ESTIMATING $\left\|d \varphi^{t}\right\|$ FOR UNIT VECTOR FIELDS WHOSE ORBITS ARE GEODESICS

H. E. WINKELNKEMPER

Introduction

In the following, all manifolds, vector fields, etc., will be assumed to be real analytic. Let M be a connected, n-dimensional, complete riemannian manifold, and v a unit vector field (i.e., $|v| \equiv 1$) all of whose orbits are geodesics of M (i.e., $\nabla_{v} v \equiv 0$).

Although it is perhaps not really necessary, we also assume that not all orbits of v are closed, otherwise, by Wadsley's Theorem [11], there exists an S^{1}-action on M with the same orbits as v, and our problems should probably be studied in that context.

At each point $x \in M$ define $e_{x}=\max \left\{\left|\nabla_{z} v\right|^{2}-K_{z v}\right\}$, where z ranges over all unit vectors $z \in T_{x} M$ perpendicular to v; here $K_{z v}$ denotes the sectional curvature of M at x with respect to the 2-plane spanned by z and v.

Let φ^{t} be the flow generated by v and, for each $x \in M$ and any $t \geq 0$, define $E_{x t}=\max e_{y}$, where y ranges over the orbit interval $\left[\varphi^{-\sqrt{2} t}(x)\right.$, $\left.\varphi^{\sqrt{2} t}(x)\right]$.

Theorem II. Assume $x \in M$ is such that $e_{x} \geq 0$ (for example, at x suppose $K_{z v} \leq 0$ for some z as above). Then for any unit vector $u \in T_{x} M$ and all $t \geq 0$ we have

$$
\left|d \varphi^{t}(u)\right|^{2}+\left|d \varphi^{-t}(u)\right|^{2} \leq 2 \cosh ^{2} t \sqrt{E_{x t}} .
$$

Examples. (i) In the (trivial) case when v is also a Killing vector field, it is easy to see that $e_{x} \equiv 0$ and our inequality is sharp in this case (see §5).
(ii) If v is the geodesic flow on the unit sphere bundle $S M^{2}$ of a surface M^{2}, and we consider the curvature as a function $K: M \rightarrow R$, then at the point $x=\left(y, \xi_{y}\right)$ of $S M^{2}$

$$
2 e_{x}=(K-1)^{2}+\left[\left(K^{2}-1\right)^{2}+(d K(\xi))^{2}\right]^{1 / 2} \geq 0
$$

Received December 5, 1988.
and the above inequality holds with the corresponding $E_{x t}$ (see §5).
Theorem II is an immediate corollary of a sharper inequality (see Theorem I, below) which however involves terms depending on $d \varphi^{t}$ on the right side, i.e., 'dynamic' terms, which do not seem to have an immediate 'static' expression like the quantity e_{x} above.

We also obtain a lower bound (see Theorem III of $\S 4$) from which as an immediate corollary we obtain

Theorem IV. Let $e_{x}^{\prime}=\min \left\{-K_{z v}\right\}$ where z ranges over all unit vectors perpendicular to v, and let $E_{x t}^{\prime}=\min e_{y}^{\prime}$, where y ranges over the orbit interval $\left[\varphi^{-\sqrt{2} t}(x), \varphi^{\sqrt{2} t}(x)\right]$. If $E_{x t}^{\prime} \geq 0$, for any unit vector $u \in T_{x} M$ and all $t \geq 0$, then we have

$$
\left|d \varphi^{t}(u)\right|^{2}+\left|d \varphi^{-t}(u)\right|^{2} \geq 2 \cosh ^{2} t \sqrt{E_{x t}^{\prime}} .
$$

Notice as a corollary, via the Liapunov exponents, one obtains bounds on the entropy of φ^{t}.

We thank K. Grove and the referee for helpful comments.

1. Statement of Theorem I

Denote by D the diagonal of $M \times M$ (with the product riemannian metric). On $M \times M$ define a unit vector field $V_{(x, y)}=2^{-1 / 2}\left(v_{x},-v_{y}\right)$, and let φ^{t} and Φ^{t} be the flows generated by v and V on M and $M \times M$, respectively.

Given $x \in M$ and t we define a real number as follows:

$$
\bar{e}_{x t}=\max _{\bar{Z}}\left\{\left|\nabla_{\bar{Z}} V\right|^{2}-K_{\bar{Z} V}-|\beta(\bar{Z}, V)|^{2}\right\}
$$

where $\bar{Z}=d \Phi^{t}(Z) /\left|d \Phi^{t}(Z)\right|$ with $Z \in T_{(x, x)} D, \beta(\bar{Z}, V)$ is the orthogonal projection of $\nabla_{\bar{Z}} V$ into the n-plane $d \Phi^{t}\left(T_{(x, x)} D\right)$, and $K_{\bar{Z} V}$ is the sectional curvature of $M \times M$ at $\Phi^{t}(x, x)$ with respect to the 2-plane generated by \bar{Z} and V.

Define $\bar{E}_{x t}=\max \bar{e}_{x \tau}$ for $\tau \in[0, t]$ and assume $\bar{E}_{x t} \geq 0$.
Theorem I. For any $x \in M$ and any unit vector $Z \in T_{(x, x)} D$ we have $\left|d \varphi^{t}(Z)\right| \leq \cosh t \sqrt{\bar{E}_{x t}}$ for all t; i.e., since $\Phi^{t}=\left(\varphi^{t / \sqrt{2}}, \varphi^{-t / \sqrt{2}}\right)$, for every unit vector $u \in T_{x} M$ we have

$$
\left|d \varphi^{t}(u)\right|^{2}+\left|d \varphi^{-t}(u)\right|^{2} \leq 2 \cosh ^{2} t \sqrt{2 \bar{E}_{x \sqrt{2} t}} \quad \text { for all } t .
$$

Theorem II is obtained by simply dropping the β term above.

The number $\bar{e}_{x t}$ can also be obtained as follows: Given $x \in M$ let $\left\{b_{i}\right\}$ be any (not necessarily orthonormal) basis of $T_{x} M$. Then for each real t define an $n \times n$ matrix B_{t} by

$$
B_{t}=\left\{\left\langle d \varphi^{t / \sqrt{2}}\left(b_{i}\right) d \varphi^{t / \sqrt{2}}\left(b_{j}\right)\right\rangle\right\}
$$

and set $\mathscr{B}_{t}=B_{t}+B_{-t}$. Thus $2 \bar{e}_{x t}$ is equal to the maximum eigenvalue of $\ddot{\mathscr{P}}_{t} \mathscr{B}_{t}^{-1}-\frac{1}{2}\left(\dot{\mathscr{F}}_{t} \mathscr{B}_{t}^{-1}\right)^{2}$.

Our proof of Theorem I simply consists of applying a version of the Rauch Comparison Theorem (as stated on p. 188 in [3]) to orbits of the vector field V suitably "lifted' to the graph, $\mathfrak{G}(v)$, of the 1 -foliation defined by v on M (see $\S 2$).

The number $\bar{e}_{x t}$ is the maximum of the negative of the sectional curvature at $\Phi^{t}(x, x)$ of \mathfrak{G} with respect to all 2-planes containing V.

2. The associated vector field \bar{V}

In this section we substitute the study of v on M by the study of an intimately related vector field \bar{V} defined on the so-called graph, $\mathfrak{G}=\mathfrak{G}(v)$, of the 1 -foliation defined by the vector field $v . \bar{V}$ will also be a unit vector field whose orbits are geodesics of \mathfrak{G}, but in addition it will be the gradient of a certain riemannian submersion $\delta: \mathfrak{G} \rightarrow R$. Although perhaps this change of scenario is not so interesting in a purely topological way, it is nontrivial in the differential geometric sense.

Recall (see [12], [9]) that $\mathfrak{G}=\mathfrak{G}(v)$ consists of all triples $(x, y,[\alpha])$, where x and y lie on the same orbit, γ, of v, and $[\alpha]$ is an equivalence class of arcs α contained in γ; two arcs α, β are equivalent if the (foliation theoretic) holonomy along $\alpha \beta^{-1}$ is the identity. Hence, if v has no closed orbits as a set, \mathfrak{G} simply consists of the subset $\{(x, y) \in M \times M \mid x$ and y lie on the same orbit of $v\}$, and it is convenient at first to go through our arguments by assuming this is the case.

If the holonomy of v is real analytic, then \mathfrak{G} is an $(n+1)$-manifold in a natural way [12, p. 62], and one has a canonical immersion $I: \mathfrak{G} \rightarrow M \times M$ defined by $I((x, y,[\alpha]))=(x, y)$ and two submersions $p_{1}, p_{2}: \mathfrak{G} \rightarrow R$ defined by $p_{1}((x, y,[\alpha]))=x$ and $p_{2}((x, y,[\alpha]))=y$.

We make \mathfrak{G} into a riemannian manifold by requiring that I be an isometric immersion, i.e., we pull back the product metric of $M \times M$ via I.

Notice that the diagonal D (of $M \times M$) is a totally geodesic submanifold of \mathfrak{G}.

Figure 2.1

Proposition 2.1. If the orbits of v are geodesics, then this riemannian metric of $\mathfrak{G}(v)$ is complete for complete M.

Remark. It is necessary that the orbits be geodesics.
Consider the one-foliation of R^{2} shown in Figure 2.1. The sequence $z_{n}=\left(x_{n}, y_{n}\right) \in \mathfrak{G}$ shown is a divergent Cauchy sequence in \mathfrak{G}, since the limits x and y lie in different orbits.

Proof of Proposition 2.1. Let $\left(x_{n}, y_{n},\left[\alpha_{n}\right]\right)$ be a Cauchy sequence in \mathfrak{G}. Then it is easy to see that x_{n} and y_{n} are Cauchy sequences in M, which converge to x and y respectively, since M is complete.

It is enough to show that x and y lie on the same orbit, and for this to happen it is enough to show that the lengths of the orbit segments s_{n} from x_{n} to y_{n} remain bounded for all n.

Let $a_{n}(t)$ and $b_{n}(t), t \in[0,1]$, be two smooth arcs in M from x_{0} to x_{n} and y_{0} to y_{n}, respectively, such that for all $t \in[0,1], a(t)$ and $b(t)$ lie on the same orbit, and let Σ denote the two-dimensional surface of M consisting of the union of the orbit arcs s_{t} from $a(t)$ to $b(t)$ for all $t \in[0,1]$ (see Figure 2.2). Let w be the dual 1 -form of v. Then (see Wadsley [11, p. 542]) $d w(, v)=0$, and so $d w=0$ on the 2-plane fields tangent to the surface Σ.

Figure 2.2
Applying Stokes' Theorem we obtain

$$
\int_{a} w+\int_{s_{0}} w+\int_{s_{n}} w+\int_{b} w=\int_{\Sigma} d w=0
$$

which shows the lengths of the orbit segments s_{n} are bounded for all n and Proposition 2.1 is proved.

Proposition 2.2. If not all orbits of v are closed, then no closed orbit γ can have (foliation theoretic) holonomy of finite order.

Proof. ${ }^{1}$ Let $\varphi^{t}(x)$ denote the flow of v. If γ_{x}, of length c, were such an orbit, it would follow from Wadsley's proof [8, Corollary 4.4 and the fact $B_{1}=\varnothing$] that $\varphi^{c}(x)$ is the identity in a neighborhood of γ_{x} and hence, since v is real analytic, it is the identity on all of M, i.e., all orbits would be closed and of length c.

Let \bar{V} denote the unique C^{ω} vector field of \mathfrak{G} defined at $(x, y,[\alpha])$ by $d p_{1}(\bar{V})=v_{x} / \sqrt{2}$ and $d p_{2}(\bar{V})=-v_{y} / \sqrt{2}$, where p_{1} and p_{2} are the natural projections of \mathfrak{G} into M, i.e., $d I(\bar{V})=V$.

Proposition 2.3. There exists a riemannian submersion $\delta: \mathfrak{G} \rightarrow R$ such that $\bar{V}=\operatorname{grad} \delta$.

Proof. Let U be a neighborhood of the diagonal D in $M \times M$ which is so small that the function $\delta_{0}: U \rightarrow R$ defined by $\delta_{0}(x, y)=$ oriented

[^0]

Figure 2.3
distance in M from x to y (with respect to the orientation of v) is well defined. By the Gauss Lemma applied to D, the gradient of δ_{0} coincides (up to sign) with the vector $\left(u_{x},-u_{y}\right) / \sqrt{2}$ of $M \times M$ at (x, y), where u_{x} and u_{y} are unit vectors of M tangent at x and y to the unique minimizing geodesic segment of M from x to y (see Figure 2.3).

Let U_{0} denote a small enough neighborhood of D in \mathfrak{G}. Since the orbits of v are geodesics of M, the vector field \bar{V} of \mathfrak{G} restricted to U_{0} coincides (up to sign) with the gradient of the function $\delta=\delta_{0} \cdot I: U_{0} \rightarrow R$, where $I: \mathfrak{G} \rightarrow M \times M$ is the natural isometric immersion. Since the orbits of V are geodesics in $M \times M$, the orbits of \bar{V} are geodesics in \mathfrak{G} and so the function δ is a riemannian submersion on U_{0} (see [9, p. 155]).

Since U_{0} is open in \mathfrak{G} and \bar{V} is real analytic, the same holds in all of \mathfrak{G}, where now the function δ is defined at any $(x, y,[\alpha]) \in \mathfrak{G}$ as the oriented distance in M between x and y along the orbit γ with α indicating (in the case γ is closed) how many times one has to go around γ.

By Proposition 2.2, δ is actually univalent, and since I is injective (when restricted to U_{0}), it coincides with the local δ above.

Remark. Let w be the dual 1 -form to v. Then it is easy to see that the 1 -form on $\mathfrak{G}, \Omega=\frac{1}{2}\left(p_{1}^{*}(w)-p_{2}^{*}(w)\right)$, is closed in \mathfrak{G}, and it is just the differential of $\delta: \mathfrak{G} \rightarrow R$ by Proposition 2.3. In the case (excluded
in this paper) where all orbits of v are closed, however, Ω can define a nontrivial element of $H^{1}(\mathfrak{G}, R)$.

3. Proof of Theorem I

In the following all geodesics will always be parametrized with respect to arc length. Let W be a complete riemannian manifold and $p: W \rightarrow R$ a riemannian submersion. Recall that then $|\operatorname{grad} p| \equiv 1$ and every orbit of $\operatorname{grad} p$ is a geodesic of W and conversely [9, p. 155]. We need the following results for whose proofs we give references when needed.

Lemma 3.1 (see $\left[13, p .262\right.$, Theorem 5.1]). No fiber $p^{-1}(\tau), \tau \in R$, has focal points.

Let $F=p^{-1}(0)$ be totally geodesic in W. Let ψ^{t} denote the flow on W generated by the gradient of p, and γ_{x} the orbit of $\operatorname{grad} p$ through x.

Lemma 3.2. For all t, any $x \in f$ and any unit vector $u \in T_{x} F$, $d \psi^{t}(u)=J(t)$, where J is the unique Jacobi field of W along γ_{x} such that $J(0)=u$ and $\dot{J}(0)=0$.

Proof. Let $\alpha(s)$ be a curve in F through x such that $\frac{d \alpha}{d s}=u$ for $s=0$, and consider the variation $\rho(s, t)=\psi^{t}(\alpha(s))$. Then the Jacobi field $J=\frac{\partial \rho}{\partial s}(0, t)$ satisfies $J(0)=u$ and is normal to $\dot{\gamma}_{x}(t)$, and hence by [3, Proposition 3.6, p. 100] $\dot{J}(0)$ is also perpendicular to $\dot{\gamma}_{x}(0)$. However, since F is totally geodesic in W, by [3, Lemma 4.1, p. 181] (with $N=F$) $\dot{J}(0)$ is also parallel to $\dot{\gamma}_{x}(0)$, i.e., $\dot{J}(0)=0$.

Combining this with a version of the Rauch Comparison Theorem [3, Theorem 4.7, p. 188] we obtain

Lemma 3.3. Let m_{t} be the minimum of the sectional curvature of W along the orbit interval $\left[\gamma_{x}(0), \gamma_{x}(t)\right]$ of γ_{x} with respect to all 2-planes tangent to γ_{x}, and assume $m_{t} \leq 0$. Then $\left|d \psi^{t}(u)\right| \leq \cosh t \sqrt{-m_{t}}$ for every unit vector $u \in T_{x} F$.

Here we have also used the following elementary fact (with $K=m_{t}$): On a manifold of constant nonpositive sectional curvature K, a Jacobi field J with the above properties satisfies $|J(t)|=\cosh t \sqrt{-K}$ with respect to any geodesic (see [6, p. 119]).

Denote by $\bar{\Phi}^{t}$ the flow of \bar{V} on \mathfrak{G}. Since the diagonal D is a totally geodesic submanifold of \mathfrak{G}, by Proposition 2.3 we can apply Lemma 3.3 (with $\mathfrak{G}=W, \delta=p, D=F, \bar{\Phi}^{t}=\psi^{t}$) and obtain $\left|d \bar{\Phi}_{(x, x)}^{t}(z)\right| \leq$ $\cosh t \sqrt{-m_{t}}$ for any unit vector z tangent to the diagonal D.

Since $I: \mathfrak{G} \rightarrow M \times M$ is an isometric immersion we have $|d \bar{\Phi}|=$ $|d \Phi|$, and since the following computations are local we assume \mathfrak{G} is a submanifold of $M \times M$ with the induced riemannian metric.

We show $-m_{t}=\bar{E}_{x t}$ (see $\left.\S 1\right)$: let $Z \in T \mathfrak{G}$, let $\alpha(Z, V)$ be the second fundamental form of \mathfrak{G} in $M \times M$, and let $\bar{K}_{Z V}$ and $K_{Z V}$ be the sectional curvatures of \mathfrak{G} and $M \times M$, with respect to the 2-plane spanned by Z and V. Since $\alpha(V, V)=0$, the Gauss formula gives $-\bar{K}_{Z V}=|\alpha(Z, V)|^{2}-K_{Z V}$, and if $\bar{\nabla}$ and ∇ denote the covariant derivatives in \mathfrak{G} and $M \times M$, we have $\left|\nabla_{Z} V\right|^{2}=\left|\bar{\nabla}_{Z} V\right|^{2}+|\alpha(Z, V)|^{2}$ and $\left\langle V, \bar{\nabla}_{Z} V\right\rangle=0$ (because $|V| \equiv 1$). Since the manifold $\bar{\Phi}^{t}(D)$ is a fiber of $\delta: \mathfrak{G} \rightarrow R$, i.e., perpendicular to \bar{V}, we get $\bar{\nabla}_{Z} V=\beta(Z, V)$ (see $\S 1$), i.e., $-\bar{K}_{Z V}=\left|\nabla_{Z} V\right|^{2}-K_{Z V}-|\beta(Z, V)|^{2}$, and $-m_{t}=\bar{E}_{x t}$ follows.

To prove Theorem II simply drop the β term in Theorem I and compute in terms of M (instead of $M \times M)$.

Finally, we need the following.
Lemma 3.4. Let w be a unit vector field with geodesic orbits on the riemannian manifold N^{n}, and let f^{t} denote its flow. In addition, assume the $(n-1)$-plane field, w^{\perp}, perpendicular to w, is integrable, let $a_{j}(j=$ $1, \cdots, n-1)$ be a basis of w^{\perp} at a point $x \in N$, and let A_{t} denote the $(n-1) \times(n-1)$ matrix $\left\{\left\langle d f^{t}\left(a_{i}\right), d f^{t}\left(a_{j}\right)\right\rangle\right\}$. Then $\mu_{x t}=\max \left\{-K_{z w}\right\}$ at $f^{t}(x)$ is equal to the maximum eigenvalue of the matrix $\frac{1}{2} \ddot{A}_{t} A_{t}^{-1}-$ $\frac{1}{4}\left(\dot{A}_{t} A_{t}^{-1}\right)^{2}$, where z ranges over all unit vectors perpendicular to w.

Proof. Let $y_{j}, j=1, \cdots, n-1$, be a chart of the leaf through x such that $\partial / \partial y_{j}=a_{j}$ at x. Consider the chart of N at x defined by $x_{i}=f^{t}\left(y_{i}\right)$ for $i<n$ and $x_{n}=t$, and set $X_{i}=\partial / \partial x_{i}$; thus $X_{n}=w$.

Let G_{t} denote the $n \times n$ matrix $\left\{g_{i j}\right\}$ at $f^{t}(x)$ of this chart, and observe that since $g_{n n} \equiv 1$ and w^{\perp} is integrable, G_{t} is obtained from A_{t} by adding a 1 to the diagonal and 0 's elsewhere, i.e., $g_{n i}=0$ for $i<n$. This implies $\left\{\Gamma_{i n}^{s}\right\}=\frac{1}{2} \dot{G}_{t} G_{t}^{-1}$ for all $i<n$; furthermore, since $\Delta_{w} w \equiv 0$, $\Gamma_{n n}^{s}=0$.

Let R denote the curvature tensor of N; by a well-known elementary fact about matrices, $-\nu_{x t}$ above, i.e., the maximum of the quadratic form $\langle R(w, z) w, z\rangle$ (where $|z|=1, z \in w^{\perp}$), is equal to the maximum eigenvalue of the matrix $\left\{R_{n j n}^{s}\right\}$ defined by $R\left(w, X_{j}\right) w=R\left(X_{n}, X_{j}\right) X_{n}=$ $\sum_{s} R_{n j n}^{s} X_{s}$. Since

$$
R_{n j n}^{s}=\sum_{l} \Gamma_{n n}^{l} \Gamma_{j l}^{s}-\sum_{l} \Gamma_{j n}^{l} \Gamma_{n l}^{s}+\frac{\partial}{\partial x_{j}} \Gamma_{n n}^{s}-\frac{\partial}{\partial x_{n}} \Gamma_{j n}^{s}
$$

(see [3, (2), p. 81]), the relations above imply

$$
\begin{aligned}
-R_{n j n}^{s} & =\frac{\partial}{\partial x_{n}} \Gamma_{j n}^{s}+\sum_{l} \Gamma_{j n}^{l} \Gamma_{n l}^{s}=\frac{1}{2}\left(\dot{G}_{t} G_{t}^{-1}\right)^{1}+\frac{1}{4}\left(\dot{G}_{t} G_{t}^{-1}\right)^{2} \\
& =\frac{1}{2} \ddot{G}_{t} G_{t}^{-1}-\frac{1}{4}\left(\dot{G}_{t} G_{t}^{-1}\right)^{2},
\end{aligned}
$$

whose eigenvalues are the same as those of the $(n-1) \times(n-1)$ matrix $\frac{1}{2} \ddot{A}_{t} A_{t}^{-1}-\frac{1}{4}\left(\dot{A}_{t} A_{t}^{-1}\right)^{2}$, and Lemma 3.4 is proven.

To obtain the remaining unproven result of $\S 1$ apply Lemma 3.4 with $N=\mathfrak{G}, w=\bar{V}$ and $f^{t}=\bar{\Phi}^{t}$.

4. A lower bound

Define $\bar{e}_{x t}^{\prime}$ as in $\S 1$ except using the minimum (instead of the maximum) and let $\bar{E}_{x t}^{\prime}=\min \bar{e}_{x \tau}^{\prime}$ for $\tau \in[0, t]$; suppose $\bar{E}_{x t}^{\prime} \geq 0$.

Theorem III. For any $x \in M$ and any unit vector $u \in T_{x} M$, we have

$$
\left|d \varphi^{t}(u)\right|^{2}+\left|d \varphi^{-t}(u)\right|^{2} \geq 2 \cosh ^{2} t \sqrt{2 \bar{E}_{x \sqrt{2} t}^{\prime}} \quad \text { for all } t \geq 0
$$

Proof. This is a straightforward consequence of our Lemma 3.2 (with $\left.W=\mathfrak{G}, p=\delta, \psi^{t}=\bar{\Phi}^{t}, F=D\right)$, inequality 4.10 of $\left[5\right.$, Theorem 4.1^{\prime}, p. 48] and our computations in $\S 3$ above.

Since $\left|\nabla_{\bar{Z}} V\right|^{2} \geq|\beta(\bar{Z}, V)|^{2}$ Theorem IV follows immediately.

5. Examples

(i) Using the notation of the Introduction one easily shows (using formula (9), p. 47 of [3]) that at every $x \in M$

$$
\left|\nabla_{z} v\right|^{2}-K_{z v}=v\left\langle z, \nabla_{z} v\right\rangle+\left\langle z, \nabla_{[z, v]} v\right\rangle+\left\langle[z, v], \nabla_{z} v\right\rangle
$$

for every unit vector $z \in T_{x} M$ perpendicular to v. Hence, using Killing's equation [3, p. 72] we obtain $e_{x} \equiv 0$ if v is also a Killing vector field.

Although, of course, this case is trivial, this formula relates, in general, the quantity e_{x} to the obstruction of v being Killing.
(ii) Let S denote the vector field which generates the geodesic flow on the unit sphere bundle, $S M$ (provided with the Sasaki metric), of a riemannian manifold M. Then S is a unit vector field whose orbits are geodesics (see [10]).

First observe that the quantity $\left|\nabla_{Z} S\right|^{2}-K_{Z S}$, where $Z \in T S M$, $\langle Z, S\rangle=0$, is the same, whether we compute in $S M$ or in $T M$, and so we use $T M$.

We use the notation [4, p. 76] and [7], which we assume the reader has at hand. (Notice that their curvature tensor R is the negative of ours.)

Let ξ be a unit vector belonging to $T_{x} M$; the following quantities of $T T M$ are assumed to be computed at the point (x, ξ) of $S M$.

The unit normal vector field of $S M$ in $T M$ is given by $n=\sum \xi^{i} X_{i}^{\nu}$ and $S=\sum \xi^{i} X_{i}^{h}$. Using formulas (10) and (11) of [7, p. 125] and formulas (24) and (25) of [4, p. 79] one computes

$$
\tilde{\nabla}_{U^{h}} S=-\frac{1}{2}[R(\xi, U) \xi]^{\nu} \quad \text { and } \quad \tilde{\nabla}_{U^{\nu}} S=U^{h}-\frac{1}{2}[R(\xi, U) \xi]^{h}
$$

for any vector field U of M.
Let $Z \in T T M$, set $Z=Y_{1}^{h}+Y_{2}^{\nu}$, where $Y_{1} \quad Y_{2} \in T_{x} M$, and notice if $\langle Z, S\rangle=0$ and $Z \in T S M$ (i.e., $\langle Z, n\rangle=0$) then $\left\langle Y_{1}, \xi\right\rangle=\left\langle Y_{2}, \xi\right\rangle=0$ in $T_{x} M$.

Now let $\operatorname{dim} M=2$ and, given $U \in T M$, let \bar{U} denote a unit vector normal to U; consider the sectional curvature of M as a function $K: M \rightarrow R$.

Using formulas (18) and (21) of [7] and the fact that if $\operatorname{dim} M=2$ then $\left\langle\left(\nabla_{U} R\right)(U, \bar{U}) U, \bar{U}\right\rangle=-d K(U)$ for any unit vector field U of M, we obtain

$$
\left|\tilde{\nabla}_{Z} S\right|^{2}-K_{Z S}=K^{2}\left|Y_{1}\right|^{2}+\left|Y_{2}\right|^{2}+Y_{1}^{\prime} Y_{2}^{\prime} d K(\xi)-K
$$

(where $Y_{1}^{\prime}, Y_{2}^{\prime}$ denote the numbers defined by $Y_{1}=Y_{1}^{\prime} \bar{\xi}, \quad Y_{2}=Y_{2}^{\prime} \bar{\xi}$) from which the expression for e of S of $S M^{2}$ at the point $\left(x, \xi_{x}\right)$ in the Introduction easily follows.

6. Remarks and questions

Our method is quite different and more general than those of [1], [2] and [8] which start off by assuming v is a geodesic flow. Furthermore, when applied to geodesic flows (at least on surfaces) our inequality in §5(ii) is sharper than the easily obtained inequality in [2, Appendix, p. 270].

Are our inequalities sharp enough to solve Osserman's problem [1, Problem 1.8, p. 6]?

Are Theorems II and IV really the sharpest 'static' corollaries of Theorems I and III? Even in the case of geodesic flows?

References

[1] W. Ballmann, Curvature and topology of Riemannian manifolds (Proc., Katata), Lecture Notes in Math., Vol. 1201, Springer, Berlin, 1985.
[2] W. Ballmann, M. Brin \& K. Burns, On surfaces with no conjugate points, J. Differential Geometry 25 (1987) 249-273.
[3] M. P. do Carmo, Geometria Riamanniana, IMPA, Rio de Janeiro, 1979.
[4] P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962) 72-88.
[5] S. Hildebrandt, In harmonic maps and minimal immersions (Proc., Montecattini, E. Giusti, eds.), Lecture Notes in Math., Vol. 1161, Springer, Berlin, 1985.
[6] W. Klingenberg, Riemannian geometry, De Gruyter Studies in Math., Vol. 1, 1982.
[7] O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a manifold, J. Reine Angew. Math. 250 (1971) 124-129.
[8] R. Osserman \& P. Sarnak, A new curvature invariant and entropy of geodesic flows, Invent. Math. 77 (1984) 455-462.
[9] B. L. Reinhart, Differential geometry of foliations, Ergebnisse Math. u.i. Grenzgeb., Vol. 99, Springer, Berlin, 1983.
[10] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds. II, Tôhoku Math. J. 14 (1962) 146-155.
[11] A. W. Wadsley, Geodesic foliations by circles, J. Differential Geometry 10 (1975) 541549.
[12] H. E. Winkelnkemper, The graph of a foliation, Ann. Global Analysis and Geometry 1 (1983) 51-75.
[13] S. Yorozu, Behaviour of geodesics in foliated manifolds with bundle-like metrics, J. Math. Soc. Japan (Nihon Sugakai) 35 (1983) 251-271.

[^0]: ${ }^{1}$ We thank Y. Carrière for this short proof.

