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CONVERGENCE OF RIEMANNIAN MANIFOLDS;
RICCI AND L"/2-CURVATURE PINCHING

L. ZHIYONG GAO

In this paper we consider classes of Riemannian manifolds (M, g)
with bounds on the five fundamental geometric invariants: Ricci curvature
Ric,L" / 2 -norm of curvature / |Rm|" / 2 ί /g , injectivity radius inj(g),
diameter diam(g) and volume Vol((7).

Let G(H, /0, K, n) denote the collection of all closed, connected n-
dimensional Riemannian manifolds (M, g) satisfying |Ric | < H, inj(g)
> / 0 > 0 , a n d fM\Rm(g)\n/2dg<K.

One of the principal aims of this study is to understand the compactness
property of G(H, /0, K, n). The well-known and fundamental result of
Gromov states that the collection of all closed, connected /7-dimensional
Riemannian manifolds (M, g) with | Rm | < 1, diam < D and Vol > V
is precompact among " C lc*-Riemannian manifolds" [17], [12], [27].

Our first result says that we have a similar compactness result in
G(H < io, K, ή), which roughly states that: Given a sequence {Mk} of
compact Riemannian ^-manifolds with | Ric | < H, diam < D,
J | R m | " / 2 d g < K, and inj > z'o < 0, then {Mk} has a subsequence,
away from finite number points, which converges to an ^-manifold M
with C l α metric g for an a e (0, 1). The precise statement is the
following (n > 4).

Theorem 0.1. Let {{Mk , gk)} be a sequence of Riemannian manifolds
in G{H, i0, K, ή), with diam(A/A:) < D. Then there exist a subsequence
of {{Mk, gk)} (by renumbering, we still use {Mk , gk}), and a sequence
{ r j , rι —• 0 when I —> oc, such that the following hold:

(a) There exists a C°°-manifold M, such that Mk is diffeomorphic to
M for each large k .

(b) There exist a C00-metric g on M, and finite number points

{mf ,-• , mh] with h < C{H, i0, K, n), such that g is a C1'°-metric

on M - {m{, , mk}, 0 < oc < 1.
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(c) For each I, we have open subsets F^η) c Mk, and an open subset
D(r/) c M - {mχ, , mh), such that there are diffeomorphisms

and fk(rι)*gk converges to metric g on D(rt) in the Cι'a norm of M.
(d) Fk(rι) c Fk(rι+ι).
(e) There is an β(rz) = ε(H, i0, K, n, η), such that

h
k(mkFk(rι)u\jBk(mk,ε)) = Mk

i=\

and e(r7) —> 0 wAe/2 r7 —• 0.
In four dimensions, we can use the Gauss-Bonnet formula for Euler

number χ(M) to replace the L2-norm of curvature by χ{M) and to get
Corollary 0.2. Let {(Mk, g1)} be a sequence ofRiemannian 4-manifolds

with I Ric I < H, diam < D, inj > io > 0, and χ(Mk) < K. Then there
exists a subsequence of {Mk, gk} which satisfies (a), (b), (c), and (d) of
Theorem 0.1.

As an application of the above convergence theorems, we shall prove
Ricci pinching theorems.

Theorem 0.3. For n > 4, io > 0, and K > 0, there exists a small
constant ε = e(i0, K, n) > 0 such that if (M, g) is a Riemannian n-
manifold with inj(g) > i0,

JM
\Km{g)\nlldg<K,

and ε-Ricci pinching

(1 - ε)g < R i c ( ^ ) < ( 1 + ε)g,

then there exists an Einstein metric with Ric = 1 on M.

Theorem 0.4. Given n> 4, io> 0, D > 0, and K > 0, there exists
a small constant ε — ε(io, D, K, «) > 0 5wcΛ ίΛαί if M < g is a Rieman-
nian n-manifold with inj(g) > i0, diam(^) < D, fM \ Rm \n/2 dg < K,
and

(-τ-ε)g<Ric(g)<(-τ + ε)g,

where τ = 1 or 0, then there exists an Einstein metric with Ric = - τ on
M.

Remark. Similar results are proven with curvature bound | Rm | < K
and If norm of curvature in [26], [34].

Again in dimension 4, we have better results.
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Corollary 0.5. Given i0 > 0 and K, there exists a small constant
ε = ε(io, K) > 0, such that if (M, g) is a Riemannian 4-manifold with
inj(g)>io,χ(M)<K,and

then there exists an Einstein metric with Ric = 1 on M.
Corollary 0.6. Given i0 > 0, D > 0, and K > 0, there exists a small

constant ε = ε(i0, D, K, n) > 0, such that if (M 9 g) is a Riemannian
4-manifold with inj(g) > i0, χ(M) < K, diam(g) < D, and

(-τ - e)g < Ric{g) < (-τ + eg),

where τ = 1 or 0, then there exists an Einstein metric with Ric = - τ on
M.

Our second application gives a generalization of Cheeger's finite theo-
rem, which follows easily from Theorem 0.1.

Theorem 0.7 {finite theorem). For any given numbers D > 0, i0 > 0,
and K > 0 there are at most finitely many diffeomorphism classes of closed
Riemannian manifolds M of a fixed dimension n such that

I Ric I < 1, diam(Λf) < D,

\Km{g)\nlldg<K.I
JMM

With a slightly stronger condition on the Ln/2-norm of curvature, we
can replace the lower bound of injectivity radius by the lower bound of
volume as follows.

Theorem 0.8. Let {Mk , g
k] be a sequence of closed, connected Rie-

mannian n-manifolds with |Ric| < H, diam < D, and Vol > V > 0.
Then there exists a small constant K = κ(H, D, V) > 0, such that for any
fixed p > 0, we have

I, \Rm(gκ)\n/2dgκ<κ
fBκ(x,p)

for each K and all x e Mκ . Thus {Mκ , g
κ} has a subsequence {Mι, g1}

such that there exist a C°°-manifold M, a C1?Q-Riemannian metric g on
M, 0 < a < 1, and diffeomorphisms

with f*gι converging to g on M in the Cι'a-norm of a C°° manifold
M.
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As a corollary, we have

Theorem 0.9. Assume that a sequence {Mκ , gδ} of closed, connected
Riemannian n-manifolds with | Ric | < H, diam < D, and Vol > V > 0
is given, and that there exists a p > n/2 and a K > 0, such that

JM
\Rm(gκ)fdgκ<K.

Then {Mk, gk) has a subsequence {Mι, g1} so that there exists a C°°-

manifold M, a C1)Ω-Riemannian metric g on M, 0 < a < 1, and

diffeomorphisms f{\ M —> Mι with f*g converging to g in the Cι'a-

norm of M.

These results can be used to improve the Ln/2 curvature pinching results
in [10].

Theorem 0.10. Given n > 4, H > 0, and V > 0, there exists a
small constant K = κ(H, υ , ή) > 0, such that for any closed Riemannian
manifold (M, g) of dimension n with |Ric | < H, VO1(J?(JC, 1)) > V for
all x e M, and

ί \Rijki ~ (SikSji ~ Sngjkt'2 dg<κ
JB(X,\)

for all x e M, there exists a constant sectional curvature metric with sec-
tional curvature = 1 on M.

Theorem 0.11. Let Δ = 0 or - 1 . Given n > 4, H > 0, D > 0,
and V > 0, there exists a small constant K = κ(H, D, V, n) > 0, such
that for any Riemannian manifold (M, g) of dimension n with | R i c | <
//, Vol(M) > V, diam(Af) > D, and

I \Rijki ~ ^SikSji ~ gii8jk)\nl2 dg<κ,
M

there exists a constant sectional curvature metric on M with sectional cur-
vature = Δ.

We briefly describe here the method used in this paper (with some un-
derstandable unavoidable sacrifice of technical accuracy). The main theo-
rems in the paper are Theorem 0.1 and Theorem 0.8, which are the gen-
eralizations of well-known Gromov convergence theorem [27], [12]. We
want to replace the curvature pointwise bound by the pointwise Ricci cur-
vature bound and the Ln/2 curvature bound. We use the same method of
proving the Gromov convergence theorem, which covers the Riemannian
manifolds by a small, controllable size harmonic ball, due to a result of Jost
and Karcher [12], such a harmonic ball exists provided we have the point-
wise curvature bound and the lower injectivity radius bound. Since we do
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not have the pointwise curvature bound, we have to prove a main technical
result of the existence of the harmonic coordinate to replace the result of
Jost and Karcher. We prove roughly that for any geodesic ball B(x, 1)
of radius 1 in a Riemannian manifold (M, g) with | Ricci curvature |
< H, inj(M) > 4, and fB^x ^ | Rm \n/2dg < ε, with ε sufficiently small,
there exists a well-controlled harmonic coordinate on B(x, 1) (for an ex-
act statement see Lemma 1.1 and Theorem 3.0). We then can apply to
smaller balls by rescaling.

The proof of the above result consists of two parts. The first part is

mainly done in [10], which states that if we have Bk(x, 1) c (Mk , gk),

with I Ric I < H, in){Mk , g
k) > 4, and

Bk{x,\)

then by using geodesic coordinates to identify Bk(x, 1) with the unit
Euclidean ball 5(1), we can show gk\B(l) converges to the flat Euclidean
metric dθ2 on 5(1) in L"/2-norm.

The second part uses higher order estimates, roughly speaking. We can
solve the Dirichlet problem of the Laplace equation on B(l) for gk with
the boundary value equal to the value of the geodesic coordinate on the
boundary of B(l). We then have the solution Fk of AFk = 0 with the
boundary value Fk\dB^ equal to the boundary value of the geodesic co-
ordinate. Since g —• θ2 in Ln -norm, we first show Fk —• standard
coordinate map of B(l) in Euclidean space. For the higher order esti-
mates, we use the Ricci identity and Bianchi identity (see 3.4 and 3.9 for
details).

These, with the help of Lp estimates of elliptic theory, can show that
if

I
JBkBk{xt\)

and |Ric(#*)| < H, we have the C 1 ? α estimates of the metric tensor in
harmonic coordinates, and of course we first prove the existence of the
harmonic coordinate (see §3). Since existence of the harmonic coordinate
needs the L"/2-norm of the curvature tensor to be small, we cannot have
a nice coordinate on every ball of a covering, and the curvature tensor
may concentrate near a finite number of points. In order to study the
singularities of the limit metric, we blow up the metric at these points
as in [11]. In the case of Theorem 0.8, if the curvature tensor is not
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concentrated near a finite number of points, then the C1 α converges on
the whole manifold.

1. Proof of the theorems

The Gromov convergence theorem is proved with optimal regularity
properties by using harmonic coordinate [27], [12]. The convergence theo-
rem in this paper is proved by using the same method. The main technical
lemma is the existence of the harmonic coordinate.

Lemma 1.1. Given a small η, 0 < η < 1, there exists a small constant
K = κ(H, i0, n, η) > 0, such that for any Riemannian manifold (M, g)
of dimension n, x0 e M, 0 < p < io/4, with |Ric| < //, inj(#) > i0,
and

ί |Rmf/2 dg<κ.
JB(xQ,p(\+2η))

Then, for any 0 < δ < 1/3 and x e B(xo , (1 + 2η)p), so that d(x0 , x) <
1 — δ — 2η, there exists a harmonic coordinate F with domain F D
B(x,δp) and image F D B{δ{l - η)p) = {x e Rn\ \x\ < δ{l - η)p),
such that,

(a) F-\B(δ(l- η)p)) D B(x, δ(l - 2η)p).

Let hιJ = (Vhι, Vhj) be the metric tensor in such a harmonic coordi-

nate, F = (A1, , hn), (n > 4). Then

(b) \hij -δu\Co<η2/lOOn,

(c) |</Λ'V < C(H, io,ri,η,p), 0 < a < 1 .

( d ) . \ \ d 2 h i j \ \ L p < C ( H , i o 9 n 9 η , p ) 9 p > n .
Proof This lemma follows directly by applying Theorem 3.0 to the met-

ric ~g = (\/p2)g. From now on, the general constant C will depend on
i0, H, n and K, where we consider

G(H,io9K,n)

= I (M, g)\ I Ric I < H, inj(£) > i0 , diamM = n, ί\ Rm \n/2 dg<κ\

and

G D ( H 9 i o 9 K 9 n) = { ( M , g)\ ( M , g ) G G ( H 9 i Q 9 K 9 Λ ) , d i a m ( g ) < D } .

We first prove a weak convergence result.

Proposition 1.2. Let {Mk , g*} te ^ sequence in GD(H, i0, K,n).

Then there exist a subsequence of {Mk , g } (by renumbering, we will use

{Mk , gk}), and a sequence {r(}, rt —• 0.
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(a) For each I, we have open subsets Fk(η) c Mk, and an open C°°
manifold D(η).

(b) For each I, we have diffeomorphisms

J*(rι):D(rι)^Fκ{rι) {k > I)

such that fk(rι)*gk converges to a C 1 > Q metric g(η) on D(η) in C 1 ' *
norm.

(c) There is ε(r/), such that

h

Fk(rι)u\jBk(ml;,ε(rι)) = Mk

with h < c(H,io,K,n,D) and e ( r 7 ) -> 0 when r7 -• 0 .

Proof. Let r < ij 1 0 0 . G i v e n a sequence {Mk ,gk}in GD(H ,io,K,n),
let Q(k) be the maximal number of disjoint geodesic balls of radius r/4.
By the Gromov packing argument, we have

Q(k) < c(r).

By passing to a subsequence if necessary, we assume

Q(k) = Q(r)eZ+ for all fc.

Now fix k, and let {Bk(xi, r/100)} , / = 1, 2, , Q, be a maximal

family of disjoint geodesic balls of radius r/4. Then {Bk(xi, r/2)} , / =

1 > > β ( r ) 5 is a covering of A/fc . Let h(k) be the maximal number such

that any h(k) + 1 balls of {B\xi, r, (1 + 2^)} have empty intersection,

where η > 0 is a small number to be determined later. By the Bishop-

Gromov volume estimate, we have

h(k)<C,

so the h(k) are uniformly bounded by c, which is independent of k and

r. We would like to apply the estimates of Lemma 1.1 to each ball of

{Bk(xi, r(l + 2η))} , but the hypothesis need not be met on all balls. We

take η = 10~10 for this η, we have an upper bound on the number of

balls on which it fails. We have

h(k)K>h(k) ί \Rm{gk)\\nl2dgk>Σ( \Rm(gk)\n/2dgk

JM / = 1 JBk(x,r{l+2η))

>N(k)κ,

ί \Rm(gk)\n/2dgk<κ,
JB'

where N(k) is the number of Bk(x, r(l + 2η)) for which

Bκ(xitr(\+2η))
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and K is given in Lemma 1.1. Thus

N(k)<c(H,iQ,K,n,D).

So N(k) is uniformly bounded by a constant c which is independent
of r and k. We may assume N(k) = N e Z + , A(Λ ) = heZ+ for all fc,
and r < /o/100.

Remark 1.3. We will call a ball Bk(xi, r(l + 2ι/)) bad for AfΛ if

Bk(Xi,r(\+2η))

Otherwise, it is called good.
Let Qf = Q- N, and denote the good balls by

{Bk(xi9r(l+2η))}9 ι = l , - , β \

and bad balls by

{Bk(xi9r(l+2η)}9 i = Q' + 1, , β.

Now take ^ > δ > % > \ , and let r = δ(l - η)r/ίθ. Using Lemma

1.1, we have a harmonic coordinate Fk with domain D Bk(xn δr) and

(Fk)~\B(\0r)) D Bk(xi ,δ(l- 2η)r). We use Hk{p) to denote the ball

in harmonic coordinate Hk{p) = (Fk)~ι(B{p)), and let

i=\

From (b) of Lemma 1.1, we have Vk(r) D Uk(r), and if Hk(r) n //^(r) φ

0 , then //^(r) c Hk{l0r). Now the Holder bounds of Lemma 1.1

are universal for the whole sequence. The transition functions can be

considered as mappings Fk: B(r) —• 5(10f), and |F^|C2+« < c{r) by

(c) of 1.1. By Ascoli's theorem there exists a subsequence such that all

pairs (/, j), for which a transition function exists, converge in the C2-

topology to limit functions F°°: B(r) -* 5(1 Or) of class C 2 α . The met-

rics also converge—considered as functions on B(r)—to limit metrics g°°

of class C l α on each coordinate ball, i.e., on each copy of B{r). The

distinct copies of B(r) are now glued together via the transition functions

F™ . Consider the restriction F(j = F°°\(F°°)~\B(r))nB(r) and define
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x~y: <* 3F(j, such that F..(x) =y. Set M(r) = uf^B(r)/ ~. If F°°
denotes the canonical projection, restricted to the / th copy of B(r), M(r)
becomes a C 2 ' "-manifold with the F°° as coordinates. F ^ 0 0 ^ 0 0 ) " 1 = F(j

are the transition functions. By a classical result of Whitney's, M(r) con-
tains a smooth structure, which define M{r) as a C°° manifold. We take
any fix C°° Riemannian metric ~g{r) on M(r). We define maps

Since FJ. £ F™ , we have \ff - ή\ci -> 0 on lή(r) n i/ |(r). We can
use the center of mass technic with respect to ~g(r) by using partition

of unity with harmonic coordinate ball H*{τ) to construct a C°° map

φk(r): F{x e Vk(r)\d{x, dVk(r)) > ηr} -> M(r), such that there exist an

open subset Fk(r) D {x e Vk(r)\d(x, dVk{r)) > 2ηr} and an open subset

D(r) D M{r) such that φk(r): Fk(r) —• D(r) are diffeomorphisms, and

|/( r ) | C 2. β < C{r)

and
inf{|rf/(r)(v)|, \v\ = l}>c>0

in harmonic coordinates. We take / (r) = {φ(η))~l. We clearly have

\fk{r)\c^<c{r)

in harmonic coordinates, and

on Z)(r). By taking subsequences once more, the fk(r)*gk converges to

a limit metric g(r) of class C 1 ? α on D(r). Note

i=Q' + \

which completes the proof of Proposition 1.2.
Now, for rι —• 0, we have ^ ( ^ ) C Fk(rl+ι), and clearly there exist

isometries

Using these isometries and taking the direct limit of D(r /), we can define

ι+\
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M' is a C°° manifold with CUa metric g such that g'\D(η) = g(η).
We then have the following.

Proposition 1.4. For each I, there are diffeomorphisms f (rz): i^(^) —>

/)(*>) ->c M' for k>l, such that / V / ) V -> <?Ί^(θ) / n c U a norm

Proof of Theorem 0.1. Applying the diameter estimate of a small geo-
desic sphere [10], [11, Theorem 4.23], we have for any (Λf, g) E
G{H,iQ,K,n) and xQeM,

0 , r)) < C ( # , i0, ή)r, r < ^ ,

which together with Proposition 1.4 clearly implies that the mi are isolated

point singularities of the C 1 ' α metric g .
In order to finish the proof of Theorem 0.1, we first prove the following.
Lemma 1.5. Let M — Mk for large k. Then g can be extended to a

C° metric g on M.
Proof As in the proof above, we have

JD(
\Rm(t)\n/2dgk<K

/D(η)

for ~gk = fk(rι)*gk , once more taking subsequences. By the diagonaliza-
tion process we may assume

f \Rm(t)\n/2dgk -> ί .|Rmf/2dg'
JD(rt) JDiη)

for a measurable function | Rm | on M', and

I dg <K.
JM

For any singular point v = mι:, first note the distance function d can
be extended to M, define the neighborhood N of v in M as

N(υ) = {xeM\d(x9υ) <2ε}

for small ε > 0, and

A(p,0) = {xeM'\d(x,v)<2p}.

By considering the tangent cone metric, Lemma 1.5 clearly follows from
the following.

Lemma 1.6. ((l/p)A(p, 0), xp) converges to (£7(2)-{0}, Ί?) in

CUa topology, where U{2) = { c e Rn\ \x\ < 2}, 7" E Rπ, | ~e \ = 1,
and xp E i4(/>, 0) with d{xp, v) = /?.
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Proof. For fixed N, let

A (/>, -£) = {x e M'\ £ < d(x, v) < 2p) .

We show

converges to a flat manifold DN . Since (Mk, gk) converges to M1 away

from the singularities, there exists a submanifold (Ak

p N,yp) of (Mk , #*)

for large k such that

|Rm(s )Γ dg -
Ap,N JA{p,p/N)

<P

and

The injectivity radius of j;Ap

p

N is bounded from below, and

A(p,p/N)

\Rm\n/2 dg 0 when p —• 0.

Thus (^Ap

p

N,yp) converges to a flat manifold DN in C / α norm in
the proof above and in the main theorem of [10]. This implies that
(j;A(p9 p/N), xp) converges to (DN,eN) in C l α norm. As above, we
can take the direct union of (DN 9eN) to obtain f/(0), e) with an isolated
point singularity. Since the injectivity radius of (Mk, g

k) > i0 > 0, it is
easily seen that 1/(0) is a simply connected flat manifold, and (7(0) =
(7(2) - {0} [11]. This completes the proof of Lemma 1.6.

Secondly, for rι small, we have

Q

where Bk(xn rt{\ + 2η)) are diffeomorphism balls, and Mk is obtained
from D(η) by gluing a ball to each end of D(η) for large /. There are
only a finite number of ways to obtain different diffeomorphism classes by
doing this [22]. By taking subsequences once more, we may assume the
Mk are all diffeomorphic for large k. This clearly implies that M1 is

diffeomorphic to Mk-{mχ

is complete.
, mN} . Hence the proof of Theorem 0.1
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inj(*) > ι0, diam(/) <D9 f \Rm(gk)\n/2dgk < K.
JM

Proof of Theorems 0.3 and 0.4. Let τ = + 1 , 0 or - 1 . Suppose Theo-
rem 0.3 or 0.4 is false. Then we have a sequence of Riemannian manifolds
{Mk,g

k} with

and

By taking subsequences, we may assume {Mk, g } converges to a C 1 ) Q !

Riemannian manifold {Mf, gf) with a finite number of isolated point sin-
gularities on the C°° manifold Mf such that M' = Mk - {mχ, , mn)
for large k , and from the proof of Theorem 0.1, the weak curvature tensor
of g is well defined and we have

\Rm^)\nβdg <K.
M'

First, for each point x e M1, we have a harmonic coordinate near x with
C1 >α metric tensor hιj , and we have the weak equation

By the standard elliptic theory, hlJ is C°° and g' is an Einstein metric
on M'. Then using the estimates of [11] for n = 4 and [31] for n > 5,
we have

s u p | R m ( s ; ) | < C .
M'

We then can extend g to a C°° Einstein metric on Mk for large k , this
contradicts the fact that we suppose Mk has no Einstein metric.

Proof of Theorem 0.8. Let {Mk, gk} be a sequence of «-Riemannian

manifolds with | Ric(gfc)| < H, diam < D, and Vol > V, such that there
exists a p > 0 with

lB(x,ρ) κ

for all x G Mk . If we take κ(H, D, F) > 0 sufficiently small, as in

([10, §VI or §11], or [34]), we can deform the metric gk by the involution

equation

(1) ίhk(t) =
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w h e r e h k ( 0 ) = gk , a n d h k { t ) e x i s t s o n [ 0 , T] f o r T = T(H , D , V , κ , p )
> 0. We also have

(a) \Km{h\t))\<\C{H,D,V,κ,p),

(b) |Ric(

From (1) it follows that

(b) \Riφk(t))\<C(H,D,V,κ,p).

(2) (1 - Ct)hk{t) < gk{t) < (1 + Ct)hk{t).

By Bishop-Gromov volume comparison we obtain

Yo\{Bg\x,r))>C{H,D, V)rn,

which implies

Vo\(Bh\x9r))>C{H,D9V9κ,p)rn:

In order to show g to be convergent in Cι'a n o r m , it is sufficient to

prove L2gk convergent in C l α n o r m for a large L 2 > 0 . We take

L2 = T/t. Let hk{ή = L2hk{ή , and gk{ή = L2gk{t). Then

(i) \Rm(hk(ή)\<C(H,D,V,κ,p),

(ii) Vol(Bhk (x,r))>C(H,D,V,κ, p)rn ,

(iii) (1 - Ct)h\t) < f(t) < (1 + Ct)h\t).

By the local injectivity radius estimate of [5], and Rauch comparison es-
hk

timate, there exists a p0 > 0, such that on any geodesic B (x, p0) of
fc j k

radius p0 , and any geodesic normal coordinates of h (t) on B (x, p0),
we have

which together with (2) clearly implies that

(1 _ ct - Cr2)δu < γ..(x) <{\+Ct + Cr2)δiy

Since the above inequality is uniform for all k and for small / and r,
we can use it to replace Theorem 2.5. Since the arguments of §3 are still
valid, we can obtain uniform harmonic coordinates at every point of M
for all ~gk . This implies that {gk} has a subsequence which is convergent
in C1 >α norm. Thus the proof of Theorem 0.8 is finished.
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Theorems 0.10 and 0.11 follow from 0.8 and [10].

2. The local metric estimates

Let H > 0 and /0 > 0 be given numbers. We define the set of compact,
connected Riemannian manifolds of dimension n as

io9 .,/!) = {(Λ/, g)\ |Ric | < //, inj(M) > iQ}.

In this section we recall some results of [10] and will make some changes
to suit our needs. Let (M, g) e G(H, i0, , n), and for any xoe M, the
geodesic ball and geodesic sphere of M with center x0 and radius p
are denoted by B8(x0, p) and S8(xQ, p), or simply by 5(JC 0 , /?) and
(̂JCQ , />), respectively. For p < iQ, we consider the metric g in polar

geodesic coordinates on B(x0, /?). We have g = dr2+Σ gij(θ, A*) ^0' dθJ.
Let gv (r) or simply g(r) be the induced metric on the geodesic sphere
S(xQ, r). Then

g = dr2 + #(r).

We use Rm(g) to denote the curvature tensor of g, and Rm(g(r)) =
Rm(r) to denote the curvature tensor of g(r). We also agree to denote the
second fundamental form of S(xQ9 r) by A(X, Y) = (VχY, d/dr) for
vector fields X, Y on 5(JC0 , r ) , and the scalar curvature free curvature

o o

tensor of g(r) by Rm(r) = Rm(;(r)),

where Λ(r) is the scalar curvature of g{r), n = dimΛf, and g/y (0, ^) .
Lemma 2.1. For p < /0/4, 0 < p < p, and 0 < δ < io/2 - p, we have

/ I max /

•)/.

Λ/2

\Rm(g)\n/2dg.
lB(xo,2δ+p)

We sketch the proof of this lemma [10, 4.12(a)].
(1) For the minimal geodesic γ from x to y, let 7(0) = x, γ(p) = y,

and d{x9y) = p. Then [10, 4.8(a), 4.9].

2

max
P<r<P
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(2) Now for each x, y, d(x, y) = p + δ < io/2, we define the function

1 n/2

f(x,y) = max
P<r<P r

for the minimal geodesic γ from x to y. Let

xeB(xQ,δ)

Σ= (J (x,S(x, p + δ))cMxM.
xeB(χo,δ)

Then we have

f ff(χ,y)= f lί Aχ,y)dgx(y)) dg(χ)
JΣJ JB(xo,δ) \JS{x,p+δ) J

Jo. \JΩ)L
where

n , ) dg(y).

If γ is the geodesic from x to y and γ(t) = y(t) for t < p, from (1) it
follows that

/ f(x,y)dgy(x)<C(H,p,p) ί ([\Rm(g)\n/2)dgy.

Here / | Rm(^) | π / 2 is considered as a function of x and y with d(x, y)

= p + <J, and hence

Cly y

J^S (J n/2 ^ dt.
JΩy

From [10, 1.11], we obtain dgy(γ(p + δ - ή) > c(H, n, p/δ)dgy(x),

which implies

Cly
f{x,y)dgy(x)<c(H,n9p£)[ \Rm(g)\n/2dg

y V °JJc(y,p+δ)

<c(H,n,p£) ί \Rm(g)\n/2dg,
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where C(y, p+δ) is the geodesic cone over ζly with vertex y . By noting
Ω C 5 ( J C 0 , p + δ), we get

f(x9y)<c(H9n9p£)voHB(x0,p+δ)) ί
B(xo,p+2δ)

\Rtn(g)\n/2dg.

Lemma 2.2. For 0 < p < p < /0/4, we have

I.p \JS(xo,r)
Rm(g(r))ζ{2

r)dg(r)) dr

<C(H,n,p,p) + C(H,n,p,p) f \Rm(g)\n/2dg
JB(Xr..P)

{see [10, 1.14).]
Lemma 2.3. For 0 < p < p < / 0 /4, we have

i 1

p \JS(xo,r)

<C(H,n,p,p)

- gu(r)gjk(r))
n/4

dg(r) dr

>B(xo,p)
\Rm(g)\n/2dg

1/2

+ A{r) + -C [ max /
yp<r<pJs(χo,r

C{H, n , p , p)[ max I

n/2

dg{r)

n/2

dg(r) .

Proof. By the Gauss formula, we obtain

-An{r)Ajk{r)).

First, we have

max f \A(r)f2dg(r)

<C(H, n, p, ρ)+ max /
P<r<PJS(xo,r

A(r) + \
njl

dg{r).
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Second, we derive

ί
Jb{xo,r)

Λ/4

dg(r)

< c ί \A\nl*
JS(xo,r)

n/4 r

dg{r) + C /
JsS(xo,r)

n/4

dg{r)

<C
JS(xQ,r)

\A\n/2dg(r)

1/2

A(r) + p

\JS(xo,r)

nil \ '/2

dg(r)

n/2

IS(xQ,r)
A(r) + X-g{r)

1/2

dg{r)

+ C
Js(xo,r)

A(r) + ±
n/l

dg{r)

which together with the Gauss formula clearly implies Lemma 2.3.
Lemma 2.4. For 0 < p < p < io/4, we have

f
J P

p \JS(xo,r)
Rm(r)

n/4

dg(r) dr

<C(H,n,p,p)(f \Rm(g)\n/2dg

+ C(H, n, p, p) I max /

+ C(H, n,p,p)[ max /

\ i><r<P Js

1/2

A(r) + -rg(r)

1/2

dg(r)

nil

dg{r) .
'S(xo,r)

This follows easily from Lemma 2.3.
Theorem 2.5. For 0 < p < p < /0/4 Λ«ύf Λ sequence of {Mk, gk} c

(?(//, i0, -, n), let xkGλfk, and assume

nβ

ηk= max / ^ (r) + -gk(r) dgk(r)->0,

μk
= f \Rm(gk)\n/2dgk->0.

JB(XO,P)
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Then there exists a diffeomorphism φk: S(xk , p) —• S(xk, /?) ̂ br each k,

such that on B(xkp), gk = dr2 + gfc(r), α/w/ by identifying each S(xk , r)

with the Euclidean unit sphere 5(1) with metric dθ2, we have

I \Φ*kgk(r)-r2dθ2\n/2dθ^0
JS(\)

uniformly for p <r< p , and \Φ*kgk(p) - p2dθ2\co_^Q.
In particular, since φk can trivially extend to B(xk , p) — B(xk , p), for

-gk = 0 * ^ on B(xk , /?) - B(xfc, p), by identifying B(xΛ , />) - fi(xfc , p)
with the Euclidean annulus A(p, /?) = {x e Rn\p < \x\ < p} , we obtain

/ \g -ds2\n/2ds^0,
JA(P,P)

where rf^2 is the Euclidean metric on A(p, p).
For the proof of this theorem, see [10, 5.18, 5.21, 5.25].

3. The harmonic coordinates

In this section, we shall prove the main technical result of this paper.
Let (A/, g) E G(H, 4, , ή), and x0 e M . For simplicity write BAx)
as 5(JC , /?).

Theorem 3.0 (Harmonic coordinate). For small η, 0 < η < 1,
Γconstant K = κ(H, n, η) > 0, such

\Rm\n/2 dg<κ,

0 < δ < 3 αnrf x e
exwtt a harmonic coordinate F with domain F D Bδ(x) and image

F DB(δ(l-η)) = {xeR"\ \x\ < δ{\ - η)}, such that

(a) F-\B(δ(l-η)))DBδ{ι_2η)(x).

Let hl] = (V/i', VΛ7) be the metric tensor in such a harmonic coordi-

n a t e , F = ( h ι ,••• , h " ) . T h e n

(b) i ^ - ί ' V ^

(c) |rfΛ'7lc- < C ( / / , « , / / ) , 0 < Q < 1 , onB{δ(l-η)),

(d) | |Λ' 7 | |L 2 .P
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To prove Theorem 3.0 we start with the following.
Main Lemma. For any 0 < η < 1, there exists a small constant K =

κ(H, n, η) > 0, such that if

I, \Km(g)\n/2dg<κ,

then there exist a point x e Bη(x0) and a diffeomorphism F from

into
T{l + ±η, \η) = j j c e l " \η<\x\<\

such that

(a) F is harmonic, i.e., AF = 0.

(b) F-\T{\ + \η, \η + η)) D Tχ{\ - η, 2η), and

image FD T{\ + \η, \η).

Let h'J = (Vh', Vhj) be the metric tensor in this harmonic coordinate,

where F = (hι, ••• ,hn). Then:

(c) \hi] -δij\c. <η2/l00n,on T{\ + \η,\η),

(d) \dhij\Co < C{H,n,η), 0<a<l,on

(e)

: lOOrc '

where \F\2 = X)(Λ')2, and r2(y) = d(x, y)2 is the square distance func-
tion of {M, g) from point x.

\\ddhιJ\\LP <C on T (I + \η, \η) , p > n.

We shall prove the main lemma by contradiction. It is easily seen that
the main lemma follows from the following.

Lemma 3.1. For any η, 0 < η < 1, small δ > 0, and a sequence

{(Mk, gk)} c G{H, 4, , n), there exists a point xk e Mk for each k,

such that

ί

Furthermore, for k sufficiently large, there exists a point yk e Bk

δ{xk) C Mk

for each k and a diffeomorphism Fk = (h\, •• • , h"k) from

yk
(l-η,2η) = Bi_η(yk)-B2η(yk)
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into T(l ,η) = {xe Rn\η < \x\ < 1}, such that

(a) Fk is harmonic, i.e., AFk = 0 on Tyk(l - η, 2η).

(b)

and image Fk D T(l - \η9 \η).

Let HjJ •= (Vhι

k, VhJ

k) be the metric tensor in this harmonic coordinate.

Then:

(c)

h)!-δι <η /200n on

(d)

dtii
cQ

<C(H9n,η9δ), 0<a< 1 on

(e)

<η /200n,

, y)2 is the square of the distance function of (Mk , gk)

from yk,

(f) \\D2hij\\LP <C(H,n,η,δ)9 p>n.

Remark. The main lemma follows from Lemma 3.1 by slightly changing
parameters.

The proof of Lemma 3.1 is given through a series of lemmas.
First, using Lemma 2.1, there exists a point yk e Bδ (xk) such that

max
nil

< C(H, j 9
5

dgyk{r)

\Km{gk)\nl2dgk<

gk(r)

Now we apply Theorem 2.5 in polar coordinates on Bk

χ(yk). We have

g

k = dr2 + ΣgiJ(θ,r)dθidθj, and identify Bx{yk) with the unit Eu-

clidean ball B{\). By this geodesic polar coordinate, there exists a diffeo-

morphism φk: S(ί) -+ S{1) = {xeRn \ \X\ = 1} , such that

for the Euclidean metric g0 = \dx\2 on B(\). Here we extend 0^ trivially
to Γ ( l , η), and will use 0(1/k) to denote a constant which converges to
zero when k —• oo .
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Abusing notation slightly, we shall write gk as φ*kg
k , and drop all the

k 's in the remainder of this section. Moreover, we shall simply write g
as g , Δ for the Laplacian operator of (Mk, gk), etc.

Let X = {xι, , xn} be the Euclidean coordinate on B(\). For

8 =

we have

Now, by solving the Dirichlet problem

ί Δ F = 0,

^ f\dT(\,η) X\

we obtain F: T(\, ?/) -* 5(1).
The idea of the proof of the lemma is given through the following se-

quence of lemmas. We shall show, in fact, that F is the desired map.
Lemma 3.2.

Proof. First we note

\VF-Vx\2

gdg<θ(]λ.
,η) g \kJ

Let u = hι - xι. Integrating by part gives

/
JTT{\,η)

Δu udg

Λ

-*)«"*

'T(\,η)

By Holder inequality, this implies

f Nu\
Jτ(Uη)

Ϊ - 1

Now, using [10, 1.11], we have for large k, C go< g <cg0. This and

(1) clearly imply the lemma.
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Lemma 3.3. |VA'|* -• |Vx'|* = 1 almost everywhere on T(l,η).

Proof. This follows from (1) and Lemma 3.2.

Lemma 3.4. For small τ > 0, we have

V*' <C{η,n,τ) on Γ( l - τ , τ + η).

Proof. Let us recall a well-known formula:

Vti = 2 + 2Ric(Vλ\ Vλ1).

Let φ = |VΛZ|. Then we have

(2) Aφ > -2Hφ.

Noting the uniform Sobolev inequality on (Mk, gk) and using the stan-
dard Moser iteration, we easily obtain the following estimate:

max φ2 <C(η,n,τ) φ2dg,
T(l-τ,τ+η) JT(\,η)

which together with Lemma 3.3 clearly implies Lemma 3.4.

Lemma 3.5. For each i, we have

Proof By Sobolev inequality and 3.2, we obtain

( f \hl -x\2nl{n~2)dg\ <C ί |V/zz -Vx6i\2dg
\Jτ{\,η) J Jτ(l,η)

which shows that hι converges to xι almost everywhere on T(l, η). By
3.4, we have

<C(η,n,τ) on Γ( 1 - τ, τ + η),

which clearly implies Lemma 3.5.
Lemma 3.6.

Jτ(\-72x,2x+r\)
r. We shall use the formula

2 ^ i τ - τ 2 , z , 2
Aφ2 = 2|V2/z'|2 + 2Ric(VΛ', VΛ')

for

φ2 = |VΛ'|2.
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Take a cut-off function 0 < μ(t) < 1, such that

, t<\τ + η or t > 1 - fτ.

Then we have

\μ(t)\ < C-μ\t)\ < ±.

Let f=Σ(hi)2 and fl(x) = μ(f(x)). Then

/ A(φ2 - \)μ = 2 / IV2Λz'|2/2 + 2 ί Ric(VAz', VΛ'

which gives

Now, note that for k large, by 3.5 we obtain

supp/ZC Γ(l - τ , τ + η),

μ=l on Γ(l - τ , 2τ +?/),

which imply

ί |VV|2^<I ί(φ2-l)\Aμ\+ f
^Γ(l-2τ,2τ+?y) J JT{l-τ,τ +η)

Since Δ/ = 2 £ |VΛ7]2 < C(*/, Λ , τ ) , by 3.4, we clearly have

JT(\-2τ, 2τ+η)

Lemma 3.7. From /Λe Ricci formula, it follows that

Δ|V2ΛZ'|2 = 2 |VV| 2 + 2(Rm *V2ΛZ', v V

+ 2V(Rm *VΛZ', V2/zz) - 2(Rm *VAZ', v V ) ,

where we have used A * B to denote a bilinear form of A and B with
constant coefficients.

Lemma 3.8.

/ \v2h'\2"/{"-2)dg+f \v3ti\2dg<o(]λ.
JT(\-3τ,3τ+η) JT(\-3τ,3τ+η) \ K /

Proof Take a cut-off function μ = μ(f) similar to the one in 3.6, such

that
supp/ϊC Γ(l - 2 τ , 2τ + η),

μ=l on Γ(l - 3 τ , 3τ + ?/).
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Then we have

Using Lemma 3.7 and letting ψ - |V2Λ'|2 , we have

ί ψ • Aμ2 = 2 ί | V V | V + 2 ί(Rm *V V)μ 2

- 2 /(Rm*VA', vV)V/i2 - 2 /(Ri

By the Cauchy inequality εα2 + \b2 > 2ab, we obtain

ί ψAμ2 > 2 ί |V3/z'|2/i2 - C ί \ Rm \ψμ2 - C ί | Rm | |Vh')μ2

- ε ί |V3A''|V - C(ε) ί \ Rm 12μ2\Vhi.

Applying the Holder inequality yields

(3)

(2 - ε) ί/22|V3/2'|2 < ί ψAμ2 + C ί |Rm|2/i2

'/2 / /• , \ 1/2

(n-2)/«

Now, using the Sobolev inequality, we have
(n—2)/n / r \ (n—2)/n(j2i2^){P

2

Ψr»
(4) <C f |V(£|VV|)|2 + C ί /i2|V2Λ'

/
T{\-2τ,2τ+η)

(3) and (4) are combined to give

|vV|2.

(1 - ε) / I +{c-C ( I ) ) (/(^

)

For k large, we clearly prove this lemma by 3.6.
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Lemma 3.9.
2A\= V(Ric * VA1') + Rm * V2A\

Proof. For any x , choose the coordinate near x, such that g^x) = δr.
Apply the Ricci identity to obtain

V, *' = £ V,(V, V7 V,*')

- Σ V,(VtV,V,*') + Σ Vj*jk

= Σ ^(V^ V V/') + Σ Vj*jkim8m'Vp*1 + R m * V ^ '

')
 + Σ V,i

k

Now using the second Bianchi identity yields

jRjklm = Zl ^jRlmjk = ~ Σ , ^lRmjjk ~ 2 J ^mRjljk

which together with (5) implies

Δ V V = V(Ric * VA1') + Rm * V2AZ.

Lemma 3.10.

for any q> m.
Proof Take p > 0 and a cut-off function μ, such that

s u p p μ C T(\ - 3 τ , 3τ + η),

μ=l on T{\ - 4 τ , 4τ-f r/).

Then we have

|Vμ| < c/τ.

Let ψ = |V2AZ|2. Using 3.9 and the Cauchy inequality lab < a2 + b2, we
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obtain

Aψ = |V3/ή2 + 2(ΔvV, vV)

= 2|vV | 2 + 2(V(Ric*VΛ'), vV) + 2(Rm*vV , vV)

= 2|VV|2 + 2V(Ric *VA'', vV) - 2<Ric*V/z', vV)

+ 2<Rm*V2/z'', vV)

> |V3Λ'|2 + 2V(Ric*V/j'', V2/J') - C| Ric|2 |VΛ'|2 - C\ Rm \ψ.

Integrating by parts gives

< 2 ί((Ric*VΛ'', VV), d(ψ2p~lμ2))

ί | RiC ί | Ric I2

< CH ί \V2hi\\Wψ\ψ2p~2μ2 + CH ί \V2hV2

+ CH2 j Ψ

2p-Xμ2 + cί\Rm\ψ2pμ2 + C f

For (2p - 1) > 0, use lab < εa2 + \b2 again to obtain

' - y < Cej\VΨ\\2

Ψ

2p-2μ2 + f

C ί\Rm\ψ2pμ2

which clearly implies that for ε small,

/
,_, .2 2p-2 2 . „ /" 2p-l 2
|V(H ^ " μ <CJ ψμ μ

+ C ί ψ2p\Vμ\2 + C ί Rm \ψ2pμ2
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Now, using the Holder and Sobolev inequalities, we get

Ψ

2p-2μ2 <C f Ψ

2p-lμ2 + CI Ψ

<C jψ
2/n

For any fixed q > 0, we take k large, such that q2(\/k)lln is small.
Then we have for p < q

I \Vψ\2ψ2p-2μ2 <CJ Ψ

2p-lμ2

 + Cj Ψ

2p(μ2 + \Vμ\2),

and the Sobolev inequality yields

(f(ψPβ)2"/{"-2f~2)/n < c f Ψ

2 p ' V + Cfψ2p(μ2 2

which clearly can be iterated by using 3.8 to obtain

Lemma 3.11.

_ . ι . 2 . . _ / i \

onIVΛ'Γ —
2 _

Δ/ = 2 | v V | 2 + 2Ric(VA'', VA1') = u.

Proof. Let / = |V/ή2 - 1. Then

From 3.10 it follows that / Γ ( 1 _ 4 τ 4τ+η) \u\q dg < C(q) for q > n. Then

we use Moser iteration with slight modifications. Define

/ + = max{/, 0}, / _ = m a x { - / , 0 } ,

and let / = f+ + f_. For any cut-off function μ with supp μ c

Γ( 1 - 4τ, 4τ + T/) , we have

Δf-f± β = ~ J μf± μ
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Integrating by parts gives

±(2/7 - 1

(2p - \) j \V fj flp~2 μ1

Let / = /+ + /_ . Then by adding the above inequalities we obtain

(2p-l)j\Vf\2f2p-2μ2<

for 2p - 1 > 0, which together with the Holder inequality yields

V <
where l/q + l/κ = 1 and K: < n/(n - 2). Using the Sobolev inequality,
we get

f/" < cj{\Vμ\2 + μ2)f2p + C (j\μ2

Since f <\f\ is bounded, we have

ίn-2)/n

<cf/
/supp

/ p~ι κ

supp μ

Take /70 > 1 and pm , such that (2pm - l)κ = 2pm_ι(n/n - 2 ) . Then
we obtain

Iterating easily gives

(6) max
Γ ( l 5 5

(7
\/Γ(l-4τ,4τ+>f)

for some ^0 = qo(n , /c, p0) > 0.
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From 3.3 and 3.4 it follows that | / | < C, and / —• 0 almost everywhere
on Γ ( l - 4 τ , 4τ+η) by the Lebesgue convergence theorem. Thus we obtain

IT(\-4τ,4τ+η)

for any p > 0. By taking p0 = 2 and p = 4n/(n - 2), (6) clearly implies
3.11.

Lemma 3.12.

on T(\ - 5 τ , 5τ + ή).
Proof. Obviously we can apply the above estimates to h = λfi + λ.hJ

for λ^+λ2 = 1. Then |VΛ|2 —• 1, which together with the above estimates
easily proves 3.12.

Now, for large k and hlJ = (VA1, VhJ), we have

Therefore, for k sufficiently large, we obtain the following.
Lemma 3.13. F = (h', ,hn) defines a diffeomorphism from

Γ ( l - 6 τ , 6 τ + »/) onto F(T(\ - 6 τ , 6τ + η))cB{l), and

F{T{l-6τ, 6τ + η)) D Γ(l - 7 τ , Ίτ + η),

F~l{T{l - 7τ, 7τ + η)) D T{\ - 8τ, 8τ + η).

Lemma 3.14. In the harmonic coordinate F = (hι, , h"), we have

\dhU\c,<C(H,K,τ, η,δ)

on T(l-Sτ,Sτ + η)cF(T(l-6τ,6τ + η)).
Proof. In such a coordinate system, we have

which implies

\AhiJ\<C + C\dhkl\2.

Letting G = (hlJ) e K" , we obtain

\AG\<C + C\dG\\

i.e.,
hkldkd,G < C + C\ dG\2,
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where d denotes the partial derivative with respect to the harmonic coor-

dinate F = {hι, •.. , Aπ)
Now take a cut-off function μ, similar to the one in 3.6, with Supp μ c

Γ(l - 6τ, 6τ + ι;). Applying the Z/ estimate of the Laplace operator Δo

of Euclidean space, we have

\\d2(μ2G)\\LP<C\\A0G\\LP,

which implies

||0 V ( Ϊ ) | | L , < \\AG\\L,

From 3.12, it follows that for large k,

which together with the above inequality yields

\\d2(μ2G)\\LP<C + C\\μ2\dG\2\\LP.

By the Holder inequality and 3.10, we have for p > n

\\d\μ2G)\\LP<C + C<C.

Applying the Sobolev imbedding theorem we obtain

\\d(μG)\\ca<C,

which implies 3.14.

Lemma 3.15. // | Ric(g)| < H, then

\\d2hiJ\\LP<C

on T( 1 - 8τ, 8τ -h η), and p > n .
Proof. From the proof in 3.14 it follows that

which together with 3.10 clearly implies 3.15.
Proof of Lemma 3.1. We simply take τ = n/lOO in the above lemmas.

This completes the proof of Lemma 3.1.
Lemma 3.16. For any 0 < η < 1, there exists a small constant K =

κ(H, n, η) > 0 such that if

/ .
\Rm(g)ΐndg<κ,
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then there exists a diffeomorphism F from Ω(x0) D Tχ (I - ±η, ̂ η) into

T(l + η,η), such that

(a) F is harmonic, i.e., AF = 0,

(b) F'\T(l + \η, |ι/)) D TXQ(l-2η, 3η), and

image FD T{\ + \η, \η).

Let hιj = (Vhι, Vhj) be the metric tensor in this harmonic coordinate,
where F = (hι, , hn). Then (hιj) satisfies the conclusions of(c), (d),
and (e) of the main lemma.

Proof This lemma follows from the main lemma by simply noting that
in the main lemma we have

TXo(l-2η,3η)cTχ(l-η,2η).

Now we need to restate the above results in geodesic balls.
Lemma 3.17. For small η, 0 < η < 1, there exists a small constant

K = κ(H, n, η) > 0, such that if

I, \Rm(g)\n/2dg<κ,

then, for any 0 < δ < \ and x e 5 1 + 2 ( ?(x 0), so that d(d0, x) < \_δ-2η,

there exists a harmonic coordinate F with domain D Bδ(x) and image

F D B(δ{l -η)) = {x € R"| |JC| < δ(l - η)} such that

(a) F~\B(δ(l - η)))D Bδ{i_2η)(x).

Let H'J = (VΛ', VΛ7> be the metric tensor in such a harmonic coordi-

nate, where F = (hx, • • • , h"). Then

(b)

\h'J -δ'J\<η2/l00n.

(c)

\dhU\ca <C(H, η , n ) , 0 < α < l , on B(δ{\ - η)).

Proof. If 3η + δ < d(xQ, x) < I - δ - 2η, then by Lemma 3.16 there

exists a harmonic coordinate F on T (1 - 2η, 3η). Since BΛx) c

T (1 - 2w, 2ι/), we can use F and a translation in Rn to define a har-
0

monic coordinate F on Bδ(x) with F(x) = 0. (b) and (c) follow from
3.16, and (a) follows from (b) by taking η small < C(n).

Now, consider 3η + δ > d(x0, x). First, note that the constant 1 + 2η
does not play an essential role in 3.16. Then we can replace 1 +2η by | - η ,
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and the constants change accordingly. For such x, we can find a point
y on the extension of the geodesic from i to i 0 , such that d(y, x) =
3>7+5,and d{y, dB{x)) > \-$η . Since B2/?_η(y) c Bι+2η{x0), we apply
Lemma 3.16 to the ball # 2/3- (y). There exists a harmonic coordinate F
with domain i 7 D Γ ( | - 4τ/, 3f/) and image F D T(\ - 3η, \ή). Since
Bs(x) c Γ ( | - 4η, 3η), we can use F and a linear translation of Rn to
define a harmonic coordinate (still call it F) on ^ ( x ) such that (b) and
(c) are satisfied, and F(x) = 0. Thus (a) follows from (b) for η small
< c(n). This completes the proof of Lemma 3.17, and so also the proof
of Theorem 3.0.
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