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MODIFIED DEFECT RELATIONS
FOR THE GAUSS MAP
OF MINIMAL SURFACES. 11

HIROTAKA FUJIMOTO

1. Introduction

Let x = (X1, ,Xm): M — R™ be a (connected, oriented) minimal
surface immersed in a Euclidean m-space R™ (m > 3). We denote the set
of all oriented 2-planes in R™ by Il. For each P € II taking a positive
orthonormal basis (X, Y) of P and setting Z := (X — iY)/2 in a complex
number m-space C™, we assign the point ®(P) := n(Z), where n denotes
the canonical projection of C" — {0} onto the complex projective space
P™=1(C). Then the map ®: I1 — P"~!(C) maps II bijectively onto the
quadric '

Qm_2(C) :={(wy: - : wy);w}+ -+ wk =0}

For a point p € M the tangent plane 7,(M) of M at p is considered an
oriented 2-plane in R”, where T,(R™) is identified with R™ by the parallel
translation which maps p to the origin. By definition, the (generalized)
Gauss map of M is the map G: M — Q,,—»(C) (C P"(C)) which maps
each point p € M to the point ®(7,(M)), where n = m — 1. The metric
induced from R™ gives a conformal structure on M, and M is considered
a Riemann surface. By the assumption of minimality of M, G is a holo-
morphic map of M into P*(C). In the case m = 3, Q,(C) can be identified
with the Riemann sphere, and G is considered a meromorphic function,
whose conjugate is the classical Gauss map of M.

In 1981, F. Xavier showed that the Gauss map of a nonflat complete
minimal surface in R3? could not omit 7 points of the sphere [13]. After-
wards, as a generalization of this, the author proved that, if the Gauss map
G of a complete minimal surface M in R™ is nondegenerate, namely, G(M)
is not contained in any hyperplane in P~!(C), then it can omit at most
m? hyperplanes in general position [4]. Moreover, in [5] and [6] he gave
several improvements of this result. Recently, the author has improved
F. Xavier’s result by showing that the Gauss map of a nonflat complete
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minimal surface can omit at most 4 points of the sphere [7]. Moreover, in
the previous paper [8] he introduced some new types of modified defects
for a meromorphic function on an open Riemann surface and gave a mod-
ified defect relation for the Gauss map of a minimal surface in R? which
is similar to the defect relation in Nevanlinna theory of value distribution
of meromorphic functions.

The purpose of this paper is to generalize some results of [8] to complete
minimal surfaces in R” (m > 3). We shall give a modified defect relation
for a holomorphic map of a Riemann surface into P”(C) under some
conditions, which will be stated in §2 and proved in §5 after giving some
preliminary results in §§3 and 4. As a special case of it we shall give the
following.

Theorem 1.1. Let M be a complete minimal surface in R™ and assume
that the Gauss map G of M is nondegenerate. Then G can omit at most
m(m + 1)/2 hyperplanes in P™~'(C) located in general position.

For the case m = 3, the number m(m + 1)/2 = 6 in Theorem 1.1 is
best-possible (cf. [4, p. 280]). It is an open problem whether the same is
true for the case m > 4.

We shall give another application of the above-mentioned modified de-
fect relation. Let M be a Riemann surface holomorphically immersed in
C™. The complex Gauss map is defined to be the map which maps each
point p € M to the point in P~ !(C) corresponding to the complex tangent
line of M at p. We shall show the following.

Theorem 1.2. Let M be a Riemann surface holomorphically immersed
in C™ which is complete with respect to the metric induced from C™. If M
is not contained in any affine hyperplane in C™, then the complex Gauss
map of M can omit at most m(m + 1)/2 hyperplanes in P"~'(C) located
in general position.

This is an improvement of [6, Theorem 7.4] for a special case where
M 1is of dimension one. The number m(m + 1)/2 in Theorem 1.2 is best-
possible for arbitrary odd numbers m. It seems likely that the same is true
for all even numbers. Some examples are given in §6.

2. Statement of Main Theorem

Let M be an open Riemann surface, and f a nondegenerate holo-
morphic map of M into P"(C). For an arbitrarily fixed homogeneous
coordinate system (wp: ---: w,) we represent f as f = (fo: -~ : fn)
with holomorphic functions fy,---, f, on M without common zeros. In
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the following sections, such a representation of f is referred to as a re-
duced representation of f. Now, set ||f||2 = |fol> + --- + |fu|* and, for
a hyperplane H: aywg + --- + a,w, = 0 in P"(C), define the function
F(H):=aofo+ -+ anfn.

As in the previous papers, we give

Definition 2.1. We define the S-defect of H for f as

07(H) := 1 —inf{n > 0; n satisfies condition ()s}.

Here, condition (x)s means that there exists a [—oo, co)-valued continuous
subharmonic function u (# —oo) on M satisfying the following conditions:
(D1) e* < |17,
(D2) for each { € f~!(H) there exists the limit

ggn}(u(Z) — min(vg ) (£), n)log|z — ]) € [—o0, 00),
where z is a holomorphic local coordinate around {, and vgyy({) denotes
the order of the holomorphic function F(H) at {.

Definition 2.2. The H-defect of H for f is defined by
8/ (H) := 1 —inf{n > 0; 1 satisfies condition (*)p}.

Here, condition (*)y means that there exists a [—oo, oo)-valued continuous
function u on M which is harmonic on M — f~!(H) and satisfies conditions
(D1) and (D2).

These modified defects have the following properties.

Proposition 2.3 (cf. [8, §1]). (i) 0 <df/(H) < df(H) <L

(i) If there exists a bounded nonzero holomorphic function g such that
Ve = min(vpy), n), then 67 (H) = 03(H) = 1.

(iii) If F(H) has no zero of order less than m (> n), then 5}”(H) >
1 —n/m.

Assertion (i) is obvious because condition (*)y implies condition (*)s.
To see (ii) we may assume that |g| < 1. Then the function u = log|g|
satisfies conditions (D1), (D2) for n = 0. This gives (ii). Assertion (iii) is
true because the function u = 2 log|F(H)| satisfies conditions (D1), (D2)
for n =n/m.

Consider the case M = C. By a coordinate change, we may assume
f(0) ¢ H. The order function of f, the counting function for H and the
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classical Nevanlinna defect (truncated by ») are defined respectively by

T/ . 2” i9
()= 37 || 10l f(re) 140 - tog £ (O)
1

N[{;(r) = /0 Z min(yp(H)(z),n)7 d[,
lz|<t

0r(H):=1-lims fo,(r)

A= P T

We easily see
0 < 85 (H) < 5,(H)

(cf. [8, §1]). The classical defect relation in value distribution theory of
meromorphic functions is stated as follows.

Theorem 2.4. Let f be a nondegenerate holomorphic map of C into
P"(C). Then

> S(H)<n+1
1<j<q

Jfor arbitrary hyperplanes H,,--- , H, in general position.

To state our Main Theorem, we give

Definition 2.5. Let M be an open Riemann surface with a conformal
metric ds?. For a number p (> 0), a nondegenerate holomorphic map
f: M — P"(C) is said to satisfy condition (C}) if there exist a harmonic
function 4 and a nowhere zero holomorphic one-form w on M such that

(2.6) Aet < || 1117,

where 1 is a function on M with ds? = A2|w|?.

Now, we state the

Main Theorem. Let M be an open Riemann surface with a complete
conformal metric ds?, and let f: M — P"(C) be a nondegenerate holo-
morphic map satisfying condition (C}). Then, for arbitrary hyperplanes

H,,---,H, in P"(C) located in general position,
pn(n+1)
(2.7) Z SY(H)<n+1+ —
1<j<q

Remark. In the previous papers [5] and [6], under somewhat weaker
conditions it was shown that

Y S3(H) <n+1+pn(n+1).

1<j<q
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We now consider a minimal surface x = (x;,---,x,): M — R™. By
associating a holomorphic local coordinate z = u + iv with each posi-
tive isothermal local coordinates u, v, we may consider M as a Riemann
surface. The Gauss map G is given by G = n - (0x/0z) locally, where
n: C"—{0} — P™~1(C) is the canonical projection. If we set f; = (8/0x;)z
(0 < i < n), then we have G = (fy: ---: f,). This is a reduced represen-
tation since x is an immersion. On the other hand, the metric ds? on M
induced from the standard metric on R is given by

ds* = 2| f|*|dz].

This shows that the map G: M — P"(C) satisfies condition (C}). We can
conclude from the Main Theorem the following:

Theorem 2.8. Let M be a complete minimal surface in R™, and G be
the Gauss map of M. If G is nondegenerate, then

m(m+ 1)
Y 6f(H)) < —
1<j<q
Jfor arbitrary hyperplanes H,,--- , H, in general position.

Theorem 1.1 stated in §1 is an immediate consequence of Theorem 2.8
in view of Proposition 2.3(ii).

For the case m = 3, Q;(C) is biholomorphic with P'(C) by the map
which maps (w;: wy: w3) to (w3: wy — iw,) (cf. [11]). Instead of G
we consider the map g := (f3: fi — if2): M — P!(C). Take a reduced
representation g = (g;: g2). Then the metric of M is given by

ds2 — (Igll2 + Ig2|2)2lh|2 IdZ|2
| g2|?
(cf. [5, §6]), where & is a nonzero holomorphic function. This shows
that g satisfies condition (C;). Therefore, the Main Theorem implies the
following result of the previous paper [8, Theorem IJ.

Theorem 2.9. Let x: M — R3 be a nonflat complete minimal surface,
and let g: M — P'(C) be the Gauss map. Then, for arbitrary distinct points
ay, - ,aq in P1(C),

> 6H(a)) <4
1<j<q

We consider next a Riemann surface immersed in C™ by a holomorphic
map f = (f1," -, fm): M — C™. To each point p € M we assign the
complex tangent line 7,(M) (C T,(C™)) of M at p. On the other hand,
T,(C™) is identified with C™ by the parallel translation which maps p to the
origin, and the totality of all complex lines in C” constitutes the complex
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projective space P"~!(C). The complex Gauss map G of M is defined
to be the map which maps each point p € M to the point in P"~!(C)
corresponding to 7,(M). We can represent G as

G=(fir 1 f})
locally, and the induced metric on A is given by
ds = |dwi|* + -+ |dw,* = (P + -+ | ful)ldzl,

where f/ denotes the derivative of f; with respect to a holomorphic local
coordinate z. This shows that the map G: M — P™~!(C) satisfies condi-
tion (C7). Moreover, it is easily seen that G is nondegenerate if and only
if M is not contained in any affine hyperplane in C”. We can conclude
from the Main Theorem the following.

Theorem 2.10. Let M be a complete Riemann surface holomorphically
immersed in C™, which is not contained in any affine hyperplane, and let
G be the complex Gauss map of M. Then

1
> oty <MD
1<j<q
Jfor arbitrary hyperplanes H,,--- , H; in general position.

Theorem 1.2 stated in §1 is an immediate consequence of Theorem 2.10
by Proposition 2.3(ii).

3. Some properties of the derived curves

To prove the Main Theorem, we shall recall some known results on the
derived curves of a holomorphic curve in P"(C).

Let f be a nondegenerate holomorphic map of Ag := {z;|z| < R} (C C)
into P"(C), where 0 < R < +o0o. Take a reduced representation f =
(Jor -2 fu) and set ||f]| = (Xo<i<n i)Y, F = (fo, -, fn). We define
FO = (.., i) for each I = 0,1,---, and

k+1
F, = FOAFM A . AFR. Ag — /\ L

Let G(n, k) denote the set of all (k + 1)-dimensional vector subspaces of
Cr+!. By Pliicker imbedding G(n, k) is regarded as a complex submanifold
of PN(C), where N = (*1) — 1. Let n: A¥*' C"*! — {0} — P¥(C) denote
the canonical projection map. The map f; := 7 o F; is called the kth

derived curve of f.
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For holomorphic functions fy,---, f; we denote the Wronskian of
fb,"' 7ﬁ( by W(fb’ 7ﬁ<)’ namely

We define
1/2
|Fk|:: Z lW(f;oy"'aﬁk)lz s
0<ip<---<ix<n

and set
Q :=ddlog|F|%,

where d¢ = (v/=1/(4n))(8 — 8). For k = n, since F, is holomorphic, we
have Q, = 0. For the sake of convenience, we set |F_,| = 1.
Lemma 3.1. Set Q, = h, dzANd°z. Then
hk — |Fk—1 |2|Fk+1|2 .
| Fi|*
For the proof, see [3, Lemma 4.16, p. 118] or [12, Lemma, p. 108].

Take a hyperplane H in P"(C). Choosing a vector a = (ag, - ,ay) In
C"+! with |la|| = (3, ]ai|?)!/? = 1, we represent H as

H:aywy+---+a,w, =0.

Set F(H):=apfo+ -+ anf, and

_ B H)(2)P
¢k(H)(Z)_ le(Z)|2 )
where
2
|F(H)P = > o aW (S fi o fi)| -

0<ij<---<ix<n j#f],---,l'k
For k = 0 we have ¢po(H) = |F(H)|?/| f||> and ¢,(H) = 1.

Lemma 3.2. (i) dg A dcifz’k = (Prt1 — PPk — Pr—1) -

(ii) dd°log ¢y = ———M‘“"’;;‘_‘” Q.

k

For the proof, see [3, Lemma 5.16] for (i) and [3, Lemma 5.17] for (ii),
or [12, pp. 116-120].

Lemma 3.3. For an arbitrarily given ¢ > Q there exists some uy(e) (> 1)
such that for every u > uo(e) and a hyperplane H in P"(C)

dc log - 1 > 2¢k42—1(H)
log“(u/or(H)) — ox(H)log™(u/ 9k (H))
For the proof, see [3, p. 129] or [12, p. 122].

Qk - EQk.
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We shall also need the following:
Lemma 3.4 (Sums into products). Let H,,---,H,; be hyperplanes in
P"(C) located in general position and set

O, = Pr+1(H))
ik = 2 .
o (H;)log™ (u/ 9k (Hj))
Then there exists a positive constant ¢, depending only on k and H; (1 <

Jj < q) such that
X exza [T o4
1</j<q 1<j<q
on Ag — U << {2 9x(H})(2) = 0}.
For the proof, see [3, p. 134] or [12, p. 124].
Now we give the following proposition, which is fundamental for the
proof of the Main Theorem.
Proposition 3.5. For every ¢ > O there exist some positive numbers
(> 1) and C depending only on ¢ and H; (1 < j < q) such that

(3.6)
dd‘log

FolPIFi [ - | Fo [
HIS]S‘I IF(Hj)|2(H0_<_k§n—l 10g2 ¢k(HJ))

2

o n(n+1)

> | A2 D] F, | dzANd‘z.
HlSqu |F(Hj)|2(l_[ogk§n—l lng (Pk(Hj))

For the proof, we use the following elementary inequality.
(3.7) For all positive numbers x,,--- ,x, and ay,--- , ap,

Proof of Proposition 3.5. We denote the left-hand side of (3.6) by A.
Then, by the definition of ,, it is rewritten as

1
d=e S O+ dd log (____) |
osf\;—l ISJZS(I Oskzs:n—l log” (1/px(Hj))

Choose a positive number uo(¢/q) with the property as in Lemma 3.3. For
an arbitrarily fixed u > uo(e/q) we obtain

A>e¢ Z Q + Z Z 2041 (H)) Qk_ka)

o<k<n—l .g,sqosks,,_,(w(H,»)logZ(u/w(Hf)) q

= > 2(2 <1>,k)£zk,

0<k<n-1 1<j<q

QX+ -+ anxy 2 (al + ..,+an)(x;1| '~-xf,"')l/(al+“'+“n)_
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where @), is the quantity defined in Lemma 3.4. By the help of Lemma
3.4, we conclude

4> > ¢ (ch”"")

0<k<n-1 1<j<q
1/(n—k)
= Z Ck H (Djkhz_k dzNdz,
0<k<n-1 1<j<q

where ¢, are some positive constants, and #; are the quantities defined
in Lemma 3.1. Now applying inequality (3.7) to a; := n — k and x; :=
i< @iuhp™* yields

2/n(n+1)
AZC( H ( H ¢jk) h,'('_k) dzNd‘z

0<k<n—1 \1<j<q

for some positive constant C. On the other hand, we have

I @-= Pic+1(H)) 1
0<k<n—1 ! 0<k<n—1 ox(H)) log®(u/ oy (H;))
IA112 1

TIFEP 2 ogk /o (H))'

—k
I == 1] Feoi P B2\ _ B
g |Fiel* | Fo[2(n+1)”

0<k<n-—1 0<k<n-1
because ¢o(H;) = |F(H;)|*/|I /11> ¢«(H;) = 1 and the products telescope.
Therefore,

e 2/n(n+1)
PR LA DIF
- ngqu lF(Hj)'Z(nogkgn_l log h2(u/ 9« (H})))
which gives Proposition 3.5.

We shall prove here another proposition.
Proposition 3.8. Set 4, :==n(n+1)/2 and B, := Y ;_, Ax. Then

dzNdz,

dd‘log|Fol*|Fi|* - |Fye

1/B,
By (|Fo|® - |Faos[*| Fal?
2 3 ( T dz Nd°z.
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Proof. Since ddlog|F|* (0 < k < n — 1) are nonnegative, by the aid
of (3.7) we can conclude from Lemma 3.1 that

Andd°log |Fo|2 s | Fuoy |2

|Fi|? |Fol? B |Fn—2|2|Fn|2>
>l A=+ A ——— -+ A=V dzAd z
( "Rl T TR YR

Bn
wzy‘" <|Fo|2|F2|2)A"" <|Fn—2|2|Fnlz>A'
>B R G S i B dzNdz
= ”<<|Fo|4, EIE [Fui]?

B
_ B2 | B P FP )
=B, < R dzNdz,

which implies Proposition 3.8.

4. A result of the generalized Schwarz lemma

Let f be a nondegenerate holomorphic map of Ag into P"(C), and let
Hy,---,H,; be hyperplanes in P"(C) located in general position. We use
the same notation as in the previous section. Suppose that there exist non-

negative numbers 7, - - - , 77, and [—oo, 00)-valued continuous subharmonic
functions u,,--- , u, such that
Chy=qg-m-m—-=n—-n-1>0,

(C2) e < ||f||" for j=1,---,q,
(C3) for each ¢ € /! (H)) (1 < j < q) the limit

ler}(uj(z) — min(vr;) (), n) log|z — {|) € [—00,00)

exists, where || f|| = (|fo|> + - + |fa]?)"/? for a reduced representation
f=Uot -t )

Set A, =n(n+1)/2 and B, = >_;_, A, as in Proposition 3.8.

Lemma 4.1. For positive constants €, C and u (> 1), define the function

1lf||7—An+18eu1+~--+uq|F0|E L. ‘Fn—l[8|Fn|l+6
ITi<j<q 1F (H)I(To<k<n—1 1081/ pic(H;)))"

Ne:=C

If we choose suitable C and p depending only on ¢ and Hj, then

dd logn? > n2/ B dz Ndez.
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Proof. Since the functions u; and log|Fy|? are subharmonic and F, is
holomorphic, Proposition 3.5 implies that, for u > #o(f—q),

dd*logn? > gdw 1og | Fol - -+ [Fpey 2
\Fol | L[ - | Fuey|?

+ddlog 5
ngqu IF(HJ)IZ(HOSkSn—l log™(1/ 9k (Hj)))

> £ dd log | Fof? | F
2Aq-n-1)|F |2 )
. CO( LAY || ) dz ndez,
li<j<q 1F(HDP(Tock<n—1108" 55m)

where Cj is a constant depending only on ¢ and H;. Applying Proposition
3.8 to the first term of the right-hand side of the above inequality we obtain

2.2\ B
ddﬂoMfZ%(%ML—?'—) dznd‘z

2(q—n—1) 2 n(n+1)
+ Gy ( /1 5 || ) dzNd‘z.
[Ti<j<q 1F(H))| (ITo<k<n—1108 ¢k(1-1))
Set ¢ = eBy,/A,. It then follows from (3.7) that

|F0|2---|F,,|2>””"““'>

dd‘logn? > C, ( [ Fo[2An
1
An(1+¢’)
2g—n=O|F |2
) | Fol : || dzNdz
Ili<j<q 1FHDP(Tock<n—1 108" 54m57)

<G

1

, ymiED]

[Fo| 2 (JFol - - - | Fao1 |2 Fu 2049 e dzANdz
[Ti<j<q FHDPT o<k <n1 log? otmy)

where C; are some constants and ) =g —n—1—(A4,.14,/Bn)e’ =g —
n —1— A,,&. By the assumption, since each u; satisfies condition (C2),

we get
(VAT [V K ) (N WA

1</<q

> | A,

and therefore, for a positive constant C,
ddlogn? > Cn2l B gz ndez,
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which concludes Lemma 4.1.
Lemma 4.2. Let n, be a function defined as in Lemma 4.1. Set

V= C”El/(A”+B"£)

onAr—(U <<, f—l(Hj)U(UlSkSn_l{¢k(Hj) = 0})) and v := 0 elsewhere.
If we choose a suitable C, v is continuous on A and satisfies the condition

(4.3) Alogv > v?

in distribution sense.

Proof. 1t suffices to show that v is continuous on Ag. In fact, the
inequality (4.3) is an immediate consequence of Lemma 4.1. Obviously,
v is continuous on Ag — U, <<, /™' (H)). Set

e WU 1)
- F(H\)---F(Hg)

Then, for every point { in Ag, the order of poles of y at { is not larger
than L := 37, ..., min(vrm,)(£), n). In fact, for each { € A, if we choose

indices o, - - - , i, such that F(H;)({) # 0 for j # iy, - -- , i,, We can rewrite
F(H;)---F(H;,)

= det(F"/F;,;0 < I,m < n)h,

with a nowhere vanishing holomorphic function 4, and so y has no pole of
order larger than L at { (cf. [1]). On the other hand, since each u; satisfies
condition (C3), if we take a holomorphic function ¢ in a neighborhood U
of { such that
vo(z)= > min(vyy,(z),n)
1<j<q
on U, ¢y is holomorphic on U and w := u; +---+u, —log|p| is continuous
on U as a [—o0, 00)-valued function. Therefore, the function
| Fal

ngqu |F(Hj)|
is continuous. From this fact we can easily show that the function 7, is
continuous. Hence Lemma 4.2 is proved.

We recall here the following generalized Schwarz lemma.

Lemmad4.4. Letv be a nonnegative real-valued continuous subharmonic

Sunction on Ag. Ifv satisfies the inequality Alogv > v? in distribution sense,
then

et tig — ew+log|¢x|

’U(Z) < /IR(Z) = RZ%RKP
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For the proof, see [8, Lemma 2.5].

We now give the following.

Main Lemma. Let f: A — P"(C) be a nondegenerate holomorphic
map, and let H; (1 < j < q) be hyperplanes in general position. Suppose
that there are positive numbers n; (1 < j < q) and [—o0, 00)-valued contin-
uous subharmonic functions u; satisfying conditions (C1), (C2) and (C3).
Then, for an arbitrarily given ¢ > 0, there exists some positive constant C
such that

A7~ Amtettt 4 (T <y (Tigjcq [Fie (H)D)* 9| Fa] 42
ng,‘gq IF(HJ)|

2R An+Bne
< "
—C<m—uv> ’

where A, = n(n+1)/2 and By = 3, <)<, Ak-
Proof. By virtue of Lemmas 4.2 and 4.4, we see

A ¥ 0 S P 1
i< < 1F(H)I(To<k<n_1 log(u/ ok (H;)))

2R Ap+Bne
< -
-C(RtﬁaJ

for a suitable positive constant C. Set

K := sup x¢/9log’ ad (< 00).
0<x<1 X

Since ¢4 (H;) < 1 for all k and j, we have
_
log” (u/ 9k (Hj))

Substituting this in the above inequality, we obtain the desired conclusion.

1 |F(H,)|*/e

Neld —
A S AT

1
> E(/’k( J

5. Proof of the Main Theorem

As in the Main Theorem, let M be an open Riemann surface with a
complete conformal metric ds? and f: M — P"(C) a nondegenerate holo-
morphic map, and assume that f satisfies condition (C;). Take g hyper-
planes H,,--- , H; in P"(C) located in general position. The purpose of this
section is to show inequality (2.7). Take the universal covering 7 : MM
of M. Then M has a complete conformal metric n*ds?, and f f-n
satisfies condition (C}). Moreover, we easily see 5” (Hj) < 6;’ (H;) for all
j=12,---,q. Therefore, it suffices to show (2.7) for the holomorphic
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map f: M — Pn (C). On the other hand, by Koebe’s uniformization the-
orem M is biholomorphic with C or the unit disc A. For the case M= C,
the Main Theorem is true by Theorem 2.4. For our purpose it suffices to
consider the case M = A. In the following, we assume that M itself is
equal to A.

Now, suppose that (2.7) does not hold, namely,

) 5;’(Hj)>n+1+’m(—”2+9.

1</<q
Then, by Definition 2.2, there exist positive numbers #; (1 < j < g) and

[—00, 00)-valued continuous subharmonic functions #; which are harmonic
on M — f~!(H;) such that they satisfy the condition

(cry Y=q—-Mm—M——ng—n—1>pn(n+1)/2

and conditions (C2), (C3) in §4. Moreover, by Definition 2.5, there exists
a harmonic function # on M satisfying condition (2.6).

Let f = (fo: fi: ---: fu) be a reduced representation of f, and let H;
be given by

Hy: ajowo+ -+ amwn=0 (1<) <aq).

We use the same notation as in the previous sections. Since f is nonde-
generate, none of Fy(H;) (1 < j < g, 0 <k < n— 1) vanishes identically.
We can find some iy, -, i, such that

Vik == Z ajIW(flsfi;"",ﬂk)
1), ig

does not vanish identically, where we set y;o = F(H;) and y;, = F, for the
sake of convenience. As in the previous sections, we set 4, = n(n + 1)/2
and B, = Y_;_, Ax. Consider the numbers

p(An + Bye) p
5.1 = 0o - ot * = .
(1) P A P T U0 - Ao
Choose some ¢ with
Yy — pAn Y — pAn

>€e> s
An+l +an p/q+An+l +an
so that

(5.2) O<p<l, > 1.
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=J >4,V R >

define the function

(5.3) v = ( [Ti< <, |F(H)) )p"

=/ =4,V >

on M', where h = ((y — Ans1€)/p)h. Let m: M’ — M’ be the universal
covering of M’. Since logv - 7 is harmonic on M’ by the assumption, we
can take a holomorphic function ¢ on M’ such that |p| = v-n. Without loss
of generality, we may assume that M’ contains the origin o0 of C. As in the
previous papers [7] and [8], for each point j of M' we take a continuous
curve y;: [0,1] — M’ with y;(0) = 0 and y;(1) = n(p), which corresponds
to the homotopy class of p. Let 6 denote the point corresponding to the
constant curve o. Set

w = F(p) =/ o(z)dz,
7p

where z denotes the holomorphic coordinate on M’ induced from the holo-
morphic global coordinate on M’ by #. Then F is a single-valued holomor-
phic function on M’ satisfying the conditions F(d) = 0 and dF(p) # 0
for every p € M'. Choose the largest R (< +o0) such that F maps an
open neighborhood U of é biholomorphically onto an open disc Ax =
{z;|z| < R} in C, and consider the map ® = = - (F|U)~': Ar —» M'. By
the Liouville theorem it is impossible that R = oco.
For each point a € OA consider the curve

L,:w=ta, 0<t<l,

and the image I';, of L, by ®. We shall show that there exists a point ag
in dAg such that I, tends to the boundary of M. To this end, we assume
the contrary. Then, for each a € dAg, there is a sequence {¢,;v = 1,2,}
such that lim, o ¢, = 1, and zo = lim, ., P(¢,a) exists in M. Suppose
that zo ¢ M’. Then by the same argument as in the proof of Lemma 4.2
we can easily show that

imi ep” |ertla
ll;gl;;f]FM H [wk|? v | > 0.
1<j<q
1<k<n—1

Set dg := ep*/q (< ep*). If Fy(z0) = 0 or yj(20) = 0, then we can find a
positive constant C such that

V> — =
= |z = zq|%
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in a neighborhood of zy. By virtue of (5.2), we obtain

dw
R=/ d =/ ——|d =/v d
ol = [ 42]idz1 = [ v(z)laz

1
> — 1 |dz| = .
- C/ra |z = zo|% 2] = oo

Since this is a contradiction, we have zo € M'.

Take a simply connected neighborhood V of z,, which is relatively com-
pact in M'. Set C' = min__;;v(z) > 0. Then ®(ta) € V (fp <t < 1) for
some #y. In fact, if not, I', goes and returns infinitely many times from
dV to a sufficiently small neighborhood of zy, and so we get an absurd
conclusion:

R= |dw|2C'/ 1dz] = oo.
L, I,

By the same argument, we can easily see that lim,_,; ®(ta) = zy. Since
7 maps each connected component of 77! (V') biholomorphically onto V,
there exists the limit

po=lim(F|U)™ (ta) € M.

Thus (F|U)~! has a biholomorphic extension to a neighborhood of a.
Since a is arbitrarily chosen, F maps an open neighborhood of U bi-
holomorphically onto an open neighborhood of Ag. This contradicts the
property of R. In conclusion, there exists a point ap € dAg such that I,
tends to the boundary of M.

By the definition of w = F(z) we have

dw| _ lp|' =7 dw|?
dz =1¢ dZ
p/(7—Ans18)
_ ( Il <j<q 1F (H))] ) iy
e“l+"'+“q+h|Fn|I+E HISqu,OSkSn—l |,//jk|6/ll dz

Set g=f-<I>, g=/fo @, ,8 = f,-®, and abbreviate u; - ® and & - ®
to u; and A respectively. Define also

G(H)) :=ajogo+ "+ ajn&n,
Gn=W(gos ", 8&n)s
@ik = Z a;Wi(g, & &)
[#il,...,jk
where the Wronskians are given by differentiation with respect to w. Then

dz \™ dz \*
Gu=(F-9) (55)  en=tu®(52)
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Since An(1 + &) +3;,(¢/q)Ax = An + Bne, we have easily by (5.1)

dw

dz

=/ =4,V >

p/(y—An18)
IT_,|G(H,)| l
et tueth| G V4T < i< g o<k<n—110 k¥4

On the other hand, the metric in Ag induced from ds? = A2|dz|? through
® is given by

dz |

dw

Let G, and Gy(H;) be the functions defined in the same manner as the
definition of the functions F and Fi(H;) for the map g. Since |¢ ;| <
|G« (H,)|, we obtain

+ootug+h 1+ p/(y=Ans18)
d*ds = A (eu. 4Gl enlsf'sa,osksn-l |¢jk|8/q>

Q*ds? = (- D)>

=J =4,V =

[1i<j<q |G(H))I

On the other hand, 4e” < ||g||? by the assumption. It then follows that

p/(y—Any18)
< Je (e " (Ii<j<q0gknet |Gk<H,~>|8/q>|Gn|‘+8) !

=J =4,V =

Hlsqu IG(HJ)|

By the use of the Main Lemma we conclude
2R P
* < -
o ds‘C(R2—|z|2) ,

where C is a positive constant. Thus

A £ 1 Y—Any1€
d*ds < (”g”y_ et ([T < g o<kan—1 |Gk (H)[9)|Gal +8)

doy< [ ds= @*dsgCP/

R p
(2—R) ldw| < +oo,
o La, 0

R? - |z2

which contradicts the assumption of completeness of /. Hence the proof
of the Main Theorem is completed.

6. Some examples

We shall give in this section some examples of complete Riemann sur-
faces holomorphically immersed in C™, whose Gauss maps omit
m(m + 1)/2 hyperplanes in P"~!(C) located in general position.
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Taking m distinct numbers a;,a;, - ,a, in C, we set
M :=C_ {al,a29"' ,am}>

and let 7: M — M be the universal covering of M. We consider the
functions

z dC
wi(z) = 1<i<m
=[5 asism
on M , and define a holomorphic immersion w := (w;, W, - ,W;,) of M
into C™, where zg is an arbitrarily fixed point in M. Then, the Gauss map
of w: M — C™ is given by

Gz( l D 1 )
z—-a Z—am

The map G may be rewritten as G = (fij(z): ---: fi(2z)) with polynomials

gi(z)=(z—-a) - (z-ai-1)(z-ai) - (z—am) (A <i<m).

Obviously, g, - , & are linearly independent, and so w is nondegenerate.
On the other hand, the metric on M induced from C™ is given by

2 _ &> + - + |gm|? 2
O = Tmallz=al -z a2
and by
Ticicm(l=arll- 1= ai-i 8|1 = a1 8] |1 = aml])* |dC)?
(1 =ar {1 = axl]- |1 — aml])? €12

around the point oo if we take a holomorphic local coordinate { = 1/z.
The Riemann surface with this metric is complete. In fact, if there is a
piecewise smooth curve y(¢) (0 < ¢t < 1) in M with finite length, which
tends to the boundary of M, then the curve j := my in M tends to one of
the points a;,as, - - ,a, and co. This is impossible as is easily seen by the
above representations of ds?2.

We now prove the following. N

Proposition 6.1. The complex Gauss map G of the above surface w: M
— C™ omits m(m+1)/2 hyperplanes in P"~'(C) located in general position
for each odd number m.

To this end, we show first

Lemma 6.2. For an arbitrarily given odd number m (> 3) set n := m—1
and ty := n/2, and consider m(m + 1)/2 polynomials

fi(z) = (z —ap)""’ (0<i<n),
Sorr4i(2) = (z —a))" " (z = by)’ (0<i<n),
Jo(nr1)+i(2) = (2 = a,)" "z - bzo)i (0<i<n),

ds? =
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where aq, b, are distinct complex numbers. If we take a, and b, (0 < o < 1,
1 < t < ty) suitably, then arbitrarily chosen m polynomials among them
are linearly independent.

Proof. We shall show that arbitrarily chosen m polynomials among
Jo,- -+, fin+1)+n are linearly independent by induction on ¢, where ¢ < f.
It is trivial for the case ¢t = 0. Suppose that Lemma 6.2 is true in the
case where ¢ is replaced by a number < ¢ — 1 for suitably chosen a,, b,
0<o<t-1,1< 1< t-1). We shall show that m polynomials
fios firs- -, fi, among f; (0 < j < t(n + 1) + n) are linearly independent.
We may assume

o< << <th+1)—-1<ip, < - <lip,

where it may be supposed that k < »n because of the induction hypothesis.
For brevity, set g, := f;, (0 < r < n). Then the Wronskian W (go, -, g)
does not vanish identically by the induction hypothesis. We can choose a
point ¢ with W (fj,, -+, fj,)(c) # 0 whenever 1 < jo < --- < jy <t(n+1)+
n (1 <[/ < n). Replacing the coordinate z by z + ¢, we may assume that
c=0. Set
&(z) = Z A5z’ (0<r<n),
0<s<n

where 4,; may be considered as polynomials in a, and b; (0 < ag,7<?¢). It
suffices to show that F := det(A4,;;0 < r,s < n) does not vanish identically
as a function of a, and b,. Let b, = 0. Then g, --, g, can be written
as

g2)=(z—a)z"""  (k+1<r<n-k),

and so A,; = (S_fl'+,r)(—a,)”‘5 fork+1<r<nandO0<s < n, where (i)
denotes the number of combinations of / elements taken s at a time, and
we set (i) = 0if s < 0. On the other hand, the 4, are independent of a, for
0 < r < k. We apply the Laplace expansion theorem on the determinant
to the first k + 1 columns and the last n — k columns of (4,;0 < r,s < n).
As is easily seen, F has no nonzero term of degree < (n —k)(n—k —1)/2,
and the coefficient of the term of degree (n — k)(n — k — 1)/2 of F with
respect to a, is given by

B:=det(A,s;O§r§k,0§s§k)xdet(( lr );k+ 1 gr,ssn).
S—h + lr

The first term equals W (go, g1, - ,8)(0), and the second term equals
(I"=S;k + 1 < r,s < n) up to a nonzero constant multiple. Therefore, we
conclude B # 0, and the proof of Lemma 6.2 is complete.
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Proof of Proposition 6.1. Take polynomials f;_;(z) (1 < i < g :=
m(m + 1)/2) given in Lemma 6.2. Since g,(z),- -, 8&n(z) are linearly
independent and so give a basis of the vector space of all polynomials of
degree < m — 1, we can find some constants ¢;; such that

fisi(2)= > cijgi(z)  (1<i<g).
0<j<n
Now consider g hyperplanes
H;: ciowo + ciiwy + -+ cinwy, =0 (1 <i<q),
which are located in general position by Lemma 6.2. Moreover, we see
S~ (H;) =@ for 1 < i < q because F(H;)(z) = f;_i(z) vanish nowhere on
M. Hence the proof of Proposition 6.1 is complete.

For the case where m is an even number, we give the following.

Conjecture. For an arbitrarily given even number m (> 2) set t := m/2
and consider 3t polynomials

fi(z) = 2! (1<i<y,
fi(z) = (z - 1) (t+1<i<21),
fi(z) =z z =M (241 <0 < 30).
Then m arbitrarily chosen polynomials among them are linearly indepen-

dent.
If the above conjecture is true for an even number m, then we can find m

distinct constants a; := 0,b; := 1,ay,b,,--- ,a;, b, such that for the above
polynomials f;(z) (1 < i< 3t) and
Sasi(z) = (z —a))""(z = by)"™! (I<i<m),

f31+2:(t—2)+i(z) =(z—-a)" '(z - bt)l_l(l <i<m),

any m polynomials among them are linearly independent, which we can
prove in the same manner as in the proof of Lemma 6.1 by induction on
t. So, the same conclusion as in Proposition 6.1 holds for this number m.
The author could verify the above conjecture for the case m < 16 by the
help of a computer. Concludingly, the number m(m + 1)/2 in Theorem
1.2 is best-possible for all odd numbers m and for even numbers with
2<m<16.
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