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BOUNDS FOR HYPERSPHERES OF
PRESCRIBED GAUSSIAN CURVATURE

ANDREJS TREIBERGS

Abstract

Apriori C° bounds are established for solutions of A. D. Alexandrov's
problem for prescribing the Gauss curvatures of hypersurfaces in Eu-
clidean space. For smooth hyperspheres, this corresponds to finding apri-
ori oscillation bounds for a certain homothety invariant Monge-Ampere
equation on the sphere. Conditions are given which are both necessary
and sufficient for the boundedness of the hypersphere. An example is
given which shows how far Alexandrov's original condition for the exis-
tence of solutions must be strengthened to estimate the bound.

Apriori C° estimate for A. D. Alexandrov's problem are established
in this work. By a convex hypersurface Mn of dimension n we mean
the boundary of a convex domain K containing a neighborhood of the
origin of Euclidean space E"+ 1 . Suppose Mn is given as the graph of the
unit sphere Sn about the origin with the radius function r: Sn —• R+ . A
coordinate map R: Sn -> Mn is given by R(x) = r(x)x . Let v: Mn -• Sn

be the Gauss or normal mapping. In general v(Y) is the set of outward
unit perpendiculars of supporting hyperplanes to Mn at the point Y. For
smooth M it is the normal vector. Let da be the standard measure on
Sn , and write \F\ for the da measure of a Borel set F in Sn . Let
On = \Sn\ and let d(x, y) be the distance function on SΛ . For a set F <z
Sn let Fn = {x eXn: d{x, F) < a} be the α-neighborhood of F. For
convex hypersurface Mn , \ιs(R(F))\ is a nonnegative, completely additive
function on the Borel subsets of Sn ([1], [4]) such that |i/(/?(S/l))| = On .
\v(R(F))\ is invariant under dilations of M. Alexandrov's problem is to
reconstruct the hypersurface from this measure (see e.g., [11]).

Theorem 1. A. If μ is a nonnegative, completely additive function on
Ω, the set of Borel subsets of Sn, such that μ(Sn) = On and, for some
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0 < a < π/2,

(1) μ(F)<\FJ for all Fed,

where Fn is the a-neighborhood of F, then any convex hypersurface Mn

satisfying

(2) μ(F) = \v(R{F))\ forallFeΩ

has the ratio of radii bounded

B. Conversely, suppose Mn is a convex hypersurface about the origin in
Euclidean space E" + 1 . If the radii of Mn are bounded in the sense that
ρ{Mn) < oo, then there exists 0 < a(p) < π/2 so that

(4) \ιs(R(F))\<\FJ for all Fe a.

If Mn were C 2 , then

W(R(F))\= ί Kda,
JR(F)

where K is the Gauss-Kronecker curvature of Mn . If μ is given by
integrating a function,

μ(F)= ί fda,
JF

then, from the expression for K , Theorem 1 gives apriori boundedness of
weak solutions (satisfying (2)) of the Monge-Ampere equation (e.g., [9])

(5) det(r\. + 2r,rj - rr,,) = f{x)r"-\r2 + \Dή2f+l)/2,

where ri and ri are the coefficients of the first and second covariant

derivatives of r in an orthonormal frame on S" (see [16]). Solutions of

(5) are also invariant under dilations r H-> kr.

A priori C° bounds for the similar reduced higher mean curvature
equations ([3], [5], [6], [10], [12]) all require additional decay assumptions
that preclude homothety invariance. Condition (1) is more akin through
Steiner's formula (27) to isoperimetric conditions on the solubility of the
nonparametric mean curvature equations (e.g. [8]). In a future application
of this work we will generalize our study [15] of the homothety invariant
reduced mean curvature equation.

The question of existence of surfaces satisfying (2) was settled by A.
D. Alexandrov [2], who also showed uniqueness up to dilation for such
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surfaces (e.g. [4, p. 30]). The existence of regular solutions to (5) was
shown for n = 2 by Pogorelov [13, Chapter VIII], and for general n by
Oliker [9]. Alexandrov's necessary and sufficient conditions that there exist
solutions to (2) is

(6) μ{F)<On-\F*\ {=\Fπ/2\) for all convex F c S\

where F* denotes the dual to F . (See § 1. There we check that (1) implies

(6).)

Alexandrov's condition does not give an apriori C° bound for convex
surfaces. p(M) can be made arbitrarily large by choosing, say, M to
be a sufficiently eccentric ellipsoid, or by moving M so that the origin
is sufficiently close to the boundary, whereas (6) holds for any convex
body with zero in the interior. In fact, the condition for boundedness
strengthens (6) in two ways. First, inequality (6) must be uniformly strict.
Second, the inequality must hold for more than just the convex subsets.
To see that this second restriction is necessary, we show in §3 that there
are a β > 0 and a sequence of convex surfaces Mi so that for each /,

(7) \i/(Ri(F))\<On-\F*\-β for all convex F c S\

but p(M.) tends to infinity.
In § 1 we list some facts about convex hypersurfaces and prove Theorem

IB. In §2 we prove Theorem 1 A. Making a finite version of Alexandrov's
argument, our proof depends on two elementary geometric results (Lem-
mas 2 and 6) about sets in the sphere which are interesting in their own
right.

1. Preliminaries and the necessity of the condition

In this section we collect some facts about convex sets. A reference is
[4]. If F e Ω is any set, let Cone(F) = {tX: X e F, t > 0} be the cone
generated by F . For any cone C c En+X , let C* = {X e E" + 1 : X Y < 0
for all 0 φ Y e C} be the dual cone. F* = (ConeF)* n Sn is the dual
angle. We check the equality in (6).

Lemma 1. Suppose F c Sn is a convex set. Then \Fπι2\ = On - \F*\.

Proof. By definition, inX(F*) c SΛ - Fπ/2. Since F* is convex [4,

p. 25] the result follows from \ΘF*\ = 0 (e.g. [7, pp. 271, 280]).

Corollary. // μ satisfies (1) for some 0 < a < π/2, then it satisfies
(6).

By homothetic invariance, we may assume that M satisfies 1 < r < p,
In essence we utilize the fact that the unit ball about the origin t7j (0)
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is contained in K. Alexandrov's condition depends only merely on the
origin being in K .

Proof of Theorem IB. For a convex hypersurface Mn about the origin
such that p{M) < o o we claim condition (4) holds for a = cos~\p~ι)
(< π/2). To see this it suffices to show that v(R(F)) = \J{u(R(x)): x e
F} c Fn. Choose x e F and z e u(R(x)). Since z is an outward
normal of K, we have z (R(X) - p) > 0 for all p e U{ . By choosing
z = p we find r(x)z x > z z = 1 so that d(z, x) = cos - 1(z x) <
cos" {p~l). q.e.d.

We define the support function to be used later. Let K cRn be a convex
body. Let φ e S"~ι c R " denote both a coordinate in the standard unit
sphere and a unit vector of Rn . The support function p: S" —• Rn is the
distance of the supporting plane in the φ direction to the origin,

(8) p(φ) = sup{χ.φ:xeK}.

In particular, \p(φ)\ < diam(A^), where the diameter of a set is the maxi-
mal distance between pairs of points in the set.

2. Proof of Theorem 1A

In the first part of the proof we show that there is a direction in which
K has linear growth. Let Ls θ = {X e En+ι: X - θ = s} be the hyperplane

in En+ι normal to θ, and a distance s from the origin. Let Hs θ =
(J{Lσ θ: σ < s} be a halfspace which it bounds. Let Ks θ = Ls θ n K.
We show that for some θ0 the diameter satisfies

(9) diamA^fl < c2 + c3s,

where c2 and c3 depend only on a and n.
To see this let β = a/2 + π/4 and let the open geodesic ball

^ ( ( - 1 , - , •• , 0 ) ) c S \ By (1) applied to S " - ^ and using [4, p. 26],
we obtain

W(R(Bβ))\ = On- \u(R(Sn - Bβ))\ > O n - \Bβ_J) = c 4 > 0 9

where c4 depends only on a and n . To show that Bβ contains a useful

concentration of curvature we apply

Lemma 2. Let F c S " be a Borel set with \F\ > μ > 0. Then there

are n + 1 points xi e F in an open hemisphere of Sn whose convex hull

T contains a geodesic ball Bε(θ) with ε = c5(n)μn > 0.

Proof Let Bπ/4 be a fixed ball in S" and {ŷ•: j = 1, , N} be a

maximal set of points in Bπ/4 such that d{y., yk) > 4δ for all j φk and
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for some sufficiently small δ to be chosen later. By maximality, (J B4δ(y)
is a cover of Bπ/4 . Hence N\B4S\ > \Bπ/4\ so there is a constant cβ(n) > 0
so that

(10) N>c6δ'n.

Let C = \Jj Bδ{yj). Let G be the group of isometries of Sπ , and dG the
invariant unit measure on G. By Brother's Poincare formula [14, p. 277]
there is a cΊ(n) > 0 such that

\FΠgC\dG = cΊN\F\\Bδ\.

Hence, for some motion, say g = id, by (10)

\FnC\>c,μ,

where cg depends only on n. Thus there are at least k balls {Bδ{y.t)}

so that \Bδ(yy) Γ\F\ > 0, where k\Bδ\ > c 8μ. On the other hand not

all Bδ(yjf) lie in a 3δ neighborhood of any great S""1 in Bπ/4 because

otherwise

csμ<k\Bδ\<6δOn_{,

which is a contradiction for the choice δ = Λc%μ/On_x .
By construction there are points Xy eBδ(yjt)Γ\F which are pairwise 2δ

apart. Now we show the existence of the desired n + 1 points by iterating
m, the number of points chosen. For m = 2 take any two JC ./ 's. We
may put ε{ = δ . Suppose m points have been chosen which lie in some
great Sm~ ι and whose convex hull contains a B' = B (θm_ι)ί)Sm~ι

for some θm_{ e Sm ι . Not all Bδ(yjt)
9s lie in a 3δ neighborhood

of this S m - 1 . Hence there is an xm in such an outlying ball so that

d(Sm~\ xm) > δ. Let γ denote the geodesic segment from θm_{ to

xm , and q any point of Sm~ ! - {θm_{}. Let θm be the midpoint of

γ and sinεm = .5sin(5sinεm_1 . Then the ball B'm - Bε (θm) Π S W is

contained in the convex hull of B'm_χ and xm, where Sm is the great

sphere containing S"7"1 and xm . Let q be the point on the geodesic
extending the ray θm_{q closest to xm. Let a be the angle from γ to

the ray. By the law of sines restricted to the great S2 containing the ray
and the segment,

sin a > sin a sin d(xm, θm_x) = sin d(xm, q) > sinί.
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We show that B'mnSm~ι is empty. To see this, let q e Sm~ι be the closest
point to θm . If q = θm_{, then, by the definition of εm , d(q, θm) > εm .
Otherwise, as before,

sin d(θm, q) = sinαsin d{θm_{, θm)

> \ sin δ > \ sin δ sin εm_ {,

andapply the triangle inequality. To see that B'm is in the convex hull of

B'm_χ and xm , assume to the contrary that there is a geodesic ζ through

xm which meets B'm but not B'm_{. Let y e ζΓ\Bf

m be the closest point

to θm and let </> be the angle from ζ to γ. By the law of sines for the

triangle yxjm,

{xm, θm_{) < sin0sin d(θm , xm) <s inε m .

On the other hand, letting q = ζn Sm~ι φ B'm_χ and b be the angle
xmqθm-ι and noting the symmetry of the a estimate in q and θm_χ

yields

w 1 w _ 1 < sin d{θm_x, xm)s\nφ,

a contradiction. When m = n the iteration stops with θ = θn and
ε = εn . q.e.d.

To resume the proof of Theorem 1 A, apply Lemma 2 to the set v{R{Bβ))
C Sn with measure at least c4 to show that it contains n + 1 points z. in
v(R(Bβ)) whose convex hull contains a ball Bε(-Θ), where ε is positive
and depends on c4 and /?. AT is contained in the supporting half-spaces,
i.e.,

κ c Γ Ί ' W z , c ^ +Cone(Γ)* c l/,2 +Cone(J9e(-0))*,
ι=0

where -f is Minkowski addition of sets, and sup{r(jcf.): / = 1, •• ,
Λ - 1} < c2tan)ff, since all the supporting planes intersect Cone(Bβ) n
^ i (-1 o o) Thus in the θ direction, K has linear growth bounded
by c2 and c3 = cot(ε). In particular diam(Λ^ , θ) < c9 = c2 + c3.

In the second part of the proof, after rotating the coordinate axes so
that θ is in the x{ direction, we show that K has finite extent in the x{

direction. For simplicity, denote Ls = Ls θ, Ks = LsΓ)K and Hs = Hs θ .

Since K - Hs is convex, Fχ = RΓX{KS) is convex in Sn . Applying (1) we
find

< \(FS)J.
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To go further, let p(s, φ) be the support function for Ks in Ls as in

(8). If we denote the spherical coordinate φ e S""1 c Ls, then {X e

Ls: X φ = p(s, φ)} is the supporting plane to Ks with outward normal

vector φ. Consider the convex hull Ws t of Ks and Kt in E"+ 1 for

s < t. We wish to compute the total curvature of the right half of Ws t,

namely, Q = d Ws t - H^t)/2. In order to do this, note that given φ,

the supporting plane to dQ has a normal vector which defines the angle

a(Φ),
φ-ΘA . .

(11) n = \ = φ sm a + θ cos a,
V I + Δ 2

where Δ = (p(s, φ) — p(t, φ))/(s - t). If { denotes the Gauss map for

n '\ξ(Q)\ = \{eχpθ(sφ): 0 < s < a(φ) ,φe&
(12) r MΦ) n_{

= / sin sdsdφ,
Js"~ι Jo

where we have used (s, φ) as polar coordinates for Sn about θ and
exp0 as the exponential map from the tangent space to SΛ . We substitute
u = cos s to find

\ξ(Q)\ = ί

2On- [ fn(cosa)dφ,

where

Jo
By convexity and using hypothesis (1), for any a < β < π/2 we have

(13) | ί(β) | < \v{M - Hs)\ < \(R~l(M - Hs))β\,

which may be computed like \ξ(Q)\ by viewing 5 = 0 and "p(0 , φ) = 0 ".
Hence

(14) \{R-\M-Hs))β\ = \θn- ί fn

since Fs is convex on SΛ . Now substituting (11), (12), and (14) in (13)
and letting s —• t- , we obtain

( j ) - C™β\ll " S2 (f
of p(s

(16) g(u) =

where ps denotes the left derivate of p(s, φ) and

u
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By (9), u = p/s satisfies \u\ < cl0 = max{c9, tanα} whenever s > 1. We
may simplify the right side by a pointwise inequality.

Lemma 3. For m > 0 there is a γ(m), 0 < γ < π/2, so that if
\u\ < m, then

(ύny)g{u) - cosγyj 1 - g 2 ( u ) < g((l - ε χ ) u - e 2 ) ,

for g given by (16) and for any constants 1 - ε{ > sin γ and ε2 < cos2 γ.
Proof Define 0 < γ < π/2 by g{m) — sin 7 . For u > 0, by concavity

and Lip(g) < 1, we have

hy(u) = (sin γ)g(u) - cos γyj 1 - g2(u)

< g(usinγ)-cos2γ < g((l -εx)u-ε2).

If u < 0, then by writing g(u) = - sin 2, 0 < z < 7, hγ = - cos(y - z)
and the result follows from the trigonometric inequality

g~ (hγ) = -cot(y - z) < - t a n z - cot7 < (1 - ε{)u - ε2. q.e.d.

By Lemma 3 there is a γ(cι0(a, n)) > a so that (15) becomes

(17) h

for any 1 - ε{ > sin γ and ε2 < cos2 γ .
We now show Ks = 0 for some 5 < 5j, with ^ large and depending

only on n and a (to be described). Suppose this were not the case. Then
Mn must contain a long midsection in which it is nearly conical. This is
first shown in an L sense.

Lemma 4. Let p{s, φ) be the support function for the sections Ks of a
convex body 0 e K as in (8), with p{\, φ) < c9. Let

Then for all δ > 0 there exists s{ (δ, c9) 50 //zatf // P(s) > 0 ^ r 1 < s < s{

then for some sQ, 1 < sQ < 2sQ < s{,

(18) (l-δ)P(so)<P(2sQ).

n~ιProof First observe ps < p/s . Fixing φ eSn~ι , consider the orthog-
onal projection K1 of K onto the (θ, φ) plane. Since K1 is still convex
and p(s, 0) is the distance from sθ to <9#7 in the φ direction, we see
that rays from the origin pierce outwards any secant of dK', (s, p(s, φ))
to (t,p(t,φ)), s <t. Hence in the notation of (11), A<p/s so P < 0.
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Changing to s = 2ι and u = logP we still have ut < 0. If P(t) > 0 for
0 < t <2T + 2 then we have P(s) > 1/2 for s < T + 1, since P(s) is
independent of the choice of origin of Ls, and K contains the convex
hull of Bx (0) and a point in K2T+2. But P(s) is absolutely continuous,
so

rT+\ \T] ri+{

logu{0)+\og2>u{0)-u{T+\) = - / ut(x)dx>-J2 / ut{x)dx,
Jo / 0 J/

rT+\

J2 /
o / = 0 J/

where [Γ] is the greatest integer function. Hence for some /',

u(ι )-u(ι -f 1) <

The result follows if we set s{ = 4(2c9On_ι)
2/s . q.e.d.

Next we show that a long body K is nearly conical at ΛΓ in measure.

In Lc , by convexity, the two convex sets satisfy K, = AAΓ7c C KΊ = ΛΓ

where we mean the Minkowski multiplication of sets in Ew + 1 . The support
functions qi for ^ satisfy

Q\(Φ) =

By (9), 1̂ 1 < sQc9. We need to deduce from (18) that the support func-
tions are close in measure.

Lemma 5. Let Kχ c K2 c Bm(0) c R" be two convex sets. For all
e > 0 there is a δ(ε, n) > 0 so that if

f q,{φ)dφ>(\-δ)( q2(φ)dφ

n-lfor the support functions qi of Ki as in (8), then there is a set F c S
H - l

\F\<ε, such that for all φeSn~ -F,

q{(φ)>(\-ε)q2(φ)-2mε.

Proof Let F = {φ e S"" 1 : qx{q) < (1 - ε)q2{φ) - 2mε) . Then

δθri_.m >δq?> q2- q*>ε 2m + q2> \F\εm.

The lemma follows by choosing δ - ε /On_ι . q.e.d.

Thus there is a set F c S " " ' , \F\<ε and such thai

(19) {-p(2s0 ,φ)>(l- ε)p(s0, φ) - 2εcgs0
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for all φ E Sn~ι -F and any ε with corresponding δ and sx . Hence for
φ φ. F , by convexity and (19) we may estimate

Pλh, Φ) > «*..*>**,.*> > (,. 2 e ) e ^ Λ _ 4ecr
so so

Finally, there is a positive lower bound

for \u\ < c9 + 1 . Since \p/s\ < c 9 a n d \fn° g\< 1 ,

, /„ o ίίp,) > / s π_,_ f /β o , ((1 - 2ε)f - 4εc9) -

provided that 4εc9 + ε /cχ { < 1. Now choosing ε depending only on

a and ft so small that 1 - 2ε > siny, 4εc9 + ει/2/cu < cos2 γ and

4ε < (On_{ - ε)ε 1 / 2 , we get a contradiction to (17).

3. A counterexample to boundedness

The estimate of the bound in Theorem 1 requires that Alexandrov's
condition be strengthened in two ways, by making the inequality uniformly
strict and by requiring that the condition hold for more than the convex
sets. In this section we given an example which shows that making the
inequality in Alexandrov's condition strict by itself does not provide an
apriori C bound. We begin with an estimate of the width of a convex
set in S2 in terms of its area.

Lemma 6. Suppose F c S2 is a convex set. Let D be the diameter of
F. Then there exist vχ, v2 in S 2 , d(v{ ,v2)=λ,so that the lune

(20) Vλ = {xeS2: xυ{ <0,xv2 > 0} D F

provided that

(21) \F\<λtan\D
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or

(22) \6π\F\<λ2.

Proof. Choose x, y in the closure of F , which realize the diameter.
Extend the geodesic γ from x to y to a semi-great circle £.xy/ centered
at the midpoint of γ. Consider the smallest lune Vλ with vertices e,
/ containing F. Let Vχ, be one of the components of Vλ - γ, and z
a point of contact between d Vλ, and F not on γ. Ĵ / is divided into
three disjoint geodesic triangles T = xyz, Tχ — exz and T2 = fyz.
Let the lengths rf' = d(e,x), dχ = d(e, z) and d2 = d(z, / ) . We
have 2d' + D = d{ + d2 = π. By the triangle inequality ^ > d' since
π - dt = dz_i <d'-\-D — π-d'. To estimate the area of T in terms of
A' we appy the area formula for spherical triangles to find

(23) s in/ cot {\Tt\ = cot { d! cot \ di + cos/.

Supposing dχ < d2< π - d' we find using (23) that \T2\ < λ'. Hence we
may estimate

(24) \T\ = \Vλ,\ - \TXI - \T2\ > λ' - 2cot"1(cot \ d'cot \ d{ esc/ + cot/) .

For ε, λ > 0, using the concavity of sin[(l +ε)λ/(2 + ε)] and calculus one
finds

1 + ε + cosΛ, / λ
> cotsinλ

Applying this with 1 +ε = cot \ d' cot \ d{ to (24) and using df = (π-D)/2
and dχ < π/2 yield (21) after summing both sublunes of Vλ . Since some

ball BDD F we have

Combining this with tan \D > \ sin \D in (21) gives (22).
Theorem 2. There are a positive β and a sequence of convex two-dimen-

sional surfaces Mf about the origin for which the bound on the ratio of radii
(3) satisfies y9(My) —• oo as i —• oo but for all i,

(25) \i/.(Ri(F))\<O2-\F*\-β for all convex F c S2.

Proof We show the condition is satisfied by surfaces of rotation M{

given for each positive integer i by rotating about the x-axis:

if 0 < y < i and x = - 1 ,

if - 1 < x < 0,

I) 2 - jc2 if 0 < J C < / + 1.
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For these surfaces, p(M() = / + 1 . In general, the same argument will show

that if M is any convex hypersurface which has a planar neighborhood

about some Y e M, then Mi = M - X{, where Xi is a sequence tending

to Y in En+ι , also satisfies (7) but pi: —• oo . The differentiability provides

the convenience of an absolutely continuous Gauss map so

0. For convex F eS2 we have by Lemma 1,

(26) \F*\ = O2-\Fπ/2\.

Next, by Steiner's formula for space forms [14, p. 322],

(27) \Fκ/2\

where / is the length. The isoperimetric inequality on spheres [14, p. 324]
is

(28) l{dF)2 > 4π\F\ - \F\2.

We shall establish for some β > 0, but independent of /, and for J(u) =

vAπu - u2,

(29, w-H*wn(-

<2π + J(\F\) - β for all convex F e S 2 ,

which by (26), (27) and (28) is sufficient for (25).
We decompose sets into the disjoint union F = F~ UF+ , where F~ =

F Π {(x, y, z): x < 0} . For the rest of the proof, let μ = \F\. If H is an
open half-space bounded by a plane containing the x-axis, by rotational
symmetry, the Gauss images v(M n H) = S2 n H. Consider various cases
of convex F in S depending on the area.

If μχ = π(2 - Λ/3) < μ (< 2π), there is some half-space H bounded
by a plane through the x-axis so that one of {H Γ\F± , F± - H} is null.
Hence I(F) <?>π = 2π + J(μ{) <2π + J{μ).

In case μ < μ2 = π(2 - y/ϊ), writing the convex set F = F+ U F~~
we claim if (29) holds for F~ , then it also holds for F . Using (29) and
ί/? ί f+\ κi da. = μ+ - \F+\ we conclude

(30) 2π + J(μ+ + μ~) - / κ da- > J(μ+ + μ~) - μ+ - /(//").

Under the hypothesis μ < μ2 the right side of (30) is nonnegative, proving
the claim.

Now if 0 < μ3 < μ < μ2 , then I(F~) < 2π < 2π + J(μ3) <2π + J(μ).
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Finally suppose μ < μ4 - π/64. By Lemma 6, F~ is contained in a
2 \ -

lune Vπ/2. The support of the curvature in (S ) is contained in a band

of width cot" ι i about the x = 0 great circle. If the axis of the lune
coincides with the x-axis, then I(F~) < I(V~,2) < τr/2. Otherwise, let P
be a plane containing the x-axis and vertices of Vnf2 . If F π / 2 is on one
side of P, then I(F~) < I(V~2) < π, because P cuts the band in half.
If not, since the lune is on both sides of P, one of the faces of the lune
makes an angle of at most π/4 with P, thus avoiding the band of support
at distances from P greater than π/4 on this side of P. In particular, if
/ > 2, the band width is small enough so that π/4 of the band remains
untouched by the lune. Hence I{F~) < I(V~2) < \π < 2π. Since each
of the cases overlaps if μ3 < μ 4, we may extract a β for (29).
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