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A STRUCTURE THEOREM FOR
HOLOMORPHIC CURVES IN Gr(3, C9%)

QING LIN

Abstract

A holomorphic curve f in Gr(n, CZ") is called generic if the curvature
of the canonical connection of f*(S(n, CZ")) has distinct eigenvalues,
where S(n, C*") is the universal subbundle over Gr(n, C*"). A holo-
morphic curve in Gr(n, CZ") is completely split if it is the orthogonal
direct sum of n holomorphic curves in the projective plane. These two
types of curves are both relatively simple. In this paper, we prove that a
1-nondegenerated holomorphic curve in Gr(3, C6) is either generic or
completely split.

Introduction

Denote the Grassmannian of n-dimensional subspaces of c by
Gr(n, CZ"). A holomorphic curve in Gr(n, CZ") is locally a holomor-
phic mapping of some open disk in C into Gr(#n, CZ") . Because of the
analytic structure, we can restrict ourselves to the local holomorphic curves
only.

Let /- Q — Gr(n, CZ”) be a holomorphic curve. For each z in Q, we
define (f(Z), fl(Z)) = span{yl(z), T yn(z), y;(z), B }':I(Z)} ’ where
yj:Q — C*" is holomorphic and span{y,(z), -+, 7,(2)} = f(z). Clearly,
(f, f) is independent of the choice of Yo sV, Wesay fois 1-
nondegenerated if (f(z), f'(2)) = C*" for each z € Q.

Throughout this paper, by “holomorphic curve” we mean “l-nonde-
generated holomorphic curve”. Let f be a 1-nondegenerated holomorphic
curve in Gr(n, Cz") . Then the holomorphic Hermitian vector bundle

the space f(z)

Ef:
z

is a completely unitary invariant of f by the Calabi rigidity theorem. By
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the unitary equivalence of f| and f, we mean that there is a unitary trans-
formation U of C*" making U - f; = f,. We shall name the canonical
connection of E + and its curvature the connection of f* and the curvature
of f, respectively.

Definition 1. A holomorphic curve is called generic if its curvature has
distinct eigenvalues at some point.

In [3] and [1], it was proved that a second order contact of two generic
curves implies unitary equivalence. In this paper we shall prove that any
holomorphic curve in Gr(3, C6) is either generic or an orthogonal di-
rect sum of three holomorphic curves in the projective plane. Thus in
Gr(3, C6) , two holomorphic curves having second order contact must be
unitarily equivalent, which answers the so-called Griffiths’ conjecture in
the simplest nontrivial case.

During the course of this work, the author benefitted from the discus-
sions with Professor M. J. Cowen, and has also been inspired by an un-
published idea of Professor P. A. Griffiths. The author would like to thank
both of them.

Main results

Let f be a holomorphic curve in Gr(n, C2") . Using the canonical co-
ordinate of the Grassmannian, we see locally E, has the columns of (f,)
as a holomorphic frame, where I is the n x n identity matrix and P is an
n x n matrix of analytic function entries. Over this holomorphic frame,
the matrix of the curvature bundle map K, (K fd zdZ is the curvature
tensor) is

~(I+P'P)'P*I+PP) P,
A quick consequence of this expression is that the eigenvalues of K, are

all strictly negative.
From the above expression, it follows that
2 52
3253 ——logdet(—K ) 28 53 logdet(I + P*P).
By a well-known lemma of S. S. Chern, trK =K N'E,) - Noting that

2 2

0
K/\"(Ef) ~ 5757 logdet(I + P*P) = 33205 ———logdet(-K ),

we thus have shown
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Lemma 1. Let A ,---, 4, be the smooth eigenfunctions of K ; and

define
2

2 0
f(lz) = 2),! - lla—zag log(—ﬂ.i).

Then .
> F(4)/4,=0.

i=1

Definition 2. We say a holomorphic curve f is completely split if E y
is an orthogonal direct sum of # holomorphic line bundles. Equivalently,
f is an orthogonal direct sum of n holomorphic curves in the projective
plane.

Our first aim is to show:

“ f is completely split < F(4,) = 0 for all /.

In order to do this, we need to look back at the differential structure on
E Iz

Recall that a bundle map of E to E isa C* map which maps each
fiber linearly to itself. Let ¢ be a bundle map of E rto Ep, where f is

a holomorphic curve in Gr(n, CZ") . Then we define
[D,9]l=Dop—-(¢p®Rid)oD=9¢,dz+ ¢-dzZ.

Although D is not a bundle map, a quick check gives that ¢ and ¢ are
all bundle maps of E 0 E,. We call them the first covariant derivatives
of 9. So ¢_. would be one of the first covariant derivatives of ¢ .

If over an orthonormal frame S the connection matrix is ©dz-0"dz,
then
9¢(S)

9,(S)=1[0, p(S)]+ 5,
00(S)

0:(S) = [-6", p(S)]+ L.
For details, we refer the reader to [2]. Also in [2] it was proved that
K., =K, (write K ;as K), although K .- # K . in general.
In [1], the following was proved:

“an n-dimensional Hermitian holomorphic vector bundle
(%) is equivalent to some E Y with f a holomorphic curve in

Gr(n, C") & 2K’ +K-K~'K, =K _."

Definition 3. An orthonormal frame is called a first adapted frame if,
over it, the matrix of K [ is smoothly diagonalized.
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From now on K will stand for the matrix of the curvature.

Now we are ready to show

Theorem 1. A holomorphic curve fin Gr(n, C2") is completely split
& F(A;) =0 for all i, where A, --- , A, are the smooth eigenfunctions of
K. .

fProof. The forward direction is trivial. For the backward direction, we
need the following fact from [2] to reduce the problem: a holomorphic
curve is completely split iff over some first adapted frame [©, K] = 0
where (©dz—0"dz is the connection matrix. Then, take any first adapted

frame and write K, K., K, in matrix form:

=[O, K]+31_<, K. =]0", K]+‘;’;]_<,
2
=[—9*,[@,1<]]+[— e’ ‘ZK]+—[8 K]+ afafK.

Substituting them into (x) and taking the trace on both sides, we have

n
ST F()+u[®, KI'K™'[0,K]=0
i=1
ie, tr[®, KI'K~'[©, K]=0. Since K~' is negative definite, we obtain
[©, K]=
Now, we can direct our attention to our final aim. We assume there is a
nongeneric curve f, which is not completely split, and fix it once and for
all. We shall then use the following three steps to obtain a contradiction.
Let us assume that over some first adapted frame the curvature matrix

is
A
K = u
u

with A # u. By Theorem 1 and Lemma 1 above, we may assume F (1) # 0

and F(u)#0. Let
a4 4y
A Ay Gy |
a3 a3 a3
and assume

0 apu-1) ayk-4A)
[©,K]= | a,(A—-n) 0 0 #0.
as (A —u) 0 0

e

Without loss of generality, we take |a, 2|2 + |a, 3|2 #0.
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Step 1. There is a first adapted frame such that a,,>0, a;; >0 and
a, =a,=0.
Observe that if S is a first adapted frame and

A
K(S)=( 7 )
u

then for any (g ), where U isa 2x2 C* unitary matrix, S(} J) is
again a first adapted frame. But © changes to

1 0 1 0 0 0
(0 U*)e (o U) * (0 U*aU/az> ’
so we may choose U smoothly, such that a,, >0, a,; =0 and a,, >0.

Now
0 a,(u—-421) 0
[©,K]=|a,(A-pn) 0 0].

Ay (A —u) 0 0
Equation (*) can be rewritten as

F(4)
F(u) +[0, KI'K"'[6, K]
F(u)
Jdlogi
. 0z
+[0, K] ( Qlogs )
Il
() e
Jdlogl
oz
+ 9en [0, K]
- E)logg
oz
. . 0Kl 98
~1-6". 0. K11+ | -0, 55|+ Zie. k1,
where
—u)? 2 2
. l,,#_)(lazl‘ +lay 1) 0 0
[eaK] K [8,K]= O alzzil—_/lﬂﬁ O 5
0 0 0
(-, (0. K]l =
@y + lay, [* +a3,)(u = 2) a1 =@y —8yy) @85 —4)
g @y =) = A) + By (0= 3) (lay P +a)d =) a5y (A=) | -
ay (@33 — @y pu—A) +aydy(n—4) aydy (A —p) a3 (A—n)
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Considering the (2, 3) entry of (), we have
_, = %

Therefore a;, >0 and a,, =0.

Step 2. 1/u =constant.

Fix the first adapted frame from Step 1 and consider the (1, 3) and
(2, 1) entries of (*x). Then we get

_ 43 9log((A —n)/1) 7. = %2 010g(A/(A — 1))
32 a, 0z ’ 327 ay, 0z

b

which are combined to give

a5, 0 log((u = A)/w) _ dlog(A/(u =)
a%z 9z 9z

)

Now from the (2, 2) entry of (x*) it follows that

2 F(u) 4
4n=7_, Tk

so that ail /alz2 = u/A. Substituting it into (1), we get

0log(A/(u—4)) _ polog((u—4)/ /t)
0z l 0z

i.e., 84/8z=0,or A/u = constant.
Let A/u=c;then c#1, c>0. Thus F(1)/A+2F(u)/n =0 becomes

c+2 _leogu
2( 3 )“_ 8207

Moreover, a,, =0, ail =-2u, afz =-2cu.
Step 3. a,; =0 and a,; # 0 (a contradiction).
Considering the (3, 1) and (1, 2) entries of (*x), we get
10 10
43 -41 =357 logu, a4~ =353 logu,
addition of which gives a,; —a,, = (0/0z)logu. Recall that K and ©
have to satisfy the connection-curvature equation:

68 08"

ey =16,6']+ 5= + 5,
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where
. [(a;, a;, O a, 0 a
[©,6]= 0 ay ay|.la, 3, O
a3, 02 33 0 @, a
a; — a3 12(a22 a,) ay(a;, —ay)
= | aplay —a;) |‘123| - fz ay3(@33 — dpy)

T - 2 2
a3, (@), —a33) Ty(ay;—ay) a3 —lay|
Considering the (2, 2) and (3, 3) entries of (A), we have

Oa, Oa,

—u=|a23| a12+2Re —u=a31 |a23|+2Re

6— b a— b
subtraction of which yields
i}
2|a23|2 = afz + a§1 +2Re —Si‘gTaﬁ
2c 2 9’ logu 2
= (‘T‘i)“”m =3le+

Thus a,, # 0, since ¢ > 0.
Next, consider the (2, 3) entry of (A):
0=a,,(a;; —a,,) + 0a,;/0Z.
Since a,, # 0, if we write a,, = |a23|ei0 , then
O(logu+i0) _610g|a23| _10logpu
0z B 0z 2 9z
or (8/82)[log(—u)3/2+10] 0, which implies
8’ c+2\
5oz o8- = 2( 52 u =0,
a contradiction.

Because of this contradiction, we have reached
Theorem 2. A4 holomorphic curve in Gr(3, C6) is either generic or com-
pletely split.
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