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0. Introduction

We consider formal, smooth, or real analytic hypersurfaces in Cn+ι and
mappings between such hypersurfaces. The mappings we study are either
the restrictions of germs of holomorphic mappings, CR mappings, or, more
generally, formal holomorphic mappings defined by nonconvergent power
series. Let M be given locally by ρ(Z,~Z) = 0, with Z e C n + 1 , p real,
p(0) = 0, dp(0) Φ 0. A transversal coordinate for M is Zn+\ defined by
p(Z, 0) = α(Z)Z π + i , α(0) φ 0. If H: M -+ M' is a holomorphic or formal
map between two hypersurfaces M, M' in C n + 1 , given by Z[ - Hi(Z), and
if Z'n+ι is a transversal coordinate for Mf, then Hn+{ is called a transversal
component of H.

Our first result in this paper (Theorem 1) shows that if M1 is of finite
type (in the sense of Kohn [12] and Bloom-Graham [5]) and H is of finite
multiplicity (as in [3]), then (dHn+i/dZn+{)(0) φ 0, where Hn+X and Zn+{

are transversal. This was proved by Fornaess [9] in the pseudoconvex case
using the Hopf Lemma. We also show (Theorem 2) that if M is essentially
finite (as defined in [2], [3] and [6]) and Hn+\ does not vanish identically,
then H is of finite multiplicity. Next we show (Theorem 3) that if M and
M1 are essentially finite, then H is of finite multiplicity if and only if a
certain Jacobian determinant associated to H is nonvanishing.
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In §4 these results are combined and applied to smooth CR mappings
(Theorem 4). A relationship between the essential types of M and M'
and the multiplicity of H is given in Theorem 5 for smooth CR mappings,
similar to that given in [3] for real analytic manifolds.

In §5, we use the previous results, together with the results of [3] to give
results on holomorphic extendability of smooth CR mappings between
real analytic hypersurfaces with minimal hypotheses (Theorem 6). These
results generalize the classical results in the strongly pseudoconvex case due
to S. Pincuk [14] and H. Lewy [13]. More recent work in this direction
was given by Baouendi-Jacobowitz-Treves [2] in the diffeomorphic case,
the authors in [3] and with S. Bell in [1], and Diederich-Fornaess [8].

§6 deals with global proper holomorphic mappings %? from one bounded
domain D in C*+1 to another, both with real analytic boundaries. We as-
sume the mapping extends holomorphically at each point of the boundary
of D. By applying Theorem 4, we show that a transversal derivative of a
transversal component of the mapping is necessarily nonvanishing at each
point of dD (Theorem 8). We use this result to relate global and local
multiplicity of βf in D and on the boundary of D.

Finally, we prove (Theorem 10) that a proper holomorphic self-map
of a bounded domain with real analytic boundary is a biholomorphism,
generalizing a result of Bedford-Bell [4] in the pseudoconvex case.

Some of these results generalize theorems in C2 proved using different
methods by the authors jointly with S. Bell in [1].

1. Formal hypersurfaces, CR mappings, essential type, and multiplicity

By a germ of a formal hypersurface M at the origin in Cn+ι we shall
mean a formal power series of the form

(1.1) p(Z,Z)~ΣcaβZaZβ,

with the reality condition caβ = Cβa, Coo = 0 and dp(0) ^ 0. If p is a real
analytic function, then {Z: p(Z9~Z) = 0} is a real analytic hypersurface.
If M c Cn+{ is a smooth hypersurface defined near 0, then we associate to
M a formal hypersurface by taking p to be the Taylor series of its defining
function at the origin. Since a local defining function is determined only
up to multiplication by a real nonvanishing function, we will regard two
series p and p\ of the form (1.1) as defining the same formal hypersurface
if and only if p\(Z,~Z) ~ a(Z,Z)p(Z9'Z)9 where a is a real formal power
series with α(0) Φ 0.
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After a formal holomorphic change of coordinates we may assume

(1.2) />(Z,0)~α(Z)Z π + 1 , α ( 0 ) # 0 .

We write Zn+\ = w, and (Zi, ,Zn) = z. Then w is called a transversal
(formal) coordinate for M.

(1.3) Definition. A formal hypersurface M at 0 is of finite type if
/?(z,0,z,0) ψ 0, where /? satisfies (1.2).

The reader can easily check that if M is a smooth embedded hypersur-
face in C"+ 1, then M is of finite type at 0 (in the sense of Kohn [12] and
Bloom-Graham [5]) if and only if its associated formal hypersurface is of
finite type as in Definition (1.3).

(1.4) Definition. A formal hypersurface M at 0 is called essentially
finite if p(z, 0, C, 0) - Σaa(z)ζa, with

(1.5) dim c ^[[z]]/(α α (z))<oc,

where p satisfies (1.2), and (aa(z)) is the ideal generated by the aa(z) in the
ring of formal power series in n indeterminates <f[[z]]. It can be checked
(see DΆngelo [6], where a similar definition is given) that definition (1.4)
is independent of the choice of formal coordinates. The number given
by the left-hand side of (1.5) will be called the essential type of M at 0,
written esstype0M; it is also independent of the choice of the coordinates.

(1.6) Definition. If M and M1 are two formal hypersurfaces at the ori-
gin, a formal CR map from M to M' is an n + 1 tuple H = (H\, , Hn+\)9

where Hj(Z) = ΣaiZa is a formal power series, aJ

a e C, aJ

0 = 0, such that
if p and p' are defining series for M and M1 respectively, then

(1.7) p'(H(Z),Ή(Z)) = b{Z9Z)p(Z,Z),

where b(Z,Z) is a real formal power series.
If we assume the formal coordinates Z' for M' satisfy (1.2) with Z

replaced by Z' and p by p', then we write Hj = Fj, 1 < j < n, and
Hn+\ - G, a transversal component of H. If G is another such transversal
component, it is clear that

(1.8) G(Z) = b(Z)G(Z), 6(0)/0.

If the coordinates for M have been chosen to satisfy (1.2) with the notation
Zn+\ = w, then it follows from (1.2) (and a similar formula for p1) and
(1.7) that any transversal component G satisfies

(1.9) G(z,w)

where G\ is another power series.
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(1.10) Definition. Suppose that H = (Fu , Fn, G) is a formal CR map
from M to M' where the coordinates for M and M' have been chosen as
above. Then H is of finite multiplicity if

(1.11) dim c^[[z]]/(F 1(z,0), - . ,F π (z,0))<oo.

One can easily check that this definition, as well as the number defined
by (1.11), are independent of the choice of formal coordinates for M
and M1. The number defined by the left-hand side of (1.11) is called the
multiplicity of H at 0, written mult0//. When M and M' are smooth
hypersurfaces and H is a C°° CR map from M to A/7, it was shown in
[3] that there is an associated formal CR map, and the definition of finite
multiplicity given there is the same.

When M, M' and H are real analytic we have the following results which
will be proved in §6.

(1.12) Proposition. If M is real analytic, k an integer > 1, and Uk the
germ defined by

(1.13) Uk = {p e M: esstype^Λf > k}9

then Uk is a real analytic subvariety ofM.
(1.14) Proposition. IfH: M —> M' is a real analytic CR map with M

and M1 real analytic, k an integer > 1, and Wk is the germ defined by

(1.15) wk = {pe M: multpH > k}9

then Wk is a real analytic subvariety ofM.

2. Nonvanishing of the differential of a formal CR map

Our main result of this section is the following.
Theorem 1. Let H: M —• M' be a formal CR map, where M and M'

are formal hypersurfaces at the origin in Cn+X, with Mf of finite type. IfH
is of finite multiplicity and G is a transversal component ofH, then we have

(2.1)

where w is a transversal coordinate for M.
(2.2) Corollary. Let<%*\ Cn+ι -• C"+ 1 be a germ of a holomorphic map

defined near 0 with ̂ ( 0 ) = 0. Suppose that X'(M) c Mf, where M and Mf

are germs of two real analytic embedded hypersurfaces in Cn+ι, containing
0, with M' of finite type at 0. Ifβ? is a finite map (in the sense that the
components of %? have no common zeros near the origin, other than 0),
then the gradient of%* at 0 is nonzero. More precisely, ifG is a transversal



GEOMETRIC PROPERTIES OF MAPPINGS 477

component ofH = %?\M> and w a transversal holomorphic coordinate for
M, then (2.1) holds.

In order to prove Theorem 1, we shall need some notation. As in § 1, we
write H = (F\, - 9Fn,G)9 where G is a transversal component of H. We
let (z, w) be formal coordinates for M, with w a transversal coordinate. It
follows from (1.2) that after a linear change of variables in C"+1, we can
assume that the defining function p is of the form

(2.3) p(z9w9z9w) ~ —— φ ( z,z,—— \ ,

with φ(0) = 0, Vφ(0) = 0, φ{z,0,0) = 0 and ̂ (0,C,0) = 0. By a further
formal change of variables as in [2] we may assume that

(2.4) φ(z,0,w)~φ(0,ζ,w)~0.

We shall write z = x + iy and w = s + it, x,y e Rπ, s, t e R. Similarly, we
may assume that the defining function for M' is given by

(2.5) pf(z\Ί',w\w') ~wf- Q(zf,τ',w'),

where

(2.6) β(z',0,0) = β(O,C',O) ~ 0, Q(z',0, w') ~ a(z',wf)wf,

with α(0) Φ 0.
(2.7) Lemma, i ^ r z,ζ eCn, s eC we have

(2.8) G ί z ^ + ^ ^ C ^

Proof. Combining (1.7), (2.3), and (2.5) we obtain

G(z,w) - Q{F{z,w),7{-z,w),G{-z,w))
(2.9) .fw-w ( _

,w,z,w)[— φlz9z9

We first replace w by s+iφ(z9 z9s) in (2.9), and observe that the right-hand
side vanishes. Since we may regard z and ~z as independent variables, we
may replace z by ζ in (2.9), and (2.8) then follows.

We now set a new variable τ by

(2.10) τ ~ j - i > ( z , C , J ) .

By the implicit function theorem we may find R(z9 ζ, τ) satisfying

(2.11) s + iφ{z9ζ,s)~R{z,ζ,τ).
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(Note that R(z, 0,0) ~ R(0, ζ, 0) ~ 0.) It follows from (2.3) that Λτ(0) φ 0,
so that we may uniquely define μ{z, ζ) satisfying

(2.12) R(z,s,μ(z,ζ))~0, μ(z,0) ~ μ(O,ζ) ~0.

(2.13) Lemma. // ff (0) = 0, then for k = 1, ,n,

(2.14) Qk(F(z, 0), F(C, μ(z, ζ)),G(ζ, M*. ζ)))D{z, ζ) ~ A(z)Ak(z, ζ)y

where

Qk(z,ζ,w) = Άz,ζ,w),σzk

(2.15) D(z, O ~ άet[FktZj(z,0) + FktW{z,0)RZj(z, ζ,μ(z, ζ))],

(2.16) A(z) ~ 2 Q'(F(z, 0), 0,0)F,,w{0),
I

where Qι{z',ζ',w') = (dQ/dζ',)(z',ζ',w'), and

Ak{z,ζ) = detBk(z,ζ),

Bk{z,ζ) being obtained by replacing the kth column in the matrix of the
right-hand side of (2Λ5) by RZj(z, ζ,μ(z, ζ)).

Proof. We begin by making ζ = 0 in (2.8) and obtain, using (2.4),

(2.17) G(z,s)~Q(F(z,s),T{0,s),<Z(0,s)).

Replacing J by s + iφ{z, ζ,s) in (2.17) we get

(2.18) G(z,s + iφ(z,ζ,s)) ~ Q(F(z,s + iφ(z,ζ,s)),7(0,s + iφ(z,ζ,s)),

By subtracting (2.18) from (2.8) we obtain

(2.19) Q(F(z,s + iφ(z,ζ,s)),F(ζ,s-iφ(z,ζ,s)),G(ζ,s-iφ(z,ζ,s)))

~ Q(F(z,s + iφ(z,ζ,s)),T(0,s + iφ(z,ζ,s)),G(0,s + iφ(z,ζ,s))).

Making use of (2.10) and (2.11), we obtain from (2.19),

(2 20) Q(F(^R(z'C,τ),F(ζ,τ),G(ζ,τ)))

-Q(F(z,R(z,ζ,τ)),F(0,R(z,ζ,τ)),G(0,R(z,ζ,τ)))~0.

Now we differentiate (2.20) with respect to z7, j - 1, , n, set τ = μ(z, ζ)
as defined in (2.12), use (2.6) and the assumption f^(0) = 0, to get

J2Qk(F(z,0),F(ζ,μ(z,ζ)),G(ζ,μ(z,ζ)))

(2.21) *='
x [Fk<z.(z,0) + FkΛB(z,0)RZj(z, C,μ(z, ζ))]

-A(z)RZj(z,ζ,μ(z,ζ))~0.
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Now the lemma follows by applying Cramer's rule to the system of equa-
tions (2.21).

(2.22) Lemma. //fg(O) = 0 and det(dFj/dzk)(z,O) ψ 0, then

(2.23) Qk(F(z,ζ),F(ζ,μ(z,ζ)),G(ζ,μ(z,ζ)))~O.

Proof. We shall prove that A(Z) ~ 0, where A(Z) is defined by (2.16).
The lemma will then follow from Lemma (2.13) and the observation that
D(z,0) ~ det(dFj/dzk)(z,O) φ 0. We reason by contradiction. Assume

(2.24) A{z) =έ 0.

We shall show that (2.24) implies that

(2.25) dzaD{0,ζ) = 0 for alia,

contradicting the assumption det(dFj/dzk)(z,0) Φ 0. Let /0 > 1 be mini-
mal so that there exists a multi-index γo, \γo\ = k, such that

(2.26) dzroA{O) φ 0.

By expanding the determinant D(z, ζ) given by (2.15) we have

(2.27) D(z, ζ) = Do(z) + Σ FktW(z9 0)Ak(z, ζ),

where Do(z) = det(<9Fj/dzk)(z, 0). After a linear change of the Fk we may
assume (since A(z) φ 0) that

(2.28) FUw{0) = \ and /}ftl7(0) = 0, 2<j<n.

Therefore we have

Hence also,

(2.29) Qi(

We return to the proof of (2.25). By (2.14) with k = 1 and (2.29) we
conclude that (2.25) holds for |α| < /o We claim also that

(2.30) Δ/(0,C)~0, 1 <i<n.

Indeed by putting z = 0 in (2.27) we get (2.30) for / = 1. Now apply
d2y0 to (2.14) with k = 1. Since the right-hand side is 0 (by (2.30) with
/ = 1) we obtain dzv0D(0,ζ) = 0. Now by applying dzy0 to (2.14) for k,
k = 2, , n, we obtain (2.30) for all /. Note also that by applying <9Z«
with |α| = /o, we obtain (2.25) for all |α| = /Q.
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Now assume by induction that (2.25) holds for all α, \a\ < I, and that

(2.31) Δ/iZ,(O,ί) = O f o r a l l | j J | < / - / 0 .

We shall prove that (2.25) and (2.31) hold for |α| = /+1 and \β\ = / - / 0 + 1 .
For such β, apply dzβ to (2.27), and put z = 0. Since \β\ < /, the inductive
assumption and (2.28) give

which shows (2.31) holds with / = 1 and \β\ = I - h + 1. Now apply
dzn, |α| = / + 1, to (2.14) with k = 1. Since dzβA(0) = 0 if \β\ < lo and
dzyA{ (0, C) = 0 if |yI < / H- 1 + /o we obtain

Qi(0,F(C,0),0)βzαZ)(0,C)~0,

which proves (2.25) for |α| < / + 1. It remains to prove (2.31) for i =
2, • , n and \β\ = / - /o 4- 1. By a rotation we may assume that γo =
(/o,O, ,0). We introduce a linear ordering on such multi-indices β by
putting

(βu ,βn)<(βl,-,β'n)

if β[ < β{ of β[ = βι and β'2 < β2, and so forth. We shall assume by
induction that (2.31) holds for all β with β < β° (or we shall make no
assumption in case β° = (I - l0 + 1,0, ,0)). We shall prove (2.31) for

where β° = {$,.-> ,βj>). Since dz«D(0,ζ) - 0 for |α| = / + 1, the left-
hand side vanishes after putting z = 0 and we obtain, by the inductive
hypothesis on β0, that the right-hand side is reduced to

dlQA(O)dzβoAk(O,ζ)~O.
z\

This completes the proof of the induction and hence that of Lemma (2.22).
The proof of Theorem 1 will be completed by the following, since the

hypothesis that H is of finite multiplicity implies dct(dFj/dzk)(z,0) ψ 0
(see [3, Lemma (3.19)]).

(2.32) Lemma. IfH is of finite multiplicity and M' is of finite type, then
for some k, 1 < k < n,

(2.33) Qk(F(z,0),F(ζ,μ(z,ζ)),G(ζ,μ(z,ζ)))£0.

Proof We shall show that if (2.33) does not hold for any k, then
Q(z, ζ, 0) = 0, contradicting the assumption that M' is of finite type. As-
sume now that for k = 1, , n

(2.34)
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In (2.8), we replace s - iφ(z,ζ,s) by τ and s + iφ(z,ζ,s) by R(z,ζ,τ) as
in (2.11); then we replace τ by μ(z,ζ). From (2.12) we obtain (by using

(1.9))

(2.35) Q(F(z9O)9F(ζ9μ(z9ζ))9G(ζ9μ(z9ζ)))~O.

Since Qw(0) φ 0 by (2.6), we obtain by expanding (2.35)

G(ζ,μ(z,ζ)) ~ Q(F(z,0),F(ζ,μ(z,ζ)),0)γι(z,ζ)

for some invertible power series y\(z9ζ). Substituting for ~G(ζ,μ(z,ζ)) in
(2.34) and expanding the resulting series yield

(2.36)

+ Q{F(z9O)9F(ζ9μ{z9ζ))9O)γ(z9ζ)~O9

where γ(z, ζ) is a formal series.
In order to prove that (2.36) implies Q(z,ζ,0) ~ 0 we consider first

the case where all the power series in (2.36) are convergent. Consider the
mapping

(2.37) (z9ζ)^{F(z90)9F(ζ9μ(z9ζ)))

from C2" to C2". Since μ(0, ζ) = 0 and z *-+ F{z, 0) is finite in the sense of
[10], we conclude that the same is true for the map defined by (2.37). For
ε > 0 sufficiently small, let (z',C') Ξ C2n, \z'\ < ε, \ζf\ < ε. Let N be the
generic number of inverse images for F(zj,0) = z'9 T(ζJ,μ(zJ,ζj)) = ζ'.
Now replace z by zj and ζ by ζj in (2.36), and sum over j , 1 < j < N9 to
obtain

(2.38) &(z ' , ζf, 0) + Q(z'9 ζ'9 0)δ(zf, CO = 0,

where δ(z',ζ') is again holomorphic, since it is a symmetric function of
the zJ and V (see e.g. [10]). Since 0(0) = 0, from (2.38) by unique-
ness for ordinary differential equations we obtain the desired conclusion
Q(z', C',0) = 0.

For the general case we shall first reduce to the convergent case by trun-
cating the formal series appearing in (2.36), and then show that Q(z, ζ, 0) =
0 mod zf, Cf for all integers p. By an application of Nakayama's lemma
(see [3, Lemma (4.3)]) we have, for all p sufficiently large, the mapping
(z, ζ) —• (Fp(z,0),Tp(ζ,μp(z,ζ))) is a finite holomorphic mapping of mul-
tiplicity N, N independent of p, where Fp and μp are the polynomials
obtained from F and μ by dropping all terms containing a factor of the
form zf or Cf. We truncate Q and γ similarly, and define £?£(z',C',0) by
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(Qηz>k(z',ζ',0). Then from (2.36) we obtain

(2.39) &k(F>(z90),Fp(ζ9μ?(z9ζ)),0)

mod zp~ [,ζf,i=l, ",n. Using the same argument as in the holomorphic
case we obtain

(2.40) β*(z', ζ'9 0) + β*(z', C, 0)δp(z', ζ') ~ 0,

mod zf, Cf > for any k < (p - l)/N, where we have used the fact that the
preimages of (z',ζf) under the truncated map are roots of polynomials
of degree TV with coefficients holomorphic in (z',C) (see e.g. [10]). By
a similar uniqueness argument as in the holomorphic case we conclude
that Q(z', £',0) = 0, mod zf, £f, k < (p - l)/N. Since p is arbitrary, we
obtain that Q(z'9ζ'9O) ~ 0, which completes the proof of Lemma (2.32)
and hence that of Theorem 1.

3. Nonvanishing of the transversal component of a CR map

We show here that a CR map whose transversal component does not
vanish identically is of finite multiplicity. More precisely we have

Theorem 2. Let H: M —• M' be a formal CR map between two for-
mal hypersurfaces at the origin in Cn+{. If M is essentially finite and a
transversal component G of H does not vanish identically, then H is of
finite multiplicity.

Proof We shall assume by contradiction that H is not of finite mul-
tiplicity and show that this is impossible, since it implies that G = 0. As
in the proof of Theorem 1, we start with the fundamental identity (2.8)
of Lemma (2.7). As before, we make the changes of variables (2.10) and
(2.11). Then set τ = 0 to obtain by using (1.9)

(3.1) G(z,λ(z,ζ)) ~ β(F(z,A(z,C)),F(C,0),0),

where λ(z9ζ) = i?(z,£,0), with R as defined in (2.11). Again using (1.9)
we may expand the left-hand side of (3.1) and write

(3.2) λ(z,ζ) Gw(z,0) + ΣGwk(z,0)^QZ-
k>2

~β(F(z,λ(z,C)),F(C,0),0).

We shall need the following two lemmas.
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(3.3) Lemma. H is not of finite multiplicity if and only if there is a
prime ideal <J in &[[z]] such that

(3.4) (F1(z,0),.. , F Λ ( z , 0 ) ) c J r ,

(3.5) dimc&[[z]]/J? = oo.

Proof If H is of finite multiplicity, then (3.4) and (3.5) are impossible
since

dime 0[[z]]/{F{ (z, 0), , Fn(z, 0)) < oo.

Conversely, suppose that H is not of finite multiplicity, and let JQ be the
radical of (F{(z, 0), ,Fn(z,0)). Since Jo = rad Jfj, we may write

k

where each 3°j is a prime ideal in ^[[z]], by the Lasker-Noether de-
composition theorem [16, Chapter IV, Theorem 5]. Since H is not of
finite multiplicity, dimc^[[z]]/(F{(z,0),' ,Fn(z,0)) = oo, and hence
dim^[[z]]/J^ = oo by the Nullstellensatz. We claim that dim c ^ [ [ z ] ] / ^ 0

= oo for at least one jo, otherwise there must be N for which zf e £Pj
for all j , i = 1, , n, contradicting that Jo is of infinite codimension in
^f[[z]]. By taking <f = <^/0, we prove the lemma.

(3.7) Lemma. Let M be essentially finite, R given by (2.11) and λ{z, ζ)
defined by

Then

Proof Let φ(z, ζ, 0) ~ Σa ba(ζ)za where φ is as in (2.3). By definition,
M is essentially finite if and only if dimc^[[C]]/(6α(0) < oo. We shall
show that

(3.8) (ba(ζ)) = (αQ(0).

Let w(z, ζ) be defined by

(3.9) u(z, C) - iφ(z, C, u{z, ζ)) - 0, u(z, 0) ~ iι(0, C) - 0.

Then we have

(3.10) A(z, C) - κ(z, C) + iφ(z, ζ, u(z, 0 ) - 2i>(z, C, «(z, f))-

From (3.10) it follows that

(3.11) λ(z, 0 - 2i>(z, C, 0) + «(z, ζ)a(z, ζ),
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with α(0) = 0. By (3.9) and (3.11) we obtain

(3.12) λ(z,ζ)~φ(z,ζ,O)β(z,ζ),

with β(0) φ 0, v hich proves (3.8).

(3.13) Lemma. If J" c <?[[ζ]], ζ = (d, , ζn), is a prime ideal and
J' C #[[ζ, z]], z = (zi, , zp), is the ideal generated by J" in &[[ζ, z]],
then J? is again prime.

Proof, By induction we may reduce to the case where p = 1. In this
case any element of &[[ζ,z]] is a power series of the form Σkck(Ozk

I f (Σjdj(ζ)zj)(Σkck(ζ)zk) e J, then either all the dj or all the q are
in J?. Indeed, if not, we may assume dj0 £ J? and dj ~ 0 for j < j 0 ,
and similarly for Σk ck(Ozlc> with cko- Then d^c^ e *f9 contradicting the
primality of J ^ and Lemma (3.13) is proved.

We may now complete the proof of Theorem 2. By Lemma (3.3) there
is a prime ideal J in &[[ζ]] of infinite codimension such that

Let J? be the ideal generated by <J in (f[[z, ζ]], z = (zu , zn), ζ =
(ζι>''' J CΛ) Then by Lemma (3.13) J^ is a prime ideal. Since the right-
hand side of (3.2) is in J* (by (2.6)) we conclude that either

(3.14) λ(z,ζ)eJ?,

or

(3.15) GUz,0) +
k>2

By the essential finiteness of M, together with Lemma (3.7), it follows that
(3.14) is impossible. Therefore (3.15) holds, which implies Gw(z,0) = 0,
since λ(z,0) ~ 0 (by (3.12) and (2.3)). By factoring successive powers of
λ(z, ζ) in (3.2), we prove inductively that Gwk(z,0) ~ 0 for all k, reaching
the desired contradiction. Hence Theorem 2 is proved.

We include here another consequence of the nonvanishing of the trans-
versal component of a CR map.

(3.16) Proposition. Let H: M -• M1 be a formal CR map, with M, M'
formal hypersurfaces at the origin in Cn+ι. If M is of finite type and a
transversal component G of H does not vanish identically, then M' is of
finite type.

Proof We begin with identity (3.2). By (3.12), which does not use
the assumption that M is essentially finite, M is of finite type if and only
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if λ(z, C) ψ 0. We claim that the left-hand side of (3.2) does not vanish
identically. For if so, we would have

(3.17) Gw(z,0) + ]Γ Gwk(z90)λ{z'β = 0,
k>2

which implies Gw(z, 0) = 0, since λ(z, 0) = 0. Factoring successive powers
of λ(z, ζ) would imply Gwk(z90) = 0 for all k, contradicting the assump-
tions.

(3.18) Definition. Let H: M -> M' be a formal CR map between two
formal hypersurfaces at the origin in CΛ + I. Suppose that H = (F\, - ,Fn,G),
where G is a transversal component of H, and (z,w) are coordinates for
M such that w is transversal to M. Then H is totally degenerate if

(3.19) det(ΘFj/dzk)(z, 0) - 0.

Using (1.2) and (1.8) one can easily check that condition (3.19) is in-
dependent of the choices of coordinates for M and M1.

By known results (see e.g. [3] for references) it follows that if H is of
finite multiplicity, then H is not totally degenerate. However the converse
is not true, even if M or M1 is assumed essentially finite, as shown by the
following examples.

(3.20) Example. Here M and M' are embedded hypersurfaces in C3

given by
M = {(z,w):lmw-\Zl\

2-\z2\
2 = 0},

M' = {(z',w'):lmw' = 0}.

Let H: M —• Mf be the holomorphic mapping defined by H = {F\,Fι, G),
with Fχ(z,w) = zi, F2(z,w) = z{z2 and G = 0. Then det(dFj/dzk) = z2,
so that // is not totally degenerate. However, dim&[[zu z2]]/{zu z\z2) =
oo, so that H is not of finite multiplicity.

(3.21) Example. Here also M and M1 are embedded hypersurfaces
in C 3 given by M - {(z,w): Imw - \zx\

2 - \zχz2\
2 = 0} and Mf =

{(z'9w'): Imw' - \z[\2 - \z'2\
2 = 0}. Let H: M -> M' be the holomorphic

mapping defined by H = (F{,F2,G) with ^ ( z , ^ ) = zi, F2(z,w) = Z1Z2
and G = w. In this example Λ/7 is essentially finite, Λf is of finite type
but not essentially finite, H is not totally degenerate, but not of finite
multiplicity.

Under additional assumptions on M and M' we can prove that if H is
not totally degenerate, then H is of finite multiplicity.

Theorem 3. Let H: M —• M' be a formal CR map, with M essentially
finite and M1 of finite type. Then H is of finite multiplicity if and only ifH
is not totally degenerate.
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Proof, We consider separately the cases where a transversal component
G vanishes identically or not. If G φ 0, then by Theorem 2, H is of finite
multiplicity and hence (see above) not totally degenerate.

For the other case assume G Ξ O , which implies by Theorem 1 that H
is not of finite multiplicity. Then by (3.1) we have

(3.22) Q(F(z,λ(z,ζ)),F(ζ,0),0) = 0

with λ(z,ζ) = R(z9ζ,0). We differentiate (3.22) with respect to zh to
obtain the system for j = 1, , n

(ό.zό) k=ι

x [Fkt2j{z,λ(z,0) + FktW(z9λ(z9ζ))λzjl(z,0] = 0.

By Cramer's rule,

(3.24) Qk{F(z,λ(z9ζ)),F(ζ,O)9O)D{z,ζ) = O9

where

D(z9 C) = deί[Fk92j(z9λ(z9 0 ) + Fk%w{z9λ(z9 ζ))λZj(z, ζ)].

If D(z, C) = 0, then by taking ζ = 0 and noting again that λ(z, 0) = 0 by
(3.12), we have det(i^Z 7(z,0)) = 0, which is the desired conclusion. If
D(z,ζ) φ 0, then (3.24) implies

(3.25) Qk(F(z,λ(z,ζ)),F(ζ,0),0) = 0.

Since M1 is of finite type, we may assume Qz,aOζfβo(O) Φ 0. Repeated
differentiation of (3.25) with respect to z (with the assumption D(z, ζ) ψ
0), gives

(3.26) Gz-o(F(z,A(z,C)),^(C,O),O) = 0.

Now put z = 0 in (3.26) to obtain

(3.27) βz<"o(O,F(C,O),O)~O.

Differentiating (3.27) with respect to ζ, we find that either Qz,aoζtβQ(O) = 0,
which is impossible, or d e t ^ ^ X C O ) = 0, completing the proof of the
theorem.

(3.28) Proposition. IfM' is of finite type, and H is not totally degener-
ate, then M is of finite type.

Proof. We begin with identity (3.1) from which we obtain, by using
(3.12) and (1.9),

(3.29) a{(z,ζ)φ(z,ζ,0) ~ Q(F(z,λ(z,ζ)),F(ζ,0),0).
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Now we reason by contradiction. If M is not of finite type, then φ(z,ζ,0) =
0 and we obtain (3.22) from (3.29). (In fact we could also replace λ(z, ζ)
by 0.) From this point, the rest of the proof is identical to that of Theorem
3.

We now give an example which shows that we can have G ψ 0, even
fg(O) φ 0, but H totally degenerate.

(3.30) Example. Here M and M' are both hypersurfaces in C3 given
by

M = {(z,w): Imw- \zx\
2 = 0}, M' = {(z,w): Imw - \zx\

2 - \z2\
2 = 0},

and H = (FUF2,G) given by F{ = zu F2 = 0, G = w. Then M is of
finite type, M' is essentially finite, H is totally degenerate (and hence not
of finite multiplicity) but §g = 1.

(3.31) Remark. When M and M' are formal embedded hypersurfaces
at 0 in C2, then clearly H is of finite multiplicity if and only if H is not
totally degenerate, and essential finiteness is equivalent to being of finite
type. It has been shown in [1] that if M and M' are of finite type, then H
is of finite multiplicity if and only if H φ 0.

4. Classification of smooth local CR mappings

In this section we consider a smooth CR mapping H: M —• Mf, where
M and M' are embedded smooth hypersurfaces in C"+1 containing the
origin, with H(0) = 0. We combine Theorems 1, 2, and 3, as well as C°°
analogs of some results given in [3] in the real analytic case.

Theorem 4. Let H: M —• M1 be a smooth CR mapping defined near
0, with M and M' C°° hypersurfaces in C"+ 1. Let w be any (formal)
transversal coordinate for M and G any (formal) transversal coordinate of
H. Assume that M is essentially finite at 0.

(\)IfG = 0, then either H is not of finite multiplicity at 0 or M' is not
essentially finite.

(ii) IfG^O, then fg(O) Φ 0, H is of finite multiplicity and M1 is
essentially finite.

In addition if M and M1 are real analytic and H is holomorphic, then
(ii) holds if and only ifH maps any neighborhood of 0 in M onto a neigh-
borhood of 0 in M'.

Proof Claim (i) is an immediate consequence of Theorem 1. To prove
(ii) suppose that G ψ 0. Then by Proposition (3.16) M' is of finite type.
Also, by Theorem 2, H is of finite multiplicity. Now we can apply Theorem
1 to prove that ff (0) Φ 0. It remains to show that M1 is essentially finite.
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To prove this, we will make a slight modification of the proof of Theorem
3 of [3], where this result is proved under the additional assumption that
M and M' are real analytic.

We begin with identity (3.1) from which we obtain, using f^(0) Φ 0,

(4.1) A ( z , C ) α ( z , C ) - β ( F ( z , F

with α(0) φ 0. By means of (3.12) we find

(4.2) <*ι(z9ζ)φ{z,ζ,0)

with αi(0) φ 0. Now (4.2) is very similar to (3.10) of [3]. We proceed as
in the proof of Theorem 3 of [3], the main difference being that since Q
is not assumed convergent, we truncate it also. We choose k as in loc. cit.,
and, writing Qk, Fk and a\ for the truncations of Q, F and a\ respectively,
we define φ^(z, ζ) by

(4.3) ak(z,ζ)φ^k\z,ζ) = Qk(Fk(z\Fk(ζ),0).

Write

(4.4) Q(z',C,0)

\a\<k

By (4.3), if φW(z,ζ) = Σa«\z)ζ«, then

(4.5) (flW(z)) = (bk(Fk(z)))

and therefore, in consequence of Lemma (4.5) of [3],

(4 6) dime =
z)) dimc&[[z]]/(Fk(z))'

We now apply Lemma 4.3 of [3] to conclude that dim<f[[z]]/(ba(z)) is
finite and equal to the left-hand side of (4.6), which is independent of k.
This proves M' is essentially finite, and hence the proof of Theorem 4 is
complete.

Theorem 5. Let H: M —• M1 be a smooth CR mapping. If either
(i) M is essentially finite and G^O, or
(ii) Mf is essentially finite and H of finite multiplicity,

then

(4.7) ess type M = (mult //)(ess type M'),

with all three integers in (4.7) finite.
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Proof. If (i) holds, then it follows from Theorem 4 that M' is essentially
finite and H is of finite multiplicity. If (ii) holds, we claim that M is
essentially finite. If M and M' are real analytic, then this claim is Theorem
2 of [3]. In the C°° case we need some modifications. We begin with (4.2)
except that now we do not assume α^O) / 0. We truncate F and Q by
choosing k as follows. Let N be sufficiently large such that

(4.8) (ba(z)) = (ba(z):\a\<N).

We choose p so that zf e (ba(z)), i = 1,••• ,«, and so that zf e
(F{ (z, 0), , Fn(z, 0)). Finally choose N' so that

(4.9) (ca(z)) = (ca(z):\a\<N'),

where aι(z9ζ)φ(z,ζ,0) ~ Σca(z)ζa. Now choose k > max(N,Nf,p2n),

and define c^ by

(4.10)

where Fk and β* are the truncations of F and Q. By the choice of p and
Lemma (4.3) of [3] we have

(4.11) zf e ( ^ ( z ) ) , i = l,-•,/!,

which implies that

(4.12)

Since zf G (F/(z,0)) by Lemma (4.3) of [3], from (4.12) we conclude that
for / = 1, ,/2,

(4.13) z f " E ( ^ ( ^ ( z , 0 ) ) ) .

Making use of (4.10), Lemma (4.7) in [3], and the fact that Tk{ζ,0) is an
open map we obtain that

(4.14) zf" e (4*>(z)) = (ca(z)),

the last equality following from [3, Lemma (4.3)] and (4.9). Since (aa(z)) =
{ca(z)) where φ(z,ζ,0) ~ Σaa(z)ζa, M is essentially finite.

To complete the proof of Theorem 5, it remains to show (4.7) under
the assumption that all three integers are finite. Under this assumption by
Theorem 1 we see that fg(O) Φ 0 so that (4.2) holds with α^O) Φ 0. The
desired equality then follows from (4.2) and the end of the argument of
the proof of Theorem 4. Hence Theorem 5 is proved.

If M is a C°° hypersurface in Cn+ι defined by p(Z,Ί) = 0, ρ{0) =
0, dp(0) Φ 0, it may not be possible to find (convergent) holomorphic
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coordinates in Cn+ι, (z\, ,zn,w)9 such that it; is a transversal coordinate
to M in the sense of §1. If (z{, , zn,w) are convergent holomorphic
coordinates in Cn+ι and fc > 1 is an integer, w is called a transversal
holomorphic coordinate for M of order k if

(4.15) p(z,w,0,0) ~ a{z,w)w + <?{\z\k+ι,\w\k+ι),

with α holomorphic, α(0) φ 0. Then M is parametrized by (z, z, J ) , where

(4.16) j = Re(ια(0)u;).

Given any A: > 1, it is easy to show that one can find holomorphic coordi-
nates satisfying (4.15). Moreover if M is real analytic, one can also take
k = +oo.

Similarly let H: M -• M1 be a smooth CR map, and M, M' be smooth
hypersurfaces in C π + 1 . If (z'p , zf

n,w') are holomorphic coordinates for
A/' with tu' transversal up to order k, and H = (/i, ,/„, g), where /
and g are smooth CR functions on M, then g is called a transversal CR
component ofH of order k.

The following is a consequence of Theorem 4.

(4.17) Corollary. Let H: M ^ M' be a smooth CR map, with M and
Mf smooth hypersurfaces in Cn+{, and M essentially finite at the origin.
Suppose k > 1, and g is a transversal CR component ofH of order k. Then
one of the following holds:

(i) g vanishes of order k+l atO, and either H is not of finite multiplicity
or M' is not essentially finite.

(ii) | f (0) Φ 0, with w a transversal coordinate for M of order > 1, and
s given by (4.16). In addition H is of finite multiplicity at 0, and M' is
essentially finite.

5. Applications to holomorphic extendability of smooth CR mappings

Here we apply §4 to generalize results on holomorphic extendability of
smooth CR mappings between real analytic hypersurfaces obtained in [3].
We assume that M and Mf are real analytic and H: M -+ M' is a smooth
CR mapping. After holomorphic changes of coordinates for M and M'
we can assume that the coordinates for M are of the form (z,w) where w
is a transversal coordinate (of order oo) and H = (/i, ,fn, g), g being
a transversal CR component of H (of order oo). Since the Taylor series
of g coincides with G(z9w) restricted to M (see §1 and [3, §2] for further
details), it follows that G = 0 if and only if g is flat at 0.
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Theorem 6. LetH: M -» M' be a smooth CR map, 7/(0) = 0, where M

and M' are real analytic hypersurfaces in C"+1, and g is a transversal CR

component of order oo. Then H extends holomorphically to a neighborhood

ofO in Cn+ι if any one of the following conditions holds.

(i) M is essentially finite, and g is not flat at 0.

(ii) M' is essentially finite, and H is of finite multiplicity at 0.

(iii) M1 is essentially finite, and H is not totally degenerate at 0.

Proof Suppose first that (i) holds. Since g is not flat at 0, G φ 0.
Then from Theorem 4 it follows that condition (ii) also holds. On the
other hand, since H is of finite multiplicity, it is not totally degenerate,
and hence condition (ii) implies (iii).

It remains to prove that (iii) implies holomorphic extendability. An in-
spection of the proof of Theorem 1 of [3] shows that extendability holds
if M is of finite type, M' is essentially finite, and H is not totally degener-
ate and also satisfies the following condition: If H = (Fu ,Fn, G) and
P(z[, , z'n) is a holomorphic function (with constant coefficients), then

(5.1) p(Fι{z90), '.,Fn(z90)) = 0 implies p = 0.

As is well known, if (5.1) does not hold, then det(<9Fj/dzk) = 0, which
would contradict the assumption that H is not totally degenerate. Finally,
by Proposition (3.28), since M' is of finite type and H not totally degen-
erate, it follows that M is of finite type. Hence, all the conditions for
extendability of [3] are satisfied if (iii) holds.

(5.2) Remark. By Theorems 4 and 5, conditions (i) and (ii) of Theorem
6 are, in fact, equivalent. Theorem 1 of [3] already contains the result that
extendability holds under condition (ii) of Theorem 6. However, condition
(iii) is weaker than (i) and (ii), as is shown by Example (3.21), where H is
not totally degenerate, but is not of finite multiplicity, with M' essentially
finite. It should be noted that in that example the map H: M —> M' is not
finite-to-one.

6. Multiplicities of proper holomorphic mappings

In this section we consider a proper holomorphic mapping ^ : D —• D',
where D and D' are bounded domains in C + 1 with real analytic boundaries
such that βf extends holomorphically in a neighborhood of 5 . By Theorem
6, this is satisfied, if βf is assumed to be smooth up to the boundary, and
no transversal component of βf is flat at any point of M = ΘD.
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Theorem 7. Let ZP.D -> D1 be as above. Then at every point q edD

we have

(6.1) fg(ί)*O,

where G andw are respectively a transversal component of%? and a transver-
sal coordinate for M at q. In addition, &\M is of finite multiplicity at every
point q e dD, and ^f extends to a proper holomorphic map from an open
neighborhood D\ ofD to D[, an open neighborhood ofD .

Proof It suffices to apply Theorem 4 with M = dD near q, M' = dDf

and H = %*\M> By the theorem of Diederich-Fornaess [7], M does not
contain any complex analytic variety and hence is essentially finite. We
may eliminate the case G = 0 since this would contradict the assumption
that βf is proper and hence finite. By Theorem 4 we conclude (6.1) as
well as the finite multiplicity of X"\M- Using (1.9) we also see that %? is
a finite map at every point of ΘD. To prove that %f extends to a proper
map we cover dD with finitely many balls in which %? is a proper map.
It remains to prove that %? extends as a proper holomorphic map from
an open neighborhood of D\ of Z) to D[, an open neighborhood of D .
Let p'(Z',~Z ) be a real valued defining function for Df, i.e., D' = {Z' e
CA2+1,/?/(Z/,Z/) < 0}, dp' φ 0. Using (6.1) it suffices to choose ε > 0
sufficiently small and to take

D{ = { Z e σ + \ W

For p e Dγ, a neighborhood of 25, we define m(^,p), the multiplicity
of JP at p, by

,p) = dimcd?[[Z -p]]/(jη(z) -Jη(p)).

For k > 1 we denote by Vk the set of points in D\ of multiplicity > k, i.e.,

(6.2) Vk = {peD{:

Clearly V{ = D{ and V2 = {Z eD{: det{dJη/dzk){Z) = 0}. More gener-
ally we have the following.

(6.3) Proposition. For every k > 2, Vk is an analytic set, more precisely,
there exist ff, , ffck, holomorphic in D{, such that

(6.4) Vk = {peDl:fj
c(p) = 0, l<j<Nk}.

This result is, no doubt, known in the folklore. However, lacking an
explicit reference we include a proof here.

We begin with the following lemmas, which will also be needed in the
proofs of Propositions (1.12) and (1.14).
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(6.5) Lemma. Let f\, ,fj be formal power series in <f[[zu Z2, , zn]]
such that (/) = (/i, ,//) w of finite codimension. Then for any integer
k > 1 the following are equivalent:

(i) codim(/) < k,
{iϊ)coάim{fu . Jj,zk+\ ,zk^)<k.
Proof Assume (i). Then for j = 1, , n, we have 1, zjf , zkj are lin-

early dependent in &[[z]]/(f). Therefore zk e (/). Hence (/i, Jj) =

{fι, - ,fj,zk+ι,- ,zk+ι), which proves (ii). Conversely, assume (ii).

Again we conclude zkj e (/i, ,//, zf+1, , zk+x). Hence by a version

of Nakayama's Lemma (see e.g. Lemma (4.3) of [3]) we obtain

( f) - ( f. ... fτ z

k+ι •• zk+ι)

which implies (i), and hence the proof of Lemma (6.5) is complete.
(6.6) Lemma. Let k > 1 bean integer. There exist N\, a positive integer,

and K{, ,KNι polynomials in J(k + 1)" variables such that if

then

(6.7) codim(/) > k

if and only if

(6.8) Kμ{aJ

a) = 0, l<j<J9l<μ<Nuai<k9l<i<n.

Proof Consider the space ^ [ z i , , zn] of polynomials of the form
p{z) = Σac*za, aa = 0, if α, > k for some i, a = (a\, ,an). Let iV be
the dimension of ̂  as a vector space over C, and ew- ,eχ a basis of
&k consisting of monomials. We write
(6.9)

tJ

a if α/ < k for all / = 1, , n,

I otherwise.

Assume codim(/) = p <k. It follows from Lemma (6.5) that there exist

{#i, > gp} c {e\, , tf v} such that every r(z) e &k can be decomposed,

P J

(6.10) r(z) = Y^ajgj(z) + ̂ ήk\z)hj{z) mod (zf+1),

7=1 7=1

with aj e C and hj e 3?k. By decomposing (6.10) in terms of the ba-
sis {e\,-" ,eN} we find N equations in JN + p unknowns, aj and the
coefficients of the hj. Since the coefficients of r are arbitrary, we must
have an'NxN nonzero determinant involving the coefficients of the fjk).
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The lemma will follow by considering the finitely many possible subsets
{gu ,gP}c{e{,'- ,eN},p<k.

Now to complete the proof of Proposition (6.3), it suffices to use Lemma
(6.6) with / = n and to replace a£ by ±(da<%j/dza)(p) in (6.8).

Since the proofs of Propositions (1.12) and (1.14) also make use of
Lemma (6.6) we shall give them here.

Proof of Proposition (1.12). Let p(Z,Z) be a real analytic defining
function for M. We assume (dp/dZn+\)(0) Φ 0. By the implicit function
theorem there exists a holomorphic function θ(ζ',p) in 2n + 1 variables
defined near the origin satisfying

(6.11) p(p,ζf,θ(ζ',p)) = 0

with θ(p',p) - pn+ι for p e M. We have used the notation ζ = (£', ζn+i),

P = {p',Pn+ι)>
If we write

p(Z, C, θ{ζ',p)) = Σ Oa(Z,p9p){C - PΎ,

then it is easy to see that, for p e M,

(6.12) esstype^M = dim c ^[[Z -p]]/(aa(Z,p,p)).

Note that the functions aa(Z,p, q) are holomorphic, and by (6.11), satisfy

aa(p,P,p) = 0.

By the Noetherian Theorem there exists an integer Jo such that

(aa(Z,p, q)) = (aa(Z,p, q), \a\ < Jo)

as ideals in &[[z - p,p,q]]. Hence there is a number / and multi-indices
α ( 1 ), ,a{J) such that

(aa(Z9p9p)) = (aaU)(Z,P,p)), 1 < j < J,

as ideals in &[[Z -/?]] for all p near the origin. We may now apply Lemma
(6.6) as in the proof of Proposition (6.3) to show that the points of type
> k satisfy real analytic equations.

Proof of Proposition (1.14). If M is defined by p(Z,~Z) = 0 near the
origin, with p real analytic, and if H(Z) = (H\(Z)9 •• ,Hn+\(Z)), it is
easy to see that for p e M, near the origin,

multpH

= dimc^[[Z-p])/(Hι(Z)-Hι(p)r-',Hn+ι(Z)-Hn+ι(p),p(Z,p)).

We again use Lemma (6.6), as in the proofs of Propositions (6.3) and
(1.12) to show that the points of type > k satisfy real analytic equations.
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We shall also need the following, which shows that the analytic set V2

must cross the boundary of D. More precisely we have
(6.13) Proposition. Let &\ Cn+ι -+ C"+1, M and M' be real analytic

hypersurfaces containing the origin such that M is essentially finite and
&{M) c M1. LetA(z) = del(d<%j/dzk)(Z), and V be the germ of the zero
set of A. If A(0) = 0, then for every neighborhood Ω ofO in Cn+ι we have

(6.14) VnΩ+φ0 and F n Ω " ^ 0 ,

where Ω± = {Z e Ω: p{Z,~Z) $ 0}, p a defining function for M.
Proof By Theorem 4, either a transversal component G of %? vanishes

identically, in which case (6.14) is obvious, or else f^(0) Φ 0 with w a
transversal holomorphic coordinate for M, and %*\M is of finite multi-
plicity. We assume the latter conclusions and write %? = (F{, , Fn, G).
Since ^\M of finite multiplicity implies det((dFj/dzk)(z,0)) φ 0 (see [3,
Lemma (3.19)]) and by (1.9)

we have, after a linear change of variables in z\9 , zn,

dk

dz\ v ' ^

Hence, by the Weierstrass Preparation Theorem, the set V is given by an
equation of the form

k-\

(6.15) zi + ̂ tfy(z',w)z{ = 0,
7=0

where z' = (z2, ,z«), and the aj are holomorphic and vanish at 0.

Let z[ι\- ,z[k) be the roots of (6.15) at (z',w). Define the function

p{z',w,t,w) by

k

7 = 1

Since the right-hand side of (6.16) is a symmetric function of the roots of
(6.15), it is clear that p is a real-valued real analytic function. We claim
that
(6.17)

If so, this will prove that p changes sign in any neighborhood of 0 in Cn

and hence so does p on V. This will prove (6.12).



496 M. S. BAOUENDI & LINDA PREISS ROTHSCHILD

To prove the claim (6.17) it suffices to compute p(0,w,0,0), i.e., by
taking z' = 0 and replacing ~z and w by 0. By (1.2) we have

p(z, w, 0,0) = a(w)w + ] £ aaβz
a

xw
β + O(\z'\),

a>\

with α(ιt ) holomorphic and a(0) Φ 0. Therefore using (6.16) we obtain

ρ{0,w,0,0) = ka{w)w + ̂  hβ{w)wβ,

β>ι

with

7 = 1 α>l

where z ^ are the roots of (6.15) as above. It is clear that hβ is holomorphic
since it is a symmetric function of the roots, and we also have hβ(0) = 0,
β > 1. Hence (6.17) is proved.

Theorem 8. Let S^.D^D'be as above, and H: dD -> dD' be the
restriction of the extension of%? to dD. Let m(H,q) be the multiplicity of
H, as a CR mapping, at q. Then there exists ε > 0 such that

(6.18) sup m(^,p) < sup m(H,q),

where Dε = {z eD: d{z,dD) <ε}.
Proof. Since m{%?\p) is the topological multiplicity of ^ in a suffi-

ciently small neighborhood around p (see e.g. [10]), for each p e D there
exists a neighborhood U of p such that m(^, q) < m(^,p) for all q e U.
By compactness of 5 we conclude that the set Vk defined by (6.2) is empty
for k sufficiently large, say k > k^. Let E be the set of all isolated points
in U2<A:<£o ̂  ^ ^ ^ r o m l° c al properties of analytic sets and the compact-
ness of 15 it follows that E is finite. We choose ε sufficiently small so that
Dε n E = 0. Hence any component in D of U2<α<A:o ̂ k\E is not compact.
Therefore its closure must intersect dD. This shows

(6.19) sup m(#',p) < sup
p£Dε

We need to compare m(β?, q) and m(H, q) for q e dD. By Theorem 7 it
follows that a transversal component G of %? satisfies §^(q) φ 0, where w
is a transversal holomorphic coordinate for M and therefore (using (1.9)),
m(%?, q) = m(H, q) for all q € <9/λ This proves Theorem 8.

The following example shows that (6.18) does not hold if Dε is replaced
by/λ
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(6.20) Example. Let D and D' be contained in C2 and be defined by

D = {(z,w) e C2: |z3 + zw\2 + \w\2 < 1},

D' = {{z',w')eC2: |z'|2 + K | 2 < 1}.

Let β? = (z3 + zw, w). Clearly %f is a proper map from D into D1. Then

!

1 if 3z2 + w φ 0,

2 if 3z2 + w = 0, z ^ 0,

3 if z = w = 0.

Therefore

(6.21) s\xpm(%'9p) = 3 > sup m(H,p) = 2.
D pedD

The next example shows that inequality (6.18) of Theorem 8 can be
strict for every positive ε.

(6.22) Example. Let D and D' be domains in C3 given by

D = {(zi,z2,w) e C 3 : |z 3 + wz\\2 + |z 2 | 2 + \w - 1|2 < 1},

D' = {(z[9z'2,w
f) e C 3 : |z; | 2 + |z^|2 + \w' - 1|2 < 1},

and let & = (z3 + wz\9 z2, ty). Then

) 1 if z\ φ 0 and 3zi + 2iί; ^ 0,

2 if (zi = 0 and ti; ^ 0) or (zi ^ 0 and w = - f

3 if zi = tu = 0.

Therefore F 3 nf l = (0) and F 3nZ) = 0. Hence

sup m(H,q) - 3 > supm(^,p) = 2.

Note that the set F3 = {zi = w = 0} stays entirely in C3\D and intersects
Z) only at the origin. This is in contrast with the result for V2 given by
Proposition (6.13).

Theorem 9. Ifm(H,q) = 1 for all q e dDf then m{β^,p) = 1 for all
p G D. Also, if supqedD m(H,q) = 2, then (6.18) becomes an equality.

Proof In order to prove the first statement, note that the hypothesis is
equivalent to V^ΠdD = 0, since V2 is the zero of the Jacobian determinant.
The compactness of 5 implies that V2Π D = 0 also. For the second
statement we use Proposition (6.13) to conclude that if V2ndDφ 0, then
V2f)D φ 0 (and also V2Π{Cn+ι\D) φ 0). Therefore we obtain the opposite
inequality of (6.18), and hence the theorem is proved.

We shall now deal with questions of global multiplicity. Suppose %f\ D
-• D' is as above. For p e A we let μ(^,p) be the number of preimages
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in D of %*(p). Similarly, if q e dD we denote by μ{H,q) the number of
preimages of H(q) in dD. We have the following corollary of Theorem 7.

(6.23) Corollary. Iftf: D -> D1 is as above, we have

(6.24) sup μ(H9q) = supμ(^9p).
q€dD p€D

In particular, ifβίf is\Λ on D, then %? is 1-1 on a neighborhood ofD.

Proof. By Theorem 8, %? extends to a proper mapping from D\ to D[.
The set E of points p such that

supμ(^9q) = sup μ{βfT9q) =
D

is a dense open set in D\ for which E n dD is also dense in dD (see e.g.
[16]). This proves (6.24). In particular, if βf is 1-1 on D, then βtT is also
1-1 on D\, proving the corollary.

Our last result deals with proper self-maps.
Theorem 10. Let D be an open domain in C"+1 with real analytic bound-

ary, and let %? be a proper holomorphic self-map ofD. If%? e C°°(D), and
a transversal component G of %? is not flat, at every point q e dD then β?
extends as a biholomorphism from an open neighborhood ofD into another.

Proof. By Theorem 6(i), we may assume that %? extends holomorphi-
cally in a neighborhood of D. The proof then proceeds as in the proof of
Theorem 4 of [1] with the following modification. The set s(d) of points
of dD of type > d must be replaced by the set of points in dD of essential
type > d, which is again a real subvariety of Proposition (1.12). Also, the
identity relating the multiplicity of H at p and the types of dD at p and
H(p) must be replaced by the corresponding identity on essential types
given by (4.7) of Theorem 5. The rest of the proof of Theorem 10 is the
same as the proof of Theorem 6 in [1].
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