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HERMITIAN FINSLER METRICS
AND THE KOBAYASHI METRIC

JAMES J. FARAN, V

Abstract

The problem of local equivalence of Hermitian Finsler metrics under
holomorphic changes of coordinates is solved. On such a Finsler metric
we find some differential conditions which imply that the Finsler metric
is the Kobayashi metric of the underlying manifold (these conditions
are satisfied if the metric is the Kobayashi metric on a bounded, strictly
convex domain in Cn with smooth boundary).

0. Introduction

The infinitesimal Kobayashi metric is a real-valued function FM on the
tangent bundle of a complex manifold M. For p e M and v eT M,

FM(p, υ) = inf{l/r: there is a holomorphic / : Δr —• M

w i t h / ( 0 ) = / > , / ( 0 ) - v } ,

where Δr = {z e C: \z\ < r). FM is clearly an invariant of the complex
structure on M, and, indeed, information about FM can yield informa-
tion about the complex function theoretic aspects of M (see, e.g., [3], [4]).
One can think of FM(p, υ) as being the length of the tangent vector v .
One can then define the length of a curve by integrating the length of the
tangent vector to the curve, and define a metric dM by considering the
infimum of the lengths of all curves joining two points.

It is natural to try to understand the geometry of this metric. However,
the techniques of differential geometry can, in general, be applied only
indirectly, because FM need not have any smoothness, even away from the
zero section of the tangent bundle. (For example, the Kobayashi metric on
the polydisk in Cn is not C 1.) However, Lempert [5] has shown that when
the complex manifold is a bounded domain D cCn with smooth, strictly
convex boundary, then the Kobayashi metric is smooth. (By smooth we
shall always mean C°° . The results of this paper hold when considering
less generous regularity assumptions, but, for what needs to be done here,
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working in such greater generality would only serve to obscure.) Moreover,
Lempert, in the process of obtaining this regularity result, also showed that,
in this particular case, the Kobayashi metric had a number of other nice
properties. We will restate and summarize these as:

Theorem {Lempert [5]). Let D c Cn be a bounded domain with smooth,
strongly convex boundary. Then FD is smooth away from {v = 0} and
satisfies the following three conditions:

(i) In every complex tangent direction there is a totally geodesic com-
plex curve.

(ii) The restriction of FD to such a totally geodesic curve is a Hermitian
metric with curvature —4.

(iii) dD is complete.

By totally geodesic complex curve, we mean a complex curve with the
property that any two points of the curve may be joined by a real path in
the curve with length equal to the distance between the two points.

The goal of this paper is to provide a type of converse to the above
theorem.

A Hermitian Finsler metric on a complex manifold M is a function
F: TM —• R which satisfies

(1) F(p, v) > 0 if υ G TpM is nonzero,
(2) F{p, λv) = \λ\F(p, v) for all λ e C.

The Kobayashi metric on a smoothly bounded domain D c Cn is an
example of a Hermitian Finsler metric. The bulk of this paper is dedicated
to a study of the differential geometry of smooth Hermitian Finsler met-
rics. §§1-3 deal with the local equivalence problem: Given two smooth
Hermitian Finsler metrics, when can we obtain one from the other by a lo-
cal biholomorphic change of coordinates? The "solution" to this problem
is given in Theorem 1, and may be interpreted as giving an intrinsically de-
fined connection in an intrinsically defined principal bundle. §4 attempts
to interpret some of the local differential invariants of smooth Hermitian
Finsler metrics. §5 calculates the structure equations of the connection.
§6 returns to geodesies, and calculates the Euler-Lagrange equations of the
length functional in terms of the connection. §7 interprets conditions (i)
and (ii) of the theorem above in terms of the local invariants, and contains
the converse of that theorem (Theorem 2).

It should be noted that in studying real Finsler metrics, most authors
assume that the unit ball (in the tangent space) is strictly convex. (See, for
example, Chern's solution of the equivalence problem.) Here, no such as-
sumption is made. For the equivalence method in §§1-3 to succeed all that
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is needed is strict pseudoconvexity. One result of this weakened hypoth-
esis is that the notion of geodesic becomes very strange. This problem is
sidestepped, however, because the final theorem—the converse mentioned
above—makes no mention of geodesies. Both conditions (i) and (ii) are
stated in terms of the vanishing of certain invariants, and the notion of
geodesic is used only as motivation.

The author would like to take the opportunity here to thank Robert
Bryant and Robby Gardner for their many helpful conversations and sug-
gestions, and to thank the University of North Carolina at Chapel Hill for
its help in the production of this manuscript.

1. The equivalence problem: The overdetermined algorithm
and reduction to the space line elements

We wish to consider a smooth Hermitian Finsler metric on a complex
manifold. Since we will be working locally, we consider such a metric to
be a C°° function F: U x Cn —• R, where U is an open set in Cn ,
satisfying the following two hypotheses:

(i) F(z,w)>0, with equality if and only if w = 0.
(ii) F(z, λw) = \λ\F{z, w) for all λ G C.

Here we have identified TU with U x Cn . The problem we wish to
study is the following: Given two such functions F: U x Cn —• R and
F1: U' x Cn —• R, when are they locally equivalent, i.e., given z0 G U and
z'Q G Uf, when is there a biholomorphic change of variables φ from a
neighborhood TV of z0 to a neighborhood of z'o taking F into F1, i.e.,
such that

F'(φ(z), φ'(z)w) = F(z, w)

for all (z, w) G NxCn ? To solve this problem, we shall apply the Method
of Equivalence due to E. Cartan, a modern description of which the reader
will find in R. Gardner's monograph [2]. The first step is to describe the
problem as one dealing with the preservation of certain coframes. To do
this, we approach the problem slightly differently.

Since F satisfies condition (ii), given any (real) curve γ: [a, b] —> £/,
we can define the length of y to be

rb

L{y)= / F{γ{t),y\t))dt,
J a

and this is independent of the parametrization of the curve. An equivalent

statement of our problem is to determine when there is a biholomorphic

change of variables φ from a neighborhood TV of z0 to a neighborhood

of ZQ which preserves lengths of curves. Thus it is natural to consider the



604 JAMES J. FARAN, V

space Rx U xCn = {(t, z, w)} (which may be thought of as the space
of one-jets of maps from R to U), and consider changes of variables
(t, z, w) \-+ (t', z , w) satisfying the following conditions:

(1) t' = /'(/), z = z'(z), w = w\z, w). Equivalently,

(1.1)

dt = 0 mod(dt),

dz = 0 mod{dz),

dw'= 0 mod(dz, dw),

where we have used the notation, e.g., mod(dz) for mod(dz[, , dzn).
Thus the coframe (dt, dz, dw, dz, dw) is determined up to transfor-
mation

df
dz
dw
dz
dw

H-> ω =

'a
0
0
0
0

0
A
B
0
0

0
0

c
0
0

0
0
0
A
B

o
0
0
0

c

•df
dz
dw
dz
dw

where a eR, a ̂  0, A,C e Gl(n, C), Be Mn{C), and we think of
dz, dw , dz, dw as column vectors.

(2) Given a curve γ: R —• £/ we can consider its graph {(ί, y(ί), /(0)}
c R x U x Cn. We make the change of variables to take the graph of any
curve to the graph of a curve. Thus:

(1.2) dz - w' dt' = 0 mod(dz - w dt).

(3) To preserve the lengths of curves, we want the element of arc length,
F(z, w) dt, to be preserved along curves; thus

(1.3) F'(Z , w') dt' = F(z, w) dt mod(dz - w dt).

These last two conditions give us that the coframe (F dt, dz-w dt, dw ,
dz -wdt, dw) is determined up to a transformation,

Fdt •
dz-wdt

dw
dz-wdt

dw

u are column

θ =

1
0
u
0

.0

vectors

t
E
H
0
0

0
0
G
0
0

of length

0
0
0
Έ
H

n,

0"
0
0
0
G.

E, G

dz

dz
_

Fdt '
-wdt
dw
— wdt
dw

H(n,C), and H

Thus we are looking for mappings which will preserve both the coframes
ω and the coframes θ . In this case we apply the overdetermined algorithm



HERMITIAN FINSLER METRICS 605

(see [2]): We express the coframe θ in terms of the coframe ω, θ = mω,
where m is the matrix

{F-ιvw)/a ιvA ' 0 0 0

-Ew/a EA~X 0 0 0

(uF-Hw)la HA~X -GC~XBA~X GC~X 0 0

-Έw/a 0 0 Έl~l 0

.{uF-Hw)/a 0 0 ΉA~l-GC~XBA~X GC~

We can now normalize m to be the identity matrix except for the
(2, l)-entry and the (2n + 2, l)-entry which we normalize to 1. This
is done by taking G = C, E = A, H = B , t; = 0, a = F , M = //it /α,
and

(1.4) - E w / a = t ( l , 0 , - . , 0 ) .

By the homogeneity of F ,

Here j = 1, , n and we use here, as in what follows, the summation
convention—repeated indices are to be summed, In general, the indices
7 , / : , / , etc. will range from 1 to n , while the indices α, β , γ , etc. will
range from 2 to n. Therefore we can obtain (1.4) by taking A = Ao,
where

(1.6) Λo

and Ao is an (n - 1) x n matrix of rank n - 1 satisfying Aow = 0. If

we let v". be the entries of Ao, we can define

θo = Fdt,

(1.7)

. k , k

ω0 = aw .

Then (θQωQ, ώ1^) is a coframe on Rx U x Cn and is intrinsically (i.e.,

independent of choices of coordinates, Ao, etc.) defined up to a transfor-

mation
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θ o * = θo >

n* .a γ

ω0 =A γω0,

Now consider transformations Φ of R x U x C" given by

(1.9) Φ(t,z,w) = (t/\λ\ + τ,z,λw),

2 6 C , 2 ^ 0 , τ e M . Then

(i . io)

So if we quotient by the action of such transformations Φ, we get a G-
structure on U xFn~ι : the coframe (ωι

Q, ω[j, ώβ) is well defined up to
a transformation,

(1.11) ω 0 =A ,y0,
. a* a 1 na y ^,a . y

ω0 =u ωo + B γω0 + C γω0,

where μ e C, \μ\ = I, A, C e Gl(n - 1, C), w, υ G C^" 1 , and
B e Λ/n_j(C). Moreover, any map preserving this G-structure lifts to
an equivalence of the original structure, and any equivalence of the orig-
inal structure descends to an equivalence of the quotients. We will there-
fore only concern ourselves with the equivalence problem on the quotient
U x P"~ , the space of complex line elements. Of course, any explicit cal-
culations we do will be done in homogeneous coordinates, i.e., on U x Cn .

2. First order normalizations

We now have, on U x Fn~ι, that the coframe (ω^, ω£, ώ^) is well
defined up to a transformation (1.11). Let 3° be the principle bundle of
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all such coframes. The general coframe of & will be given by

(2.1) ω =A γω
7

0,
.a a 1 na y y^,a . γ

ω =u ωo + B γω
r

0 + C yω'Q.

Taking μ , υa , Aa , ua , Ba

γ, C α as fiber coordinates of ^ , equations

(2.1) also define ω ι , ωa, of as forms on &. Any equivalence φ: U x
Ψn~ι -+ U' x P r t~ ι will lift to a map of principle bundles Φ: & -• ^
which preserves the forms ω1 , ωα , of . The next step in the Equivalence
Method is to use the exterior derivatives of ω1 , ωa, ώa to reduce the
group of & . We can write

dω = ψ Aω + βaΛωa + torsion,

(2.2) dωa = πa

γ Λ ωγ + torsion,

dof = γa Λ ω + μa

γcoγ + ^ ^ Λ ώy + torsion,

where the torsion terms are quadratic in the base forms ω , ωa , of , and
the forms ψ = ψ, βa, πn

γ, γa , //tt

y, >/Q

y correspond to Maurer-Cartan
forms of the group of 9° . We have the integrability conditions

dω = dof = 0 mod(ω , of), dώ = 0 mod(ω , coγ, ώγ).

Therefore all the torsion terms can be absorbed into the forms ψ, βa,
π r t , yίk, μn , and ?;" except the following:

ί/α;1 = ψ Λ ω1 + j8α Λ of + α^ω1 Λ ώ",

(2.3) ί/ω = π y Λ ω + ω Λ(b ω + c ^ ω ^ + e pcoμ +f γω ) ,

dώ* = y" Λ ω ' + //\ Λ ω 7 + ^" Λ ώγ.

The idea is now to use the group of & to normalize the torsion coeffi-
cients an , bn , ca n, /"" . We shall see how the group acts by calculating
its infinitesimal action, which can be done by taking the exterior derivatives
of equations (2.3). First, calculating mod(α/\ ωβ) and mod(Λ3(base)),

0 = d2ω = ω Λ of Λ (rfflfϊ + ayη\ - f Jy)

+ ωι Λ {idψ + bnβn Λ Λ ^ ^ α Λώβ).
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Add this to its conjugate and evaluate modulo ωa , ωβ , ω1 - ω T , Λ 3 ( b a s e ) '•

+ ω 1 Λ ώβ Λ {dap + adη β

+ ct> Λ£ βpaAco + co ί\e PβΛcϋ .

It follows from this that we must have ea β = 0 and

daa = - ^ ^ + /7

Qj8y mod(base).

From this we see that we will be able to choose the frame so that aa = 0
provided that the matrix (fγ

a) is invertible. To see this, we need to
calculate this matrix in coordinates.

Parametric calculations I. First, note that we can take

(2.5) ω\ =

(2.6) &>Q = va dzJ,

where the (n - 1) x n matrix vaj has rank n - 1 and satisfies

(2.7) vajWj = 0.

Then

(2.8) ω1 = -2μ-^L dzj + v tΛ dzj,
dwJ a J

(2.9) ωa = Aayjdzj.

The forms ω^ and ω^ form a basis for T* U, so we may write

(2.10) dzj = ajωι

0 + uj

γω
γ

0

for some aj , uJ

 y. We then must have

(2.11) <*it = - 2 <

(2.12)

(2-13)

(2.14)
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(2.14) implies that aj = λwj for some λ e C. From (2.12) we see that
λ = -\/F. Thus

(2.16) rf^ = ~ ω ; + ̂ y ω j .

Also,
y

where

(2.17) ω0

 = A

 γ

ω '

/-> 1Ω\ 1 1 1 1 . / Q y

(2.19) ω n = — co v A ω.
μ μ /

Therefore,

(2.20) dzJ =

We can now calculate that

(2.21) dωa = —=Aavγ. dwJ Λ ω

So let

(2.22) O)Q = ψv°jdwJ',

(2.23) ώα = ~ C " ^ 7

7 ^ + £%ω^

Then

(2.24) ύfωQ = -Aa

γC'γμώ
μ Λ ω 1 n

where

(2.25) C γC μ = C γC μ = t

so that

(2.26) /^^ = -A γC μ.

Thus, the matrix is always invertible.
Note also, the calculations above show that

(2.27) ba = ca

B=e% = 0,
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so that

(2.28) dωa = πa

γ Λ ωγ + f yω
X Λ ώ7.

Then by calculating mod(α/, Λ3(base)) we obtain

0 /2 a / i roc a ru . rO. MX μ x 1 . 7

= έ/ω ={dΓγ-π μf
μ

γ + ιΓγΨ + J / y )Λ(w / ω",
which implies that

(2.30) έ/Γy = τr%/ 7 ~ //"y^ - /"^/y modbase.

Thus we can normalize

(2.31) * β = 0,

(2.32) r y = -<

and restrict ourselves to the bundle 3°χ of coframes satisfying (2.31) and
(2.32). This bundle will be preserved by equivalences.

3. Second order normalizations

From (2.4) and (2.30) we see that now on the bundle £PX

(3.1)

(3.2)

So we

(3.3)

where

(3.4)

(3.5)

now have

dωX =

dωa =

dώa =

ηn are φ

η = a
'(I (

φ

ψi
a

π .
a

y
a

μ

y

\ωx +c

γ Λ ωγ 4

A C ^

are ne\\

ίk ϊ

= h co

βy =

Ίay = *"y

o* Λ ηa,
. « 1

- ω A ω ,

w"y Λ α/ 4

r torsions:

+ Cnyω' -

0,

- iδ;Ψ.

(π y-ιδyψ)Aω

+ eafiJ+ /„,<*>+ .

+1" ώγ + mμ"βω

φμ"

and we may assume

ι;y = -/. v
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Next, let us calculate the relations which we get among these torsion
coefficients by using d1 - 0. First by calculating mod(a/*j we find

(3.8) 0 = d2ωι = {idψ - ηa) A ω1 Λ of mod(ωα).

Hence,

(3.9)

Adding these two equations yields

(3.9) 0 = {-idψ- ηβAώβ)Aωl mod(α/).

(3.10) Q = ( - η a A ώ a - ηβ A ώ ) A ω m o d ( ω Q , ω , ω - ω )

so that

(3.11) 0 = ηaAώa + ηβAώβ mod(ωα, ω\ ω\ ωl).

It now follows from (3.4) that

(3-12) /«, = /*,.

(3 1 3 ) Sa-β=Jf& = gβa-

Second, again calculating mod(fc/) gives

(3.14) O Ξ r f V Ξ ώ ' Λ ^ Λ t o 1 mod(ω7).

From (3.5) it follows that φμ

a = 0:

(3.15) V . ^ = ς = m Λ = 0.

Now, having eliminated most of the torsion in this fashion, we can
calculate the infinitesimal action of the group on the torsion by calculating
d coι = 0, as we did in the last section. A straightforward calculation
gives

(3.16) daa = aγπ
γ

a - faγγ
γ modbase,

(3.17) dba = 2ibaψ-bγπ
γ

a-gaβγ
β modbase,

(3.18) dcaγ = - icaγΨ - cμγπ
μ

a - caμπ
μ

γ

(3.19) dea-β = -iea-βψ-eyβπ
y

y-eaβπ
σ-β-gnaμ

σ

 β modbase,

(3.20) dfaγ = -2ifaγΨ-fμγπ
μ

a-faμπ
μ

γ modbase,
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(3.21) dgQβ = -gγβπ
ga

a-gaδπ*β modbase.

Assumption. The Hermitian matrix gaβ is positive definite (in partic-
ular, invertible).

It follows that we can normalize

(3-22) ba = eaβ = 0.

In order to make calculations easier, we do not normalize ga» nor do we
normalize any of the other torsion. The normalizations (3.22) then give
that

(3.23) γa=μ

a

γ = 09

and we now write

(3.24) dωι = ψ Λ ω 1 + aaω
a Λ ω1 + caγω

a A ωγ

+ faγω
a A ωγ + gaβω

a A ώβ ,

(3.25) αω = π y Λ ω + ω Λ ω ,

ϊ(3.26) αω = (π γ γ - ιoγψ) Λω +E ω Aω + F γω Aω

+ Gf*βω
l A ω + Ft ω A ώγ + /"^ω Λ ώ

+ tfαy Λ Λ L f t

y/ |ω
y Λ ^ + Ma

γβω
γ A ωβ

+ N"μω
γ Aώμ + Pn

γβω
γ Aώβ,

where

( 3 2 7 ) L " , , = - L % .

The equivalence method now calls for us to normalize gaβ and then
require that the matrix πn be a skew-hermitian with respect to gaβ .
This, however, would make certain calculations more difficult. To achieve
the same result we do as follows.

Calculating mod(o/ , ωn A ω7, ωn A ώγ) gives

(3 28) ° Ξ d2θjl

+ Faδω Λω Λω — Lnd9ω Aω Aω .

Here, and in what follows, we shall use gα^ to lower indices and g , the
inverse of g*, to raise indices. Thus

(3-29) Fna = LtϋO = 0,
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(3.30) d S * β + π ° P + π β ° = A * β r - - P - ^ - p y o - _

with

(3.31) Aβaσ=Aσaβ

So let us define

(3.32) φβa = πβa - Aaβγώ
γ + Nβγaω

γ + Hβaω\

Then

(3-33) dgaβ + φβa + φaβ = 0.

Also,

(3.34)

dω = φ γAω+ω Aω +Aγ μω Aω -N μγω Aω -H γω Aω ,

(3.35)

rfω = (π - z<Jy ̂ ) Λω + E ω Aω +G βω Aω + / βG) Aω

+ Ka

γω
γ Λ Λ M α ^ ω 7 Λ ^ l Pa

yβω
γ A ώβ.

We may now assume that

(3-36) Na

μγ = -Na

γμ.

Theorem 1. There are unique forms ψ = ψ and φ(\ satisfying (3.24),
(3.33), (3.34).

Proof Since we have constructed such forms, existence is clear. To
prove uniqueness, suppose ψ* and φa * are other such forms. Then,
using (3.24) we obtain

0 = i ( ψ * - Ψ) A ωι + {a* - a a ) ω a A ω 1 + {ca* - c n y ) ω n A ωy

This implies that

(3.38) 0 = (i(ψ* -ψ) + {an* - an)ωn) A ω 1 ,

and hence that

which is impossible (since ψ , ψ* are real) unless a(* = an and ψ* = ψ .
The proof that φn * = p " is similar, by using (3.34) instead of (3.24).
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Thus, on the bundle ^ , we have an ^-structure—the forms ωι , ωa ,
ώa , ψ, p α

y are intrinsically defined on 9°x and form a basis for Γ * ^ .
This completes the formal solution of the equivalence problem. The func-
tions aa , caγ, faγ, gaβ are second order invariants, and the functions

K,'»%,' H\' ^ α ' °aβ' Λ ' *°,' M%β - ^ a r e t h i r d o r d e r

invariants.

4. Interpretations of the second order invariants,
or, parametric calculations II

In this section we wish to present some geometric interpretations of the
second order invariants aa , caγ, faγ, ga-β . In particular, we would like
an interpretation of the definiteness of gaβ . To this end, we continue the
parametric calculations carried out in § 1. Recall that we may take

(4.1) ωι—2ΪZj dz*,
dwJ

(4.2) ωa = vajdzj.

(These are written as forms on ί/xC", and present forms on U x P"" 1 .

Thus these are not the intrinsic forms on ̂  , but rather the pull-back

to U xfn~ι of the intrinsic forms. Since we can determine the intrinsic

forms from these using the group action—cf. (2.1)—we can work with the

forms (4.1) and (4.2) so that we do not have to carry around the excess

baggage of the group parameters.) We then have

(4.3)

So we let

(4.4)

Then

(4.5)

so

(4.6)

We shall want

(4.7)

dωa =

k . a

u aω0

dw —

to define

ω

-=vγ j dwJ

1

-l

Fdwk-

. a a

= ωo+p

Λ ω

'/jύ

2

F2

y

1 mod(α/).

!wJ.

k dF j
W dwJ

k dF , j

dwJ

+ βf α ω ! ,
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by choosing pa

γ and qa so that the normalizations (3.22) are satisfied.
Calculation gives

( 4 ' 8 )

d ω

ι

 = 2F Ql.F -UJ uk-βω
a Λ ώj + IF ^ V u\ωa Λ ώl

dwJdwk a β ° aty^ti;* α γ °

y f - d2F wk j \ - d2F k j β\
+ ω Λ - 2 : Γ~F~U v ω + 2 : Γ M Ŵ Q)

\ dwJdwk F γ dwJdzk p / J
β 1 dF k i

'dzk

1 dF k i 1 ΘF
=•—Γw ω + -=•—Γ

2 dF k 2 d2F k j \ i A a+ w uJ \ω Λω
dzk a Fdw}dz

-?^-τu
k uJ

vω
aAωγ.

dwJdzk a y

k a

This gives us the following:

tΛM o p d 2 p J ~k d2(F2) J k

(4.9) g „ = 2F : Tu u R = r—-γU u T ,
aβ dwJdwk a β dwJdwk a k

>2F J k _ d\F2) j k

the final equalities here using (2.13).
Definition. lz = {w: F(z, w) — 1} is the indicatrix of F .
Proposition 1. (1) The matrix ga* is positive definite if and only if the

indicatrix is a strictly pseudoconvex real hypersurface.
(2) The matrix faγ vanishes identically if and only if the Finsler metric

is Riemannian.
Proof (1) Note that (2.13) implies that the vectors (u a, , un

a),
a = 2, , n , are in the maximal complex tangent space of Iz. Since uJ

a

has rank n-\, they span the maximal complex tangent space. Equation
(4.9) thus displays ga-β as the Levi form of the real hypersurface Iz.

(2) We calculate, using the homogeneity of F2 and (2.13),

(4.11) r—-ru w = — — ± u =2F ru = 0 .
dwJdwk a dwJ a dwJ a
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Also we have

(4.12)
dwJdwk dwJ

Since the vectors (uι

a, , un

a), a = 2, , n , together with (w 1, ,
w") span Cn by (4.10
of the quadratic form

n) span Cn by (4.10), the vanishing of fa is equivalent to the vanishing

d2(F2)

dwjdwk'

However, if this form vanishes, then F must be linear in w , and since
F is real, linear in w as well. It follows that

F =hjk(z)wJw ,

and the metric is Riemannian.
Returning now to (4.8), we make the final normalizations by taking

(4.13) P<x = l s J

y 2 γβ d F k 1
(4.14) ^-•i/'T^^T^W,.

It then follows that

J r)F
(4.15) aa = —^jUκ

a-—-^-r
2 dF k 2 d2F kj , 2 , yβ d2F kj

( 4 1 6 ) ;
. //)9 θ 2 / 7 k j r μβ 02F k J

Proposition 2. If the metric is Riemannian, then an and ca, both van-
ish identically if and only if the metric is Kάhler.

Proof. We suppose F2 — hjj((z)wJwk , and then calculate that

1 (dHkΊ dhΛ j k j

1 (dhk1 dHβ\ j k j

arv = —r —<η- f )w w uJ .
* F2\dzJ dzk )
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It follows that aa and c vanish identically if and only if

dzj dzk'

which is the Kahler condition.

5. Structure equations

In this section we derive the formulas for the exterior derivatives of the
forms ψ and φa

γ. We do this by using d2 = 0. First, differentiating
(3.24) we obtain

(5.1) 0 = ωn A ωι Λ Daa + iωι Λ Ψ + ωa A ωγ Λ Dcaγ + ω α Λ ώ 7 Λ Dfaγ,

where

( 5 ^ β ,^« ( f ^ ) ω ] + (Kaβ - fayG
γ

p)ωβ

+ (2cβ]F + aμAa"7 + fμγH
μ

aW f/^

Dc = dc — ic \u + c Φ + c cp

(5.4) + Xi{Gny - Gyn - fnμK
μ

y + f7μK>a)ωι - aμcnyω
μ

- Mβyn - faμMy

μ

β + fγμMn

μ

β)ωβ - fμpN
μ

nγώ

(5.5)

Therefore, by Cartan's lemma we have

(5-6) Dcny = cnyμω
μ + cay

(5.7)



618 JAMES J. FARAN, V

where

* ' I ay ,μ Jaμ,γ γa,μ Jγμ,a'

Further, from (3.6) and (3.12) (differentiated) it follows that

( 5 1 5 )

( 5 1 6 )
( 5 1 7 )

Substituting (5.6) and (5.7) into (5.1) gives

(5.19) 0 = (iΨ + Daa A ωa + caγ {ω
a A ω7 + /QJr> xω

a A coγ) A ω1.

Therefore,

(5.20) iΨ + Daa A ωa + caγ xω
a A ω7 + faγJω

a Λ ώ7 = A Λ ω1

for some one-form λ. Taking conjugates and adding we obtain

Q = Da Aωa + c v ,ωa Aωr + fv .ωa Aώγ -λAω1

+ Octroi + Cβg Ίω Λof + fβ9 -xω Λώ'- lΛft ) .

It now follows from Cartan's lemma that

(5.22) Daa = aa γω
γ + Raβω* + faγ ^ + aa ^ + aa ](o

l,

(5.23) λ =-aa^ω" - aη^ωβ + Qωι + bωι

with

(5 2 4 ) «α,Γ f l,,« = 2C«l'

(5-25) Ks = Raa-

We then have, from (5.20),

dψ = -ig xώ'Άώ -iRa*af Aω —iaa -{ω
aAω{+ia,β ,ω Aω*+iQωιAω .
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Second, differentiating (3.34), we obtain

(5.27)

0 = ώ" Λ ωγ A DA"μ - ω" A ω" A DNa

μγ - ω 1 Λ ω 7 Λ DHa

y + Φa

γ A ωγ,

where
(5.28)

(5.29)

(5.30)
" τ = dHa

γ - Hμ

γφ
n

μ

{Kn

y

(5.31) Φ y = dφ y - φ μ A φμ

y - gγβω A ω .

Note that

(5-32) DAγ'\ = DA;γ,

(5.33) DN"γμ = -DN"μγ.

Equation (5.27) may be written

(5.34) 0 = (Φn

γ + DAγ

n

μ Λ ώ^ + D Λ ^ Λ ωμ - DHa

γ Λωι)Λω7,

It follows that

(5.35) Φ" 7 + DA°μ Λμ + DNa

γμ Λ ωμ - DHa

γ Λ ω1 = λn

γμ

for some one-form λ(\ = Â  . By differentiating (3.33) we can calculate

that

(5.36) 0 = Φ
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Together with (5.35) this gives

(5.37)
+ DAβγσ Λώ" + (DNγβg - λyβΰ) Aωυ- DHyβ A ω

The Cartan Lemma then yields

(5.38)

(5.39)

(5.40)

(5.41)

where

Aγβμ,p-Ayβp,μ>

(5-44)

(5-45)

^ 5 4 8 ^ Nβvμ,P ~Lβy,μ,p = Nβγp,μ - Lβyp,μ '

(5.49) Nβγμ,σ ~Lβy,μ,σ
 = Nγβσ,μ ~ Lγη9,μ '
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Hence we have

dφa

y = φ°μ Λ φμ

γ + gyβδ
a

μώ
μ A ώβ

(5.53) +N°^^ Aω9 + N°m ,ώμ Aώs + Na

γμώs + Nγμ Λώ
μ A

1+ L%μ 9ώ
μ Aω* +La

yμ &ώμ Aώ9 + La

γμ ^ Aco1

+ H dω Λω +H bω Λω +H -χω Λω .

6. Geodesies
In this section we wish to derive the Euler-Lagrange equations of the

geodesies of our Finsler metric. So consider a curve γ: [0, 1] —• M. If γ
is regular, i.e., if y(t) is never vanishing, y has a natural lift to a map
into FTM, t H-+ (γ(t), [/(*)]) > where [y\t)] is the complex line spanned
by / ( / ) . We can then lift this curve in ΨTM to a curve Γ: [0, 1] -> 9ΰ

x

satisfying

-.* a(6.1) Γ ω = 0 ,

(6.2) Y*ω{=λdt, λ>0.

The curve Γ may be thought of as a coframe adapted to γ. Recall that

ω l μ ^ d z .
dwJ

If y is given by t ι-> z(ί), the lift of y to PΓΛ/ will be given by t \-+
(z(t),z'(ή). Then

| ^ 0 , z'(0)

by the homogeneity of F , so μ = - 1 , and A = i7(z(/)z/(/)) in (6.2). It
follows that the length of the curve γ

(6.3) L(γ)= /Vω 1 .

Now consider a smooth variation γ: (-e, e) x [0, 1] —• M, γs(t) =
γ(s, t). We adapt a coframe Γ5 to each ys in a smooth fashion, obtaining
a smooth lift Γ: (-ε, c) x [0, 1] —• ^ satisfying

(6.4) Γ*ωQ = Γ*(ω ! - ω1) = 0 mod(ds).
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Let Γ (0 = Γ(s, t), and define

(6.5) f(s)= ί Γ*sω
l.

Jo
Then, letting C be the curve 11-> (0, t) in (-β, ε) x [0, 1], we have

Suppose

(6.7) Γ*ωι =Ads + Bdt,

(6.8) Γ'ω a = CVί,

(6.9) Γ*ώβ = Fαί/5 + G"rfί,

(6.10) Γ*ψ = Hds + Jdt.

Assume that the variation γ fixed endpoints: γ(s, 0) = γ(0, 0), γ(s, 1) =
y(0, 1). It then follows that B(s, 0) = B(s, 1) = 0, and the boundary
term in (6.6) vanishes:

/

C7
—

(6.11)

/

- iAJ + C " ( ^ 5 + 4 G 7 + gaβG
β)]ds

= J Rε[-iAJ + C"^/? + 4 G 7 + gftίG^)]ds,

since /'(O) is real, as are H and B. Since Λ and Ca are arbitrary (they
correspond to the variation of the curve in M), if /(0) is minimal, we
must have

(6.12) J = anB + fnγG
γ + gnβG

β = 0.

In this fashion we obtain the following:

Proposition 3. Suppose γ: [0, 1] —• M is a geodesic. Then when we

choose a frame along γ so that ωn = ωι - ωι = 0, we must also have

Ψ = anω
ι + fnγώ

γ + gnβώ
β = 0.
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Note that this does not say that if we have a curve γ and a coframe
along γ with ωa = ωι - ωι = ψ = aaω

ι + faγώ
γ + gaβcoβ = 0, the γ is

therefore a geodesic. To obtain such a statement we would need further
assumptions, for example, that the indicatrix is strongly convex. The result
above, however, is sufficient for our present purpose.

7. Characterization of the Kobayashi metric

Having a description of the geodesies of our metric, we return now to
Lempert's results, and consider totally geodesic complex curves.

Let y: ζ »-• y{ζ) be a holomorphic curve in M. Such a curve has a
natural lift γ: ζ »-• (hγ(ζ), [/(C)]) to a curve in ΨTM which satisfies
fω

n = 0. Note that
(7.1)

d(aaω
l +faγώ

γ + gaβώ
β)

ΞΞ (φγ

a + iδy

aψ) Λ ( ^ ω 1 + fγμώ
μ + gγβώ

β) mod(Λ2(base)).

This describes how the group of the bundle 3Pχ acts on aaω
ι + fnγώ

γ +

gaβCθβ . It follows that the vanishing of all the aaω
ι + fnγώ

γ + g(ϊβά>β is
independent of the choice of coframe. Now,

(7.2) y > y + faγώ
γ + gnβώ

β) = Aj\ωι) + 5 j V ) .

So if there are geodesies in γ, they occur only in the directions

(7.3) Aaω
ι+Baω

l=0.

Further if γ is totally geodesic, i.e., if γ is tangent to every real direction
along γ there is a geodesic which remains in γ, so An = Bn = 0, and

(7.4) f(aωl+faγώ
γ + gaβώ

β) = 0.

However, along any holomorphic γ , ώ* = 0 which implies

(7.5) 0 = dωn = ώn/\ωι

along y. Therefore,

(7.6) ω = I ω

for some functions Γ . So if γ is totally geodesic, then

(7.7) aωl+fa/ω{+g(ϊβl
βω{=0,
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from which it follows that f - 0, and hence aa — 0. Thus for γ to be
totally geodesic we must have

(7.8) a

a = °>

(7.9) ώa = 0

along γ . This last equation implies, in consequence of (3.35), that

(7.10) Ea = 0.

Thus we have shown
Proposition 4. If through every point of M and tangent to every com-

plex direction there is a totally geodesic complex curve, then

aa = E« = 0.

Moreover, the totally geodesic curves are the integrals of ωa — of = 0.
Along such a totally geodesic curve, the restriction of the Finsler metric

is given by ds1 = ωιω{, which is a Hermitian Riemannian metric, and
φ = iψ is the corresponding Kahler connection form. Moreover,

(7.11) dφ = —QOJ Λco .

Thus the curve will have curvature 2Q. Along an arbitrary holomorphic

curve, ώa = Γω{, and

(7.12) dφ = -(Q-gaβlΊ
β)ωl Λω\

so such a curve has curvature

(7.13) 2Q-2gaβlΊ
β<2Q.

Theorem 5. Let M be a complex manifold with a smooth complete
Finsler metric F with strictly pseudoconvex indicatrix satisfying

Then F is the Kobayashi metric of M.
Remark. Notice that while this theorem was motivated by a study of

geodesies, it (and its proof, below) contains no mention of geodesies.
Proof Pick p e M, υ 6 TpM, v Φ 0, and γ: A —• M holomorphic

with y(0) = p , γ+id/dz) = λυ , λ > 0. Then the restriction of F to the
image of γ is a Hermitian metric with curvature bounded above by —4
by (7.13). So, by [3, Theorem 2.1, Chapter 1],

, 1
F(p,υ)<

λx λ'
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Thus F{p, υ) < FM(p, υ).
Moreover, {ωa = ώa = 0} is a Frobenius system on ΨTM, so the

leaf through (/?, [v]) is a well-defined submanifold iV, and ds1 = ω]ωι

defines a complete metric on N with curvature —4. Therefore TV may
be isometrically covered by the unit disk. Let Γ: Δ —• TV be the covering
map with

π o Γ ( 0 ) = / ? , π o γ { 0 ) = λ υ , λ>0,

where π: ΨTM —> M is the projection. Then consideration of γ = π o
7: Δ —• Λf yields the other inequality: F(p,v)>FM(p,v).
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