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GAUSSIAN MAPS ON ALGEBRAIC CURVES

JONATHAN WAHL

0. Introduction

Let C be a complete nonsingular curve over C and let L be a line
bundle of positive degree. We have previously considered [8] the natural
map

Φ L : A2H°(L) -+ H°(Ωl

c <g> L2),

defined essentially by

If C c P" is an embedding and L = t?c(l), one may consider the Gauss
mapping

C-+Grass(l, n),

associating to each point its tangent line in P n . Composing with the
Plucker embedding of the Grassmannian into P^ gives the "associated
curve" ψ: C —• P ^ . One checks that restriction of the hyperplane sec-
tion ψ*: H°(PN, <?ptf(l)) -+ H°(C, ^ V ( l ) ) for this map gives ΦL (note
H°(PN, ^p(l)) - A2H°(Pn , 0(1)) ~ Λ2H°(C, L)). For this reason we
call Φ L or its generalization a Gaussian map, and its image the Gaussian
linear series.

The original interest in these maps arose from studying Φ^ , where K
is the canonical bundle on a smooth curve (Φ^ has been named the "Wahl
map" by certain authors [3]). \

Theorem 1 [8]. If the smooth curve C lies on a K-3 surface, then Φκ

is not surjective.
Theorem 2 [8]. If C c P" is a complete intersection, with multidegrees

dχ<d2< < dn_{ (d{ > 2), then Φκ is surjective if d{ + - + dn_2 >
n + l.

Theorem 3 [3]. For a general curve C of genus 10 or > 12, Φκ is
surjective.

Theorem 1 gives the only known intrinsic property which a curve must
satisfy in order to sit on a K-3 surface. Our original proof involved the
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interpretation of (CokerΦ^)* in the deformation theory of the cone over
the canonical curve; a more geometric proof, involving the nonsplitting of
the normal bundle sequence, was given by Beauville and Merindol [2]. It
is known that a general curve of genus g sits on a K-3 surface iff g < 9
or g = 11; Theorem 3 naturally complements this result, and reproves
the difficult g = 10 case (due to Mukai [6]). Theorem 3 was proved
by smoothing a certain singular stable curve, so explicit examples with
Φ^ surjective are not produced. For certain genera such curves can be
constructed from Theorem 2 above or Theorem 4.8 of this paper. We
mention more about Φ^ below.

Now let X be any smooth projective complex variety, and let L and
M be two line bundles. One can again consider ΦL as defined above.
More generally, consider the multiplication map

μL M: H°(L) ® H°{M) -> H°(L ® M),

and denote by &(L,M) = KerμL M one may construct another
"Gaussian" map

ΦL M: 31 {L, M) -+ H°{Ωl

χ ®L®M).

If L = M, ΦL L is essentially equal to ΦL. These maps may also be
constructed via the sheaf of principal parts (or "Atiyah classes"), or from
restriction to the diagonal on X x X (see [9], or §1 below). In fact, one
can construct a natural filtration { ^ ( L , M)} of H°(L) <g> H°(M) via
"order of vanishing along the diagonal" ((1.3) below). Here, 31 λ = 31,
3ί\ = KerΦL M , and 3ZJ3li+ι embeds naturally in

For X = C a curve, L = M, and / = 2, one recovers the dual of the
"second fundamental form" of [5, p. 366]; our map is a morphism

KQT{S2H°(L) - H°{L2)) -> H°(C, K2 0 L2).

In a forthcoming paper [10], we will examine these maps and this filtra-
tion when X = G/P, a complex projective homogeneous space; note that
in this case, one gets a natural G-filtration of the tensor product of two
irreducible (/-modules. However, in the present paper we shall restrict
ourselves to studying ΦL M when X = C is a curve.

Mumford [7] proved that μL M is surjective if degL > 2g and degAf >
2g+1 he used the "base-point-free pencil trick" and Castelnuovo's Lemma.
In §§2 and 3 below, we adapt his method, with an "immersive net trick"
and a generalized Castelnuovo Lemma, to prove our two main results:
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Theorem 3.3. Let C be a projective nonsingular curve, and let L and
M be line bundles, with degL > 5 g + l and degM > 2g + 2. Then ΦL M

is surjective.
Theorem 3.8. Let C be a nonhyperelliptic curve, and let L be a line

bundle of degree > 5g + 2. Then ΦL κ is surjective.
These theorems have been applied in [9] to give information about the

space Γ1 of first-order deformations of the cone over the embedding of
C into P" by some very ample and projectively normal L. For instance,
it is proved there using Theorem 3.8 that the cone over a nonhyperelliptic
curve, embedded by a line bundle of degree > 5g + 2, has only conical
deformations, even infinitesimally. (We asserted this result in [9] when
deg > 5g + 1 this is false for g = 3, but J. Harris has shown that 5g + 1
works if g > 4.) We remark that a short proof is given in [3, Appendix],
that ΦL M is surjective for degL and degΛf > 4g + 5.

In §4, we calculate ΦL M for special curves. Theorem 4.2 gives a sharp
result on the surjectivity of Φ L M for an elliptic curve; one needs degL >
3 and degM > 7, or degL > 4 and degΛf > 5. One can compute
Φ L explicitly when one has an explicit basis of functions for H°(L) in
particular, if C is hyperelliptic and L is multiple of the hyperelliptic
pencil g\ , it is easy to compute the image of ΦL (Theorem 4.4). We
summarize other results in §4 in terms of the corank of the fundamental
map Φ ^ :

(1) corkΦ^ < 3# - 2, with equality iff C is hyperelliptic or g = 3 .

(2) If C lies on P 2 or a rational ruled Fn , and g > 4, then corkΦ^
> 9 .

(3) If C is trigonal (i.e., has a gι

3), with g > 4, then corkφ^ > 9 .

(4) There are curves of arbitrarily high genus possessing a g\ , and
with Φ^ surjective.

For (1), use that rkΦ L > 2h°(L) - 3 for any Gaussian (1.3.4), plus an
easy calculation on hyperelliptic curves; for the converse, one uses a local
calculation at a Weierstrass point (Theorem 4.6), which in general pro-
vides an upper bound for the corank of Φ^ from the corresponding gap
sequence. The key to (2) is the study of the cohomology of the restriction
map Ω^ -• Ω^ (Theorem 4.8). It is well known that trigonal curves lie on
normal scrolls (e.g., [1]), so (2) implies (3). The examples in (4) are con-
structed in Theorem 4.11 by studying curves on surfaces C{x C 2 , where
Ct are curves, and g{C2) > 2.

The reader should notice the use of four "concrete" methods to com-
pute Gaussians on curves. First, as mentioned above, explicit calculation
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is possible for Φ L when one has explicit functions in H°(L). Second,
surjectivity of ΦL M may be deduced from cohomological vanishing on
CxC ([3, Appendix], and (4.2) below). Third, if C is a smooth curve on
a surface X, and L is a line bundle on X, one can deduce information
about Φ^ (L = L ® ffc), via the diagram:

A2H°{X,L) -+

1
Λ2i7°(C,L) -+ ^

(This method is used in Theorems 4.8 and 4.11.) Finally, information
about Gaussians on Cx and C2 gives information about Gaussians on
curves C on Cx x C2 which are linearly equivalent to sums of fibers
(Theorem 4.11 and Corollary 4.13).

We mention two natural questions suggested by our work. First, one
should try to imitate the Koszul methods of Mark Green [4] to find a uni-
form treatment of the surjectivity questions for ΦL M and Φ^ L in §3,
without referring to [7]; in particular, as suggested in [9, (7.11.2)], one
should prove directly that ΦL K<S}L is surjective when degL > 2g + 3,
without using deformation theory. Second, one should study the stratifi-
cation of the moduli space of curves Jt by the corank of the map Φ^ .
In this direction we offer a Conjecture (which perhaps needs fine tuning),
which is true for X a K~3 surface (Theorem 1 above), rational ruled
(Theorem 4.8), or P 2 (Remark 4.9):

Conjecture. Let X be a regular surface (Hι((fχ) = 0). Then there is
a # 0 so that for every smooth C on X of genus > # 0 , one has

corankΦ^ > h (X, K~ ).

The alert reader will notice which arguments carry over immediately to
characteristic p Φ 2. It is a pleasure to thank Arnaud Beauville and Joe
Harris for numerous suggestions. Our research was partially supported by
National Science Foundation Grant DMS-8601544.

Added in proof. An idea of R. Lazarsfeld provides the surjectivity of
ΦL M when degL > 4g + 1 and degM > 2g + 2, and the surjectivity of
Φ^ L when degL > Ag - 3 and C is neither trigonal nor a plane quintic
(see the author's forthcoming article in the Proceedings of the Trieste Con-
ference on Projective Varieties, 1989). Some deeper work of Lazarsfeld
and L. Ein shows ΦL M is surjective when degL, degM > 2g + 4 and
deg L + deg M > 6g + 3. In a recent preprint, C. Ciliberto and R. Miranda
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(Gaussian maps for certain families of canonical curves) show the corank
of Φ^ for a general trigonal curve is g + 5 .

1. Basics on Gaussian maps

(1.1) For convenience, we always assume X is a smooth, projective
complex variety. If L is a line bundle and M is a coherent sheaf on X,
we define the kernel of the multiplication map as

&{L, M) = Ker(μL M: Γ(L) ® Γ(M) -> Γ(L® A/)).

Consider α = £/,. ® mf. G «^(L, Af). On an open affine (7 c ΛΓ, let L\U
have Γ as generator, and write /z = fiT(fi e Γ^f^)) locally on ί/. Then
define

Φ L 5 M : ^ ( L , M) -+ H°(Ωl

χ ® L 0 Λ/)

by

It is straightforward to verify that Φ is well defined and C-linear [9, 7.2].
In case M is also invertible, writing mi locally as g.S one has (more
symmetrically)

Since Λ2 H°(L) c 31 {L, L) (via lxAl2^ \{lx ® /2 - /2 ® /j)), the map
Φ L L gives rise to

where

As remarked in [9], ImΦ L L = I m Φ L , since Φ L L vanishes on

Keτ(S2H°{L) -H. //°(L2)).
(1.2) For a second description, let p.: X x Λ" —• X be the natural pro-

jections, Λ c l x l the diagonal, / = ^f(-Δ) c#XxX the ideal sheaf of
Δ, and «Δ the subscheme defined by In = <f(-nA). Let L and M be
invertible on X . From the exact sequence

we deduce

0 -• / ®p\L ®p*M -• p\L ®p[M -• /?*L 0/72^ ® ̂ Δ ~" °

(1.2.1) |i
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Then H°(XxX,p*L® p\M) c~ H°(X,L)®H°(X,M), and the multi-

plication μL M equals H° of the right-hand map in (1.2.1); thus,

3H(L, M) = H°(X xX,I®p*L®p*M).

The restriction map / —• I/I2 ~ Ω^ gives

H°(I®p*L®p*2M) -> H°(I/I2®p*L®p*M)
(1.2.2) || ||

31 {L, M) H°(Ωχ ®L®M)

and this map gives again ΦL M. From this description of ΦL M as a
restriction, we have the criterion

(1.2.3) ΦL M is surjective if Hι(XxX, p*L®p*M{-2A)) = 0. There-
fore, usual vanishing theorems give

(1.2.4) If L and M are sufficiently ample line bundles, then ΦL M is
surjective.

(1.3) We collect some general results about the maps ΦL M .
(1.3.1) [9, 7.5] ΦL M may be defined via the "Atiyah class", i.e., via

the sequence 0—>Ω* —> P —• <f —• 0 defined by the class of L.
(1.3.2) [9, 7.9] On Pn , Φ&{j) ^{s) is surjective for r, s > 0.

(1.3.3) (Cf. [8, 6.4].) If X c P " is a linearly normal embedding, L =
#x(l) 9 then ΦL is essentially the restriction

(1.3.4) Φ L : Λ2 H°(L) -> H°(Ωι ® L2) is injective on decomposable
vectors l{ Λ /2, hence

r a n k Φ L > 2 d i m Λ ° ( L ) - 3 .

(1.3.5) (Follows from [9, 7.5-7.7].) If X c P" is a projectively

normal embedding, L = &χ{\) and A = φ ^ = 0 Γ ( Z , Lm) is the cone,

then the /th graded piece of the local cohomology module Hi , (Ω^) is

CokerΦL L ,-i, for all integers /.

(1.3.6) [9, 7.7] Let C c P " be a projectively normal embedding of a
smooth curve, L = #c(l)9 and let A = φ^=0T(C, Lm) be the cone. Let

TA = module of first-order deformations of A,
oo

ωA = φ Γ(Λ^ ®Lm), the dualizing module of ̂ 4,
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Then for all j eZ , the dual of the / th graded piece of τ\ is

V-(j+\) — Tj *, A Gorenstein,

0 —• K_(7+1) —> Tj? * —• (ωA/mωA)_j —• 0 , Λ not Gorenstein.

For the proof of (1.3.4), note Φ(fΛg) = 0 implies d(f/g) = 0, whence
/ = eg, so / Λ g = 0 Φ L is therefore injective on decomposables. As
the decomposables in /\2 V form a subvariety of dimension 2 dim F - 3
(the cone over the Grassmannian), the codimension of the kernel of Φ
(= rankΦ) must be at least 2 dim V - 3 .

(1.4) Returning to the description in (1.2), let

31 μ., M) = H°(X xX,p*L® p*M 0 Ij), j>0.

Then {31 j) gives a filtration of ^?0(L, A/) ̂  H°{L) 0 i/°(M). Further,

since V <8> <fA = Ij/Ij+ι is isomorphic to Sym ;Ω^, there are natural
restriction maps

Φj: 31 μ., M) -». H°(X, L 0 M ® Sym7Ω^).

Note KerΦ;. = ^ ^ j . If M = L, then the involution of the factors of
XxX gives an involution on the 31 {'s; further, Φ ; vanishes on symmetric
forms for j odd, and on alternating forms for j even. This gives a
filtration for S2H°(L) and /\2H°{L). In particular, when X c PΛ is
linearly normal, L = ̂ ( l ) , Φ 2 induces a map

where I2 = Ker(S2H°(L) —• H°(L2)) is the space of quadratic forms on
PΛ vanishing on X this should be compared with the "second fundamen-
tal form" (e.g. [5]). We summarize by

Proposition 1.5. Let X be nonsingular and projective, and L and
M line bundles on X. Then there exists a natural filtration {31 j) of

H°(X, L) 0 H°(X, M), by "order of vanishing along the diagonal", whose

subquotients 3ίj/^j+{ are contained in H°(X, L 0 M 0 Sym7Ω^). //

M = L, the restriction of the filtration to S2H°(L) (respectively /\2 H°(L))

gives a filtration whose subquotients are contained in H°(L2 0 Sym7Ω^),

with j even (respectively, j odd).
Remarks. (1.6.1) If a group G acts on X such that L and M are

(/-bundles, then the spaces ^ ( L , M) are (/-modules, and the maps Φz

are (7-equivariant.
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(1.6.2) The maps ΦL on f\2H°(L) may be generalized in other natural

ways, e.g., to
k ι k

defined essentially by

Λ'-ΛdljΛ--Λdlk.

Comparing with (1.3.3), for X c Pn linearly normal, L = &x(l), this
map is the restriction

2. Generalized Castelnuovo's Lemma

(2.1) For the rest of the paper, C will denote a complete nonsingular
curve, L and M line bundles on C, and F a coherent sheaf on C.
We shall say a subspace of H°(L) is base-point free (or immersive) if the
corresponding linear system is base-point free (or defines an immersion).
We start with the "base-point free pencil trick".

Castelnuovo's Lemma (e.g., [1, p. 151]). Suppose H°(L) is base-point

free, and F is such that Hι(F ® L~ι) = 0. Then

μ:Γ(L)®Γ{F)-+Γ(L®F)

is surjective.

Proof. One may choose a two-dimensional subspace V c H°(L) defin-

ing a base-point free pencil. Therefore, there is a surjection V <g> @c —• L.

The kernel is invertible, and hence is isomorphic to L~{ , whence

0-+ZΓ 1 -> F<g>^ c -^L-+0

is exact. Tensoring with F and taking global sections give that

V 0 T(F) -* Γ(L 0 F)

is surjective, since HX{F ® L~ι) = 0, whence the result.
(2.2) In dealing with maps Φ L F of §1, it is natural to deal not with

base-point free pencils, but immersive nets; i.e., we consider V c H°(L)

of dimension 3 defining a local immersion C —• P 2 . The map ΦL induces

a homomorphism /\2 V —• //^Ω 1 ® L 2 ) , hence a sheaf map

(2.2.1) Λ 2 1 2
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Lemma 2.3. V c H°(L) gives an immersive net iff the map (2.2.1) is
surjective.

Proof. Choose a point P e C, a local coordinate t at P, and a local
generator Γ for the sections of L. Then a basis f,g,h of F may be
expanded formally near P as

with flf., bj, ckeC. The local immersion condition for V at P is exactly
the statement

(2.3.1) rk(αo Jo M = 2 .

But by definition one has

from which the lemma is easily deduced.
Lemma 2.4. Suppose V c H°(L) gives an immersive net. Define the

sheaf Q by

(2.4.1) 0 -> Q -• Λ 2 ^ ® ̂ c -" Ω 1 ® £ 2 "^ °

ΓΛ^π Q w locally free of rank 2, and sits naturally in a short exact sequence

(2.4.2) 0 - L" 1 -> Q -+ (K 0 L ) " 1 - 0.

/ Since β is torsion-free on a smooth curve, it is locally free (of
rank 2). One checks by computing ΦL that a global section of

H°{Q ® L) = Ker ( Λ 2 V Θ J/°(L) ^ ^ ( Ω 1 0 L 3))

is given by

(2.4.3) /Λg<8)Λ + gΛΛ(8)/ + ΛΛ/(8)g.

We claim that (2.4.3) is a nowhere 0 section of Q <g> L this will provide
a short exact sequence

0 - + ^ - + ρ ® L ^ Λ2«2 ® L) -• 0.

But Λ2(Q ®L) = /\2Q®L2. Via (2.4.1), Λ2 Q ~ {K ® L 2 ) " 1 , whence
one has

Tensoring with ZΓ1 gives (2.4.2).



86 JONATHAN WAHL

We return to (2.4.3), and show it is a nowhere 0 section of Q® L.
One first computes that a change of basis of V, via an invertible 3 ® 3
matrix A, changes (2.4.3) by detA. (In fact (2.4.3) is the image of an
element in /\3 V.) Now let P e C be a point, t a local coordinate,
and choose a local generator T for L and a basis f,g,h for V so
that f = T, g = tT9 h = t2p(t)T. A local section of Q is given by
afΛg + βgΛh + γhΛf (a, β ,γ local functions) for which ΦL is 0;
computing gives the condition

{a + βt2(tp' + /?) - y*(2p + *//)} dt®T®T = 0.

Thus, β is locally generated by

whence Q<S>L is generated locally by ^ (8) Γ and δ2® T. We now compute
the section in (2.4.3):

fΛg® t2pT + (<Jj + t2{p + tp)fΛg) ®T + (δ2- t(2p + tp)f/\g) ® tT

= (δι -h ίJ2) 0 Γ.

This section of Q 0 L is nonzero at P , whence the claim.

Remark 2.5. It is clear that a base-point free linear system contains
a base-point free pencil. Similarly (by projection), an immersive linear
system contains an immersive net.

Theorem 2.6 (Generalized Castelnuovo's Lemma). Let C be a com-
plete nonsingular curve and L a line bundle so that H°{L) defines an
immersion of C. If F is a coherent sheaf so that

Hl(F ® L~2) = Hl(F ® L~2 ® K~l) = 0,

then

is surjective.

Proof Let V c H°(L) define an immersive net, as in (2.2). This gives

the exact sequences (2.4.1) and (2.4.2). Tensoring with L~ι ®F and using
the

But

hypotheses, one sees Φ

K>V®H°

by naturality, this map

I\2V®H\L-\

L induces a

(L" 1 ®F)-

factors

S>F)->«$?(!

surjection

+ H°(K ®

,, L) ® H ®F)

—• t-si yju , r ) —• n yJ\. Q9 -i

Thus, the last map is surjective.
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Example 2.7. Let C c P 2 be nonsingular of degree d > 3, and let
L = @c{\). For which M — <fc(k) does one have ΦL M surjective?
Since Kc = @c(d - 3), Theorem 2.6 gives that ΦL M is surjective if

or k > Id - 4. On the other hand, the commutative diagram

> H°(Ωι

F2(k+l))

I-
> H°(Ωι

c(k+ 1))

has a surjective left vertical map and top horizontal map (by (1.3.2)); so the
surjectivity of ΦL M is equivalent to that of the restriction r. By the usual

calculation [8, 6.6], this again occurs exactly when Hι(&c(-d+k-rl)) = 0,
or k > 2d - 4. In this sense, Theorem 2.6 is sharp.

(2.8) In order to apply Theorem 2.6, we will need
Lemma 2.9. Let L, M be line bundles on C, and D an effective di-

visor. Suppose

(i) Φ L M is surjective;

(ii) H°(L) is immersive;

(iii) H°(L) 0 H°(M) -> H°(L 0 M) is surjective;

(iv) Hl(M) = 0.

Then ΦL M{D) is surjective. Further, the same conclusion holds if (in) and

(iv) are replaced by :
(iii)' &{L, M(D)) -> 31 {L, M(D) (8) 0D) is surjective.
Proof. First, consider (cf. [7, p. 46])

0 — H°(L) (g) H°(M) -^ H°(L) 0 H°(M{D)) - . //°(L) ® H°(M(D) ® Λ )
(2.9.1) I I I

0 -+ //°(L ® A/) -> //°(L ® Λ/(D)) -»> //°(L ® Λ/(Z)) <8) ̂ D ) .

Considering the snake diagram, it is clear that (iii) and (iv), or (iii)',
imply the exactness of

0 -> 31 {L, M) -+ ̂ {L, M{D)) -> ̂ ( L , Λ/(D) 0 #D) -+ 0.

Since degL > 0 and degM > 0, one has Hι(K ® L® M) = 0, hence an
exact diagram with vertical maps Gaussians:

I I I
// O (A: (8> L (8) Af) -H. //°(/i: (8) L ® M(D)) -H. / / O ( / : ® L (8) Λ/(D) ® 0D) -». 0
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The first vertical map, ΦL M , is surjective by (i); the third is surjective
by Theorem 2.6 applied to the finite support sheaf F = M{D) <g> ffD.
Therefore, ΦL Mi^D) (the middle map) is surjective.

3. Surjectivity of ΦL M for curves

(3.1) Our main results, Theorems 3.3 and 3.8 below, are derived from
Theorem 2.6 in the same way that Mumford's Theorems 6 and 7 of [7]
are deduced from the usual Castelnuovo Lemma. We imitate Mumford's
dimension-counting arguments, although we could instead quote Brill-
Noether results. We start with

Proposition 3.2. Suppose L is a line bundle of degree d > 5g + 1.
Then there is a divisor A of degree g + 2 such that

(i) hΌ(A) = 3, hι(A) = 0, and \A\ is immersive.
ι(ii) Hι(L®K-\

In particular, ΦL ^^Λ) is surjective.
Proof. To verify (i), it suffices to produce an A of degree g + 2 so

that for all P e C,

(3.2.1) h°(A) = 3, h°(A(-P)) = 2, h°(A(-2P)) = 1.

(This says \A\ has no base-points and separates tangent vectors.) So,
let A be any divisor of degree g + 2. Suppose that for some P e C,
h°(A(-2P)) > 1. By Riemann-Roch, hι(A(-2P)) > 0, so h°(K+2P-A)
> 0, and

or

Pg_2

-Pχ Pg_2.

Such an A involves at most g - 1 parameters (P, P{, , Pg_2) \ so> f°Γ

general A one has that for all P e C,

h°(A(-2P)) < 1.

Next, if h°(A(-P)) > 2, then hι(A(-P)) > 0, so h°(K + P - A) > 0,
and

Again, A depends on at most g - 2 parameters; so, for general A, one

has that for all PeC,

° 2.
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As deg A = g + 2, then h°(A) > 3; as h°(A(-P)) > h°(A) - 1 and
h°(A(-2P)) > h°(A(-P)) - 1, for general Λ one has (3.2.1).

Finally, hι(L®IΓι(-2A)) φ 0 implies h°(L'1 ® K2{2A)) φ 0. As
the degree of the last bundle is 6g - d, which is < g - 1 by hypothesis,
one again has that for general A such an H° is 0. This yields (i) and (ii).
The surjectivity of ΦL ^A, is a consequence of Theorem 2.6.

Theorem 3.3. Let C be a projective nonsingular curve, and let L and
M be line bundles with degL > 5#+ 1 and degM >2g + 2. Then ΦL M

is surjective.
Proof. Given L, find A as in Proposition 3.2, with ΦL ^,A) surjective.

As degM(-A) > g, we may write M{-A) ^ <f(D), with D effective. We
use Lemma 2.9 to deduce the surjectivity of Φ L ̂ + Z ) ) = Φ L M. First,

H°(L) is immersive (L is even very ample). Next,

H\L) 0

is surjective, by the usual form of Castelnuovo's Lemma (cf. (2.1), since
H\L(-A)) = 0, by degrees). Finally, Hι(ffi(A)) = 0, by the choice of
4̂ . This completes the proof.

Corollary 3.4. // degL > 5# + 1, then ΦL: Λ2 H°(L) -^ H°{K 0 L2)
is surjective.

Remark (3.5). In the Appendix of [3], the surjectivity of ΦL is proved
for degL > 4g + 5 , and Φ L M is surjective for degL, degM > Ag + 5 .

(3.6) We now turn to the surjectivity of Φ L ̂  , when C is nonhyperel-
liptic. Again, we need first a particular divisor A with ΦL ^^A) surjective.

Proposition 3.7. Let C be a nonhyperelliptic curve and L a line bundle
of degree > 5g + 2. Then there is a divisor A of degree g + 1 such that

(i) h°(A) = 3, h°(A) = 1, |Λ| is immersive.

(ii) i

In particular, ΦL^{A) is surjective.

Proof. Suppose an A as in (i) and (ii) is constructed. Then H\L(-2A))

= 0, by degrees; combining with (ii) and Theorem 2.6 gives the surjectivity
O f ΦL,&(A)

Let B be a divisor linearly equivalent to K(-A). Thus, degB = g- 3,
and we will require h°(B) = hι{A) = l. Writing B = P{ + + i^_ 3 , and
comparing with (3.2.1), we rewrite the conditions in (i) as: for all P € C,

We show that for general Pχ, , P 3 , the above equalities are satis-
fied. It clearly suffices to check the third condition. Suppose that for
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all P{, , Pg_3, there is a P with /z°(2P + 53 P.) > 2. Then one has a
(#-3)-dimensional family of divisors of degree g-\ and dimension > 2 .
In the notation of [1] (e.g., p. 176), one has dim Wg_χ > g - 3. But by
Martens' Theorem [1, p. 191], this can happen only if C is hyperelliptic,
contrary to our assumption.

Next, the condition hι{L®K~\-2A)) = 0 becomes

The line bundles considered have degree d < Sg - 8 - (5g + 2) - 2(g - 3) =

g - 4. If for all P. one had h° > 0, one would have

d i m W ° > g - 3.

But clearly d copies of C map onto W^ as ύ? < g - 4, one has a
contradiction.

Theorem 3.8. Let C be a nonhyperelliptic curve and L a line bundle
of degree > 5g + 2. Then ΦL κ is surjective.

Proof. Given L, choose A as in Proposition 3.7; then ΦL A is surjec-

tive. Now, h°(K(-A)) = hx(A) φ 0, so there is an effective D = K -A.

We will use Lemma 2.9 to conclude ΦL A,D) = ΦL κ is surjective. It

suffices to check (iii)', i.e., the surjectivity of

Via the diagram (2.9.1), with M = K(-D) = A, it suffices to show the

surjectivity of H°(K) ^H°(K® ffD) and H°(L) ® H°(A) ^H°(L®A).

The first map is surjective because H\K(-D)) = HX{A) -> HX(K) is an

isomorphism. The second is surjective by the usual form of Castelnuovo's

Lemma (2.1), because H\L(-A)) = 0 (by degrees).

4. Gaussians for special curves

(4.1) We start with C an elliptic curve; in this case, one has

ΦL:ΛV(L)-,//0(L2).

Theorem 4.2. Let C be an elliptic curve, and L and M line bundles.
Suppose either

(i) degL > 3 and d e g M >Ί,or

(ii) degL > 4 and d e g M > 5 .

Then ΦL M is surjective.
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Proof. Let (/, m) = (degL, degM). By Theorem 3.3, one has surjec-
tivity if / > 4 and m > 6. By Theorem 2.6, ΦL M is surjective if / = 3
and m > 7. It remains to verify the cases (/, m) = (4, 5) and (5,5) .

Assume degL = 4 write L = N®2. On C x C,

//°(/?;7V®/?*ΛΓ(-Δ)) = Keτ{H°(N)®H°{N) -> i/°(iV2))

has dimension 1, yielding a smooth curve £ on C x C . In fact, E =
{(P, β) G C x C|JV ~ tf(P + β)} Note E £ = 0, and E is nef
(i? is isomorphic to C) . If F is any fiber of p2, then F intersects
positively any irreducible curve not a fiber. Therefore, 2E+F has positive
self-intersection and positive intersection with any irreducible curve; by
Nakai's criterion, it is ample. Since KCχC =<fCχC , the Kodaira vanishing
theorem gives

\

If degΛ/ = 5, choose the fiber F over the unique point represented by
M (8) L~ι one then has

F)~p\L® p*2M(-2A),

and H{ vanishes. By (1.2.3), ΦL M is surjective. The remaining case
(/, m) = (5, 5) is similar.

Remarks. (4.3.1) The proof using C x C is very close to that of [3,
Appendix]. The cases (4, 5) and (5, 5) can also be derived from a di-
rect calculation, doing first the case of Φ ^ ( 5 P ) , using the Weierstrass p-
function to write down an explicit 10x10 matrix.

(4.3.2) Note ^ ( L , M) = 0 if / < 1. If /, m > 2, for ΦL M to

be surjective requires d i m ^ ( L , M) > dim H0(K®L<g)M) this happens
only in the cases of Theorem 4.2, and (3.6), and Theorem 4.4. By Theorem
2.6, the (3.6) case has Φ L M surjective unless M = L®2 Φ L Li is not
surjective because for a plane cubic

is not surjective. If L = M has degree 4, clearly ΦL L is not surjective,

as Φ L is not (dim Λ2 H°(L) < dim H°{K 0 L 2 )) .

Theorem 4.4. Let C be a hyperelliptic curve of genus g > 2, with g\

a divisor defining the hyperelliptic pencil Let L = @{ng\), n > 1.

(4.4.1) If I < n < g, then ImΦL = 2n - 1 in particular, corkΦ^ =
3^-2.

(4.4.2) Ifg+\<n<\g+\, then corkΦL = 3# + 2 - 2n .
(4.4.3) If n > jg + I, then ΦL is surjective.
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Proof. We may choose functions x e H°{&{g\)) and y e

l ) ^ 1 ) , such that y2 = p(x) (degp{x) = 2g + 2), and

(i) w < # implies J/°(L) = {1, x, , / } ,

(ii) n > g+1 implies //°(L) = {1, x, , xn , j ; , xy, , x ^ " 1 y) .

Then we have

(4.4.4) Φ ( J C ' " Λ x j ) = (j - i)xi+j~ι dx, 0<i<j<n,

(4.4.5) Φ(χy Λ xky) = (k- i)xi+k~ιy dx + χi+k dy,

0 < / << / < w, 0<fc<

(4.4.6) ( x V Λ jc 'y) = (/ - k)xk+i~ {y2dx, 0<k<l<n-g-l.

So, (4.4.1) is a simple consequence of (i) and (4.4.4) (note K = {g-\)g\).
We can count independent elements of Im ΦL because dx, ydx, and dy
are independent over polynomials in x , modulo relations derived from

(4.4.7) 2p(x)dy=p'(x)ydx.

Assume now n > g + 1. By (4.4.4) and (ii), ImΦ L contains

(4.4.8) jc'"έ/jc, 0 < / < 2 / ! - 2 .

Note that elements of type (4.4.6) are of this class, since xk+ι~ιy2 is a
polynomial of degree <(n-g-l) + (n-g-2)-l+2g + 2 = 2n-2. If
n = g + 1, it is clear there are n + 1 independent elements of type (4.4.5);
combining with (4.4.3) gives dimImΦ L = 3n = 3g+3, from which (4.4.2)
is easily divided. So, assume n > g + 2. If two different pairs (i, k) and
(/', A:'), allowed by the condition of (4.4.5), satisfy i + k = ΐ + k', we
deduce that xι+k~ιydx and xι+k dy are in I m Φ L . Such an (/', k') can
be found whenever l<i + k<2n-g-2, producing elements

(4.4.9) xJydx, 0<j<2n-g-3,

(4.4.10) Xs dy, l<j<2n-g-2.

The only excluded pairs (i, k) are (0, 0) and (n, n - g - 1) these give

(4.4.11) dy,

(4.4.12) -(g-i)x

2n-*-2ydχ + χ2n-g-ιdy.

If 2n - g - I < 2g + 2 (i.e., 2« < 3# + 2), then (4.4.7) imposes no
relations on (4.4.9)-(4.4.12), and one has

(2/i - g - 2) + (2/i - * - 2) + 1 + 1 = 4/i - 2# - 2
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independent elements from type (4.4.5). Combining with the {In - 1)
elements from (4.4.8) gives

dimImΦ L = 6n -2g -3.

But dim//0(K <g> L2) = g + An - 1 by Riemann-Roch, so the corank of
Φ L is as asserted in (4.4.3).

Finally, suppose 2n > 3g + 3. Then considering (4.4.7) one still has
independent elements

xJy dx,

xjdy,

x1 dx,

0

0

0

<j<

<j<

< i <

2n-

2g +

2n-

8-

1,

2.

3,

But a count shows these span H°(K <g> L 2 ) .
(4.5) We now turn to the question of the surjectivity of Φ^ , or rather

its corank. Theorem 4.4 included the computation for hyperelliptic curves.
More generally, we have

Theorem 4.6. // g > 4, then

(4.6.1) corankΦ^ <3g-2

with equality if and only if C is hyperelliptic.
Proof The inequality is given by (1.3.4), and the hyperelliptic case has

been computed in Theorem 4.4. Let P e C be arbitrary, let ω e Γ(C, K)
be nonzero at P, and let t be a local coordinate at P. Every global 1-
form may be written about P as ftω = (a^1 -\ )ω, where ai ^ 0 and
one may choose a basis as above, with 0 = b{ < b2 < - < b . Since

we see

(4.6.2) rankΦ^ > #{bt + bj\\ < i < j < g).

We have a chain of length 2# - 3 (reproving (4.6.1)):

(4.6.3) b{ -h b2 < b{ + b3 < < b{ + bg < b2 + 6 g < < 6 ^ -h 6g.

We show below that #{bi + bj\i < j} equals 2 ^ - 3 if and only if either

(i) g = 3,
(ii) g = 4,b} +b4 = b2 + b3,or

(iii) g > 5 , 6 | . = ( / - l ) 6 2 - ( /
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Assuming this for a moment, let C be a nonhyperelliptic curve of genus
g > 5, and let P e C be a Weierstrass point. Thus, h°(&(sP)) = 2, for
some s with 3 < s < g, and h°(&(iP)) = 1, 0 < i < s. By Riemann-
Roch we conclude

h°(K(-sP)) = * - j + 1 =

Therefore, in the notation above, bx = 0, b2 = 1, but bs > s, since the
5 th function is in H°(K(-{s - l)P)) = H°(K(-sP)). This contradicts
(iii) above, settling the g > 5 case. For g = 4, a nonhyperelliptic curve is
a complete intersection of a quadric and a smooth cubic in P 3 the map
Φ^ can then be shown to be injective by a calculation as in [8, 6.6].

Returning to the claim, choose 2 < / < j < g - 1, and replace part of
the chain in (4.6.3) from bχ + b. to b{ + bg (which has g + i- j terms)
by

bl+bj<b2 + bj<-'< bi + bj < bt + bj+ι < < ft. + ^ .

The new chain has the same length 2g - 3 as before, hence must be
identical to it. From this, assertions (i)-(iii) follow easily.

(4.7) Because every trigonal curve sits on a rational normal scroll, such
curves are governed by the following theorem.

Theorem 4.8. Let X = Fn = Proj(^ Θ 0{n)) -• P 1 be a rational ruled
surface and C c X a smooth curve of genus g > 5. Then

Proof PicΛf is spanned by the section H (with H1 — ή) and a fiber
F. The line bundle &{aH + bF) has a section iff a > 0 and α« +
£ > 0. Suppose C = aH + έ i 7 . Since C is smooth and irrational,
a = degree(C —• P1) > 2. The curve of self-intersection -n belongs to
\H - nF\ so, C (H - nF) = b > 0. One has an exact sequence

(4.8.1) 0 -> 0X{-1F) -* Ω ^ &X(

hence
Kχ = -2H + (Λ - 2)i\

Thus, standard cohomology yields

(4.8.2) Λ 0 ^ 1 ) = max(« + 6,9).

We also deduce

(4.8.3) 2g(C) -2 = na(a - 1) + 2{ab -a-b).
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If a = 2, then C is hyperelliptic, of genus g = n+b-1. Thus corkΦ^
by (4.4.1) is 3g - 2 = 3n + 3b - 5 , which is easily checked to be at least

h \ κ x

x ) x g > 5 .
Assume a > 3. We assert that if g(C) > 5, then with few exceptions

(4.8.4) Hl (Ωl

χ{2Kχ + 2C) <8> <?c) = 0.

In fact, tensoring (4.6.1) with 2Kχ + 2C and restricting to C, one finds

/ / V ^ t f ^ C - F ) = ^ ( ^ C ( 2 ^ + 2 C - 2 ^ + Λ F ) ) = 0 if 2a < 2g-2
and na + 2b < 2g - 2. Comparing with (4.8.3), one finds after simple but
messy calculation that the desired inequalities are fulfilled for all g > 5
u n l e s s : n = 0 , b = 2 , g = a - ί ; o r , n = l , b = 0 , a = 5 ( s o # = 6 ) .
The first case is hyperelliptic, so corkΦ^ = 3g-2> h°(Kx

l) = 9. In the
second case, corkΦ^ > 5 - 6 — 5 — (|) = 10 > h°(K~{) = 9.

We may therefore assume (4.8.4), whence

H°(Ωl

χ(2K + 2C)®@C) A H°(K®3) -+ Hl(K®2(-C)) -> 0

is exact. Since H°(X, KX(C)) - H°(C, Kc) (pg = Q = 0), by (0.1) we
see Φ^ factors via the map a above. So,

corkΦ^ > h\K*2(-C)) = h°(K~ι\c).

As h°{Kχ

{(-Q) = 0 (as a > 3), one has h°(Kχ

ι\c) > h°(K~ι). This
proves the theorem.

Remark (4.9). One can likewise easily compute that for a smooth plane
curve in P 2 of degree d > 5, corkΦ^ = h°(P2 ,K^l) = l0.

(4.10) We next show how to construct a class of curves for which Φ^
is surjective.

Theorem 4.11. Let Cz be a complete nonsingular curve of genus gt

(/ = 1,2), K. the canonical line bundle on C , and Zλ a divisor on C{

of degree dt. Suppose

(a) D. is very ample on Cλ.
(b) d . > m a x ( 0 , 4 - 4 * . ) .
(c) On Ci, K{Dt) is normally generated and ΦK{D) is onto.

(d) g2>2.

Let X = Cj x C 2 . Then the general element of the complete linear system

\p*χDχ+p*2D2\ on X is a nonsingular curve C for which Φκ is surjective,

and

(4.11.1) 2g(C) -2 = dχ{2g{ - 2) + d2(2g2 - 2) + 2dχd2.
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Proof. Since each D is very ample, so is P*Dχ + p\D2 c X, hence
the general C in the linear system is nonsingular. As Kχ—p\Kχ®p\K2,
the adjunction formula gives (4.11.1).

Consider as in (0.1) the commutative diagram:

/\2H°(X,Kχ(Q) > H°{X9Ω
ι

χ®K2

x{2C))

i
H°(C,K3

C)

The top map is onto by assumption (c) and Lemma 4.12 below. We show
Φ^ onto by showing the surjectivity of the right vertical map, which fac-
tors as

H°(Ωχ ® Kχ(2C)) A H°(Ωχ ® K2

χ(2C) ® 0C) 4 H°(C, K3

C).

The cokernel of a is contained in

(4.11.2) Hι(Ωι

χ®K2

χ(C))9

while the cokernel of β is contained in

(4.11.3) H\C9K
2

C(-C))\

we show both spaces are zero.
Since Ω^ = p\Kχ ®P^K2, (4.11.2) is equal to

H ι ( C χ x C 2 9 { P \ K ] { I \ I 2

which is 0 by the Kunneth formula and assumption (b).
Next, (4.11.3) is dual to

From

vanishing follows once we know h°(Kχ

ι) = hx{Kχ\-C)) = 0. That

h°(K~ι) = 0 follows easily from assumption (d). The other vanishing

follows from Kunneth and assumption (b).
Lemma 4.12. Let Xi be a smooth projective variety (i = 1,2) and

let Li be a line bundle on Xr with L( normally generated and ΦL :

Λ 2 / / 0 ( ^ , L() -> H°(Xi9Ω
ι

x O L2) surjective. Then the Gaussian of

p*Lχ<g)p2L2 on XχxX2 is surjective.
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Proof. Let φ. = Φ L and Ω] = Ωι

χ . One has a sequence of maps and

isomorphisms:

t\2H{X,xX2,p*lLl®p*2L2)-

^ΛV(I P L,)®SVI

—• H (X{, Ω ( <g> L χ ) ® S ϊ

®S2H\XX,LX)®H0{;

-> H°(Xι, Ω) O L]) ® H°

^H°(Xι xX2,p*(Ωj(g»J

r2,ί

(^2-

L 2)δ

{H\XX,

L2)φS2

^\®L2

2)

,L2

2)®H

L{)®H\X2,L2))

^{X^LJβrfH0

°(X,, L 2 ) <8> ^ ° ( X 2 ,

(X2,L2)

Ω>L 2

2 )

= H°(X{ x X 2, Ω ^ χ ; , 2 0 {p\Lχ 0/72*L2)
2).

The second map above sends

C/i ® gx) Λ (/2 0 g2) -> /i Λ/2 0 ( ^ ^2) + (/j /2) 0 gj Λ g2.

It is easy to check (using (1.1)) that the composed map is the Gaussian of
p\Lχ ®P2L2. The lemma follows easily.

Corollary 4.13. There are smooth curves C of every genus g = 5e + 2
(e > 6) for which Φκ is surjective, but which possess a g\ .

Proof In Theorem 4.11, let C{ = P ι and dχ = e - 1 > 5 and let

C2 have genus 2, and D2 = 3^2 (so, d2 = 6). Clearly, assumptions (a),

(b), and (d) are fulfilled, and normal generation is satisfied for Dχ and

D2 (one needs merely deg > 2^ -hi) . Any nonzero Gaussian on P 1 is

surjective (1.3.2); and the surjectivity on a genus 2 curve of the Gaussian

of K(D2) = <f(4g2) is given by (4.4.3). Therefore, Theorem 4.11 provides

a smooth C of genus 5e + 2 with Φ^ surjective. On X = Cx x C 2 , the

curve C has degree d2 = 6 over Cχ = P 1 , and hence possesses a £6*.
Remark (4.14). One can of course produce other examples in this

way of curves with Φ^ surjective. Using, e.g., gχ = 1, dx > 5 and
g2 = 2, d2 = 6, one gets #(C) = 6e + 1, e > 6. Similar constructions
easily produce examples for all genera g between 42 and 100, with eight
exceptions.
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