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LOCAL DIFFERENTIAL GEOMETRY AND
GENERIC PROJECTIONS OF THREEFOLDS

ZIVRAN

The purpose of this note is to prove a result concerning the 4-secant
lines of a nondegenerate irreducible, say smooth, threefold

I c P r , r > 9 ;

namely we prove essentially that all these lines together fill up at most a
fourfold (see Theorem 1 below); equivalently, the generic projection of
X to P4 has no fourfold points that come from collinear quadruples of
points on X.

The (very classical) subject of generic projections of n folds to P"+1

and the multiple points of such projections has recently come into focus
in connection with work of Pinkham [4], Lazarsfeld [2], and Peskine [3],
which has shown how certain properties (both known and conjectural) of
such projections can be used to establish various cohomological properties
of the n folds in question, in particular Castelnuovo regularity. Indeed,
Lazarsfeld's paper [2] shows, among other things, that the above statement
concerning fourfold points of projections to P4 is exactly what is needed to
establish a sharp Castelnuovo regularity bound for smooth nondegenerate
threefolds in P r , r > 9 (see Corollary 3 below).

We now proceed with a precise statement.
Theorem 1. Let X be an irreducible nondegenerate three-dimensional

subvariety of P r , r > 9, whose tangent variety is six-dimensional and let
{Ly: y e Y} be a family of lines in P r with the property that for any general
y e Y, the part of the scheme-theoretic intersection L i l l supported at
smooth points of X has length at least 4. Then we have

\yer

Remarks 2.1. Any smooth threefold has six-dimensional tangent vari-
ety (cf. [1]). The hypothesis that X has six-dimensional tangent variety
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is presumably unnecessary, especially in view of the fact that the three-
folds with tangent variety of dimension < 6 have been classified in [1];
this hypothesis enters in the proof only to help handle certain 'degenerate'
cases.

2.2. It seems likely that the theorem is true for r = 7, 8 as well, but
the proof does not yield this.

2.3. It is reasonable to expect that the analogue of the theorem is true
for (nondegenerate) n folds X in P r , r > 2n + \: namely that the (w+1)-
secant lines of X fill up at most an (n + 1) fold. The proof below 'almost'
shows this for r > In + 3, but breaks down at some degenerate cases.
In any event, Corollary 3 below would not follow from the analogue of
Theorem 1 for n > 4. For surfaces, on the other hand, the proof does
work for all r > 6, and this result is apparently new (notwithstanding
some assertions to the contrary in the literature). Actually, the analogue
of Theorem 1 is in fact true for r = 5 as well, but the proof of that case
is considerably more difficult.

2.4. For any n>2, r > In + 1, and k > n + 1, it is easy to construct
examples of smooth nondegenerate n folds X in Pr whose /c-secant lines
fill up an (n + 1) fold: e.g., unions of oo1 plane curves of degree k . Thus
Theorem 1 is essentially sharp.

Corollary 3. Let X be a smooth nondegenerate irreducible threefold of
degree d in Pr, r>9. Then X is (d - r + 4)-regular, i.e., the ideal sheaf
I = Iχ/r satisfies H\Yr, I{d - r + 4- /)) = 0 for i > 0.

Proof. Given Theorem 1, this essentially follows from Lazarsfeld's pa-
per [2]. Namely Lazarsfeld shows, at least implicitly, that X is (d-r+4)-
regular provided the following statement is true:

IfZcX is any fibre of a generic projection

, v then Z imposes independent conditions on quadrics, i.e.,
the restriction map

is surjective .

Now in our case, it follows from [5] that no fibres Z can exist having
length > 5 on the other hand, it is trivial that any scheme of length < 3
imposes independent conditions on quadrics. As for fibres of length 4,
Theorem 1 implies that Z cannot be contained in a line, and if Z were to
span a P 3 , it would impose independent conditions on linear forms, hence
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a fortiori on quadrics. It remains to consider the case where Z is a length-
4 subscheme of a plane. If Z failed to impose independent conditions
on quadrics, there would exist three independent (possibly singular) conies
CX,C2, C3 through Z . By Noether's Af + Bg theorem, it follows that
the Cz must have a common component, which clearly must be a line
M. But then C^^ΠC^^ M scheme-theoretically, so that Z c M,
which cannot be. This completes the proof of statement (*), hence that
of Corollary 3.

Remark 4. It seems likely that the foregoing argument extends to the
case n = 4 as well; the case n > 5 however seems more difficult, inasmuch
as it would eventually involve dealing with fibres Z of length 6 contained
in a plane, for which one would have to show Z is not on any conic, a
property which at the moment seems too subtle to handle.

We now turn to the proof of Theorem 1. Let {Ly: y e Y} be a family
of four-secant lines of X as in the statement of the theorem. Without
loss of generality, we may assume Y is an irreducible four-dimensional
subvariety of the Grassmannian G = G(l , P r) such that \JyeYLy is a
fivefold. We fix a general member L = Ly of the family and work locally
in an analytic neighborhood of y on Γ. We will assume, to begin with,
that LnX contains four distinct points p{, , p4 smooth on X. By [5]
it follows that p{, , p4 are general on X, that L meets X transversely
at pt:, i - 1, , 4, and moreover that there are no further smooth points
of X on L . Put T = TyY, L = P(A), Pr = P(B), and N = B/A . Then
we have

whence a map A —• Hom(Γ, N), which must be injective, hence induces

δ: L = ¥{A) -> P(Hom(Γ, N)) =: P.

Let D c P denote the determinantal variety of singular (i.e., noninjective)
homomorphisms. As in [5], we see that δ(pi) e ΰ , i — 1, , 4, and
moreover that the δ{pi) must have rank exactly 3. Let ui e T be a basis
for Ker(<J(pf.)), / = 1 , . , 4 .

Lemma 5. (i) ux, , u4 are linearly independent.
(ii) There is a four-dimensional subspace NQ c N, and none smaller,

such that d factors through P(Hom(7\ NQ)).
Proof (i) If u{, , u4 were to span a subspace Tx c T of dimension

k < 4, let N{ be a generic λ>dimensional quotient of N and

δ{: L -+ Y(Yίom{Tχ, N{)) =: P{

the induced map. Then δ(L) must be entirely contained in the analogous
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determinantal variety Dχ c P{ (because 6{pt) G Dt, / = 1, ••• ,4) ,
and because Nx was generic this implies that δ{L) c D also, which then
implies that the lines Ly only fill up a fourfold, which is a contradiction.

(ii) Let NQ be the span of im(wz), / = 1, ,4 (considering the ut

as rank-1 homomorphisms A —• N). Then clearly we have dimA^ < 4
and δ factors as indicated; on the other hand, if δ were to factor through
a subspace of dimension < 3, it would follow as above that δ(L) c D,
which is not the case.

To formulate the conclusion of part (ii) of the lemma in a slightly more
intuitive way, there is a five-dimensional linear subspace R = Ry c P r ,
containing L, such that the first order deformations of L in Y stay
within, and in fact span R.

Now consider the embedded tangent spaces

T.:=fpX, ϊ = l ,- . ,4.

As p was general on X, any first order deformation of p{ in X lifts to
a deformation of I in 7 , hence we have

Γ z.ci?, ι = l , . - . ,4.

Moreover, for any / Φ j , T. and Γ̂  together must span R: indeed, a

deformation of a line is determined by that of any two distinct points on

it, so if Ti and T span R* c i?, then the first order deformations of L

must stay within 7?', so that Rf = R. Now set

(1) Mij = TinTjcR9

which is therefore a P 1 . Moreover pi, p. φ Mtj, because L was trans-

verse to X, hence Mf.. corresponds to a two-dimensional subspace M/ ; c

7), J .

Now let ϋf(p.) be the two-dimensional cone obtained by varying L
within Y while keeping p. fixed, and let S- be the embedded tangent
plane to K(pj) at a general point q e L (this is independent of q ). Thus

Sj is the P containing L corresponding to the one-dimensional subspace

j c N encountered above. Note that Sj meets Tt in a line through

pi for all / Φ j and let v(. = vr £ Tp X be the corresponding direction

(defined up to scalar multiple). Note that

(2) vu e Mi
ik

whenever /, j , k are all distinct. By Lemma 5, the v^ for any fixed /
are independent.
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The idea now will be to differentiate the identity (1) in the various
directions uk , thus obtaining various identities involving the second fun-
damental form of X, for whose definition and basic properties we refer to
[1]; we will just set up some notation. We denote the second fundamental
form of X at a point p by 11̂  , and view it as a symmetric bilinear form
on the tangent space Tp(X), whose values are vectors in the vector space
B corresponding to P Γ , well defined modulo TpX (more precisely, mod-
ulo the corresponding linear subspace of B, but we will allow ourselves
the luxury of such abuses of terminology).

Now differentiating (1) in the direction u , we obtain

(3) i y ^ . , M . ; ) = 0 m o d i ? , iφj.

On the other hand, differentiating (1) in the direction uk , k / / , j , w e
obtain

( 4 ) Π

P | . ( v i k > vik) - IlPj(υjk ' υjk) m o d R ' i,j,k'aΆ d i s t i n c t .

Now set

ui = Ui,y = Span(t;0. Mij, jφ i c Sym2(TpX)),

a three-dimensional subspace. Then (3) yields

(5) i y t / . ) c l ? , i = l , . - , 4 .

Assume for now that equality holds in (5) for some / it follows in
particular that

(6) RcT2

p,

where Tp denotes the second-order tangent space to X at p , considered

as a subspace of P r (i.e., this is just the image of 11̂  cf. [1]). Now (6)

clearly yields \\p (vJi, vjt) c Tp , and since mor

same dimension, it follows by (4) that we have

clearly yields \\p (vJi, vjt) c Tp , and since moreover the Tp all have the

i f l l b (4) h h

Now note that Sym2(Tp X) is spanned by Ui plus the υ^ , j Φ i, hence

T2 X is at most a P 8 . Thus (7) implies that as we vary our initial y to

a nearby y e Y while fixing any of the pi, the lines Lγ, remain in a

fixed linear subspace of Pr of dimension < 8. The following elemen-

tary observation now yields a contradiction to our hypothesis that X was

nondegenerate in P r , r > 9, and p{, , p4 were general on X.



136 ZIVRAN

Lemma 6 (The Goose-Step principle). For a general y e Y, let
be the set of yf eY connectable to y by a finite chain of irreducible curves
Cι\J'"\JCk c Y such that for j , as y" varies within Cj, one of the points
of Ly,, n X, which is a deformation of one of the points of LyΓ\X, stays
fixed. Then ^{y) is dense in y.

Proof If this were false, then the closures of the &{y) would form a
nontrivial foliation of (some open subspace of) Y. As y e Y is general,
there is a leaf of this foliation through y, and the vectors u{, , w4

must be tangent to it, contradicting Lemma 5(i).
Next, we consider the case where the inclusion (5) is strict for all / =

1, , 4. Suppose first that for some i we have

(8) p

In particular, it follows that for all j , T2 is at most seven-dimensional
Pi

and meets T. at least in a P 2 , hence a pi is kept fixed, p. varies at most

in a fixed (dim +l)-dimensional linear space, which must coincide with

T1 +R, and as above we may conclude that
Pi

+R for all j φ i.

Moreover by (3) and (4) the latter space, which is at most eight-dimen-
sional, stays infinitesimally fixed, hence fixed, as L varies fixing any of
the pi, so the Goose-Step Principle yields a contradiction as above.

Suppose next that we have

(9) d i m ( Γ p

2 n i ? ) < 4 , / = 1, ••• ,4.

In other words, we have 11̂  (17,-) = 0. Since the kernel of ϊlp is at most
three-dimensional anyway, it follows that this kernel must coincide with
Ui, and in particular Ui = Ui stays fixed as L varies fixing pi as Ui

determines the vi = υr these stay similarly fixed, up to scalar multiple.
We may now conclude that, locally at each p., X possesses three mu-

tually transverse one-dimensional foliations, tangent to the υ.j and com-
patible with the foliations of Y tangent to the ut. Let Ctj be a local
integral arc of the ^ .-foliation. Then we may conclude, e.g., that an arbi-
trary chord joining C1 2 and C2 1 is in our family {L }, hence meets X
elsewhere. By the trisecant lemma for analytic arcs, either C1 2 and C2 1

are both in some P 2 , or they are in a P 3 that meets X in a surface. The
first alternative clearly implies that our lines L fill up only a fourfold; the
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second alternative implies that X contains a two-parameter family of sur-
faces Sa each contained in a P . Since two generic points of X will lie
on some Sa , the embedded tangent spaces to X at these points must meet
in a generally-positioned line, and this contradicts our hypothesis that the
tangent variety of X is six-dimensional. This completes the discussion of
the case where L is transverse to X.

It remains to consider the case where L is tangent to X at some smooth
point. First, if L is a simple bitangent, tangent at two points px Φ p2,
then, using notation introduced above, we have Sχ c T2. On the other
hand, obviously K(pχ) c Tχ so Sx c Tχ, hence Tχ and T2 meet in
a P 2 which as we have seen cannot be. Next, if L is a flex tangent at
pχ, say, then by [5] there is a two-dimensional subspace V c Tp X such
that II (T' L, V) = 0, which implies that all first order infinitesimal

deformations of L in Y span only a P , which again is impossible.

Finally, consider the case where L is simply tangent at pχ and trans-

verse at p2φ p3. As we have R c T2

p , it follows as above that

2 2 _ 2

*Pχ ~ Pi ~ Pi '

and again we may apply the Goose-Step Principle to contradict the non-
degeneracy of X (the point is, goose-stepping through pχ, p2 , and p3 is
sufficient to fill up a dense subset of X).
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