_{0}\right)\right\}$ is linearly independent in $T_{q_{0}} M$. Thus $\left\{J_{i}\right\}$ is linearly independent as vector fields on S_{1}. Moreover, for each i and $s \in(-\varepsilon, \varepsilon), c_{i}(s)$ is a parallel normal vector field along S, and hence $\exp _{S} c_{i}(s)$ is a smooth isometric variation of S_{1} through pseudo-souls. Therefore, the variational vector field $J_{i}=\left.\frac{\partial}{\partial s}\right|_{s=0} \exp _{S} c_{i}(s)$ is a global Jacobi field along the pseudo-soul S_{1}. Since every normal Jacobi field along a pseudo-soul is parallel by Corollary 2.4, it is sufficient to show that J_{i} is perpendicular to S_{1}. In our case, since it is obvious that J_{m} is perpendicular to S_{1} and $J_{i}, i \leq m-1$, we will only consider $\left\{J_{i}\right\}_{i \leq m-1}$.

For each $p \in S$ define a geodesic $\gamma_{p}(t)=\exp _{p} t F(p)$, and for each $i \leq m-1$ let $J_{i, p}$ be the normal Jacobi field along γ_{p} defined by

$$
J_{i, p}(t)=\left.\frac{\partial}{\partial s}\right|_{s=0} \exp _{p} t c_{i}(s)
$$

For any $v \in T_{p} S$ let v be extended to the Jacobi field $J(t), t \in[0,1]$, along γ_{p} such that $J(0)=v$ and $J^{\prime}(0)=0$. Then by the product and totally geodesic structure $\bigcup \phi_{t}(S)=S \times \mathbf{R}$, we know that $J^{\prime}(t)=0$ for all $t \in[0,1]$. We now consider the two Jacobi fields J and $J_{i, p}$ along γ_{p}.

Since $\left\langle J^{\prime}, J_{i, p}\right\rangle-\left\langle J, J_{i, p}^{\prime}\right\rangle$ is constant along γ_{p}, and $\left\langle J^{\prime}(0), J_{i, p}(0)\right\rangle=$ $\left\langle J(0), J_{i, p}^{\prime}(0)\right\rangle=0$ when $t=0$, we have $\left\langle J^{\prime}(t), J_{i, p}(t)\right\rangle=\left\langle J(t), J_{i, p}^{\prime}(t)\right\rangle$ for any $t \in[0,1]$. Thus

$$
\left\langle J, J_{i, p}\right\rangle^{\prime}=\left\langle J^{\prime}, J_{i, p}\right\rangle+\left\langle J, J_{i, p}^{\prime}\right\rangle=2\left\langle J^{\prime}, J_{i, p}\right\rangle=0
$$

In particular, when $t=1, J_{i}(q)=J_{i, p}(1)$ is perpendicular to $J(1) \in$ $T_{q} S_{1}$, where $q=\exp _{p} F(p) \in S_{1}$. This is true for an arbitrary vector $v \in$ $T_{p} S$, and hence J_{i} is perpendicular to S_{1}, which implies that $J_{i} \in \mathscr{P}\left(S_{1}\right)$ for each i.

Corollary 2.7. If S and S_{1} are two pseudo-souls such that $S_{1}=\exp _{S} F$ for some parallel normal vector field $F \in \mathscr{P}(S)$, then $\operatorname{dim}(\mathscr{P}(S))=$ $\operatorname{dim}\left(\mathscr{P}\left(S_{1}\right)\right)$.

Proof. With the same notation as above, if there is a pair (p, q) such that $q \in S_{1}$ is not conjugate to $p \in S$ along γ_{p}, then the proposition obviously implies the corollary. If not, choose a number $t_{0} \in(0,1)$ such that $\gamma_{p}\left(t_{0}\right)$ is not conjugate to both p and q. Put $S_{t_{0}}=\exp _{S} t_{0} F$. Then by the proposition we have $\operatorname{dim}\left(\mathscr{P}\left(S_{1}\right)\right)=\operatorname{dim}\left(\mathscr{P}\left(S_{t_{0}}\right)\right)=\operatorname{dim}(\mathscr{P}(S))$.

For any pseudo-soul S and any $p \in S$, denote by $N_{r}(p)$ the set $\left\{\exp _{p} F(p) \mid F \in \mathscr{P}(S),\|F\|<r\right\}$. If $r>0$ is small enough (e.g., smaller than $\operatorname{InjRad}(p))$, then the map $h_{p}: S \times N_{r}(p) \rightarrow M, h_{p}\left(q, \exp _{p} F(p)\right)=$ $\exp _{q} F(q)$, is well defined. We will denote its image by $\mathscr{H}_{r}(S) \subset M$. In fact, we can prove the following proposition.

Proposition 2.8. If $r<\varepsilon_{S}$, then for any fixed $p_{0} \in S, h_{p_{0}}: S \times N_{r}\left(p_{0}\right) \rightarrow$ M is a totally geodesic isometric embedding onto its image $\mathscr{H}_{r}(S)$. In particular, for any $p \in S, h_{p_{0}}\left(p, N_{r}\left(p_{0}\right)\right)=N_{r}(p) \subset M$ is a totally geodesic embedded submanifold of M.

Proof. Let $\Phi^{r}(S)$ be the subset $\{F(p) \in T M \mid p \in S, F \in \mathscr{P}(S),\|F\|<$ $r\} \subset \nu(S)$. By the definition of the number ε_{S}, the map $\exp : \Phi^{r}(S) \rightarrow$ M is an immersion. Furthermore, since r is smaller than the convexity radius, we see that it is injective. In fact, if $\exp _{p} F_{1}(p)=\exp _{q} F_{2}(q)=x$, then the minimal connection $\sigma_{p q}$ between p and q is contained in the strongly convex ball $B_{r}(x)$. By Proposition 1.3(2), we have $\sigma_{p q} \subset S$, and hence $F_{1}(p)$ and $F_{2}(q)$ are both perpendicular to $\sigma_{p q}$, which is impossible in $B_{r}(x)$. Therefore it easily follows that $h\left(=h_{p}\right)$ is an embedding.

We first claim that for any $p \in S$ the subset $N_{r}(p) \subset M$ is totally geodesic and the map $\left.h\right|_{\left(p, N_{r}\left(p_{0}\right)\right)}:\{p\} \times N_{r}\left(p_{0}\right) \rightarrow N_{r}(p)$, which was shown to be a diffeomorphism, is an isometry. First of all, we note that by Proposition 2.6 for any $(p, x) \in S \times N_{r}\left(p_{0}\right)$ such that $x=\exp _{p} F\left(p_{0}\right)$,
$F \in \mathscr{P}(S)$, and $y=\exp _{p} F(p) \in N_{r}(p)$, we have

$$
T_{y} N_{r}(p)=\left.d h\right|_{(p, x)} T_{x} N_{r}\left(p_{0}\right)=d \exp _{p}\left(T_{F(p)} \Phi_{p}(S)\right)=\Phi_{y}\left(S_{y}\right),
$$

where $S_{y}=S_{x}=\exp _{S} F_{0}$. Let $v \in T_{x} N_{r}\left(p_{0}\right)$ be an arbitrary vector and let $F_{t} \in \mathscr{P}(S), t \in(-\varepsilon, \varepsilon)$, be a smooth curve such that $\left.\frac{\partial}{\partial t}\right|_{t=0} \exp _{p_{0}} F_{t}\left(p_{0}\right)=$ v. Consider the variation $c: S \times(-\varepsilon, \varepsilon) \rightarrow M$ defined by $c(p, t)=$ $\exp _{p} F_{t}(p)=h\left(p, \exp _{p_{0}} F_{t}\left(p_{0}\right)\right)$ for all $p \in S$. For all $t \in(-\varepsilon, \varepsilon)$ we know that $\partial c / \partial t=\left.d \exp \right|_{F_{t}}\left(\partial F_{t} / \partial t\right)$ is a parallel normal vector field along the pseudo-soul $\exp _{S} F_{t}$. Denote this vector field by $V(\cdot, t)$. When $t=0$, we have

$$
\left\|\left.d h\right|_{(p, x)}(v)\right\|=\left\|\left.\frac{\partial}{\partial t}\right|_{t=0} \exp _{p} F_{t}(p)\right\|=\|V(p, 0)\|=\|v\| .
$$

Thus $\left.h\right|_{\left(p, N_{r}\left(p_{0}\right)\right)}:\{p\} \times N_{r}\left(p_{0}\right) \rightarrow N_{r}(p)$ is an isometry. To complete the proof of our claim, we will show that $B_{y}(v, v)=0$, where B_{y} is the second fundamental form of $N_{r}(p)$ at y. Let c_{p} be a curve such that $c_{p}(t)=c(p, t)=\exp _{p} F_{t}(p)$, and define for any vector $X_{y} \in T_{y} S_{y}$ a vector field $X:(-\varepsilon, \varepsilon) \rightarrow T M$ along the curve c_{p} by $X(t)=\left.d c\right|_{(p, t)} \circ d c^{-1}\left(X_{y}\right)$. Since $d c^{-1}\left(X_{y}\right) \in T_{p} S$ we have $\left[d c^{-1}\left(X_{y}\right), \frac{\partial}{\partial t}\right]=0$ on $S \times(-\varepsilon, \varepsilon)$, and so $[X, V]=0$ where they are defined. Moreover, for each $t \in(-\varepsilon, \varepsilon)$, $X(t)$ is a tangent vector of the pseudo-soul $\exp _{S} F_{t}$, along which $V(\cdot, t)$ is parallel and perpendicular. Thus

$$
\begin{aligned}
0 & =V\langle V, X\rangle=\left\langle X, \nabla_{V} V\right\rangle+\left\langle\nabla_{V} X, V\right\rangle \\
& =\left\langle X, \nabla_{V} V\right\rangle-\left\langle\nabla_{X} V, V\right\rangle=\left\langle X, \nabla_{V} V\right\rangle .
\end{aligned}
$$

Hence $\nabla_{V} V$ is a normal vector field along S_{y}. Furthermore, by Corollary 2.4 , we have $\nabla_{X} \nabla_{V} V-\nabla_{V} \nabla_{X} V=R(X, V) V=0$, which implies $\nabla_{X} \nabla_{V} V=\nabla_{V} \nabla_{X} V=0$. Thus $\nabla_{V} V(y) \in \Psi(y)=T_{y} N_{r}(p)$. Since, for any fixed $p \in S, c_{p}$ is a curve in $N_{r}(p)$ for ε small enough and $V(p, t)=c_{p}^{\prime}(t)$, we may conclude that $B_{y}(v, v)=0$. Here $v=V(p, 0)$ is an arbitrary vector in $T_{y} N_{r}(p)$ and B_{y} is a symmetric tensor. Therefore, $B_{y}=0$ for all $y \in N_{r}(p)$, and hence $N_{r}(p)$ is totally geodesic in M.

For any $p \in S, x \in N_{r}\left(p_{0}\right)$, and $Y \in T_{(p, x)}\left(S \times N_{r}\left(p_{0}\right)\right)$, let $v \in$ $T_{x} N_{r}\left(p_{0}\right)$ and $X_{p} \in T_{p} S$ be such that $Y=v+X_{p}$. Then we have $\left.d h\right|_{(p, x)}(Y)=d h(v)+d h\left(X_{p}\right)=V(p, 0)+X_{y} \in T_{y} \mathscr{H}_{r}(S)$ with the same notation as above. Hence h is clearly an isometry. Let B_{y} be the second fundamental form of $\mathscr{H}_{r}(S)$ at y. Then we use the same extension of V and X to show $B_{y}=0$. In fact, since any vector in $T_{y} \mathscr{H}_{r}(S)$ can
be orthogonally decomposed in the form of $V+X_{y}$, we only consider $B_{y}(V+X, V+X)$. Since $\nabla_{X} V=0$ from above, we have $B_{y}(V, X)=0$. Moreover, $N_{r}(p)$ and S_{y} are both totally geodesic, and therefore

$$
B_{y}(V+X, V+X)=B_{y}(V, V)+2 B_{y}(V, X)+B_{y}(X, X)=0 .
$$

Hence $\mathscr{H}_{r}(S)$ is totally geodesic in M.

3. Proof of theorem

In this section, we will prove our main theorem combining all of the previous results. The following facts are crucial for the remaining part of our argument, but they are somewhat technical to be discussed here. We have put an appendix at the end to study these facts in detail.

For any compact t.c.s. $C, \partial C \neq \varnothing$, let $\psi: C \rightarrow \mathbf{R}$ be such that $\psi(q)=d(q, \partial C)$. Then ψ is a convex function, and hence for each $b \in\left[0, a_{0}=\sup \{\psi\}\right]$ the subset $C^{b}=\{q \in C \mid \psi(q) \geq b\}$ is totally convex as well. With this property of a totally convex set and the flag of t.c.s. in the construction of a soul, we obtain an exhaustion of M by t.c.s.

If $H: M \times[0,1] \rightarrow M$ is the homotopy of the Sharafutdinov retraction f corresponding to a soul S_{0}, define for each $p \in M$ a continuous curve $\varphi_{p}:[0,1] \rightarrow M$ by $\varphi_{p}(p)=H(p, t)$. Let C be the t.c.s. of the totally convex exhaustion of M such that $p \in \partial C$. We then reparametrize φ_{p} so that $\psi\left(\varphi_{p}(t)\right)=t \leq a_{0}$ for $\psi=d(\cdot, \partial C)$ and $a_{0}=\sup \{\psi\}$. In the appendix we show the following.
(A1) For each $t \in\left[0, a_{0}\right), \varphi_{p}(t)$ has a right tangent vector $\nabla \psi\left(\varphi_{p}(t)\right) /\|\nabla \psi\|^{2}$ (Proposition A.8), where $\nabla \psi$ is a (generalized) gradient of ψ (Definition A.4).

Note that $\nabla \psi$ is independent of C in the totally convex exhaustion, and hence is a well-defined (not even continuous in general) vector field on M.
(A2) If a pseudo-soul $S \subset M$ is not a unique soul, then it is completely contained in ∂C for some t.c.s. C in the totally convex exhaustion of M (Proposition A.2(4)), and $\nabla \psi$ is a parallel normal vector field along S (Corollary A.9).
(A3) (Theorem A.5(3)) For each fixed $a \in\left(0, a_{0}\right)$, there exists a number $A>0$ such that for any $p \in \partial C^{t}, t \in[0, a]$, there is $\varepsilon>0$ with

$$
\psi\left(\exp _{p} \varepsilon \frac{\nabla \psi}{\|\nabla \psi\|}(p)\right) \geq t+A \varepsilon
$$

(A4) (Corollary A.6) For any $a, b \in\left[0, a_{0}\right),\left.\varphi_{p}\right|_{[a, b]}$ is a rectifiable curve.

According to our construction of (H, f), we have in fact defined φ_{p} as an "integral curve" of the vector field $\nabla \psi$, which is canonically defined by the totally convex exhaustion. The third claim (A3) is equivalent to saying that away from the maximal valued set $C^{a_{0}}$ of ψ, the gradient $\|\nabla \psi\|$ is bounded below by a positive number; (A4) is a consequence of (A3). Another interpretation of the vector $\nabla \psi(p), p \in \partial C^{t}$, is the center of the tangent cone of C^{t} at p, which implies for any vector $v \in T_{p} M$ in the tangent cone (i.e., $\exp _{p} t v$ is an interior point of C^{t} for small $t>0$), we have $\angle(\nabla \psi(p), v)<\pi / 2$. All of the results above are more precisely stated in the appendix, which should be referred to for the details.

As mentioned earlier, we want to approximate the continuous family of pseudo-souls by a broken geodesic, and then apply a curve shortening process. We first make a definition for this type of connection, and show how the curve shortening process applies.

Definition 3.1. Two pseudo-souls S_{0} and S_{1} are called (P)-connected by a broken geodesic $\gamma:[0,1] \rightarrow M$ if they satisfy the following properties:
(1) There is a partition $0=t_{0}<t_{1}<\cdots<t_{m}=1$ such that for each $i,\left.\gamma\right|_{\left[t_{i-1}, t_{i}\right]}$ is a geodesic.
(2) For each $i, \gamma\left(t_{i}\right)$ is contained in a pseudo-soul $S_{t_{i}}$, and $\gamma^{\prime}\left(t_{i}^{+}\right)$and $\gamma^{\prime}\left(t_{i}^{-}\right)$are both perpendicular to $S_{t_{i}}$, where $\gamma^{\prime}\left(t_{i}^{ \pm}\right)$denotes $\lim _{t \rightarrow t_{i}^{ \pm}} \gamma^{\prime}(t)$. In particular, $\gamma(0) \in S_{0}$ and $\gamma(1) \in S_{1}$.
(3) For each $i,\left.\gamma\right|_{\left[t_{i-1}, t_{i}\right]}$ can be extended to a parallel connection between $S_{t_{i-1}}$ and $S_{t_{i}}$, i.e., $\gamma^{\prime}\left(t_{i-1}^{+}\right)$has a parallel extension F along $S_{t_{i-1}}$ such that $S_{t_{i}}=\exp _{S_{t_{i-1}}}\left(t_{i}-t_{i-1}\right) F$.

Lemma 3.2. Let S_{1} and S_{2} be two pseudo-souls (P)-connected by a broken geodesic $\gamma:[0,1] \rightarrow M$. Then they can be (P)-connected by a smooth geodesic $\gamma_{0}:[0,1] \rightarrow M$ with the following property:

$$
\left(\mathrm{P}_{1}\right): \gamma(0)=\gamma_{0}(0) \in S_{1} \text { and } \gamma(1)=\gamma_{0}(1) \in S_{2} .
$$

Proof. We will prove the existence of a smooth geodesic (P)-connecting S_{1} and S_{2} by a curve shortening process. Let $D \subset M$ be a compact set such that $B_{L}(\gamma(0)) \subset D$, where $L=L_{[\gamma]}$. Then clearly the whole curve shortening process of γ will be contained in D. Let $r>0$ be such that $r<\varepsilon_{D}$ and let m be an integer such that $L / m<r$. All curves will be assumed to be parametrized on [0, 1] proportional to arclength.

Divide the broken geodesic γ into m equal segments, each of length L / m, by the division points $p_{0}, p_{1}, \cdots, p_{m}$. For each $i=1,2, \cdots, m$ $\gamma\left[t_{i-1}, t_{i}\right]$ is a broken geodesic contained in $N_{r}\left(p_{i-1}\right)$ by Proposition 2.8. Replace each $\gamma\left[t_{i-1}, t\right]$ by a minimal geodesic in $N_{r}\left(p_{i-1}\right)$ which is, by strong convexity, a minimal geodesic in M. Clearly S_{1} and S_{2} are (P)connected by this new broken geodesic $\tilde{\gamma}$ with the property $\left(\mathrm{P}_{1}\right)$, and its length is strictly smaller than that of γ, except when $\gamma=\tilde{\gamma}$. Now take the m midpoints of the segments of $\tilde{\gamma}$. Each pair of successive midpoints are at distance $<r$ apart, so it may be connected by a unique minimal geodesic as above. Denote this new broken geodesic by $D(\gamma)$ which is another connection from S_{1} to S_{2} with the property (P_{1}). The curve shortening process can be iterated to yield a sequence of broken geodesics:

$$
\gamma_{0}=\gamma, \gamma_{1}=D(\gamma), \cdots, \gamma_{i}=D\left(\gamma_{i-1}\right), \ldots
$$

For each i, S_{1} and S_{2} are $\left(\mathrm{P}_{1}\right)$-connected by γ_{i}, and the length of γ_{i} is strictly less than that of γ_{i-1} unless γ_{i-1} is already a smooth geodesic. The existence of some subsequence of $\left\{\gamma_{i}\right\}$ converging to a smooth geodesic (P)-connecting S_{1} and S_{2} is guaranteed by Birkhoff (cf., [1]).

Theorem 3.3. Let C be a compact totally convex set and let S_{0} be the soul of C. Then there is a number $\mathscr{N}>0$ such that every pseudo-soul in C can be (P)-connected to S_{0} by a geodesic of length bounded above by \mathscr{N}.

Proof. Since there is a flag, $C \supset C(1) \supset \cdots \supset C(k)=S_{0}$, for each $i<k$ we assume, by induction, that there is a number $\mathscr{N}_{i}>0$ such that every pseudo-soul in $C(i)$ can be (P)-connected to S_{0} by a geodesic of length $\leq \mathscr{N}_{i}$, and then show that there exists \mathscr{N}_{i-1} for $C(i-1)$. Since we will use the same argument for each i, we only consider the case when $i=1$ (i.e., $C(i-1)=C$).

Put $C(1)=C^{a_{0}}$. For each $t \in\left(0, a_{0}\right)$ let p_{t} be a point in ∂C^{t} such that $d\left(p_{t}, C(1)\right)=\sup \left\{d(p, C(1)) \mid p \in \partial C^{t}\right\}$. If $\left.d\left(p_{t}, C_{1}\right)\right)$ does not converge to zero as $t \rightarrow a_{0}$, we have a subsequence of $\left\{p_{t}\right\}$ converging to $p_{0} \in C^{t_{0}}$ for some $t_{0}<a_{0}$, which is an obvious contradiction since it implies $d\left(p_{t}, p_{0}\right) \geq t-t_{0}$ for all $t>t_{0}$. Therefore $d\left(p_{t}, C(1)\right) \rightarrow 0$ as $t \rightarrow a_{0}$, and one find a number $a \in\left(0, a_{0}\right)$ such that $d(p, C(1))<r<\varepsilon_{C}$ for any $p \in C^{a}$.

Let S be any pseudo-soul in C. We assume that S is not contained in C^{a} and claim that S can be (P)-connected to a pseudo-soul in ∂C^{a} be a geodesic of length at most $a A^{-1}$, where $A>0$ is the number in (A3) corresponding to $a \in\left(0, a_{0}\right)$ chosen above. By (A2) one can find $b_{0} \in\left[0, a_{0}\right)$ such that $S \subset \partial C^{b_{0}}$. Since $\nabla \psi$ is a parallel normal vector
field along $S, \exp _{S} t \nabla \psi /\|\nabla \psi\|$ is a family of pseudo-souls (P)-connected to S by the geodesic $\gamma(t)=\exp _{p} t \nabla \psi /\|\nabla \psi\|, p \in S$. Moreover, by (A3), we can find $\varepsilon>0$ such that $\psi \circ \gamma(\varepsilon) \geq \psi(p)+A \varepsilon$. Therefore, S can be (P)-connected to a pseudo-soul $S_{b} \subset \partial C^{b}$ by the geodesic γ whose length is at most $\left(b-b_{0}\right) A^{-1} \leq b A^{-1}$. Let $\bar{b} \in\left(b_{0}, a\right]$ be the least upper bound of $b>0$ such that S can be connected to $S_{b} \subset \partial C^{b}$ be a geodesic of length at most $b A^{-1}$. By taking a limit of S_{b} as $b \rightarrow \bar{b}$, one can see the \bar{b} has the same property. If \bar{b} is strictly smaller than a, we use the parallel field $\nabla \psi$ to (P)-connect the pseudo-soul $S_{\bar{b}}$ to a pseudo-soul $S_{b}, b>\bar{b}$, by a geodesic of length at most $(b-\bar{b}) A^{-1}$. Then, by curve shortening, one can (P)-connect S to S_{b} to obtain a contradiction.

We now (P)-connect S_{a} to a pseudo-soul in $C(1)$. For each $p \in S_{a}$ let $g(p) \in C(1)$ be such that $d(p, g(p))=d(p, C(1))$. Then by the choice of the number $a, d(p, g(p))<r$. Let $c_{p}:[0,1] \rightarrow C$ be the minimal geodesic from p to $g(p)$. Since $c_{p}^{\prime}(0)$ is in the tangent cone of C^{a} at p, we have $\angle\left(\nabla \psi(p), c_{p}^{\prime}(0)\right)<\pi / 2$, and hence $d(g(p), \gamma(t))$ is strictly decreasing for small $t>0$, where $\gamma(t)=\exp _{p} t \nabla \psi /\|\nabla \psi\|$. Thus there exists $\varepsilon>0$ such that $\gamma(\varepsilon) \in \partial C^{b}, b>a$, and $\gamma[0, \varepsilon]$ is contained in the strongly convex ball $B_{r}(g(p))$. We connect S_{a} to S_{b} along γ. Let $\bar{b} \in\left(a, a_{0}\right.$] be the least upper bound of b with this property. It is clear by a limiting argument that \bar{b} has the property too. If $\bar{b}<a_{0}$, let $\gamma_{1}:[0, \varepsilon] \rightarrow B_{r}(g(p))$ be the geodesic which (P)-connects S_{a} to $S_{\bar{b}}$, and let c be the minimal geodesic from $p_{1}=\gamma_{1}\left(\varepsilon_{1}\right)$ to $g(p)$. Then, for the same reason as above, we have $\angle\left(\nabla \psi\left(p_{1}\right), c^{\prime}(0)\right)<\pi / 2$, and hence $d\left(g(p), \gamma_{2}(t)\right)$ is strictly decreasing for small $t>0$, where $\gamma_{2}(t)=$ $\exp _{p_{1}} t \nabla \psi$. Thus there exists $\varepsilon_{2}>0$ such that $\gamma_{2}\left[0, \varepsilon_{2}\right] \subset B_{r}(g(p))$. We then apply the curve shortening process for $\gamma_{1}\left[0, \varepsilon_{1}\right] \cup \gamma_{2}\left[0, \varepsilon_{2}\right]$, which clearly takes place in $B_{r}(g(p))$ and we get a contradiction. Therefore S_{a} is now (P)-connected to a pseudo-soul in $C(1)$ by a geodesic which is minimal since it is contained in the strongly convex set $B_{r}(g(p))$.

By assumption, every pseudo-soul in $C(1)$ is (P)-connected to S_{0} by a geodesic of length at most \mathscr{N}_{1}. Put $\mathscr{N}_{0}=\mathscr{N}_{1}+a A^{-1}+2 r$. Then the theorem follows by a final application of curve shortening.

Since every pseudo-soul is (P)-connected to the soul, by Corollary 2.7, we have the following immediate consequence.

Corollary 3.4. $\operatorname{dim}(\mathscr{P}(S))$ is constant for any pseudo-soul S.
Let S_{0} be a soul of M. For each $q \in S_{0}$ denote by $N(q)$ the set $N_{\infty}(q)=\left\{\exp _{q} F(q) \mid F \in \mathscr{P}\left(S_{0}\right)\right\} \subset \nu\left(S_{0}\right)$, and define a map $h: S_{0} \times$ $N(q) \rightarrow M$ by $h\left(p, \exp _{p} F(q)\right)=\exp _{p} F(p)$ for all $p \in S_{0} \quad$ (a global
version of h_{p} in Proposition 2.8). Our final goal is to prove that h is a totally geodesic isometric embedding with its image $\mathscr{H} \subset M$, which is by definition the set $\exp _{S_{0}} \Phi\left(S_{0}\right)=\left\{\exp _{q} F(q) \mid q \in S_{0}, F \in \mathscr{P}\left(S_{0}\right)\right\}$. As a result of the previous lemmas, along with the fact that all souls are pseudo-souls to each other, we know every pseudo-soul is contained in \mathscr{H} and \mathscr{H} is a union of pseudo-souls. We first prove the following:

Lemma 3.5. $\mathscr{H} \subset M$ is embedded.
Proof. For any $p \in \mathscr{H}$ let S_{p} be the pseudo-soul containing p, and let $r>0$ be such that $h_{p}: S_{p} \rightarrow N_{r}(p) \rightarrow \mathscr{H}_{r}\left(S_{p}\right) \subset M$ is an isometric embedding. Then it will suffice to show that there exists a metric ball $B_{r_{1}}(p), 0<r_{1} \leq r$, such that

$$
B_{r_{1}}(p) \cap \mathscr{H}=B_{r_{1}}(p) \cap \mathscr{H}_{r}\left(S_{p}\right)
$$

Suppose not. Then there exists a sequence $\left\{q_{k}\right\}$ of points in \mathscr{H} such that $q_{k} \notin \mathscr{H}_{r}\left(S_{p}\right)$ and $q_{k} \rightarrow p$ as $k \rightarrow \infty$. For each k let $S_{k}=\exp _{S_{0}} F_{k}, F_{k} \in$ $\mathscr{P}\left(S_{0}\right)$, be the pseudo-soul containing q_{k}. Since all S_{k} 's are contained in some compact t.c.s., by Theorem 3.3 we may assume that $\left\|F_{k}\right\| \leq \mathscr{N}$ for some $\mathscr{N}>0$, and hence $\left\{F_{k}\right\}$ is uniformly convergent for some subsequence. Assume that $F_{k} \rightarrow F \in \mathscr{P}\left(S_{0}\right)$ as $k \rightarrow \infty$. Since $q_{k} \in S_{k}$ and $S_{k} \rightarrow \exp _{S_{0}} F$ as $k \rightarrow \infty$, it is easy to see by Corollary 1.4 that $\exp _{S_{0}} F=S_{p}$. We are going to show that if k is large enough, then $S_{k} \subset \mathscr{H}_{r}\left(S_{p}\right)$, which is a contradiction and the lemma will follow.

If $p=\exp _{q} v$ for $q \in S_{0}$ and $v=F(q) \in \Phi_{q}\left(S_{0}\right)$, let $v_{k} \in \Phi_{q}\left(S_{0}\right)$ be such that $F_{k}(q)=v_{k}$. Then clearly $v_{k} \rightarrow v$ as $k \rightarrow \infty$. If p is not conjugate to q along the geodesic $\exp _{q} t v$, then by Proposition 2.6 we can find a ball $\widetilde{B}_{r_{1}}(v) \subset T_{q} M$ such that $\exp _{q}: \widetilde{B}_{r_{1}}(v) \rightarrow M$ is an embedding and $\exp _{q}\left(\widetilde{B}_{r_{1}}(v) \cap \Phi_{q}\left(S_{0}\right)\right) \subset N_{r}(p)$. Therefore, if $\left\|v_{k}-v\right\|<r_{1}$, then $S_{k} \subset \mathscr{H}_{r}\left(S_{p}\right)$. If p is conjugate to q along $\exp _{q} t v$, pick $w=t_{1} v$ such that $p_{1}=\exp _{q} w$ is not conjugate to q and $p_{1} \in N_{r}(p)$. Let $r_{1}>0$ be such that $N_{r_{1}}\left(p_{1}\right) \subset N_{r}(p)$. Since $v_{k} \rightarrow v$, it is clear that $w_{k}=t_{1} v_{k} \rightarrow w$. By the same argument as above we can find a number $r_{2}>0$ such that if $\left\|w_{k}-w\right\|<r_{2}$, then $\exp _{q} w_{k} \in N_{r_{1}}\left(p_{1}\right) \subset N_{r}(p)$, for which we clearly have $\exp _{q} v_{k}=\exp _{q}\left(w_{k} / t_{1}\right) \in N_{r}(p)$ and $S_{k} \subset \mathscr{H}_{r}\left(S_{p}\right)$.

Lemma 3.6. For any $p \in \mathscr{H}$ there exists $r>0$ such that $N_{r}(p) \subset N(q)$ for some $q \in S_{0}$.

Proof. Since there is a pseudo-soul S containing p, we can find $q \in$ S_{0} and $F \in \mathscr{P}\left(S_{0}\right)$ such that $\exp _{q} F(q)=p$, and $\exp _{S_{0}} F=S$. Let $r>0$ be such that $\mathscr{H}_{r}(S) \subset M$ is isometric to $S \times N_{r}(p)$. For any
$p_{1}=\exp _{p} v \in N_{r}(p)$ let v be extended to the parallel normal vector field V along S. Then the pseudo-soul $\exp _{S} V$ is (P)-connected to S_{0} by the broken geodesic $\left(\exp _{q} t F\right) \cup\left(\exp _{p} t V\right)$, and hence p_{1} is contained in $N(q)$ by curve shortening.

Proposition 3.7. If $f: M \rightarrow S_{0}$ and $H: M \times[0,1] \rightarrow M$ are the canonical retraction and its homotopy, then for any $q \in S_{0}$ and any $t \in$ [0,1] we have $H(N(q), t) \subset N(q)$. In particular, when $t=1, f(N(q))=$ q.

Proof. For any $p \in M$ find $q \in S_{0}$ and $F \in \mathscr{P}\left(S_{0}\right)$ such that $p=$ $\exp _{q} F(q)$, and let $\varphi_{p}[0,1] \rightarrow M$ be the curve such that $\varphi_{p}(t)=H(p, t)$. It then suffices to show that $\varphi_{p}[0,1] \subset N(q)$. Let C be a compact t.c.s. such that $p \in \partial C$. By induction over the flag of C, for each $i>0$ we assume that $\varphi_{p}\left[0, t_{i-1}\right] \subset N(q)$, and then show that $\varphi_{p}\left[t_{i-1}, t_{i}\right] \subset N(q)$, where $t_{i}=\sup \left\{t \in[0,1] \mid \varphi_{p}(t) \notin C(i)\right\}$. We may also assume that $i=1$ since the argument will be the same for any compact t.c.s. Let φ_{p} be reparametrized so that $\psi \circ \varphi_{p}(t)=t$ for the distance function $\psi=d(\cdot, \partial C)$.

Let $S=\exp _{S_{0}} F \subset \partial C$ be the pseudo-soul such that $p \in S$. By Lemma 3.5, there exists $r>0$ such that $B_{r}(p) \cap \mathscr{H}=B_{r}(p) \cap \mathscr{H}_{r}(S)$, where $\mathscr{H}_{r}(S)$ is isometric to $S \times N_{r}(p)$. Let $\delta>0$ be such that $\varphi_{p}[0, \delta] \subset B_{r}(p)$, and first try to prove that $\varphi_{p}[0, \delta] \subset N(q)$. Since $H(S, t)$ is a pseudo-soul for each $t \in[0,1]$, we have $\varphi_{p}[0,1] \subset \mathscr{H}$, and hence $\varphi_{p}[0, \delta] \subset H_{r}(S)$. Therefore, by lemma 3.6, it suffices to show $\varphi_{p}[0, \delta] \subset N_{r}(p)$. We now consider φ_{p} as a curve in the product space $S \times N_{r}(p)$, in which φ_{p} can be expressed in the following form:

$$
\tilde{\varphi}_{p}(t)=h_{p}^{-1} \circ \varphi_{p}(t)=(c(t), \sigma(t)) \in S \times N_{r}(p) .
$$

For any $\tau>0$ let $\gamma_{\tau}:[0, \tau] \rightarrow C$ be the minimal geodesic from $\varphi_{p}(0)$ to $\varphi_{p}(\tau) . \mathrm{By}(\mathrm{A} 1)$, we have

$$
\lim _{r \rightarrow 0^{+}} \gamma_{\tau}^{\prime}(0)=\frac{\nabla \psi}{\|\nabla \psi\|^{2}}(p)
$$

For any $\varepsilon>0$ there is $\tau>0$ such that $\angle\left(\gamma_{\tau}^{\prime}(0), \nabla \psi(p)\right)<\varepsilon$. However, since $\nabla \psi$ is parallel along S, the geodesic $\exp _{p} t \nabla \psi$ is contained in $N_{r}(p)$ for small $t>0$. If we have chosen τ small enough, the map $d\left(\gamma_{\tau}(\tau), \exp _{p} t \nabla \psi\right)$ attains its minimum when $t=t^{\prime}$ such that $\exp _{p} t^{\prime} \nabla \psi \in N_{r}(p)$, and then by Toponogov we have

$$
d\left(\gamma_{\tau}(\tau), \exp _{p} t^{\prime} \nabla \psi\right) \leq d\left(\gamma_{\tau}(\tau), p\right) \sin \varepsilon \leq L\left[\left.\varphi_{p}\right|_{[0, \tau]}\right] \sin \varepsilon .
$$

Since $d(c(\tau), p)=d\left(\gamma_{\tau}(\tau), N_{r}(p)\right) \leq d\left(\gamma_{\tau}(\tau), \exp _{p} t^{\prime} \nabla \psi\right)$, it follows that $d(c(\tau), p) \leq L\left[\left.\varphi_{p}\right|_{[0, \tau]}\right] \sin \varepsilon$. Let $\bar{\tau} \leq \delta$ be the least upper bound of $\tau \in[0, \delta]$ with this property. By a limiting argument we know $\bar{\tau}$ has that property. If $\bar{\tau}<\delta$, by the same argument as above, we can find $\tau>0$ such that $d(c(\bar{\tau}+\tau), c(\bar{\tau})) \leq L\left[\left.\varphi_{p}\right|_{[\bar{\tau}, \bar{\tau}+\tau]}\right] \sin \varepsilon$. Then

$$
\begin{aligned}
d(c(\bar{\tau}+\tau), p) & \leq d(c(\bar{\tau}+\tau), c(\bar{\tau}))+d(c(\bar{\tau}), p) \\
& \leq\left(L\left[\left.\varphi_{p}\right|_{[\bar{\tau}, \bar{\tau}+\tau]}\right]+L\left[\left.\varphi_{p}\right|_{[0, \bar{\tau}]}\right] \sin \varepsilon\right. \\
& =L\left[\left.\varphi_{p}\right|_{[0, \bar{\tau}+\tau]}\right] \sin \varepsilon,
\end{aligned}
$$

which is a contradiction. Therefore, we may conclude that for any $\varepsilon>$ 0 and any $t \in[0, \delta]$ we have $d(c(t), p) \leq \varepsilon L\left[\left.\varphi_{p}\right|_{[0, \delta]}\right]$, which implies $c(t)=p$ for all $t \in[0, \delta]$, and hence $\varphi_{p}[0, \delta]$ is contained in $N(q)$. Let $\bar{\delta} \in\left[0, t_{1}\right], t_{1}=\sup \left\{t \mid \varphi_{p}(t) \notin C(1)\right\}$, be the least upper bound of δ such that $\varphi_{p}[0, \delta] \subset N(q)$. If $\bar{\delta}<t_{1}$, consider a sequence s_{k} such that $s_{k} \rightarrow \bar{\delta}$ as $k \rightarrow \infty$ and $\varphi_{p}\left(s_{k}\right) \in N(q)$. Let $F_{k} \in \mathscr{P}\left(S_{0}\right)$ be such that $\exp _{p} F_{k}(q)=\varphi_{p}\left(s_{k}\right)$. By Theorem 3.3, $\left\|F_{k}\right\|$ is bounded by some number, and hence $\left\{F_{k}\right\}$ has a subsequence converging to $F \in \mathscr{P}\left(S_{0}\right)$. Clearly $\exp _{q} F(q)=\varphi_{p}(\bar{\delta})$, and it follows that $\varphi_{p}(\bar{\delta}) \in N(q)$. By the same argument as above, we can extend $\bar{\delta}$ to be a larger number to obtain a contradiction.

Corollary 3.8. For any $q \in S_{0}$ the subset $N(q) \subset M$ is a totally geodesic embedded submanifold of M, which is diffeomorphic to $\mathbf{R}^{k}, k=$ $\operatorname{dim}\left(\mathscr{P}\left(S_{0}\right)\right)$.

Proof. Let $p \in N(q)$ be such that $p=\exp _{q} F(q), F \in \mathscr{P}\left(S_{0}\right)$, and let $S=\exp _{S_{0}} F$. Choose a metric ball $B_{r}(p) \subset M$ such that $B_{r}(p) \cap$ $\mathscr{H}=B_{r}(p) \cap \mathscr{H}_{r}(S)$, where $\mathscr{H}_{r}(S)=h_{p}\left(S \times N_{r}(p)\right)$. For any $p_{1} \in S$, $p_{1}=\exp _{q_{1}} F\left(q_{1}\right)$, we have $h_{p}\left(p_{1} \times N_{r}(p)\right)=N_{r}\left(p_{1}\right)$. Thus, by Lemma 3.6 and Proposition 3.7, we have $N_{r}\left(p_{1}\right) \subset N\left(q_{1}\right)$ and $f\left(N_{r}\left(p_{1}\right)\right)=q_{1}$. Since f is a well-defined function, we have $N(q) \cap \mathscr{H}_{r}(p)=N_{r}(p)$. Then $N_{r}(p) \subset N(q)$ and $B_{r}(p) \cap \mathscr{H}=B_{r}(p) \cap \mathscr{H}_{r}(S)$ implies that $B_{r}(p) \cap N(q)=$ $B_{r}(p) \cap \mathscr{H}_{r}(S) \cap N(q)=N_{r}(p)$. Therefore $N(q)$ is embedded in M. Furthermore, since each $N_{r}(p) \subset M$ is totally geodesic, so is $N(q)$.

By Proposition 3.7, for each $q \in S_{0}$ and any $t \in[0,1]$ we have $H(N(q), t) \subset N(q)$, which means $\left.H\right|_{N(q)}: N(q) \times[0,1] \rightarrow N(q)$ is a homotopy such that $H(\cdot, 0)=$ id on $N(q)$ and $H(N(q), 1)=q$. Thus $N(q)$ is contractible. In fact, since $N(q) \cap S_{0}=\{q\}$ and $N(q)$ is totally geodesic, it is easy to see that $N(q)$ has a point soul q, and hence is diffeomorphic to \mathbf{R}^{k}.

We now obtain the proof of our main theorem by combining all of our previous results.

Theorem 3.9. For any $q_{0} \in S_{0}$ the map $h: S_{0} \times N\left(q_{0}\right) \rightarrow M$ is a totally geodesic isometric embedding with its image \mathscr{H}.

Proof. We first show that h is a well-defined injective map. Suppose there are two points $q_{1}, q_{2} \in S_{0}$ and two parallel vector fields $F_{1}, F_{2} \in$ $\mathscr{P}\left(S_{0}\right)$ such that $\exp _{q_{1}} F_{1}\left(q_{1}\right)=\exp _{q_{2}} F_{2}\left(q_{2}\right)$. By Corollary 1.4, we have $\exp _{S_{0}} F_{1}=\exp _{S_{0}} F_{2}=S$. For any $p \in S$, if $p_{1}, p_{2} \in S_{0}$ are such that $\exp _{p_{1}} F_{1}\left(p_{1}\right)=\exp _{p_{2}} F_{2}\left(p_{2}\right)=p$, then by Proposition 3.7, $p_{1}=$ $f\left(\exp _{p_{1}} F_{1}\right)=f\left(\exp _{p_{2}} F_{2}\right)=p_{2}$, which implies that $q_{1}=q_{2}$ and $\exp _{q} F_{1}(q)$ $=\exp _{q} F_{2}(q)$ for any $q \in S_{0}$. Thus h is injective. In particular, when $q_{1}=q_{2}=q_{0}$, we see that h is well defined.

For any $p=\exp _{q_{0}} F\left(q_{0}\right), F \in \mathscr{P}\left(S_{0}\right)$, the pseudo-soul $S=\exp _{S_{0}} F$ has a neighborhood $\mathscr{H}_{r}(S)=h_{p}\left(S \times N_{r}(p)\right)$ such that $N_{r}(p) \subset N\left(q_{0}\right)$. Then, for any $p_{1} \in N_{r}(p)$ we have $h\left(S_{0} \times\left\{p_{1}\right\}\right)=h_{p}\left(S \times\left\{p_{1}\right\}\right)$ by curve shortening. Therefore it follows that $\left.h\right|_{S_{0} \times N_{r}}(p)=h_{p}$ when S is identified to S_{0}. By Lemma 3.5 and Proposition 2.8, h is a totally geodesic isometric embedding.

If the holonomy group of the normal bundle of a soul is trivial, i.e., if every vector $v \in \nu\left(S_{0}\right)$ has a parallel extension over S_{0}, then we have the following immediate consequence of the theorem.

Corollary 3.10. If the normal bundle $\nu\left(S_{0}\right)$ of a soul is a parallel, i.e., $\nu\left(S_{0}\right)=\Phi\left(S_{0}\right)$, then M is isometric to $S_{0} \times N$, where N is a totally geodesic embedded submanifold of M, which is diffeomorphic to $\mathbf{R}^{k}, k=$ $\operatorname{codim}\left(S_{0}\right)$.

In [7, Corollary 5] it was shown that if $\operatorname{codim}\left(S_{0}\right)=2$ and $\nu\left(S_{0}\right)$ is flat, then $M \rightarrow S_{0}$ is locally isometrically a product. Using the corollary above, one can easily generalize the argument to obtain the following.

Corollary 3.11. If the normal bundle $\nu\left(S_{0}\right)$ of a soul S_{0} is flat, i.e., if the normal holonomy group is locally trivial, then there is a Riemannian submersion $M \rightarrow S_{0}$ which splits locally isometrically.

Appendix

In this section, we will first review the construction of the Sharafutdinov retraction f, and investigate the geometry of t.c.s. (totally convex set) in nonnegatively curved manifolds. Some of the results discussed in this appendix may also be found in [4] or [5]. However, our approach
here will be more geometric and sometimes simpler than Sharafutdinov's arguments. Since we have to use some results from $\S \S 1$ and 2 , the logical place where the content of this appendix could be inserted is between $\S \S 2$ and 3.

As was shown in the construction of a soul, there exists a filtration C_{t} of M by t.c.s., and a flag of t.c.s. such that

$$
\begin{gathered}
\bigcup_{t \leq 0} C_{t}=M \\
C_{0}=C(0) \supset C(1) \supset \cdots \supset C(k)=S_{0} .
\end{gathered}
$$

Furthermore, for any compact t.c.s $C, \partial C \neq \varnothing$, one can define a function $\psi: C \rightarrow \mathbf{R}$ by $\psi(q)=d(q, \partial C)$. Then ψ is a convex function [3, Theorem 1.10], i.e., for any normal geodesic segment c contained in C, we have

$$
\psi \circ c\left(\alpha t_{1}+\beta t_{2}\right) \geq \alpha \psi \circ c\left(t_{1}\right)+\beta \psi \circ c\left(t_{2}\right)
$$

where $\alpha, \beta>0, \alpha+\beta=1$.
Put $a_{0}=\sup \{\psi(q) \mid q \in C\}$. Then, for each $b \in\left[0, a_{0}\right]$, the subset $C^{b}=\{q \in C \mid \psi(q) \geq b\}$ is totally convex. Therefore, in fact, there exists an exhaustion of M by t.c.s., which means for any $p \in M$ one can find a t.c.s. $C\left(C_{t}\right.$, or $\left.C(i)^{b}\right)$ such that $p \in \partial C$.

Because of this totally convex exhaustion of M, to construct a deformation retraction from M to S_{0}, it suffices to show that for any compact totally convex set C and any two numbers $a, b, 0 \leq a<b \leq a_{0}$, there exists a retraction $f_{a}^{b}: C^{a} \rightarrow C^{b}$ such that $\left.f_{a}^{b}\right|_{C^{b}}=$ id [8, Theorem 2.3].

For any $a, b, 0 \leq a<b \leq a_{0}$, let $P_{k}=\left\{a=t_{0}<t_{1}<\cdots<t_{2^{k}}=b\right\}$ be the partition of $[a, b]$ into 2^{k} equal segments. Define $f_{k}: C^{a} \rightarrow C^{b}$ by $f_{k}=g_{2^{k}} \circ g_{2^{k}-1} \circ \cdots \circ g_{1}$, where $g_{i}: C^{t_{i-1}} \rightarrow C^{t_{i}}$ is a projection, i.e., for each $q \in C^{t_{i}}, d\left(q, g_{i}(q)\right)=d\left(q, C^{t_{i}}\right)$. Then, by Ascoli's theorem, a subsequence of $\left\{f_{k}\right\}$ converges to a continuous function $f_{a}^{b}: C^{a} \rightarrow C^{b}$ as $k \rightarrow \infty$. For any $p \in \partial C^{\alpha}$ and any partition P_{k} let $\gamma_{p, k}$ be the broken geodesic which minimizes distance from $g_{i-1} \circ \cdots \circ g_{1}(p)$ to $g_{i} \circ \cdots \circ g_{1}(p)$ for each i. Each $\gamma_{p, k}$ is assumed to be parametrized so that $\gamma_{p, k}\left(t_{i}\right)=$ $g_{i} \circ \cdots \circ g_{1}(p)$. Then, as $\left\{f_{k}\right\}$ converges to $f_{a}^{b},\left\{\gamma_{p, k}\right\}$ converges to a continuous curve. Put $H_{a}^{b}(p, t)=\lim _{k \rightarrow \infty} \gamma_{p, k}(t)$. For any $q \in C^{a}$, if $q=H_{a}^{b}\left(p, t_{0}\right)$ for some $p \in \partial C^{a}$ and $t_{0} \in[a, b]$, we define $H_{a}^{b}(q, t)$ as follows:

$$
H_{a}^{b}(q, t)= \begin{cases}q & \text { if } t \leq t_{0} \\ H_{a}^{b}(p, t) & \text { otherwise }\end{cases}
$$

Thus it is clear $H_{a}^{b}: C^{a} \times[0,1] \rightarrow C^{a}$ is a homotopy such that $H_{a}^{b}(\cdot, 0)=$ id and $H_{a}^{b}(\cdot, 1)=f_{a}^{b}$.

We now use the totally convex exhaustion of M to extend this partial construction to a deformation retraction $f: M \rightarrow S$ and its homotopy $H: M \times[0,1] \rightarrow M$. In fact, for any $p \in M$ let C be the t.c.s. $\left(C_{t}, t \geq\right.$ 0 , or $\left.C(i)^{b}, i \geq 0, b \in\left[0, a_{i}\right]\right)$ such that $p \in C$. Then define $H(p, t)$ as a composition of the H_{a}^{b} 's constructed above for C with a suitable change of parametrization. According to our construction, the choice of a homotopy H (and hence f) may not be unique. We will, however, make a choice and call it canonical. Then the following was shown in [8].

Theorem A.1. $H: M \times[0,1] \rightarrow M$ is a continuous map such that $H(\cdot, 1)=$ id on M and $H(\cdot, 1)=f$, where $f: M \rightarrow S_{0}$ is a strong deformation retraction. Furthermore, for each $t \in[0,1], H(\cdot, t)$ is distance nonincreasing.

For any compact t.c.s. C and $p \in \partial C$ the tangent cone C_{p} at p is defined in [3]. For any $p \in C$ let $b \in\left[0, a_{0}\right]$ be such that $p \in \partial C^{b}$. We then use the same notation C_{p} to denote the tangent cone of C^{b} at p, which is by definition the set

$$
\left\{v \in T_{p} M \mid \exp _{p} t v /\|v\| \in \stackrel{\circ}{C}^{b} \text { for some positive } t<r(p)\right\} \bigcup\{0\}
$$

where $\stackrel{\circ}{C}^{b}$, is the interior points of C^{b}, and $r(p)$ is the convexity radius of C at p [2, Theorem 5.14]. Let $\widehat{C}_{p} \subset T_{p} M$ be the subspace spanned by C_{p}. Then we have the following known facts.

Proposition A. 2 [8, §1]. (1) If a is a number such that $0<a<a_{0}=$ $\sup \{\psi\}$, then there exists an angle $\theta>0$ such that for any $t \in[0, a]$ and any $p \in \partial C^{t}$ the tangent cone C_{p} contains a circular cone,

$$
C_{p}\left(v_{p}, \theta\right)=\left\{v \in \widehat{C}_{p} \mid \angle\left(v_{p}, v\right) \leq \theta\right\}
$$

for some $v_{p} \neq 0$.
(2) For any $b \in\left(0, a_{0}\right)$ and any $p \in \partial C^{b}$ we have

$$
\begin{aligned}
C_{p}^{*} & \stackrel{\text { def }}{=}\left\{v \in \widehat{C}_{p} \mid\langle v, w\rangle<\text { for all } w \in C_{p}-\{0\}\right\} \\
& =\left\{v \in \widehat{C}_{p} \mid d\left(\exp _{p} t v /\|v\|, \partial C^{b}\right)=t \text { for small } t>0\right\} \\
& =\text { the convex hull of }\left\{v_{i}\right\}_{p}
\end{aligned}
$$

where $\left\{v_{i}\right\}_{p}=\left\{v \in \widehat{C}_{p} \mid \exp _{p} t v /\|v\| \in \partial C^{b-t}\right.$ for small $\left.t>0\right\}$.
(3) If a geodesic γ is contained in $\partial C^{b}, 0<b<a_{0}$, then $\left\{v_{i}\right\}_{p}$ (and also $\left.C_{p}^{*}\right)$ is orthogonal to $\gamma^{\prime}(t)$ and invariant under parallel translation along γ.
(4) Any compact totally geodesic submanifold in C is completely contained in ∂C^{b} for some $b \in\left[0, a_{0}\right]$.

Theorem A.3. Let C be a compact t.c.s., $\partial C \neq \varnothing$, and let $\psi(q)=$ $d(q, \partial C)$. For any $p \in C$ and any $X \in \widehat{C}_{p}\left(X \in C_{p}\right.$ if $\left.p \in \partial C\right), \psi$ has a right derivative $X^{+}(\psi)$, i.e., for any smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ with $\gamma(0)=p, \gamma^{\prime}(0)=X$, the right limit

$$
X^{+}(\psi)=\lim _{t \rightarrow 0^{+}} \frac{\psi \circ \gamma(t)-\psi(p)}{t}
$$

exists independently of γ. Furthermore, the following hold.
(1) If $p \in \stackrel{\circ}{C}$ and $X \in \widehat{C}_{p}$, then $X^{+}(\psi)=-\|X\| \cos \alpha$, where $\alpha=$ $\inf \left\{\angle(X, v) \mid v \in\left\{v_{i}\right\}_{p}\right\}$, and $\left\{v_{i}\right\}_{p}$ is defined in Proposition A.2(2).
(2) If $p \in C$ and $X \in C_{p}$, then $X^{+}(\psi)=\|X\| \sin \beta$, where $\beta=$ $\inf \left\{\angle(X, v) \mid v \in \partial C_{p}\right\}$, and $\partial C_{p}=\bar{C}_{p}-C_{p}\left(\bar{C}_{p}=\right.$ the closure of $\left.C_{p}\right)$.

Proof. We first observe that for any interior point p and any $X \in C_{p}$, the two expressions for $X^{+}(\psi)$ above are consistent by Proposition A.2(2). On the unit sphere $S(1) \subset \widehat{C}_{p}$, if a set $\left(\left\{v_{i}\right\}_{p} \cap S(1)\right)$ is strictly contained in the upper hemisphere, then the distances from the south pole $(X /\|X\|)$ to the set and to its convex hull are same. In our case, since $X \in C_{p}$ implies $\alpha>\pi / 2$, and C_{p}^{*} is the convex hull of $\left\{v_{i}\right\}_{p}$, we see that

$$
\begin{aligned}
\alpha & =\inf \left\{\angle(X, v) \mid v \in\left\{v_{i}\right\}_{p}\right\} \\
& =\inf \left\{\angle(X, v) \mid v \in C_{p}^{*}\right\}=\beta+\pi / 2
\end{aligned}
$$

and hence $-\cos \alpha=-\cos (\beta+\pi / 2)=\sin \beta$. If the right limit $X^{+}(\psi)$ exists for any smooth curve, then it will be the same for all curves with the same initial conditions because ψ is a Lipschitz function. We assume that γ is a geodesic.

For any $p \in \stackrel{\circ}{C}$ and $X \in \widehat{C}_{p}$ let $b>0$ be such that $p \in \partial C^{b}$. By the convexity of the function $\psi\left[3\right.$, Theorem 1.10] we have for any $v \in\left\{v_{i}\right\}_{p}$ that

$$
\psi \circ \gamma(t)=d(\gamma(t), \partial C) \leq b-t\|X\| \cos (\angle(X, v))
$$

Thus

$$
\limsup _{t \rightarrow 0^{+}} \frac{\psi \circ \gamma(t)-\psi(p)}{t} \leq-\|X\| \cos \alpha
$$

To show the opposite direction of the inequality, we suppose that there exist a strictly decreasing sequence $\left\{t_{k}\right\}$ converging to zero such that

$$
\lim _{k \rightarrow \infty} \frac{\psi \circ \gamma\left(t_{k}\right)-\psi(p)}{t_{k}}<-\|X\| \cos \alpha
$$

Let $a \in(0, b)$ be such that $b-a=\delta<r / 2$, where $r<\varepsilon_{C}$. Consider the sequence $\left\{p_{k}=\gamma\left(t_{k}\right)\right\}$ which clearly converges to p as $k \rightarrow \infty$. For each k let $q_{k} \in \partial C^{a}$ be such that $d\left(p_{k}, q_{k}\right)=d\left(p_{k}, \partial C^{a}\right)$. Since ∂C^{a} is compact, there exists a convergent subsequence of $\left\{q_{k}\right\}$, and we assume (by abuse of notation) that $q_{k} \rightarrow q \in \partial C^{a}$. Then it is clear that $d(p, q)=\delta$ and there is a normal minimal geodesic $c:[0, \delta] \rightarrow C$ from p to q such that $w=c^{\prime}(0) \in\left\{v_{i}\right\}_{p}$. Put $\alpha_{0}=\angle(X, w)$. Then $\alpha \leq \alpha_{0}$, so there exist $\mathscr{N} \in \mathbf{Z}$ and $\varepsilon>0$ such that $\psi \circ \gamma\left(t_{k}\right) \leq b-t_{k}\|X\| \cos \left(\alpha_{0}-\varepsilon\right)$ for any $k \geq \mathscr{N}$. We now pick $k \geq \mathscr{N}$ large enough that $p_{k}=\gamma\left(t_{k}\right) \in B_{r}\left(q_{k}\right)$ and $\angle\left(c^{\prime}(0), c_{k}^{\prime}(0)\right)<\varepsilon / 2$, where c_{k} is the minimal geodesic from p to q_{k}. Then $\angle\left(X, c_{k}^{\prime}(0)\right) \geq \alpha_{0}-\varepsilon / 2$. Therefore, for any $t>0$ with $\exp _{p} t X \in B_{r}\left(q_{k}\right)$, we have by strong convexity

$$
\begin{aligned}
d\left(q_{k}, \exp _{p} t X\right) & \geq d\left(q_{k}, p\right)-t\|X\| \cos \left(\alpha_{0}-\varepsilon / 2\right) \\
& \geq \delta-t\|X\| \cos \left(\alpha_{0}-\varepsilon / 2\right),
\end{aligned}
$$

which is a contradiction since

$$
d\left(q_{k}, \exp _{p} t_{k} X\right)=d\left(q_{k}, p k\right)=\psi \circ \gamma\left(t_{k}\right)-a \leq \delta-t_{k}\|X\| \cos \left(\alpha_{0}-\varepsilon\right)
$$

We may now conclude that

$$
\liminf _{t \rightarrow 0^{+}} \frac{\psi \circ \gamma(t)-\psi(p)}{t} \geq-\|X\| \cos \alpha
$$

and hence the right limit $X^{+}(\psi)$ exists and (1) is satisfied.
The only remaining case is when $p \in \partial C$ and $X \in C_{p}$. By the same convexity of ψ, we obtain the following:

$$
\limsup _{t \rightarrow 0^{+}} \frac{\psi \circ \gamma(t)-\psi(p)}{t} \leq\|X\| \sin \beta
$$

Assume again that there exists a sequence $\left\{t_{k}\right\}$ for which we have a strict inequality. Let $q_{k} \in \partial C$ be defined such that $d\left(p_{k}=\gamma\left(t_{k}\right), q_{k}\right)=$ $d\left(p_{k}, \partial C\right)$. Then $q_{k} \rightarrow p$ as $k \rightarrow \infty$. For each k let $c_{k}:[0,1] \rightarrow M$ be the minimal geodesic from p to q_{k}, and set $w_{k}=\left\|c_{k}^{\prime}(0)\right\|^{-1} c_{k}^{\prime}(0) \in \bar{C}_{p}$. We assume (after taking a subsequence if necessary) that as $k \rightarrow \infty,\left\{w_{k}\right\}$ converges to a unit vector $w \in \bar{C}_{p}$. Since $q_{k} \rightarrow p$ as $k \rightarrow \infty$, it is easy to see that $w \notin C_{p}$, and hence $w \in \partial C_{p}$. We then use a similar argument for w as in the first case to obtain a contradiction.

Definition A.4. For any $p \in C \quad\left(p \notin C^{a_{0}}\right)$ a unit vector $v_{p} \in \widehat{C}_{p}$ will be called a (generalized) gradient direction if

$$
v_{p}^{+}(\psi)=\sup \left\{v^{+}(\psi) \mid v \in \widehat{C}_{p},\|v\|=1\right\}
$$

and denote $\nabla \psi=v_{p}^{+}(\psi) v_{p}$.
If $p \in C^{a_{0}}$, then we will define a gradient direction at p as a point in the totally convex set $C^{a_{0}}$. Since $v^{+}(\psi)$ is positive only if $v \in C_{p}$, it is obvious that $v_{p} \in C_{p}$, and hence the definition still makes sense for $p \in \partial C$.

By Proposition A. 2 we know several properties of $C_{p}\left(\left\{v_{i}\right\}_{p}\right.$, or $\left.C_{p}^{*}\right)$. We will use these facts to examine the properties of $\nabla \psi$.

Theorem A.5. With C and ψ as above, we have the following.
(1) For each $p \in C, \nabla \psi(p) \in C_{p}$ is unique.
(2) For any $b \in\left(0, a_{0}\right)$ and any geodesic γ contained in $\partial C^{b}, \nabla \psi$ is perpendicular to $\gamma^{\prime}(t)$ and parallel along γ.
(3) For any $a \in\left[0, a_{0}\right)$ there is an angle $\theta>0$ such that for any $t \in[0, a]$ and any $p \in \partial C^{t}$ we have $\|\nabla \psi(p)\| \geq \sin \theta$.

Proof. As C_{p}^{*} is convex, it is easy to see that there exists a unique minimal circular cone containing C_{p}^{*} with its center $-v_{p} \in C_{p}^{*}$. Then clearly the function $\inf \left\{\angle(\cdot, v) \mid v \in C_{p}^{*}\right\}$ attains its maximum at $v_{p} \in C_{p}$, and by definition we have $\nabla \psi=v_{p}^{+}(\psi) v_{p}$, where we assumed $\left\|v_{p}\right\|=1$. Therefore $\nabla \psi(p)$ is unique for each $p \in C$. By Proposition A.2(3), C_{p}^{*} is parallel normal to any geodesic in $\partial C^{b}, b \in\left(0, a_{0}\right)$. Thus the minimal cone is parallel along the geodesic, and so is the gradient $\nabla \psi$. Moreover, since $-v_{p} \in C_{p}^{*}, \nabla \psi(p)$ is perpendicular to the geodesic. By Proposition A.2(1) and Theorem A.3, the last claim (3) easily follows.

Let S_{0} be a soul and let H be the canonical homotopy corresponding to S_{0}. For any $p \in M$ put $\varphi_{p}(t)=H(p, t)$. If C is the t.c.s. of the totally convex exhaustion of M such that $p \in \partial C$, we then reparametrize the continuous curve φ_{p} so that $\psi\left(\varphi_{p}(t)\right)=t$ for $t \leq a_{0}=\sup \{\psi(x) \mid x \in C\}$. By the definition of H, for any $a, b, 0 \leq a<b \leq a_{0}$, the curve $\varphi_{p}[a, b]$ can be obtained as a limit of the broken geodesic $\gamma_{p, k}$ with the partition $P_{k}=\left\{a=t_{0}<\cdots<t_{2^{k}}=b\right\}$ (note that the set of dyadic numbers is dense in $[0,1])$. For this continuous curve we have the following corollary.

Corollary A.6. For any $a, b, 0 \leq a<b<a_{0}, \varphi_{p}:[a, b] \rightarrow C$ is a rectifiable curve and

$$
L\left[\varphi_{p}\right] \leq(b-a) \sup \left\{\|\nabla \psi(p)\|^{-1} \mid p \in \partial C^{t}, a \leq t \leq b\right\}
$$

Proof. By construction, φ_{p} is a uniform limit of the broken geodesic $\gamma_{p, k}:[a, b] \rightarrow C$, which is defined to be such that

$$
L\left[\left.\gamma_{p, k}\right|_{\left[t_{i-1}, t_{i}\right]}\right]=d\left(\gamma_{p, k}\left(t_{i-1}\right), \partial C^{t_{i}}\right)
$$

for the partition $P_{k}=\left\{a=t_{0}<\cdots<t_{2^{k}}=b\right\}$. Hence it suffices to prove that for any k the length $L\left[\gamma_{p, k}\right]$ is bounded by the above number, and then it is enough to show for each i

$$
L\left[\left.\gamma_{p, k}\right|_{\left[t_{i-1}, t_{i}\right]}\right] \leq\left(t_{i}-t_{i-1}\right) \sup \left\{\|\nabla \psi\|^{-1}\right\}
$$

For any $t_{i-1}, t_{i} \in[a, b]$, to simplify notation put $t_{i}-t_{i-1}=\delta$ and let $\gamma:[0, \delta] \rightarrow C$ be such that $\gamma(s)=\gamma_{p, k}\left(t_{i}-s\right)$. Then we have $q=\gamma(0) \in \partial C^{t_{i}}$ and $d\left(\gamma(s), \partial C^{t_{i}}\right)=L\left[\left.\gamma\right|_{[0, s]}\right]$, and hence by Proposition A.2(2) it follows that $\gamma^{\prime}(0) \in C_{q}^{*}$. Let $\theta>0$ be the angle such that $\|\nabla \psi(q)\|=\sin \theta$, which means the circular cone $C_{q}(\nabla \psi(q), \theta)$ is contained in \bar{C}_{q}. Then, by Proposition A.2(2), we see that C_{q}^{*} is contained in $C_{q}(-\nabla \psi(q), \pi / 2-\theta)$, and therefore $\inf \left\{\angle\left(\gamma^{\prime}(0), v\right) \mid v \in\left\{v_{i}\right\}_{q}\right\} \leq$ $\pi / 2-\theta$. We now apply Theorem A. 3 to obtain

$$
\left(\gamma^{\prime}(0)\right)^{+}(\psi) \leq-\left\|\gamma^{\prime}(0)\right\| \cos (\pi / 2-\theta)=-\left\|\gamma^{\prime}(0)\right\| \sin \theta=-\|\nabla \psi(q)\| L[\gamma] / \delta
$$

Then by the convexity of $\psi \circ \gamma$ and the fact $\psi \circ \gamma(\delta)-\psi \circ \gamma(0)=t_{i-1}-t_{i}=$ $-\delta$ we have $\left(\gamma^{\prime}(0)\right)^{+}(\psi) \geq-1$. Since $L\left[\left.\gamma_{p, k}\right|_{\left[t_{i-1}, t_{i}\right]}\right]=L[\gamma]$,

$$
L\left[\left.\gamma_{p, k}\right|_{\left[t_{i-1}, t_{i}\right]}\right] \leq \delta\|\nabla \psi(q)\|^{-1} \leq\left(t_{i}-t_{i-1}\right) \sup \left\{\|\nabla \psi\|^{-1}\right\}
$$

Thus the corollary is proved.
Lemma A.7. With C and ψ as above, for any $b \in\left[0, a_{0}\right)$ and $p \in$ ∂C^{b} let $\gamma_{\tau}:[0, \tau] \rightarrow C$ be the minimal connection from p to $C^{b+\tau}$, $\tau>0$, i.e., $d\left(p, \gamma_{\tau}(\tau)\right)=d\left(p, \partial C^{b+\tau}\right)$. Then

$$
\lim _{\tau \rightarrow 0+} \gamma_{\tau}^{\prime}(0)=\frac{\nabla \psi}{\|\nabla \psi\|^{2}}(p)
$$

Proof. Put

$$
\sigma(t)=\exp _{p} t \frac{\nabla \psi}{\|\nabla \psi\|}(p)
$$

By the definition of $\nabla \psi$,

$$
\|\nabla \psi\|(p)=\lim _{t \rightarrow 0^{+}} \frac{\psi \circ \sigma(t)-\psi(p)}{t}
$$

Thus $\psi \circ \sigma(t)=b+t(\|\nabla \psi\|(p)+O(t))$. If $\sigma(t) \in \partial C^{b+\tau}$ for small $t>0$, then $\psi \circ \sigma(t)=b+\tau$. Since γ_{τ} is the minimal connection from p to $\partial C^{b+\tau}$, we have $\tau\left\|\gamma_{\tau}^{\prime}(0)\right\|=L\left[\gamma_{\tau}\right] \leq L\left[\left.\sigma\right|_{0, t}\right]=t$. Therefore,

$$
\left\|\gamma_{\tau}^{\prime}(0)\right\|^{-1} \geq \frac{\tau}{t}=\frac{\psi \circ \sigma(t)-b}{t}=\|\nabla \psi\|(p)+O(t)
$$

On the other hand, since $\psi \circ \gamma_{\tau}$ is a convex function and $\psi \circ \gamma_{\tau}(\tau)-\psi \circ$ $\gamma_{\tau}(0)=\tau$, we have

$$
\left(\gamma_{\tau}^{\prime}(0)\right)^{+}(\psi)=\lim _{s \rightarrow 0^{+}} \frac{\psi \circ \gamma_{\tau}(s)-\psi \circ \gamma_{\tau}(0)}{s} \geq 1
$$

Put $\alpha(\tau)=\|\nabla \psi\|^{-1}\left\|\gamma_{\tau}^{\prime}(0)\right\|^{-1}\left(\gamma^{\prime}(0)\right)^{+}(\psi)$. Since $\nabla \psi$ is the gradient direction, we know that $\alpha(\tau) \leq 1$ for any $\tau>0$. Combining the two inequalities above gives

$$
\begin{aligned}
\alpha(\tau)\|\nabla \psi\|(p) & =\left\|\gamma_{\tau}^{\prime}(0)\right\|^{-1}\left(\gamma_{\tau}^{\prime}(0)\right)^{+}(\psi) \\
& \geq\left\|\gamma_{\tau}^{\prime}(0)\right\|^{-1} \geq\|\nabla \psi\|(p)+O(t)
\end{aligned}
$$

Hence as $t \rightarrow 0$ (or $\tau \rightarrow 0$) we shall have $\alpha(\tau) \rightarrow 1$ and $\left\|\gamma_{\tau}^{\prime}(0)\right\| \rightarrow$ $\|\nabla \psi\|^{-1}(p)$, which imply the lemma by the uniqueness of the gradient direction.

We defined φ_{p} as a limit of the broken geodesics whose segments consist of minimal geodesics γ_{τ} as above. Therefore, the preceding lemma suggests that φ_{p} might be regarded as an integral curve of the vector field $\nabla \psi /\|\nabla \psi\|^{2}$ which is unfortunately not differentiable (not even continuous). Actually, a more careful observation will show an even stronger result. (The proof of the next proposition is somewhat technical and we shall omit it. The proof may be found, e.g., in [4].)

Proposition A.8. For any $p \in \partial C$ let $\varphi_{p}:\left[0, a_{0}\right] \rightarrow C$ be as above. For any $t \in\left[0, a_{0}\right)$ and any $\tau>0$ let $\gamma_{\tau}:[0, \tau] \rightarrow C$ be the minimal geodesic from $\varphi_{p}(t) \in \partial C^{t}$ to $\varphi_{p}(t+\tau) \in \partial C^{t+\tau}$. Then

$$
\lim _{\tau \rightarrow 0^{+}} \gamma_{\tau}^{\prime}(0)=\frac{\nabla \psi}{\|\nabla \psi\|^{2}}\left(\varphi_{p}(t)\right)
$$

In Theorem A.5, we have shown that $\nabla \psi$ is parallel normal along any geodesic contained in $\partial C^{b}, b \in\left(0, a_{0}\right)$, and we know every pseudo-soul is completely contained in ∂C^{b} for some b. Therefore we conclude that almost every pseudo-soul has a parallel normal vector field, namely $\nabla \psi$. In fact, we can prove this fact without the restriction on $b \in\left[0, a_{0}\right]$. In
[5] it was shown that if a soul is not unique, then every soul has a parallel normal vector field along it. The only nontrivial fact which the author used in the proof is that the mixed curvature terms vanish along a soul. Since we now know every pseudo-soul also has this property, we can prove the following corollary. Moreover, using the concept of a pseudo-soul and its properties, we obtain a proof simpler than Sharafutdinov's argument.

Corollary A.9. [5, Theorem 2]. If a pseudo-soul S is not a unique soul, then $\nabla \psi$ is a parallel normal vector field along S.

Proof. For any pseudo-soul $S, H(S, t)$ is a continuous isometric variation of S through pseudo-souls. However, according to the proposition, for each $p \in S$ we may regard $\nabla \psi(p)$ as a tangent vector of the curve $\varphi_{p}(t)=H(p, t)$ at p. Therefore $\nabla \psi$ is a variational vector field of pseudo-souls, and is therefore a global normal Jacobi field. Hence, by Corollary $2.5, \nabla \psi$ is a parallel normal along S.

References

[1] G. D. Birkhoff , Dynamical systems, Colloq. Publ. 9, Amer Math. Soc., Providence, RI, 1927.
[2] J. Cheeger \& D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, North-Holland, Amsterdam, 1975.
[3] J. Cheeger \& D. Gromoll On the structure of complete manifold of nonnegative curvature, Ann. of Math (2) 96 (1972) 413-443.
[4] V. A. Sharafutdinov, The Pogorelov-Klingenberg theorem for manifold homeomorphic to \mathbf{R}^{n}, Siberian Math. J. 18, No. 4 (1977) 915-925.
[5] ___, Convex sets in a manifold of nonnegative curvature, Mat. Zametki 26 (1979) 129136.
[6] M. Strake, A splitting theorem for open nonnegatively curved manifolds, Manuscripta Math. 61 (1988) 315-325.
[7] G. Walschap, A splitting theorem for 4-dimensional manifolds of nonnegative curvature, Proc. Amer. Math. Soc. (to appear).
[8] J.-W. Yim, Distance nonincreasing retraction on a complete open manifold of nonnegative sectional curvature, Ann. Global Anal. Geom. 6 (1988) 191-206.

University of Pennsylvania

[^0]: Received April 8, 1988 and, in revised form February 10, 1989.

