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ESTIMATING ||rfp'|| FOR UNIT VECTOR FIELDS
WHOSE ORBITS ARE GEODESICS

H. E. WINKELNKEMPER

Introduction

In the following, all manifolds, vector fields, etc., will be assumed to be
real analytic. Let M be a connected, ^-dimensional, complete riemannian
manifold, and v a unit vector field (i.e., \υ\ = 1) all of whose orbits are
geodesies of M (i.e., Vυv = 0).

Although it is perhaps not really necessary, we also assume that not all
orbits of v are closed, otherwise, by Wadsley's Theorem [11], there exists
an Sι-action on M with the same orbits as v , and our problems should
probably be studied in that context.

At each point x e M define eχ = max{|Vzi;|
2 - Kzυ) , where z ranges

over all unit vectors z eTχM perpendicular to v here Krv denotes the
sectional curvature of M at x with respect to the 2-plane spanned by z
and v .

Let φ* be the flow generated by v and, for each x e M and any t > 0,

define E t = maxe , where y ranges over the orbit interval [φ~ (x),

Theorem II. Assume x e M is such that eχ >0 (for example, at x
suppose Kzv < 0 for some z as above). Then for any unit vector u eTχM
and all t > 0 we have

\dφ\u)\2 + \dφ~\u)\2 < 2cosh2

Examples, (i) In the (trivial) case when v is also a Killing vector field,
it is easy to see that eχ = 0 and our inequality is sharp in this case (see
§5).

(ii) If v is the geodesic flow on the unit sphere bundle SM2 of a surface

M2, and we consider the curvature as a function K: M -» R, then at the

point x = (y,ξy) of SM2

2ex = (K- I ) 2 + [(K2 - I ) 2 + (dK{ξ))2]1'2 > 0
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and the above inequality holds with the corresponding Eχt (see §5).
Theorem II is an immediate corollary of a sharper inequality (see The-

orem I, below) which however involves terms depending on dφι on the
right side, i.e., 'dynamic' terms, which do not seem to have an immediate
'static' expression like the quantity eχ above.

We also obtain a lower bound (see Theorem III of §4) from which as
an immediate corollary we obtain

Theorem IV. Let eχ = min{-Λ^} where z ranges over all unit vectors

perpendicular to v , and let E' = mine ' , where y ranges over the orbit
xi y

interval [φ'y^t(x)9 φ^'ix)]. If Ef

χt > 0, for any unit vector u e TχM
and all t > 0, then we have

\dφ\u)\2 + Idφ'^u)]2 > 2 cosh2

Notice as a corollary, via the Liapunov exponents, one obtains bounds
on the entropy of φ*.

We thank K. Grove and the referee for helpful comments.

1. Statement of Theorem I

Denote by D the diagonal of M x M (with the product riemannian

metric). On M x M define a unit vector field V{χ^y) = 2~{/2(vχ, -vy),

and let φ* and Φ' be the flows generated by v and V on M and MxM,
respectively.

Given x e M and t we define a real number as follows:

ext = rψ{\VΎV\2 - % F - \β(Z, V)\2},

where Z = dΦt{Z)/\dΦί{Z)\ with Z e T{χ χ)D, β(Z, V) is the orthog-

onal projection of V^-F into the «-plane dΦ^T^ χ)D), and Kjv is the

sectional curvature of MxM at Φ*(x, x) with respect to the 2-plane
generated by Z and V.

Define Ext = max eχτ for τ e [0, t] and assume Έxt > 0.
Theorem I. For any x e M and any unit vector Z e T{χ χ)D we have

\dφ\Z)\ < coshtχ/Έ~tforall t\i.e., since Φ' = (φt/V2, φ't/V1), for every
xt

unit vector u e TχM we have

,2\dφ\u)\2 + \dφ t{u)\2<2co^2tχ]2Eχ^t for all t.

Theorem II is obtained by simply dropping the β term above.
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The number ext can also be obtained as follows: Given x e M let
{6Z} be any (not necessarily orthonormal) basis of TχM. Then for each
real t define a n / i x n matrix Bt by

and set 33t = Bt + B_t. Thus 2eχ ί is equal to the maximum eigenvalue

Our proof of Theorem I simply consists of applying a version of the
Rauch Comparison Theorem (as stated on p. 188 in [3]) to orbits of the
vector field V suitably "lifted' to the graph, <ΰ(υ), of the 1-foliation de-
fined by υ on M (see §2).

The number eχt is the maximum of the negative of the sectional cur-

vature at Φ*(x, x) of 0 with respect to all 2-planes containing V.

2. The associated vector field V

In this section we substitute the study of v on M by the study of an
intimately related vector field Ύ defined on the so-called graph, 0 = <8(i;),
of the 1-foliation defined by the vector field v. Ύ will also be a unit
vector field whose orbits are geodesies of 0 , but in addition it will be
the gradient of a certain riemannian submersion δ: 0 —• R. Although
perhaps this change of scenario is not so interesting in a purely topological
way, it is nontrivial in the differential geometric sense.

Recall (see [12], [9]) that 0 = e(v) consists of all triples (x, y, [a]),
where x and y lie on the same orbit, y, of v , and [a] is an equivalence
class of arcs a contained in γ two arcs a, β are equivalent if the (folia-
tion theoretic) holonomy along aβ~ι is the identity. Hence, if v has no
closed orbits as a set, 0 simply consists of the subset {{x, y) e M x M\x
and y lie on the same orbit of v} 9 and it is convenient at first to go
through our arguments by assuming this is the case.

If the holonomy of υ is real analytic, then 0 is an (n +1)-manifold in a
natural way [12, p. 62], and one has a canonical immersion /: 0 —• MxM
defined by I((x, y, [α])) = (x, y) and two submersions p{, p2: 0 —• R
defined by pχ {{x, y, [a])) = x and p2((x, y, [α])) = y .

We make 0 into a riemannian manifold by requiring that / be an
isometric immersion, i.e., we pull back the product metric of M x M via
/ .

Notice that the diagonal D (of M x M) is a totally geodesic submani-
fold of 0 .
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FIGURE 2.1

Proposition 2.1. If the orbits of v are geodesies, then this riemannian
metric of <ΰ(v) is complete for complete M.

Remark. It is necessary that the orbits be geodesies.
Consider the one-foliation of R2 shown in Figure 2.1. The sequence

zn = (χn ' yn)
 e ® shown is a divergent Cauchy sequence in <S , since the

limits x and y lie in different orbits.
Proof of Proposition 2.1. Let (JCΠ, yn, [an]) be a Cauchy sequence in

(5. Then it is easy to see that xn and yn are Cauchy sequences in M,
which converge to x and y respectively, since M is complete.

It is enough to show that x and y lie on the same orbit, and for this
to happen it is enough to show that the lengths of the orbit segments sn

from xn to yn remain bounded for all n .
Let an(t) and bn(t), t e [0, 1], be two smooth arcs in M from x0

to xn and y0 to yn, respectively, such that for all t e [0, 1], a(i) and
b(t) lie on the same orbit, and let Σ denote the two-dimensional surface
of M consisting of the union of the orbit arcs st from a(t) to b(t) for
all t e [0, 1] (see Figure 2.2). Let w be the dual 1-form of v . Then (see
Wadsley [11, p. 542]) dw{ , υ) = 0, and so dw = 0 on the 2-plane fields
tangent to the surface Σ.
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X

FIGURE 2.2

Applying Stokes' Theorem we obtain

/
w + w + w + w = dw = 0,

Λo Jsn Jb Jl

which shows the lengths of the orbit segments sn are bounded for all n
and Proposition 2.1 is proved.

Proposition 2.2. If not all orbits of υ are closed, then no closed orbit y
can have {foliation theoretic) holonomy of finite order.

Proof} Let φ\x) denote the flow of υ . If yχ , of length c, were such
an orbit, it would follow from Wadsley's proof [8, Corollary 4.4 and the
fact B{ = 0 ] that φc(x) is the identity in a neighborhood of yχ and
hence, since v is real analytic, it is the identity on all of M, i.e., all orbits
would be closed and of length c.

Let F denote the unique Cω vector field of (5 defined at (JC , y, [a])
by dp^iV) = vj\[2 and dp2(V) = -vy/\/2, where px and p2 are the
natural projections of (5 into M, i.e., dI(V) = V.

Proposition 2.3. There exists a riemannian submersion δ: 0 —> R such
that F = grad£.

Proof Let U be a neighborhood of the diagonal D in M x M which
is so small that the function δ0: U —• R defined by δo(x, y) = oriented

1 We thank Y. Carriere for this short proof.
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FIGURE 2.3

distance in M from x to y (with respect to the orientation of v) is well
defined. By the Gauss Lemma applied to D, the gradient of δ0 coincides
(up to sign) with the vector (uχ, -uy)j\fΐ of M x M at (JC , y), where
uχ and uy are unit vectors of M tangent at x and y to the unique
minimizing geodesic segment of M from x to y (see Figure 2.3).

Let Uo denote a small enough neighborhood of D in 0 . Since the
orbits of v are geodesies of M, the vector field V of (3 restricted to {70

coincides (up to sign) with the gradient of the function δ = δQ I: Uo-> R,
where /: 0 —• MxM is the natural isometric immersion. Since the orbits
of V are geodesies in M x M, the orbits of F are geodesies in 0 and
so the function δ is a riemannian submersion on Uo (see [9, p. 155]).

Since UQ is open in 0 and F is real analytic, the same holds in all
of 0 , where now the function δ is defined at any (x, y, [a]) G 0 as
the oriented distance in M between x and y along the orbit γ with a
indicating (in the case γ is closed) how many times one has to go around

By Proposition 2.2, δ is actually univalent, and since / is injective
(when restricted to Uo), it coincides with the local δ above.

Remark. Let w be the dual 1-form to v . Then it is easy to see that
the 1-form on 0 , Ω = j(p*(w) - p^{w)), is closed in 0 , and it is just
the differential of δ: 0 —• R by Proposition 2.3. In the case (excluded
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in this paper) where all orbits of υ are closed, however, Ω can define a

nontrivial element of Hι(<5, R).

3. Proof of Theorem I

In the following all geodesies will always be parametrized with respect
to arc length. Let W be a complete riemannian manifold and p: W —• R
a riemannian submersion. Recall that then |gradp| = 1 and every orbit
of grad/? is a geodesic of W and conversely [9, p. 155]. We need the
following results for whose proofs we give references when needed.

Lemma 3.1 {see [13,/?. 262, Theorem 5.1]). No fiber p~\τ), τeR,
has focal points.

Let F = p~l{0) be totally geodesic in W. Let ψι denote the flow on
W generated by the gradient of p, and γχ the orbit of gradp through
x.

Lemma 3.2. For all t, any x e / and any unit vector u € TχF,
dψ\u) = J(t), where J is the unique Jacobi field of W along γχ such
that J(0) = u and J(0) = 0.

Proof Let a(s) be a curve in F through x such that ^ = u for
s = 0, and consider the variation p(s 9 t) = ψ\a{s)). Then the Jacobi
field J = | f (0, t) satisfies J(0) = u and is normal to γχ(t), and hence by
[3, Proposition 3.6, p. 100] /(0) is also perpendicular to ^ ( 0 ) . However,
since F is totally geodesic in W, by [3, Lemma 4.1, p. 181] (with N = F)
/(0) is also parallel to ^ ( 0 ) , i.e., /(0) = 0.

Combining this with a version of the Rauch Comparison Theorem [3,
Theorem 4.7, p. 188] we obtain

Lemma 3.3. Let mt be the minimum of the sectional curvature of W
along the orbit interval [^(0), yx(ή] of γχ with respect to all 2-planes
tangent to γχ, and assume mt < 0. Then \dψ\u)\ < c o s h ^ - m , for
every unit vector ue TχF .

Here we have also used the following elementary fact (with K = mt):
On a manifold of constant nonpositive sectional curvature K, a Jacobi
field / with the above properties satisfies |/(0l = cosh ty/-K with respect
to any geodesic (see [6, p. 119]).

Denote by Φ the flow of F on 0 . Since the diagonal D is a totally

geodesic submanifold of 0 , by Proposition 2.3 we can apply Lemma 3.3

(with <δ = W, δ = p, D = F, φ ' = ψ') and obtain |rfφ|v χ)(z)\ <

cosh tJ-mt for any unit vector z tangent to the diagonal D.
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Since 7 : 0 —• M x M is an isometric immersion we have |d?Φ| =
\dΦ\, and since the following computations are local we assume (5 is a
submanifold of M x M with the induced riemannian metric.

We show -mt = Έχt (see §1): let Z e Γ 0 , let a(Z, V) be the sec-

ond fundamental form of 0 in M x M, and let Έzv and Kzv be

the sectional curvatures of 0 and M x M, with respect to the 2-plane

spanned by Z and F . Since a(V, V) = 0, the Gauss formula gives

- # Z I / = \a(Z, F ) | 2 — AΓZF , and if V and V denote the covariant deriva-

tives in 0 and M x M, we have | V Z F | 2 = | V Z F | 2 + |α(Z, F ) | 2 and

(V, VZV) = 0 (because |K| = 1). Since the manifold φ'(D) is a fiber

of δ: 0 -+ i?, i.e., perpendicular to F , we get V Z F = /?(Z , F) (see §1),

i.e., - Z Z F = | V Z F | 2 - ^ Z F - | ) S ( Z , F ) | 2 , a n d -mt = Έχt follows.
To prove Theorem II simply drop the β term in Theorem I and com-

pute in terms of M (instead of M x M).
Finally, we need the following.
Lemma 3.4. Let w be a unit vector field with geodesic orbits on the

riemannian manifold Nn, and let f denote its flow. In addition, assume
the (n - lyplanefield, w± , perpendicular to w, is integrable, let a. (j =

1, , n — 1) be a basis of w at a point X G J V , and let At denote the

(n - 1) x (n - 1) matrix {(df^), d/iaβ)}. Then μχt = m a x { - * z J

at f\x) is equal to the maximum eigenvalue of the matrix \AtA~x -

\{AtA~x)2, where z ranges over all unit vectors perpendicular to w .

Proof Let yJ9 j = 1, , n - 1, be a chart of the leaf through x

such that d/dy • = a- at x. Consider the chart of N at x defined by

x. = f(y() for / < n and xn = t, and set Xέ = d/dxi thus Xn = w .

Let Gt denote the nxn matrix {g|..} at f{x) of this chart, and observe

that since gnn = 1 and w1' is integrable, Gt is obtained from At by

adding a 1 to the diagonal and 0's elsewhere, i.e., gni = 0 for i < n.

This implies {Γ^} = \GtG~x for all / < n furthermore, since Aww = 0,

Let R denote the curvature tensor of N by a well-known elementary
fact about matrices, —vχt above, i.e., the maximum of the quadratic form

(R(w, z)w, z) (where \z\ = 1, z e w1'), is equal to the maximum

eigenvalue of the matrix {Rs

njn} defined by R(w , Xj)w = R(Xn , Xj)Xn =

Σ , ^ - ^ . Since

'
 1

 Γ5 + — r5 - — r 5
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(see [3, (2), p. 81]), the relations above imply

whose eigenvalues are the same as those of the ( w - l ) x ( w - l ) matrix

\AtA~x - \(AtA~{)2, and Lemma 3.4 is proven.

To obtain the remaining unproven result of §1 apply Lemma 3.4 with

N = <δ, w = V and f = Φ*.

4. A lower bound

Define eχt as in § 1 except using the minimum (instead of the maximum)

and let Έχ( = m i n ^ τ for τ e [0, t] suppose Έ'χt > 0.
Theorem III. For any x e M and any unit vector u e TχM, we have

\dφ\u)\2 + \dφ~t{u)\2 > 2 cosh2 t\]lEχVlt for all t > 0.

Proof. This is a straightforward consequence of our Lemma 3.2 (with

W = 0 , p = δ , ψι = φ ' , F = D), inequality 4.10 of [5, Theorem 4 . 1 ' ,

p. 48] and our computations in §3 above.

Since |V Γ ^| 2 > \β(Z, V)\2 Theorem IV follows immediately.

5. Examples

(i) Using the notation of the Introduction one easily shows (using for-
mula (9), p. 47 of [3]) that at every x e M

\Vzv\2 - Kzv = υ(z, Vzv) + (z, V[ZfV]v) + <[z, υ],Vzυ)

for every unit vector z eTχM perpendicular to v . Hence, using Killing's
equation [3, p. 72] we obtain eχ = 0 if v is also a Killing vector field.

Although, of course, this case is trivial, this formula relates, in general,
the quantity eχ to the obstruction of v being Killing.

(ii) Let S denote the vector field which generates the geodesic flow
on the unit sphere bundle, SM (provided with the Sasaki metric), of a
riemannian manifold M. Then S is a unit vector field whose orbits are
geodesies (see [10]).

First observe that the quantity \VZS\2 - Kzs, where Z e TSM,
(Z, S) = 0, is the same, whether we compute in SM or in TM, and so
we use TM.
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We use the notation [4, p. 76] and [7], which we assume the reader has
at hand. (Notice that their curvature tensor R is the negative of ours.)

Let ξ be a unit vector belonging to TχM\ the following quantities of
TTM are assumed to be computed at the point (x, ξ) of SM.

The unit normal vector field of SM in TM is given by n = J2ξιX^

and S = Σ ί ' ^ f Using formulas (10) and (11) of [7, p. 125] and formu-

las (24) and (25) of [4, p. 79] one computes

f and V^S = Uh - \[R{ξ9 U)ξf

for any vector field U of M.

Let Z e TTM, set Z = ϊ f + ί^ , where ^ Y2 e TχM, and notice if
(Z, 5) = 0 and Z e TSM (i.e., (Z, n) = 0) then ( ^ , {) = (7 2 , ξ) = 0
in TχM.

Now let dim Λf = 2 and, given U e TM, let U denote a unit vec-
tor normal to U consider the sectional curvature of M as a function

Using formulas_(18) and (21) of [7] and the fact that if dimM = 2
then ((V\jR){U ,V)U ,V) = -dK(U) for any unit vector field U of Λ/\
we obtain

|V Z S| 2 - Kzs = K2\Y{\
2 + \Y2\

2 + Y[Y'2 dK(ξ) - K

(where Y'{9 Y'2 denote the numbers defined by Yx = Y'xξ, Y2 = Y2ξ)

from which the expression for

the Introduction easily follows.
from which the expression for e of S of SM2 at the point (x9ξx) in

6. Remarks and questions

Our method is quite different and more general than those of [1], [2] and
[8] which start off by assuming v is a geodesic flow. Furthermore, when
applied to geodesic flows (at least on surfaces) our inequality in §5(ii) is
sharper than the easily obtained inequality in [2, Appendix, p. 270].

Are our inequalities sharp enough to solve Osserman's problem [ 1, Prob-
lem 1.8, p. 6]?

Are Theorems II and IV really the sharpest 'static' corollaries of Theo-
rems I and III? Even in the case of geodesic flows?
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