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1. Introduction

The introduction of gauge theory as a tool for studying low dimensional
topology has dramatically increased our understanding of three- and four-
dimensional phenomena. The general philosophy is to relate the topology
of the underlying manifold to the topology of a moduli space of anti-
self-dual connections on a suitably chosen bundle. However, the global
topology of these moduli spaces is generally difficult to extract; in fact,
even the existence of instantons can be a hard question to answer.

In this paper, we study the existence of anti-self-dual 5Ό(3)-connections
with finite Yang-Mills action (5Ό(3)-instantons) over the manifolds
L{p, ^)xR, where L(p, q) is a Lens space. Our result gives necessary and
sufficient conditions for a bundle to support an instanton in terms of the
Pontrjagin charge and the asymptotic data. The key to this result is a com-
putation of the equivariant index of the Dirac operator on S4 twisted by
an anti-self-dual 5ί7(2)-connection. One finds instantons on L(p, q) x R
if and only if this character, which is a priori a virtual character, is an
actual one.

In addition, we show how to describe the global structure of the moduli
space by a set of equations and explicitly determine the moduli spaces for
a few examples. More specifically, we obtain a reduced moduli space by
quotienting out the natural R action given by translation. One sees that
the dimension of this reduced moduli space is always even. Furthermore,
in the case when this dimension is zero, the reduced moduli space is a
singleton, and when this dimension is two, it must be S2 -B , where B is
a collection of either 0, 1, or 2 points. One can presumably show that
the reduced moduli space has a natural complex Kahler structure.

The original motivation for this work lies in the study of θ^, the in-
tegral homology cobordism group of homology 3-spheres, and the com-
pactness properties of orbifold moduli spaces (see [11], [10], and [16]).
However, one may also view this paper as a first step to extending Floer's
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homology theory for integral homology 3-spheres [12] to rational homol-
ogy spheres. Moreover, the geometric situation closely resembles that sug-
gested by 't Hooft for the study of quark confinement [15].

The exposition is organized as follows. In §2, we will reformulate
5Ό(3)-instantons on L(p, q)xR as Sί7(2)-instantonson S4 invariant un-
der a cyclic group action. By employing the Penrose twistor construction,
the question about ASD connections on S4 is equivalent to finding certain
holomorphic bundles over C P 3 . This is the essence of the ADHM clas-
sification of 5ί7(2)-instantons and the subject of §3. All such instantons
are realized as linear maps between two finite-dimensional vector spaces,
A(z): W -* V. One of the crucial steps, in both the ADHM classification
and our construction here, is the interpretation of W and V as the ker-
nels of twisted Dirac operators over S . We will see that the invariant
instantons are described by equivariant linear maps.

An index computation forms the core of §4. Here we assume that there
is an invariant instanton on S for an action of Z/2pZ on an SU(2)-
bundle and determine W and V as Z/2pZ representations through the
equivariant index theorem. In §5, this leads naturally to obstructions to
the existence of invariant instantons. It is shown that for an invariant
instanton to exist the action must be built from Z/2pZ actions that extend

to Sι actions, where Sι denotes the double cover of S . The main result
is stated in §5.1. §6 demonstrates the existence of invariant instantons for
all of the actions built in this fashion. This completes the classification
of actions on 5r[/(2)-bundles over S4 that fix an instanton and therefore
classifies instantons on L(p, q) x R. §7 is devoted to deriving equations
for the moduli space and then the determination of the moduli space for
several examples.

2. Group actions

This section translates the problem of finding anti-self-dual SO(3)-

connections on L(p, q) x R into that of finding anti-self-dual SU(2)-

connections on S4 invariant under a cyclic group action. We first show

that a group action on S4 induces an action on the space of gauge equiv-

alence classes of connections. A fixed point under this action gives a lift

of the action on S4 to the bundle over S4, and this lifted action fixes

a connection. This presentation is designed to fix conventions as well as

provide background.

2.1. The Z/pZ action on S4 . We take L(p, q) to have the standard

metric and orientation induced as a quotient of S3. The universal cover
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of L(p, q) x R is conformally equivalent to C2 - {0}, where the deck
transformation group, Z/pZ, is generated by

(2.1) ζ(x{,x2)

where ξ = e

2π^~ιlp i s a primitive p root of unity, and q is coprime to
p . Identify C2 with H, the one-dimensional quaternionic space, by the
isomorphism (zx, z2) ι—• z t + z2j. Then the Z/pZ action in (2.1), in
terms of quaternionic multiplication, is written

where ζ = e

πy/Z1/p . This extends to an action of Z/pZ on S4 with two
fixed points, denoted 0 and oc. With its canonical metric and orientation,
S4 may be taken as the Z/pZ-equivariant conformal compactification of
C 2 - { 0 } .

Suppose that there is an ASD SO(3)-connection on L(p, q) x R with
finite Yang-Mills action. Pull the SΌ(3)-bundle and connection back to
C2 - {0} and extend it, using Uhlenbeck's removability of singularities
result [18], to an ASD connection on an 5Ό(3)-bundle over S4. Since
w2 of an 50(3)-bundle over S4 vanishes, lift the 5Ό(3)-bundle and con-
nection to an 5'{7(2)-bundle and ASD connection over S4. Thus, an
5Ό(3)-instanton on L(p, q) x R gives an *SC/(2)-instanton on S4 .

2.2. Actions on connections. We will review some basic facts about
group actions on connections following the notation of [6]. Let M be a
closed, oriented Riemannian 4-manifold and Γ a subgroup of Diff(Af),
the group of diffeomorphisms of M. Let P be a principal G-bundle over
M. Throughout this section, we assume that

(2.2) γ*(P) = P for every γ € Γ.

First, we will show that there is an induced action on 3S, the space of
gauge equivalence classes of G-connections.

We let 9 be the gauge group of P and %? be the group of bundle
automorphisms of P covering an element of Γ on M. Because of (2.2),
the following sequence is exact:

where r takes a bundle isomorphism into the induced diffeomorphism on
M. Let sf be the space of all G-connections on P so that 3S. =
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Then X acts on s/ by A(V) = hVh~x. This action descends to an
action of & on SB .

Let ^ v be the stabilizer of V and ^ be the subgroup of %* that
fixes V. Suppose that [V] e 3S is a fixed point under the action of Γ.
Then the following sequence is exact:

We now specialize to our case of interest: Γ = ZjpZ, G - SU(2), and
M = S4. Because an 5C/(2)-bundle over S4 is classified by its second
Chern class and Z/pZ acts on S 4 by orientation-preserving diffeomor-
phisms, assumption (2.2) is satisfied. Furthermore, every connection V
on a nontrivial bundle has stabilizer &v = {±1} = Z/2Z so that the
following sequence is exact:

1 -> Z/2Z -+%rv-+ Z/pZ -+ 1.

This shows that X^ = Z/2pZ or Z/pZ x Z/2Z. Hence, it is impossible,

in general, to conclude that the Z/pZ action on S4 lifts to the bundle.

However, there is always a Z/2pZ action on the bundle that covers the

Z/pZ action on S4 and fixes V.

Notice that Z/pZ acts on S4 by orientation-preserving isometries so
that the action on 3S restricts to an action on </#, the moduli space
of ASD connections on P. Suppose then that V is an ASD SU{2)-
connectionon S4 obtained from L(p, q)xR. Then [V] will be invariant
under the Z/pZ action on Jt and hence defines a Z/2pZ action on the
5ί7(2)-bundle fixing V. Conversely, an invariant connection descends to
a connection on L(p, q) x R. Then the problem of finding ASD SO(3)-
connections on L(p, q) x R is equivalent to finding Z/2pZ-equivariant
5ί7(2)-bundles over S4 whose action fixes an ASD connection.

2.3. Characterizing Z/2pZ-equivariant bundles. We will develop a con-
venient language in which to discuss Z/2pZ-equivariant bundles. Up to a
gauge transformation, an action of Z/2pZ on the 5ί7(2)-bundle P —• S4

may be described by the weights of the action on the fixed fibers over 0
and oo (see [10]). Using ζ = e

πy/^/p as the generator of Z/2pZ, denote
these weights by m and m , respectively. A Z/2pZ-equivariant bundle
will then be denoted by (k, m, m), where k is the second Chern class
of the bundle and m and m describe the weights of the Z/2pZ action.

Suppose that a connection V is fixed by the action described by (m, m).
Now ζp = -1 acts as the identity on S4 so it acts as a gauge transforma-
tion on the bundle; this gauge transformation is in the stabilizer of V and
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hence equal to ± 1 . Now the action over 0 is given as {-\)m and over

oc as ( - l ) m and hence it is necessary that

(2.3) m = m mod 2.

We will assume this for the remainder of the paper.
Regard the following actions as equivalent:

(2.4) (m, m j ~ ί-ra, mj ~ (m, -mj ~ (p + m, p + m j.

The first three actions are all gauge equivalent while the fourth is obtained
from the first by multiplying by the gauge transformation - 1 . If any one
of these actions fixes a connection, all of the equivalent actions must fix a
gauge equivalent connection.

Given an action, it will be useful to express it as (m, m) ~ (aq-b, aq+
b), where a and b are integers. To do this, we must find solutions to the
equations

2aq = m + m mod 2p,

2b = m - m mod 2p.

Solutions a, b will always exist since q is coprime to p and m, m
have the same parity. We call the pair α, b a solution if it solves (2.5)
for some equivalent bundle in (2.4).

We will see later in §4.2 that ab = k mod p, where k = c2(P). This
also follows from [10] and should be viewed as as topological restriction
on the Z/2pZ actions on P arising from a computation of the equivari-
ant Chern character; that is, it is necessary that this condition be satis-
fied for the existence of the equivariant transition function S3 —• SU(2).
Moreover, given a pair of integers a, b such that ab = k, there is a
Z/2/?Z-equivariant bundle (k, aq - b, aq' + b). We will see that there
are, in addition, analytical obstructions to the existence of invariant ASD
connections for a given Z/2/?Z-equivariant bundle.

3. S£/(2)-instantons on S4

In this section, we present the ADHM classification of 5ί7(2)-instantons
on S4. The essential point here is the reinterpretation of the anti-self-
duality equations on S4 in terms of holomorphic bundles on C P 3 , an
observation initially made by Ward [20] and described in detail in [3], [1].
From this point, [2] gives a classification of these bundles in terms of the
Horrocks construction. The result, as we shall see, is that instantons are
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described by linear maps between vector spaces which may be interpreted
as the kernels of twisted Dirac operators over S4 . An excellent reference
for this material is [1].

3.1. The twistor space for S4 . We will identify S4 with quaternionic
projective space, HP 1 . Here we consider H2 as a left H module so that
(x, y) ~ {qx, qy), where ( x , ] / ) e H 2 - {0} and q € H - {0} . Notice
that the map

(3.1) ( z , , .

gives an isomorphism
fiber bundle

(3.2)

? 2 ' Z 3 ' Z
4 ) H

of complex

C P 1 ^ -

vector

— ^ C
1

spaces

P3

P

'3 +

C4 = H2 . This gives the

[
S4 = HP 1 ,

where a complex line in C is mapped into the quaternionic line in which
it is contained. This demonstrates CP3 as the so-called Penrose twistor
space for S4 described in [3]. Left quaternionic multiplication by j in-
duces a bundle map covering the identity in HP1 which will be denoted
by j : CP3 —• CP3 . In terms of homogeneous coordinates, j is written

j (zx ,z29z3, z4) = ( -z 2 , Ίχ, - z 3 , z 4 ) .

This map is antiholomorphic and induces the antipodal map on the fibers
of (3.2).

One should think of a point z e CP 3 as describing a point p(z) e S4

and a complex structure for a Euclidean neighborhood of p(z). This
points to the following correspondence of Atiyah and Ward (see [1]).

Theorem 3.1. There is a natural 1-1 correspondence between gauge
equivalence classes of anti-self-dual connections on an SU(2)-bundle E
over S4 and isomorphism classes of holomorphic structures on E = p*(E)
over C P 3 , trivial on the fibers of (3.2), possessing a holomorphic nonde-
generate skew form ( , ) and an antiholomorphic bundle map σ: E -> E
covering j on C P 3 , and satisfying σ2 = - 1 and {σu, σv) = (u,υ).

3.2. The Horrocks construction and ADHM classification. Using the
identification of anti-self-dual SU(2)-connections over S4 with holomor-
phic bundles over CP 3 described in the preceding section, [2] shows how
to construct all instantons by using the Horrocks construction of algebraic
bundles over C P 3 .

Let W and V be complex vector spaces of complex dimension k and
2k + 2, respectively. In addition, assume that W has a real structure,
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i.e., an antilinear map o.W^W so that σ2 = + 1, and that V has a
quaternionic structure which we will also denote by σ so that σ: V —• F
and σ2 = - 1 . Furthermore, suppose F is endowed with a positive def-
inite Hermitian inner product ( , ) . Notice that this results in a non-
degenerate skew form on V defined by (u,v) = (u, σv). For a sub-
space U c V, denote its annihilator under the skew form by U° that is,
U° = {ve V\(u,υ) = 0}.

For z = ( z p z 2 ) z 3 , z4) G C 4 , consider a map A(z): W -> V which is
complex linear for a fixed value of z G C4 and depends linearly on z. In
other words, A(z) has the form A(z) - Σfi=ι Aizi, where A( are linear
maps from W to V.

Let ί7z = A(z)W c F and suppose that A(z) satisfies the further
requirements:

Nondegeneracy. For all z € C4 - {0} , Uz is a fc-dimensional subspace
of F . This implies that 4(z) has maximal rank for all z .

Isotropy. For all z e C4 - {0} , £/2 is isotropic with respect to the skew
form on F , i.e.,

(3.3) Uz c U°z.

H structure. A(z) commutes with the structure maps in the following
fashion:

(3.4) σ {A (z) {w)} = A (jz) (σw) for all z e C4 and w <Ξ W.

This will describe a holomorphic bundle over CP 3 as follows. For
[z] G C P 3 , define .EL, = U°/Uz. Then 2?[z] is a two-dimensional complex

vector space varying algebraically over CP 3 and hence defines an algebraic
two-plane bundle over C P 3 . By Theorem 3.1, this defines an instanton.

Among all such maps, call A(z) equivalent to A'(z) if there are isomor-
phisms ψw: W —• W1 and ψv\ V -> V1 commuting with the structure
maps and preserving the skew forms so that the following diagram com-
mutes for all z :

W A{z) > F

The following is due to Atiyah, Hitchin, Drinfeld, and Manin [2].
Theorem 3.2. There is a natural 1-1 correspondence between gauge

equivalence classes of anti-self-dual SU{2)-connections on the SU(2)
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bundle over S4 with second Chern class k and equivalence classes of maps
A(z) as described above.

Furthermore, Hitchin [14] shows that the vector spaces W and V have
natural interpretations as the solutions to differential equations. In partic-
ular,

W = Ker (D~ : Γ (s~ ® # ) -> Γ

and

V = Ker {D~-9E: Γ

It is important to note that the map A(z) arises naturally in this inter-
pretation. In addition, the cokernels of these Dirac operators vanish since
the scalar curvature of S4 is positive (see [14]).

3.3. Z/2pZ invariant instantons. Suppose that E - (k, m, m) is a
Z/2pZ-equivariant 5t/(2)-bundle over S4 with an invariant ASD SU(2)-
connection V which is described by the linear map A: W <g> C 4 —̂  V.
The naturality of the ADHM construction shows that W and V are,
respectively, real and quaternionic Z/2pZ representations.

Under the identification S4 = H P 1 , the action on S4 is written

ζ{[x:y})=[xζχ-c':yζ-χ-q].

This lifts to the following action on C P 3 :

(3.5) C([z,: z 2 : z 3 : z4]) =

which arises from a linear action on C4 .
Due to the naturality of the ADHM construction, a Z/2pZ invari-

ant instanton is described by a map A: W ® C4 -+ F which is Z/lpZ-
equivariant with respect to these actions. In the next section, we will
compute the action on W and V .

4. Index computations

Throughout this section, suppose that E = (k, m, m) is a Z/2pZ-
equivariant Sί7(2)-bundle over S4 with an invariant ASD 5'ί7(2)-connec-
tion V which is described by the linear map A\W%C4-*V. In this
section, we will compute the action on W and V through the equivariant
Atiyah-Singer index theorem.
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4.1. The Z/2pZ index of JF. Recall that we have identified W with
the kernel of the twisted Dirac operator

D~:Y(S

Write W as a Z/2pZ representation

2 p - l

^ = Σ
/=0

where /j is the one-dimensional irreducible representation of Z/2pZ of
weight /. Since the cokernel of the operator D~ vanishes, the values of
wι are available through the equivariant Atiyah-Singer index theorem [4].
Recall that this theorem allows the calculation of the Lefschetz numbers
Lef(£>~ ,ζj)9 where ζ = e

πy/ZΓ[/p we abbreviate this to Lef^O). These
Lefschetz numbers are related to the wι by the Fourier transform

(4-1) VΊ-ί

or
2 £ Ky/=Til"(4.2) LeV U) = £ u>,eK

1=0

Before computing, notice that W is an actual representation so that
wι > 0 for all /. We record this in the following crucial lemma.

Lemma 4.1. A necessary condition for a Z/2pZ-equivariant bundle to
support an invariant ASD connection is that wι > 0 for all I.

We now begin the index computation. Since our fixed point set simply
consists of the two points 0 and oo, we apply the formula of [4]:

Lef^(0) = indexD~ = -

(4.3) ε

P

where the sum is over the fixed points P and

(4.4)

In these expressions, ch is the usual Chern character, s/ is the si genus
of S4, and TV is the tangent space of P in S4 . Furthermore, [S4] denotes
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the orientation class in the top dimensional homology group of S4 . It is
important to understand the action of p e Z/2pZ on S~ ® E. Since
it fixes 5ί/(2)-connections on S~ and E, the action must be ± 1 . For
now, define ε e { 0 , 1} so that p acts on S~ <8>E as ( - l ) ε . In particular,
p acts as ( - l ) m on E and as (-1)*+ 1 on S* . Hence, ε = m + q + 1
mod 2.

Let α denote the generator for H4{S4) so that a([S4]) = 1. We com-

pute that J / ( 5 4 ) = 1 and ch(2?) = 2 - ka, where c2(£) = k. Then

Lef^(O) = -(2 - ka)[S4] = k and Lefw(p) = {-ifk.
For j] φ 0, /?, we compute ι/.(0). From (4.4), it follows that

cos *mi (cos ^ ^ - cos
^ ^ Pv (0) = —i =-ί- =

; 4 s i n 2 ^ s i n 2 ^ i

-cos p

P P
πmj

2 sin ^ sin ^

Similarly, we have

U.(θθ) = — ^ r-
jK ' 2 s i n ^ s i n ^

c o s ^

P P

Then using (m, m) ~ (aq - b, aq + 6), we obtain for j φO, p,

cos ^ - cos I L ^ L

(4.6)

p

sin ^ sin

sin ^ sin

4.2. Parity considerations. Parity arguments force half of the wι to
vanish. Recall that ε = m + # + 1 mod 2.

Proposition 4.2. w( = 0 if I φ ε mod 2.

f. We have Lef^(p) = (- l ) ε Lef^(0). More generally,

cos *<P+J)m - cos ^±M.
{P + j) = —

= (-l)εLeV0).
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Then, if / φ ε mod 2 ,

^ 7=0

1 p~l

= 9 ~ Σ ί1 + (~1)C~Ί Lef^(j)^~/ιv~17ί/// = 0. q.e.d.
7=0

Notice that for / = ε mod 2, we have

1 P~X

(4.7) ti/, = -

From here, we will demonstrate the topological constraint on actions on
the bundle mentioned in §2.3. This gives an index theoretic proof of the
following result of [10].

Proposition 4.3. ab = k mod p.
Proof. By an easy induction on n , we obtain

"sϊn<Γ = ^ *
r=\

By letting l(r, s) = aq + b + q + 1 - 2(rq + s), (4.6) gives

Notice that l(r, s) = ε mod 2. If / = ε mod 2, then (4.7) becomes

wι = - + -
j=\ r=\ 5=1

7. ~u Λ P—\ a

* * j=0 r=\ 5=1

A simple orthogonality relation states that

if / = /(r, s) mod 2/?,

p ~ \ 0 otherwise.\

Then since wι is an integer, (fc - ab)/p is also an integer. This implies
that ab = k mod p and completes the proof of the proposition, q.e.d.

4.3. The Z/2pZ index of F . As noted previously, V is identified
with the kernel of the Dirac operator
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and we write V = Σ ^ " 1 vtxt. The action of p e Z/2pZ on the bundle

S~ ® S~ ® E is ( - l ) w so that

Lefv (0) = - ch (s~) ch (E) ̂ ( ^ 4 ) [s4] = 2k + 2

and

Lefκ

For 7 ^ 0 , /?, computing as before gives

π\ΓΛ}mlp %\ΓΛ}m/p

or

Lefκ (j) =

eπy/ϊjm/p

4.4. The Z/2pZ index of the deformation complex. The tangent space
to the moduli space at an ASD connection 7jV]«^f is given by the kernel
of the operator

where ηE denotes the complexified adjoint bundle of E. At an invariant
connection, the weight 0 subspace of T^Jί gives the tangent space to

the invariant moduli space J([E) = Jt(k, m, m). A computation shows
that

7=0

2 r l πy π ^ / . 2 πym . 2 πjm\
+ - > cot — cot - ^ - sin — sin -^—

j P "P \ P
where « G {0, 1, 2} is the number of m, mf Ξ£0, p . This may also be
obtained from the formula of [11]. One may see that this dimension is
always odd.

5. Obstructions to the existence of invariant instantons

In this section, we will develop a necessary condition for a Z/2pZ-
equivariant bundle to support a Z/2/?Z-invariant instanton. In §6, a con-
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struction will show that Z/2/?Z-equivariant bundles satisfying this condi-
tion support invariant instantons.

5.1. S1-equivariant bundles and composites. Recall that an SU(2)
bundle E over S4 is described by three pieces of information: the second
Chern class k, and the weights of the Z/2pZ action over the fixed points
0 and oo that is, (k, ra, m). Furthermore, any solution {a, b) of (2.5)
must satisfy ab = k mod p .

First, consider the Z/pZ action on S4 . Under the standard inclusion
/: Z/pZ —• S , this action extends to an S action on S as

_ </=A(l+q)θ/2
fcf \

for e^^θ e S{ and x eH. Let Sι denote the connected double cover
of Sι. This allows us to construct some Z/2/?Z-equivariant bundles by

restricting the Sι action on^a S^equivariant bundle. The results of [10]

provide a classification of S^equivariant bundles: ^

Lemma 5.1. The Z/2pZ action on E extends to an Sι action on E
covering the Sx action on S4 if and only if there is a solution to (2.5) such
that ab = k.

Definition. A Z/2pZ-equivariant bundle (k,m,m) is a composite

of Z/2/?Z-equivariant bundles {{kt, mi, m')}" = 1 if fc. > 0, k = Σ ? = i kt,

m = mχ mod 2p , mi = mi+ι mod 2/7, and rri = m'n.

Our main result can now be stated in terms of composites of S{-
equivariant bundles.

Theorem 5.2. A Z/2pZ-equivariant bundle supports an invariant ASD

connection if and only if it is a composite of Sx -equivariant bundles.

A few remarks are in order. First, our definition implies that an Sι-

equivariant bundle is itself a composite of S ̂ equivariant bundles. Also,

since S^equivariant bundles are well understood by Lemma 5.1, this theo-
rem gives a classification of 5Ό(3)-instantons over L(p, q) x R. Examples
show that a Z/2/?Z-equivariant bundle may be written as a composite in
a number of inequivalent ways.

Example 1. Consider the Len^space L(5, 2) and the Z/lOZ-equivari-

ant bundle ( 3 , 1 , 5 ) . This is an Sι -equivariant bundle since a = 1, b = 3
is a solution to (2.5). However, it is also the composite of (1, 1,3) and

( 2 , 3 , 5 ) , each of which is an S ̂ equivariant bundle.
Example 2. The Z/34Z-equivariant bundle (7 ,0 ,4) over the Lens

space L(17,3) is the composite of (3 ,0,6) and ( 4 , 6 , 4 ) . Another
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decomposition is (6 ,0 ,2) and ( 1 , 2 , 4 ) . This bundle is not an Sι-
equivariant bundle.

Example 3. Over the Lens space L(7, 2), the Z/ 14Z-equivariant bun-

dle (1 ,0 ,8) is neither an S^equivariant bundle nor a composite of Sι-

equivariant bundles. As such, it will support no invariant instanton by

Theorem 5.2.
5.2. A difference equation for wι. To prove Theorem 5.2, we start

by showing that if a Z/2/?Z-equivariant bundle E supports an invariant

instanton, then E is a composite of S^equivariant bundles. Lemma 4.1
and a difference equation for the wι will assist us.

First, we consider the special bundles (cp, m, m). In this case,

{ c if / = ε mod 2,

0 otherwise.

For positive c, this is a bundle satisfying wι > 0. One easily sees that

such a bundle is a composite of ^-equivariant bundles. We will state this
as a lemma now.

Lemma 5.3. // E = (cp, m, m) with c > 0, then wt(E) > 0 and E

is a composite of Sx-equivariant bundles, q.e.d.
For this reason, we will assume that m = m in what follows. Also,

because half of the wι vanish by parity restrictions, we will only consider
those Wj with I = ε mod 2.

We begin by recalling the Lefschetz numbers of the operator D^ . When
j φ 0, p , (4.6) implies

(5 Π Lef
(5.1) LeV

To express a difference equation for the wι, define Δ7 = wι+2q - wt

Then (5.1) together with the Fourier relation for wι gives
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Using the fact
vbj p—bj b

rJ _ r-J ~" 2-"^
* ς r=\

we obtain our difference equation

A _ 1 V ^ (Λa—\)QJ r—(&+l)QJ\'SΓ*ίΛb+\—2r)jj,—l
1 ~ 2p 2-J X9 ^ ) 2 ^ ^ *

7=0 r=\

We will adopt a convention to compute the Δ ; . By (2.4), we may assume
that m, rri are represented by integers satisfying 0 < m < rri <p . This
then gives

!

— 1 for / + # + l € J m + 2 , m + 4, , rri\ ,

+ 1 for/H-1 + l e ( -m / + 2 , - m / + l , ••• , - m } ,

0 otherwise.

The values for / , of course, are always taken to have the same parity as
ε . In the next section, we will use this to prove that a bundle with wι > 0

is necessarily a composite of S^equivariant bundles.
5.3. Decomposing bundles. The aim of this section is to prove the

following
Theorem 5.4. // E is a Z/2pZ-equivariant bundle and wι > 0, then

E is a composite of Sι-equivariant bundles.
Because of Lemma 4.1, this implies that a Z/2/?Z-equivariant bundle

supporting an invariant instanton must be a composite of S ̂ equivariant
bundles. This is one of the implications of Theorem 5.2.

The proof of Theorem 5.4 proceeds by induction on the instanton num-

ber k . A series of propositions will give the result. Recall that Lemma 5.3

means that bundles of the form (cp, m, m) satisfy w( > 0 and are com-

posites of S ̂ equivariant bundles. For this reason, we will assume that

m ψ rri in the following. We begin the induction at instanton number

Proposition 5.5. If E = (1, m, rri) and wt(E) > 0, then E is an

S[-equivariant bundle.
Proof Since W is a real ZjlpZ representation, wι = w_ι. Then

wι = 0 for all / with the exception that either w0 = 1 or wp = 1.

Assume w0 = 1. Then by (4.8), V = X±{q_x) + X±m*. Also by (4.9),

V - χ±( + 1 ) + χ±m . This gives m = q - 1 and rri = q + 1 for which
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a =J^ a n d b = 1 a r e s o l u t i o n s t o (2.5) . H e n c e E = (I, q -A, q+.1) is

a n ^ - e q u i v a r i a n t b u n d l e . T h e case w = 1 is s imilar .

Proposition 5.6. Suppose the Z/lpZ-equivariant bundle E = (k, m, ra')

w a composite of the two bundles Eι = (kχ,mχ, m\) and E2 = (k2,m2,m'2).

Then

wι (E) = wι (Eχ) + wι (E2) for all I.

Proof The definition of composite implies that k = kχ+k2, mx = m ,

m\ = m2 , and m'2 = m . Then

πjm πjm njm, njm\
cos — cos — — = cos L - cos L

(5.2) P P P P
j j

cos - cos
P P

for all j . This implies that Lefw(E, j) = Lef^(£'1, J) + \AΪW(E2 , j) for
all j . Since the Lefschetz numbers and the wι are related by the Fourier
transform, the proposition is proved, q.e.d.

The proof of this proposition is quite easy by the index computation.
However, it should be considered as arising from the excision property of
the index.

Proposition 5.7. Given E = (k, m, m) with wt(E) > 0, there is an

Sι-equivariant bundle E{ = (kχ ,-mι, m\) satisfying the following:

(1) Either mχ-m or m\ = m .
(2) Oζw^EjKWjiE) for all I.

The proof of this proposition is combinatorial and will be given in §5.4.
Assuming this proposition for now, we offer a proof of Theorem 5.4.

Proof of Theorem 5.4. Let E = (k, m, m) satisfy w^E) > 0. As-
sume, by the induction started in Proposition 5.5, that the result holds for

all bundles with lower instanton number. Let Eχ be the S{-equivariant
bundle given in Proposition 5.7 and assume for convenience that mχ-m.
Then let E2 = (k - kχ, mχ, m) so that E is the composite of Eχ and
E2 . By Proposition 5.6,

w[(E2)=wι(E)-wι(Eχ)>0,

and E2 has lower instanton number than E . By induction, E2 is a com-

posite of Sι-equivariant bundles. Since Eχ is an Sι-equivariant bundle,

E is a composite of Sι equivariant bundles. This completes the proof of
Theorem 5.4.
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5.4. Proof of Proposition 5.7. We will now begin the proof of Proposi-
tion 5.7. Let E = (k, m, rri) be a Z/2/?Z-equivariant bundle satisfying
wι > 0. We will suppose that the Z/2/?Z action is in the form used in
the last section to derive the difference equations: 0 < m < rri < p . For
all / e Z/2pZ satisfying Δ7 = - 1 , let

and set a = min{α(/)|Δ/ = -1} . Let

& = {|ΔZ = —1 and α (/) = <*}.

By letting b = m' - m , <T is determined as follows.
Lemma 5.8. There exists a positive integer β, 0 < β < b, so that either

one of the following is true:

(i) ^ = {m'-(q+l)-2j\j = 0, 1, , β - 1},

(ii) ^ = { m - ( t f + l ) + 2; | ; = l , , β} .

Proof Let / € &~ and write / = m - (q + 1) - 2j with 0 < j < b.
Also, let / be the smallest positive integer so that / — 2aq = — m — 2i.
There are two cases to consider. First, suppose that i > j . If j Φ 0,
then (/ + 2) - 2aq = -m - 2(i - 1) so that (/ + 2 ) e / . By inducting
downwards on j , it follows that

and case (i) holds. Similarly, the case when / < j gives (ii). This proves
the lemma, q.e.d.

Suppose, for definiteness, that ff = {rri - (q + 1), , m - (q -h 1) -
2(β - 1)} . The other case is handled in a similar manner.

Lemma 5.9. Eχ = (aβ, m - 2βm) is an Sι-equivariant bundle.
Proof We need to show that a and β form a solution to equations

(2.5) for the bundle with action (m - 2β, m). First, it is clear that β is
a solution to

2β = m - (m - 2β) mod 2p.

It only remains to show that 2aq = m + (m - 2β) mod 2p, which is
equivalent to showing

(5.3) (m - 2β} - 2aq = -rri mod 2p.

Note that j G.7 if and only if Δ. = -1 andj+q+ \-2aq e {-ra'+2,

-mV4, ... , -rri}. Now mf-2(β-l)-(q-l) = rn'-2β-{q+l)+2 e<T

and rri - 2β - {q -h 1) $ F. If Δm/_2^_(^+1) = - 1 , it must follow that
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m'-2β-2aq + 2 = -m + 2 verifying (5.3). If Am,_2β_(q+ι) φ - 1 , then
β — b. In this case,

m + 2-2aq, m + 4-2aq, ••• , m -2aq G ί - m ' + 2 , ••• , - m \ .

Then m + 2 - 2α# = - m ' + 2 so that {m - 2β) - 2aq = - m ' again
verifying (5.3). This proves the lemma, q.e.d.

Let w\ and Δj be defined by the bundle £*j. The difference equation
takes the form

- 1 if l + q + l G { m ' - / ? + 2 , ••• , m ' } ,

0 otherwise.

Notice that Δj ^ 0 implies that Δj = Δ7 and that Δ7 = 0 yields that

Δj = O.
Lemma 5.10. For I = j - 2iq with j G9* and 0 < i <a, Δz = 0.
Proof. Suppose that / is as in the statement of the lemma and that

Δ7 Φ 0. First of all, suppose that Δz = - 1 . Then since Δ._2 = + 1 , it
follows that Δ/_2(α-|.v = + 1 . Thus a(l) < a - i < a, contradicting the
minimality of a. If Δ/ = -hi, then a(j) < i < α, again contradicting the
choice of a . This completes the proof, q.e.d.

Lemma 5.11.

,Cλ. / f l ifl = j-2iq, whereje^, 0 < / < α ,
(5.4) tί; = ^

7 I 0 otherwise.

Proof. Using Lemma 5.10, one simply checks that the difference equa-
tion defined by Δ7

; is satisfied and that Σ WΊ = ^ ^ This proves the
lemma.

Lemma 5.12. For all 1, 0 < w[ < wt.

Proof We need only consider the case / = j -2iq, where J G ^ " and

0 < / < a, since otherwise w^ = 0 < wι. Since j G ̂ , it follows that

Δ/ = ̂ -+2^ ~ wj — ~ 1 - "^y s o ^ a t ^ ; > 1 = w'j . For / = j - 2iq with

0 < / < a, Lemma 5.10 gives Aι = 0. Then tu7 = ty. > ̂  = ̂  . q.e.d.

We have now demonstrated an S^-equivariant bundle satisfying the
conclusions of Proposition 5.7. This completes the first half of Theorem
5.2 which we state as follows.
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Theorem 5.13. // a Z/2pZ-equivariant bundle supports an invariant

ASD connection, it is a composite of S] -equivariant bundles.

6. Constructing invariant instantons

In this section, we will show the existence of a ZjlpZ invariant instan-

ton on a Z/2/?Z-equivariant bundle that is a composite of S ^equivariant
bundles. Donaldson's theorem relating holomorphic framed bundles on

CP 2 to framed instantons on S4 shows how to construct Sι invariant
solutions on S ̂ equivariant bundles. Then we use an equivariant version
of Donaldson's grafting result to construct Z/2pZ invariant instantons on
Z/2/?Z-equivariant bundles.

6.1. The framed moduli space. Let J( denote the moduli space of
framed ASD^5'ί7(2)-connections on an Sί7(2)-bundle P over S4. The
points of Jί are pairs (V, / ) , where V is an ASD 5ί7(2)-connection
on P and / is a frame for E over oc that is, / : P^ —• SU(2) is an
isomorphism respecting right translation. Two such pairs are equivalent
if they differ by a gauge transformation. Neglecting the frame at oo gives
a map ^# —• Jt. We will construct a ZjlpZ action on Jΐ that covers
the ZjlpZ action on Jί. Then a fixed point in Jt implies a fixed point
in ./#.

Consider CP 2 contained in CP 3 by the following inclusion:

(x:y: z) - + (x:y: z: 0 ) .

The projection p: CP 3 -• S4 in (3.2) restricts to a map p: CP2 -• S4 that
takes the line {z = 0} to oo and is 1-1 outside this line. Given a framed
ASD 5'C/(2)-connection on E, pull the bundle, connection, and frame
back to C P 2 . This gives a holomorphic framed bundle over CP2 with a
fixed trivialization for the bundle over the line {z = 0} , and gives a map
p* : Jf —• <^# where ffJΐ denotes the moduli space of holomorphic
bundles trivial over the line {z = 0} and with a fixed trivialization over
this line.

The following is due to Donaldson [8].
Theorem 6.1. The map p* is a 1-1 correspondence. ^
Using this, we will demonstrate a ZjlpZ action on ffJί and hence on

*/#.
Let [X] denote homogeneous coordinates on C P 2 , where X = (x,y, z)

G C 3 . Let H, K, L be complex vector spaces of dimensions k , Ik + 2,
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k, respectively. A monad is a sequence of linear maps for each X

so that BχAχ = 0 for all X. We also require that Aχ is injective and
Bχ is surjective for all X and that the maps Aχ and Bχ depend linearly
on X that is,

Aχ = Aχx + Ayy + Azz, Bχ = Bχx + Byy + Bzz.

As in the ADHM construction, this defines a holomorphic bundle E over

CP 2 where E[χ] = Kernel Bχj ImageA χ . The condition that the bundle

be trivial on the line {z = 0} is equivalent to BAΛ, = BAY being an
x y y x

isomorphism. Regard two monads as equivalent if there are isomorphisms
so that the following sequence commutes:

H -X K - ^ L

I I ϊ

We offer now a coordinate description. Denote the kxk identity matrix
by Ik and the kxk zero matrix by 0^ . Choose bases for H, K, L so
that

0).

B2 = (~a2 al b) '

The equation BzAz = 0 is equivalent to [a{, a2] + ba = 0. Notice that
equivalence classes as expressed in (6.1) correspond to orbits under the
following action of GL(k, C): for g e GL{k, C),

g(a{, α 2 , a, b) = (ga{g~l , ga2g~\ ag~\

Barth [5] proves

Theorem 6.2. 77*e spαce @Jί of framed holomorphic bundles over C P 2

is given as the quotient, under the GL(k, C) action, of the set of matrices

(a{, a2, a, b) so that

(i) [al,a2] + ba = 0,

(ii) for all {λ,μ)eC2,
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is injective
V a J

and

(-a{ - μ aχ+λ b) is surjective.

6.2. Sι invariant instantons on S-equi variant bundles. Throughout

this section, assume that E = (k, m, m) is an S*-equivariant bundle
with (a, b) a solution to (2.5) so that ab = k. This implies that there is

an Sι action on E, where Sι is the double cover of Sι, with weights
(aq -b, aq + b) covering the Sι action on S4 . In this case, Donaldson's

theorem allows us to^construct Sι invariant instantons.

As in (3.5), the Sι action on S4 lifts to the following linear action on

C P 3 :

θ([zx:z2: z 3 : z 4 ]) =

where θ eS{. Fortuitously, the action restricts to an action on CP2 :

θ([x: y: z}) = [χθι'g: yθ'1^: zθ^'q].

There is an action of Sι on @Jί given by θ(Aχ, Bχ) = {Aθ{χ), BΘ{X)).

By Theorem 6.1, this gives an action in Jt. As this action is induced
from the action on S4 lifted to C P 2 , it covers the action on Jί under

the map Jί —• J('. We will now construct an Sι fixed point in (9J(,
thus giving a fixed point in Jί. To do this, we will construct a monad

(Aχ, Bχ) together with an Sι action on H, K, and L so that the fol-
lowing commutes:

H ^l^K - ^ L

H Λθ(X) > ̂  ^ ί U L

Using W, F from the ADHM construction, identify H and L with
and # with V. The Z/2pZ action on W7 has Lefschetz numbers

r=l 5=1
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where l(r,s) =

D. M. AUSTIN

q+l- 2(rq + s). Then

r=\ 5=1

and choose a basis for W, {e{ j\i = 1, • , a j = 1, , b} , so that

5 ι acts on e. with weight l{i,j).
S i i l l ll (48)Similarly, recall (4.8):

LefF t/) = (eπV=Yίι-q)J/p + eπV=τί-ι+<)J/p)πV=Yίι-q)J/p + eπV=τί-ι+<)J/p) ( )

Then

r=l 5=1

Choose a basis for V of the form

ΐj ' ^ ' ' faaq+b ' f-

where 5 1 acts on ff. with weight l(r,s)±(q-\) and on f±{aq+b) with

weight ±(aq + 6 ) .

Define

1 V ' ' ;

I \ί

O

θ

otherwise,

otherwise,

''J o otherwise,

(f \ _ 0

This defines an equivariant monad in the sense of diagram (6.2). We

will now verify that it defines a point in ffJΐ by checking the conditions

in Theorem 6.2. First, let L be the b x b lower diagonal matrix

/0 0 . . . 0 0\
1 0 . . . 0 0

L= 0 1 . . . 0 0

^0 0 . . . 1 Oy

and Ib the b x b identity matrix. Then, as block matrices, aχ and a2

have the form
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f\'1

/„:>

fa,b

P ••• P

M , l M,fc

L

0

0

*2,1 •'• e2,b '•• ^

0

L

0

,1 ••' ea,b

0

0

L

0

0

0

0

h

ea-\,b ea,\

0

0

•

βa,b

With respect to the same ordering of the basis for W,

= f-{aq+b) 0 ••• 0 1

and
Jaq+b

J-{aq+b)

0 ••• 0 0

o
b= o

1

o

o o.
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From these forms, it follows that ba = 0 and a{a2 = a2aχ . Then

[aχ, a2] + ba = 0 and the nondegeneracy conditions are verified by notic-

ing that there are always nonzero^ minors. This defines a point in (9Jί

that is fixed under the action of Sι because of the equivariance expressed
in (6.2). _

As the bundle E is defined by KernelBχj ImageA χ , and the Sι ac-

tion commutes with Bχ and Aχ , this gives the action on the bundle E

covering the action on C P 2 . Over the fixed point [0: 0: 1], the action has

weights ±(aq-b) while over [1: 0: 0], the action has weights ±(aq + b).

This action descends to an action on the bundle E over S fixing the

connection. This demonstrates the existence of ASD 5'ί7(2)-connection

on E invariant under an Sι action with weights (aq — b, aq + b) over
the fixed points 0 and oc. This gives a Z/2/?Z invariant instanton on a

^-equivariant bundle. Furuta has announced similar results [13].

6.3. Equivariant grafting. For a Z/2pZ-equivariant bundle E =
(k, ra, m), denote the moduli space of Z/2pZ invariant ASD SU(2)-
connections as Jt{E) = Jί{k, m, m). Suppose that E is a composite
of the bundles Eχ - {kχ, m p m\) and E2 = (k2, m2, m2) with princi-
pal bundles Pχ and P 2 , respectively, and that Jt{Ex) and ^(E2) are
nonempty. The definition of composite implies that m\ = m2. Then let
/ be the space of Z/2/?Z-equivariant isomorphisms P{ ^ -» P2 0 modulo

{±1} . In particular, if m2 ψ -m2 , then / = Sι, and if m2 = -m2 , then
/ Ξ SO(3). Braam [6] has proven an equivariant version of Donaldson's
grafting result [9] which we now apply.

Theorem 6.3. Given points Ai e ^#(£ I

/), there are neighborhoods Ai

Ui c Jf[E^) so that there is a local diffeomorphism

Φ:U{xU2xI ->j

In particular, Jί{E) φ 0 .
Combining this with the results of the last section gives the immediate

corollary:

Corollary 6.4. If a Z/2pZ-equivariant bundle is a composite of Sι-
equivariant bundles, then there is a Z/2pZ invariant instanton.

Taken together with Theorem 5.13, this completes the proof of Theorem
5.2.
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7. Examples

In this section, we will show how to explicitly determine moduli spaces
by several examples. First, we derive a set of equations that the equivariant
maps A(z) must satisfy. Then we briefly discuss two group actions on S4

which will give additional information about Jt(k9 m, m). In particular,
we can compute the Euler characteristic of Jt(k, m, rn) following the
technique of Furuta [13]. Finally we compute the moduli space for a few
examples.

7.1. Equations far the ADHM matrices. This section is concerned with
deriving a coordinate description of the ADHM matrices. We do this by
choosing convenient bases for W and V . At this point, we do not require
Z/2/?Z-equivariance of the maps A(z): W —• V.

Write A(z) = ΣA.Z;. For a choice of the basis for W, write the
structure map σ as complex conjugation composed with a matrix J,
where J2 = Ik. Then choose a basis for V so that

A -[v
In terms of this basis for V, the structure map σ on V is complex
conjugation composed with the linear map

/0 -J 0'
J=[J 0 0

Vo o h,
where h is the 2x2 matrix h = (\~Q) • With this basis, take the standard
Hermitian inner product on V. The skew form is then given by the matrix

J.
Write

(aΛ ίι

The isotropy condition given in (3.3) implies that

/?, = -Ja^J, β2 = JaJJ, b — haJ.

Then the quaternionic structure condition, (3.4), gives

(7.1) a^JatfJ,

(7.2) [ai,a2]+b*a = 0,

(7.3) [α,, «ί] + [α2 , α*] + b*b - a*a = 0.
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These equations, along with the condition that A(z) is injective for every
z, characterize the linear maps representing ASD 5'C/(2)-connections on
S4 . The condition that two sets of matrices (a{, α 2 , a) and (a\, a2, a)
be gauge equivalent is that there be a gχ e O(k), the k x k real orthogonal
group, and g2 e SU(2) so that

aΊ! =
7.2. Further actions on ^f. Before we explicitly construct some Z/2pZ

moduli spaces, we will consider two more group actions on jtf , the moduli
space over S4.

First, there is the action of R+ , the positive reals under multiplication,
on S4 given by dilation. In terms of quaternionic multiplication λ(x) =
λx, where λ € R+ . This is an action by conformal transformations rather
than isometries. Since this action commutes with the Z/pZ action on S ,
there is an induced action on Jt(k, m, rri). Denote the quotient moduli
space J(\k, m, m) = Jt{k, m, m')/R+ .

Furthermore, let T2 = Sι x Sι act on S4 by

C2) ̂  = (dC2) ^ ( d C 2 ) .

Notice that this extends the Z/pZ action since Z/pZ is included in Γ 2

by e^*'1* ~ (eV^[πj/p, e^
XπjqlP). As this commutes with the Z/pZ

and R+ actions on S4, it defines an action of T2 on ^(k, m9 m) and
^f'(fc, m, mf). Consider the inclusion Sι «-> Γ 2 given by C ̂  (f, Γ )
for some n . For integers <z, b so that ab = k , the construction in §6 gives
an instanton gauge invariant under the Sι action on J? and invariant

under the Sι action on the 5fί7(2)-bundle with weights (an -b, an + b).
Furthermore, this construction shows that if n > b, the fixed point set
in this moduli space is simply an arc. Indeed, this arc is fixed by the full
T2 action. This implies that the T2 action on Jt'(k, m, rri) has a fixed
point for every solution a, b to (2.5) so that ab = k . Conversely, every
fixed point arises in this way. An application of the Lefschetz fixed point
theorem shows that

Proposition 7.1. χ(Jt(E)) = the number of solutions to (2.5) such that
ab = k. In particular, χ(Jt(E))>0.

This idea comes from Furuta [13].
A number theoretic computation shows that
Proposition 7.2. // dim J?{E) = 1, then ^{E) = R.
Proposition 7.3. // aim J?(E) = 3, then JΓ'{E) = S2 - B, where B

is a collection of either 0, 1, or 2 points.
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Proof. It is well known that these moduli spaces are orientable. More-
over^if Jί\E) is compact, then Theorems 5.2 and 6.3 imply that E is

an S^-equivariant bundle and hence x(Ji'(E)) > 0. For this reason, the

two-torus Sι x S{ cannot occur as a reduced moduli space, q.e.d.
The examples that follow show that all of the possibilities in Proposition

7.3 are realized.
7.3. Examples.
Example 1. Consider the Lens space L(5, 1) along with the Z/2pZ-

equivariant bundle (2, 1, 3). Notice that this can be written as an Sι-
equivariant bundle with a - 2, b = 1. Another solution to (2.5) is
a = 1, b = 2. By the results of the previous section, we expect the Euler
characteristic of Jt{2, 1, 3) to be 2.

We will describe instantons on this bundle. Recall that the Z/2pZ

action on C4 is written

ί (z, ,z2,z3, z4) =

We compute W = χχ + χ9 and V = 2χχ + 2χ9 + χ3 + χΊ. Choose bases
for W and V as in §6. Then

1

9

1

9

3

7

1

0

K
0

λ2

0

0

9

0

0

0

0

0

λ3

where the weights of the actions on W and V are written on the top and
side, respectively. In terms of these bases, / = (°{

 ι

0). Then

0 0\ (0 0\ /0 0\ / % 0\

A, o j ' Ω = U 2 o j * = U A 3 J '
 6 = U o j

(7.1) and (7.2) are automatically satisfied. Then (7.3) gives

The nondegeneracy condition is simply that λ3 ψ 0. Some of these maps
are gauge equivalent. By quotienting out the equivariant gauge group, we
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obtain J?(2, 1,3) = C P 1 x R. As expected, this has Euler characteristic

2 . The fixed points under the T2 action are the points given by λ{ = Ό

and λ2 = 0 .

Example 2. On the Lens space L ( 5 , 2 ) , we will construct ^ ( 3 , 1 , 5 ) .

The equivariant maps are described by

1

7

9

3

9

1

5

5

2

0

0

A,

0

λ3

0

0

0

8

0

0

0

0

0

0

0

0

0

λ2

0

0

0

0

0

0

Here, J is written as

Using equation (7.1), write

0 0 0

α, = I 0 0 A
kA, 0 0

The nondegeneracy condition is that λ{ Φ 0 and λ4 ?έ 0. (7.3) becomes

μ.ι2+μ,ι2=μ4ι2.
Again, quotienting out the gauge group gives Jt'(3,1,5) = C P 1 - {00}.

Notice that Jί' has Euler characteristic 1 corresponding to the solution

a = 1, b = 3 to (2.5). In addition, the noncompactness of J!1 arises

since ( 3 , 1, 5) is the composite of the bundles ( 1 , 1 , 3 ) and ( 2 , 3 , 5 ) .

Since ^ ( 1 , 1 , 3 ) = Jt{2, 3, 5) = R, Braam's equivariant grafting result

implies that there is a local diffeomorphism R x R x S 1

which is verified in the model.
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Example 3. Take the bundle ( 7 , 0 , 4 ) over the Lens space L(17, 3) .

32

0

30

6

24

12

18

2

4

0

10

28

16

22

4

30

0

0

0

λι

0

0

0

0

0

0

0

0

0

0

0

0

λ2

2

λ9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

0

0

0

0

0

λ3

0

0

0

0

8

0

0

0

0

0

0

0

0

λ4

0

0

0

0

0

λ5

0

26

0

0

0

0

0

0

0

0

0

0

0

0

0

K
0

0

14

0

0

0

0

0

0

0

0

0

0

λη

0

0

0

0

0

20

0

0

0

0

0

0

0

0

0

0

0

0

λs

0

0

0

Applying (7.1) gives

α, = 0

A, 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0
0
0
0
0

U

D

0
0
0
0
0
0
0

0
0

λ.λ

. M.

0
0
0
0

λ3

0
0

0
0

3 ~~

AUSTIN

0
λ3

0
0
0
0
0

0

Vs

0
0
0
0
0
0
0

0
0

= 0

0
0
0

h
0
0

K
0
0

o
0
0
0
0

K
0

cr
0,

(7.2) gives

while (7.3) gives

μ,ι2=μ3ιa. w 2 = w 2 . w 2 = w 2 + w 2 -
The nondegeneracy conditions state that all variables must be nonzero.
One seesjhat Jt(Ί, 0,4) = (CP1 - {0, CXD}) X R. Since this bundle is

not an S^-equivariant bundle, the Euler characteristic of ^# is zero. The
two ends of jtf1 = CP1 - {0, oo} correspond to the two decompositions:
( 3 , 0 , 6 ) , (4 ,6 ,4) and ( 6 , 0 , 2 ) , ( 1 , 2 , 4 ) .

Example 4. Take the bundle (2 ,0,0) over the Lens space L(2, 1).
Recall that L(2, 1) = SO(3). The equivariant maps are:

0

2

0

2

0

0

0

0

0

λ2

0

0

2

λ4

0

0

A3

0

Equations (7.1) give

Ω' = U o j ; ai
Then J?{2, 0,0) = SO(3) x R x R or Jί' = ^

characteristic zero as expected since it is not an S'-equivariant bundle.

λΛ a-(° λΛ

R. This has Euler
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Notice that the Pontrjagin charge of this bundle is 4. One end of ^' cor-
responds to a charge popping off at a point of 50(3) xR as in Donaldson's
original proof [7]. The other end is due to the decomposition ( 1 , 0 , 2 ) ,
(1 ,2 ,0) and has the form R x R x SO(3) as predicted from Theorem
6.3.
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