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MODIFIED DEFECT RELATIONS
FOR THE GAUSS MAP

OF MINIMAL SURFACES. II

HIROTAKA FUJIMOTO

1. Introduction

Let x = (x\, - ,xm): M —• Rm be a (connected, oriented) minimal
surface immersed in a Euclidean ra-space Rw (m > 3). We denote the set
of all oriented 2-planes in Rw by Π. For each P e Π taking a positive
orthonormal basis (X, Y) of P and setting Z := (X — iY)/2 in a complex
number m-space C m , we assign the point Φ(P) := π(Z), where π denotes
the canonical projection of Cm — {0} onto the complex projective space
P m " 1 (C) . Then the map Φ: Π -> Pm~ι(C) maps Π bijectively onto the
quadric

Qm-2(C) := {(wi: : wm)\ w\ + + w2

m = 0}.

For a point p e M the tangent plane TP(M) of M at p is considered an
oriented 2-plane in Rm, where Tp(Rm) is identified with Rm by the parallel
translation which maps p to the origin. By definition, the (generalized)
Gauss map of M is the map G: M -> Qm-2(C) (c Pn(C)) which maps
each point p e M to the point Φ(7},(Af)), where n - m - 1. The metric
induced from Rw gives a conformal structure on M, and Λf is considered
a Riemann surface. By the assumption of minimality of M, G is a holo-
morphic map of M into Pn(C). In the case m = 3, βi(C) can be identified
with the Riemann sphere, and G is considered a meromorphic function,
whose conjugate is the classical Gauss map of M.

In 1981, F. Xavier showed that the Gauss map of a nonflat complete
minimal surface in R3 could not omit 7 points of the sphere [13]. After-
wards, as a generalization of this, the author proved that, if the Gauss map
G of a complete minimal surface M in Rm is nondegenerate, namely, G(M)
is not contained in any hyperplane in Pm~ι(C), then it can omit at most
m2 hyperplanes in general position [4]. Moreover, in [5] and [6] he gave
several improvements of this result. Recently, the author has improved
F. Xavier's result by showing that the Gauss map of a nonflat complete
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minimal surface can omit at most 4 points of the sphere [7]. Moreover, in
the previous paper [8] he introduced some new types of modified defects
for a meromorphic function on an open Riemann surface and gave a mod-
ified defect relation for the Gauss map of a minimal surface in R3 which
is similar to the defect relation in Nevanlinna theory of value distribution
of meromorphic functions.

The purpose of this paper is to generalize some results of [8] to complete
minimal surfaces in Rm (m > 3). We shall give a modified defect relation
for a holomorphic map of a Riemann surface into Pn(C) under some
conditions, which will be stated in §2 and proved in §5 after giving some
preliminary results in §§3 and 4. As a special case of it we shall give the
following.

Theorem 1.1. Let M be a complete minimal surface in Rm and assume
that the Gauss map G of M is nondegenerate. Then G can omit at most
m(m + l)/2 hyperplanes in Pm~ι(C) located in general position.

For the case m = 3, the number m(m + l)/2 = 6 in Theorem 1.1 is
best-possible (cf. [4, p. 280]). It is an open problem whether the same is
true for the case m > 4.

We shall give another application of the above-mentioned modified de-
fect relation. Let M be a Riemann surface holomorphically immersed in
Cm. The complex Gauss map is defined to be the map which maps each
point p G M to the point in Pm~ι (C) corresponding to the complex tangent
line of M at p. We shall show the following.

Theorem 1.2. Let M be a Riemann surface holomorphically immersed
in Cm which is complete with respect to the metric induced from Cm. If M
is not contained in any affine hyperplane in Cm, then the complex Gauss
map of M can omit at most m(m + l)/2 hyperplanes in Pm~{(C) located
in general position.

This is an improvement of [6, Theorem 7.4] for a special case where
M is of dimension one. The number m(m + l)/2 in Theorem 1.2 is best-
possible for arbitrary odd numbers m. It seems likely that the same is true
for all even numbers. Some examples are given in §6.

2. Statement of Main Theorem

Let M be an open Riemann surface, and / a nondegenerate holo-
morphic map of M into Pn(C). For an arbitrarily fixed homogeneous
coordinate system (w0: ••• : wn) we represent / as / = (/0: : fn)
with holomorphic functions f0, ,fn on M without common zeros. In
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the following sections, such a representation of / is referred to as a re-
duced representation of /. Now, set | |/ | | 2 = |/ 0 | 2 + h \fn\

2 and, for
a hyperplane H: aowo + • + anwn = 0 in Pn(C), define the function

As in the previous papers, we give

Definition 2.1. We define the S-defect of H for / as

δUH) := 1 - inf{τ/ > 0; η satisfies condition (*)$}.

Here, condition (*)s means that there exists a [-oo, oo)-valued continuous
subharmonic function u {φ. -oo) on M satisfying the following conditions:

(Dl) e" < 11/11",
(D2) for each ζ e f~ι(H) there exists the limit

l i m ( « ( z ) - min{ι/F{H)(ζ)9 n) log \z - ζ\) e [-oo, oo),

where z is a holomorphic local coordinate around C, and VF{H){Q denotes
the order of the holomoφhic function F(H) at ζ.

Definition 2.2. The H-defect of H for / is defined by

δf(H) := 1 - inf{̂ / > 0; η satisfies condition (*)//}.

Here, condition (*)H means that there exists a [-oo, oo)-valued continuous
function uonM which is harmonic on M—f~ι (H) and satisfies conditions
(Dl) and (D2).

These modified defects have the following properties.

Proposition 2.3 (cf. [8, §1]). (i) 0 < δf(H) < δf(H) < 1.

(ii) If there exists a bounded nonzero holomorphic function g such that
vg = min{vF{H),n), then δf(H) = δf{H) = 1.

(iii) If F(H) has no zero of order less than m (> n), then δj!(H) >
1 - n/m.

Assertion (i) is obvious because condition (*)H implies condition (*)$.
To see (ii) we may assume that |^| < 1. Then the function u = log|g|
satisfies conditions (Dl), (D2) for η = 0. This gives (ii). Assertion (iii) is
true because the function u = ^ \og\F(H)\ satisfies conditions (Dl), (D2)
for η = n/m.

Consider the case M = C. By a coordinate change, we may assume
/(0) φ H. The order function of /, the counting function for H and the
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classical Nevanlinna defect (truncated by n) are defined respectively by

Tf(r) := -L f π log \\f(reiθ)\\dθ- log ||/(0)||,
2π Jo

We easily see

0 < δf{H) < δf(H)

(cf. [8, §1]). The classical defect relation in value distribution theory of
meromorphic functions is stated as follows.

Theorem 2.4. Let f be a nondegenerate holomorphic map ofC into
Pn(C). Then

for arbitrary hyperplanes H\,-- ,Hq in general position.
To state our Main Theorem, we give
Definition 2.5. Let M be an open Riemann surface with a conformal

metric ds2. For a number p (> 0), a nondegenerate holomorphic map
f.M-+ Pn(C) is said to satisfy condition (C*) if there exist a harmonic
function h and a nowhere zero holomorphic one-form ω on M such that

(2.6) λeh < ||/r,

where A is a function on M with ds2 = λ2\ω\2.

Now, we state the
Main Theorem. Let M be an open Riemann surface with a complete

conformal metric ds2, and let f:M-+ Pn(C) be a nondegenerate holo-
morphic map satisfying condition (C*). Then, for arbitrary hyperplanes
H\, ,Hq in Pn(C) located in general position,

(2.7) Σδ«{Hj)<n + ι

Remark. In the previous papers [5] and [6], under somewhat weaker
conditions it was shown that



MODIFIED DEFECT RELATIONS 369

We now consider a minimal surface x = (x\, ,xm): M —• Rm. By
associating a holomorphic local coordinate z = u + iυ with each posi-
tive isothermal local coordinates u, υ, we may consider M as a Riemann
surface. The Gauss map G is given by G = π (dx/dz) locally, where
π: Cw-{0} -> Pm~ι(C) is the canonical projection. If we set/; = (d/dXi)z
(0 < / < n), then we have G = (fom. : /„). This is a reduced represen-
tation since x is an immersion. On the other hand, the metric ds2 on M
induced from the standard metric on Rm is given by

ds2 = 2\\f\\2\dz\2.

This shows that the map G: M —> Pn(C) satisfies condition (C*). We can
conclude from the Main Theorem the following:

Theorem 2.8. Let M be a complete minimal surface in Rm, and G be
the Gauss map of M. If G is nondegenerate, then

for arbitrary hyperplanes H\, - ,Hq in general position.

Theorem 1.1 stated in §1 is an immediate consequence of Theorem 2.8
in view of Proposition 2.3(ii).

For the case m = 3, Q\(C) is biholomorphic with Pι(C) by the map
which maps (w\: w2: w$) to (w^: w\ - iw2) (cf. [11]). Instead of G
we consider the map g := (β: f - ifi)'- M —* Pι(C). Take a reduced
representation g = (g{: g2). Then the metric of M is given by

(cf. [5, §6]), where h is a nonzero holomorphic function. This shows
that g satisfies condition (CJ). Therefore, the Main Theorem implies the
following result of the previous paper [8, Theorem I].

Theorem 2.9. Let x: M —• R3 be a nonflat complete minimal surface,

and let g: M —• Pι (C) be the Gauss map. Then, for arbitrary distinct points

al9 '.,aqinPι(C),

Σ *ίW * 4

We consider next a Riemann surface immersed in Cm by a holomorphic
map / = (/i, ,/m): M —• C m . To each point p e M we assign the
complex tangent line 7>(Af) (c 7>(Cm)) of M at p. On the other hand,
Tp(Cm) is identified with Cm by the parallel translation which maps/? to the
origin, and the totality of all complex lines in Cm constitutes the complex
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projective space Pm~{(C). The complex Gauss map G of M is defined
to be the map which maps each point p e M to the point in Pm~ι(C)
corresponding to TP(M). We can represent G as

locally, and the induced metric on M is given by

ds2 = \dwx|
2 + + \dwm\2 = (\fl\2 + + \f'm\2)\dz\2,

where f\ denotes the derivative of f with respect to a holomorphic local
coordinate z. This shows that the map G: M —• Pm~ι(C) satisfies condi-
tion (C*). Moreover, it is easily seen that G is nondegenerate if and only
if M is not contained in any affine hyperplane in C m . We can conclude
from the Main Theorem the following.

Theorem 2.10. Let M be a complete Riemann surface holomorphically
immersed in Cm, which is not contained in any affine hyperplane, and let
G be the complex Gauss map of M. Then

Σ δ"(Hj) < ^ ^

for arbitrary hyperplanes H\, ,Hq in general position.

Theorem 1.2 stated in §1 is an immediate consequence of Theorem 2.10
by Proposition 2.3(ii).

3. Some properties of the derived curves

To prove the Main Theorem, we shall recall some known results on the
derived curves of a holomorphic curve in Pn(C).

Let / be a nondegenerate holomorphic map of AR := {z; \z\ < R} ( c C)
into Pn(C), where 0 < R < +oo. Take a reduced representation / =

(/0: •• : Λ) and set 11/11 = ( Σ o < z < j y ; | 2 ) I / 2 ^ = (/oJ••',/«). We define

F{1) = C/o(/), • ,Λ(/)) for each / = 0,1, , and

k+\

Fk := F<°> Λ F^ Λ Λ F™: AR - /\ Cn+{.

Let G(n, k) denote the set of all (k + l)-dimensional vector subspaces of
Cn+ι. By Pliicker imbedding G(n, k) is regarded as a complex submanifold
of PN(C), where N = (£+}) - 1. Let n: tf+x C"+ 1 - {0} -> PN(C) denote
the canonical projection map. The map fk := π o Fk is called the kth
derived curve of / .
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For holomorphic functions fo, -,fk

 w e denote the Wronskian of

fo, - ,fk by W(fo, , fk), namely

We define
1/2

y \u/ί r. ... /*. M2

and set
ak:=ddclog\Fk\

2,

where dc = (\/—ϊ/(4π))(c? - d). For k = n, since Fn is holomoφhic, we
have Ω.n = 0. For the sake of convenience, we set |F_i| = 1.

Lemma 3.1. Set Ωk = hk dz Λ dcz. Then

For the proof, see [3, Lemma 4.16, p. 118] or [12, Lemma, p. 108].
Take a hyperplane H in Pn{C). Choosing a vector a = (#o, -- ,an) in

Cn+ι with ||α|| = ( ^ |fl, | 2 ) 1 / 2 = 1, we represent // as

H: aowo + - + anwn = 0.

Set F(H) := αo/o + + flπ/π and

\Fk(zψ >

where

\Fk(H)\2= Σ Σ ajW{fj,A,---,fik)
0<iι< <ik<n j^i\, - Jk

= 0 we have φo(H) = \F(H)\2/\\f\\2 and φn(H) = 1.
Lemma 3.2. (i) ύfp* Λ dcφk = (ψk+\ •

For the proof, see [3, Lemma 5.16] for (i) and [3, Lemma 5.17] for (ii),
or [12, pp. 116-120].

Lemma 3.3. For an arbitrarily given ε > 0 there exists some μo(ε) (> 1)
such that for every μ > μo(ε) and a hyperplane H in Pn(C)

ddc! _ _ ! > 2ψjψ(H} Ω _ ε Ω

log2(μ/φk(H)) φk(H)ϊog2(μ/φk(H))

For the proof, see [3, p. 129] or [12, p. 122].
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We shall also need the following:
Lemma 3.4 (Sums into products). Let H\,- ,Hq be hyperplanes in

Pn(C) located in general position and set

φ , =, = Ψk+
3 ' φk(Hj)log2(μ/φk(Hj))

Then there exists a positive constant ck depending only on k and Hj (1 <
j < q) such that

Σ ** *
onAR-\Jι<j<q{z;φk{Hj){z) = 0}.

For the proof, see [3, p. 134] or [12, p. 124].
Now we give the following proposition, which is fundamental for the

proof of the Main Theorem.

Proposition 3.5. For every ε > 0 there exist some positive numbers μ

(> 1) and C depending only on ε and Hj (1 < j < q) such that

(3.6)

ddc log " —j

2

>C !LO i ^ = dzΛdCZ.

For the proof, we use the following elementary inequality.
(3.7) For all positive numbers X\, - ,xn and a{, ,an,

aχXχ + ... + α Λ > ( έ ϊ l + ... + an){x^ -x«-)i/(«»+-+«-).

Proof of Proposition 3.5. We denote the left-hand side of (3.6) by A.
Then, by the definition of Ω^, it is rewritten as

d c \ ( )y \\oi(μlφk{Hj)))

Choose a positive number μo{ε/q) with the property as in Lemma 3.3. For
an arbitrarily fixed μ > μo{ε/q) we obtain

A>e Σ Ω * + Σ Σ ( ...2<Pkϊm ^--^

= Σ 2 ί Σ Φ
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where Φ ^ is the quantity defined in Lemma 3.4. By the help of Lemma
3.4, we conclude

^ > Σ <* ( π *T
0<k<n-\ V

where c^ are some positive constants, and hk are the quantities defined
in Lemma 3.1. Now applying inequality (3.7) to a^ := n - k and Xk :=

; ^ Γ " Yields

(
Π Π •>

0<Ar<«—1 \

for some positive constant C. On the other hand, we have

Π •*= Π
O<A:<«-1 O<A:<«-1

ll/ll2 π

Π « - - Π |F 0 | 2("+') '

because φo{Hj) = \F(Hj)\2/\\f\\2, Ψn{Hj) = 1 and the products telescope.
Therefore,

i i y i i ^ p i

which gives Proposition 3.5.

We shall prove here another proposition.

Proposition 3.8. Set An := n(n + l)/2 and Bn := Σ"k=ι A- Then
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Proof, Since ddc\o%\Fk\
2 (0 < k < n - 1) are nonnegative, by the aid

of (3.7) we can conclude from Lemma 3.1 that

Anddclog\Fo\2'"\Fn.ι\
2

dz Λdcz,

which implies Proposition 3.8.

4. A result of the generalized Schwarz lemma

Let / be a nondegenerate holomorphic map of AR into Pn{C), and let
H\, ,Hq be hyperplanes in Pn(C) located in general position. We use
the same notation as in the previous section. Suppose that there exist non-
negative numbers η\, ,ηQ and [-oc, oo)-valued continuous subharmonic
functions U\9 - ,uq such that

(Cl) γ := q - η{ - η2 ηq - n - 1 > 0,

( C 3 ) for e a c h ζ e f - { ( H j ) {\<j<q) t h e l i m i t

( 7 ( z ) - min(ιsF{Hj)(ζ),n)log\z - ζ\) e [-00,00)

exists, where | |/ | | = (\fo\
2 + •• -h |/«|2)1 / 2 for a reduced representation

/ = ( / o : •••:/,).
Set An = n(n + l)/2 and Bn = Σ"k=ι Ak as in Proposition 3.8.

Lemma 4.1. For positive constants ε, C and μ (> 1), define the function

B-i \og(μ/φk(Hj))Y

If we choose suitable C and μ depending only on ε and Hj, then

ddc log n\ > η^
A"+B^ dz Λ dcz.
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Proof. Since the functions Uj and log|F^|2 are subharmonic and Fn is
holomorphic, Proposition 3.5 implies that, for μ >

2>^ddclog\F0\
2ddclogη2

ε>^ddclog\F0

/< log

| | y | | | _ p n | \ n(n+\)

VΠ.<y <, I ^ ( ^ ) I 2 ( Π O < ^ < « - . log2 ^ y ) J rf

where Co is a constant depending only on ε and ///. Applying Proposition
3.8 to the first term of the right-hand side of the above inequality we obtain

Set ε' = εBn/An. It then follows from (3.7) that

|2

<C2

where C, are some constants and y'-q-n-X- (An+ιAn/Bn)εf = q -
n - X - An+\ε. By the assumption, since each Uj satisfies condition (C2),
we get

and therefore, for a positive constant C,

ddc log >/2 > Cη2

ε

/{An+Bnε) dz Λ rfcz,
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which concludes Lemma 4.1.
Lemma 4.2. Let ηε be a function defined as in Lemma 4.L Set

v : = Cηll(A"+B"ε)

on AR-{Uι<j<gf-
ι(HjMUι<k<n-Λ9k(Hj) = 0})) andυ:=0 elsewhere.

If we choose a suitable C, v is continuous on AR and satisfies the condition

(4.3)

in distribution sense.
Proof. It suffices to show that v is continuous on AR. In fact, the

inequality (4.3) is an immediate consequence of Lemma 4.1. Obviously,
v is continuous on AR - \Jι<j<gf~

ι(Hj). Set

Then, for every point ζ in ΔR, the order of poles of / at ζ is not larger
than L := Σ\<j<q nn&(vf(H.)(£), n). In fact, for each ζ e AF, if we choose
indices z'o, -- 9in such that F(Hj)(ζ) φ 0 for j φ i0, • , /„, we can rewrite

W(F(Hi0), ,F(HiΛ))
X ^ F(Hl0)...F(Hln)

^/Fim;0< l,m< n)h,

with a nowhere vanishing holomorphic function h, and so / has no pole of
order larger than L at ζ (cf. [1]). On the other hand, since each Uj satisfies
condition (C3), if we take a holomorphic function φ in a neighborhood U
of ζ such that

vφ{z)= Σ min{uf{Hj)(z),n)

on U, φχ is holomorphic on U and w := U\-\ hw^~log|^| is continuous
on U as a [—oc, oc)-valued function. Therefore, the function

pUι+ +uq \£n\ _ pw+\og\φχ\

Π 1̂ (̂ )1
is continuous. From this fact we can easily show that the function ηε is
continuous. Hence Lemma 4.2 is proved.

We recall here the following generalized Schwarz lemma.
Lemma 4.4. Let vbea nonnegative real-valued continuous subharmonic

function on AR. Ifv satisfies the inequality Alogv > v2 in distribution sense,
then

2R
υ(z) < λR(z) := i ? 2 _ | ζ | 2
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For the proof, see [8, Lemma 2.5].
We now give the following.
Main Lemma. Let f: AR —• Pn(C) be a nondegenerate holomorphic

map, and let Hj (1 < j < q) be hyperplanes in general position. Suppose
that there are positive numbers r\j (1 < j < q) and [-oo,oo)-valued contin-
uous subharmonic functions Uj satisfying conditions (Cl), (C2) and (C3).
Then, for an arbitrarily given ε > 0, there exists some positive constant C
such that

( j n An+Bnε

where An = n(n + l)/2 and Bn = Ei<α<« Ak>
Proof By virtue of Lemmas 4.2 and 4.4, we see

< C
2 D \ An+Bnε

for a suitable positive constant C. Set

AΓ:= sup x ε ^ l o g 2 - (< oo).
0<*<l x

Since ψk{Hj) < 1 for all fc and j , we have

1 - > pft(¥Λ - p
κ

Substituting this in the above inequality, we obtain the desired conclusion.

5. Proof of the Main Theorem

As in the Main Theorem, let M be an open Riemann surface with a
complete conformal metric ds2 and / : M —• Pn(C) a nondegenerate holo-
morphic map, and assume that / satisfies condition (C*). Take q hyper-
planes H\, ,HQin Pn(C) located in general position. The purpose of this
section is to show inequality (2.7). Take the universal covering π: M —• M
of M. Then M has a complete conformal metric π*ds2, and / := / π
satisfies condition (C*). Moreover, we easily see δ^(Hj) < δ^(Hj) for all
j = 1,2,••• ,q. Therefore, it suffices to show (2.7) for the holomorphic
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map f\M^Pn(C). On the other hand, by Koebe's uniformization the-
orem M is biholomorphic with C or the unit disc Δ. For the case M = C,
the Main Theorem is true by Theorem 2.4. For our purpose it suffices to
consider the case M = Δ. In the following, we assume that M itself is
equal to Δ.

Now, suppose that (2.7) does not hold, namely,

Then, by Definition 2.2, there exist positive numbers r\j (1 < j < q) and
[-oo, oc)-valued continuous subharmonic functions Uj which are harmonic
on M - f~ι(Hj) such that they satisfy the condition

(Cl)' y = q-η\-ηi ηq - n - I > pn(n + l)/2

and conditions (C2), (C3) in §4. Moreover, by Definition 2.5, there exists
a harmonic function h on M satisfying condition (2.6).

Let / = (fa: f\: : fn) be a reduced representation of /, and let Hj
be given by

Hj: cijoWo + + aJnwn = 0 ( l < j < q ) .

We use the same notation as in the previous sections. Since / is nonde-
generate, none of Fk{Hj) (1 < j < q, 0 < k < n - 1) vanishes identically.
We can find some i\, , i^ such that

Ψjk = L ajlW{fufh,--.Jik)

does not vanish identically, where we set ψjo = F(Hj) and ψjn = Fn for the
sake of convenience. As in the previous sections, we set An = n(n + l)/2
and Bn = Y^=x Ak. Consider the numbers

(5.1) p=P(An+Bnε) _._ p
y-An+xε ' (1 -p)(γ - An+ιε)'

Choose some ε with

J^PA > ε > y-

so that

(5.2)
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Consider the open subset Mf = M - U\<j<q,o<k<n{ψjk = 0} of M, and
define the function

-1 I Ψjk\εlQ )

on M', where h = ((y - An+{ε)/p)h. Let π: A/7 -+ A/7 be the universal
covering of M1. Since log?; π is harmonic on A/7 by the assumption, we
can take a holomorphic function φ on M' such that |$?| = v π. Without loss
of generality, we may assume that M' contains the origin o of C. As in the
previous papers [7] and [8], for each point p of M' we take a continuous
curve yp\ [0,1] —• M' with γp(O) = o and γp{\) = π(p), which corresponds
to the homotopy class of p. Let δ denote the point corresponding to the
constant curve o. Set

w=F(p)= ί φ{z)dz,

where z denotes the holomorphic coordinate on M' induced from the holo-
morphic global coordinate on M' by π. Then F is a single-valued holomor-
phic function on M' satisfying the conditions F(δ) - 0 and dF(p) Φ 0
for every p e M'. Choose the largest R (< +oo) such that F maps an
open neighborhood U of δ biholomorphically onto an open disc AR =
{z; \z\ < R} in C, and consider the map Φ = π (F\U)~ι: ΔF -• Mf. By
the Liouville theorem it is impossible that R = oo.

For each point a edA consider the curve

La: w = ta, 0<t<\,

and the image Γa of La by Φ. We shall show that there exists a point #o
in dAR such that ΓaQ tends to the boundary of M. To this end, we assume
the contrary. Then, for each a e ΘAR, there is a sequence {tv\v — 1,2, •}
such that lim^oo tυ = 1, and z0 = limt/_+ooΦ(/I/(2) exists in M. Suppose
that z0 ^ M'. Then by the same argument as in the proof of Lemma 4.2
we can easily show that

/ λ

liminf \Fn\
εp* TT \ψjk\εp*lqv

z—>z0

 ± ±

\\<k<n-l J

Set δo := εp*/q (< £/?*)• I f ^(^o) = 0 or ^ ( z 0 ) = 0, then we can find a
positive constant C such that

v>-C
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in a neighborhood of z0. By virtue of (5.2), we obtain

= J \dw\ = = jv{z)\di

*CI,^ zo\
δ°

\dz\ = oo.

oc.

Since this is a contradiction, we have zo e M'.
Take a simply connected neighborhood V of z0, which is relatively com-

pact in M'. Set C = minzeψv(z) > 0. Then Φ(ta) e V (t0 < t < 1) for
some to- In fact, if not, Γa goes and returns infinitely many times from
9 F to a sufficiently small neighborhood of zo, and so we get an absurd
conclusion:

R= I \dw\>C ί \dz\ =
JLa JΓa

By the same argument, we can easily see that lim/^i Φ(ta) = ZQ. Since
π maps each connected component of π~ι(V) biholomorphically onto V,
there exists the limit

po = \im(F\U)-ι(ta)eM'.

Thus (F\U)~ι has a biholomorphic extension to a neighborhood of a.
Since a is arbitrarily chosen, F maps an open neighborhood of U bi-
holomorphically onto an open neighborhood of AR. This contradicts the
property of R. In conclusion, there exists a point ao e dAR such that Γao

tends to the boundary of M.
By the definition of w = F(z) we have

dw
~dz = \9\

1-/7 dw

p/{γ-An+ιε)
dw
~dJ

Set g = f - Φ, go = /o Φ, , gn = fn Φ, and abbreviate Uj Φ and h Φ
to Uj and Λ respectively. Define also

where the Wronskians are given by differentiation with respect to w. Then

φ)ί£V.
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Since An{\ + e) + Σj,k(
ε/v)Ak = An+ Bnε, we have easily by (5.1)

» / TΊQ IΓ/E7M \ />/(y-Λ+lβ)

On the other hand, the metric in AR induced from ds2 = λ2\dz\2 through
Φ is given by

Φ W = (λ Φ)2 dz 2

dw

Let Gk and Gk(Hj) be the functions defined in the same manner as the
definition of the functions Fk and Fk(Hj) for the map g. Since \φjk\ <
\Gk(Hj)\, we obtain

V _

On the other hand, λeh < \\g\\p by the assumption. It then follows that

By the use of the Main Lemma we conclude

where C is a positive constant. Thus

d(0) < ds= Φ * ώ < C M D 2 , ,2 |rfτi;| < +00,

which contradicts the assumption of completeness of M. Hence the proof
of the Main Theorem is completed.

6. Some examples

We shall give in this section some examples of complete Riemann sur-
faces holomorphically immersed in C w , whose Gauss maps omit
m(m + l)/2 hyperplanes in Pm~ι(C) located in general position.
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Taking m distinct numbers a\, a2, , am in C, we set

M:=C-{aι,a29-',am}9

and let π: Af —• Af be the universal covering of Af. We consider the
functions

Wj(z) := / j (1 < i < m)
J ZQ S ~ ai

on Af, and define a holomorphic immersion w := (w\,w2, , wm) of Af
into C w , where z0 is an arbitrarily fixed point in Af. Then, the Gauss map
of w: M —• C w is given by

G =

The map G may be rewritten as G = (f\(z): : fm{z)) with polynomials

#(z) = (z - a{) - - (z - ai-{)(z - ai+{) - - {z - am) (1 < / < m).

Obviously, ^i, , gm are linearly independent, and so w is nondegenerate.
On the other hand, the metric on M induced from Cm is given by

ds2 = | g | 2 + + | g | 2

and by

, 2 _ Σ i < κ w ( l i -
3 ( | i -αiCI | i- f l2C| |i-flmCI)2 I C I 2

around the point oo if we take a holomorphic local coordinate ζ = ί/z.
The Riemann surface with this metric is complete. In fact, if there is a
piecewise smooth curve γ(t) (0 < t < 1) in Af with finite length, which
tends to the boundary of Af, then the curve γ := πγ in Af tends to one of
the points a\, a2, , am and oo. This is impossible as is easily seen by the
above representations of ds2.

We now prove the following.
Proposition 6.1. The complex Gauss map G of the above surface w: Af

—• Cm omits m(m+1 )/2 hyperplanes in Pm~ι (C) located in general position
for each odd number m.

To this end, we show first
Lemma 6.2. For an arbitrarily given odd number m (> 3) set n := m-\

and to := n/2, and consider m(m + l)/2 polynomials

fM^iz-ao)"-' ( 0 < / < Λ ) ,

/ Λ + i + l (z ) : = (z - ax)
n~l(z - bx)

1 (0 < / < n),

fto{n+l)+i(z) := (z - ahγ-'ι{z - bίoy (0 < / < n),
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where aσ, bτ are distinct complex numbers. If we take aσ and bτ (0 < σ < t0,
1 < T < to) suitably, then arbitrarily chosen m polynomials among them
are linearly independent.

Proof. We shall show that arbitrarily chosen m polynomials among
fo>''' >f{n+\)+n are linearly independent by induction on ί, where t < t$.
It is trivial for the case t = 0. Suppose that Lemma 6.2 is true in the
case where / is replaced by a number < t - 1 for suitably chosen aσ,bτ

(0 < σ < t - I, 1 < τ < ί - 1). We shall show that m polynomials
fioifii*-" 9 A among fj (0 < j < t(n +I) + n) are linearly independent.
We may assume

io<iι<"'< ik < t(n + 1) - 1 < ik+ι < • • • < / „ ,

where it may be supposed that k < n because of the induction hypothesis.
For brevity, set gr := fr (0 < r < n). Then the Wronskian W(g0, ,gk)
does not vanish identically by the induction hypothesis. We can choose a
point c with W(fjo, , fjt){c) Φ 0 whenever 1 < j 0 < < j) < t(n + 1) +
n (1 < I < n). Replacing the coordinate z by z + c, we may assume that
c = 0. Set

g r ( z ) = Σ A"zS ( 0 < r < n ) ,
0<s<n

where Ars may be considered as polynomials in aσ and bτ (0 < σ, τ < t). It
suffices to show that F := det(Λr5;0 < r,s < n) does not vanish identically
as a function of aσ and bτ. Let bt = 0. Then gk+w ,gn can be written
as

gr(z) = (z- atfz
n-ι< (k+l<r<n-k),

and so Ars = (s_
ι^+lr)(-at)

n-s for k + 1 < r < n and 0 < s < n, where (̂ )

denotes the number of combinations of / elements taken s at a time, and
we set (ι

s) = 0 if s < 0. On the other hand, the Ars are independent of at for
0 < r < k. We apply the Laplace expansion theorem on the determinant
to the first k + 1 columns and the last n-k columns of (Ars\0 <r,s <n).
As is easily seen, F has no nonzero term of degree <(n- k)(n -k- l)/2,
and the coefficient of the term of degree (n - k)(n - k - l)/2 oΐ F with
respect to at is given by

B := dei(Ars',0 < r < fc,0 < s < k) x det ( ( r Λ\k+\ <r,s < n) .
\\s — n + lrj j

The first term equals W(go,gu ,^)(0) , and the second term equals
(l?~s\k + 1 < r,s < n) up to a nonzero constant multiple. Therefore, we
conclude B φθ, and the proof of Lemma 6.2 is complete.
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Proof of Proposition 6.1. Take polynomials f-\{z) (1 < / < q :=
m{m + l)/2) given in Lemma 6.2. Since g\{z), - ,gm{z) are linearly
independent and so give a basis of the vector space of all polynomials of
degree < m - 1, we can find some constants c// such that

Now consider q hyperplanes

Hi\ ciOwo + cnw{ + + c,-Λti;π = 0 (1 < i < q),

which are located in general position by Lemma 6.2. Moreover, we see
f~ι(Hi) = 0 for 1 < / < q because F(Hi)(z) = f-\{z) vanish nowhere on
M. Hence the proof of Proposition 6.1 is complete.

For the case where m is an even number, we give the following.
Conjecture. For an arbitrarily given even number m (> 2) set t := m/2

and consider 3t polynomials

Mz):=z'-1 ( l < / < 0 ,
Mz) := (z - I)'"1 ( ί + l < / < 2 0 ,
Mz) := z^-^z - l)m~i+t {2t+l<i< 3ή.

Then m arbitrarily chosen polynomials among them are linearly indepen-
dent.

If the above conjecture is true for an even number m, then we can find m
distinct constants αz := 0, b\ := 1, a-χ, bi, , at, bt such that for the above
polynomials f(z) (1 < i < 3t) and

/ 3 r + l (z) := (z - a2Γ~i(z - b2y-{ (1 < i < m),

/3,+ 2 / ( /_2 ) + /(z) := (z - at)
m-\z - btγ-\\ < i < m),

any m polynomials among them are linearly independent, which we can
prove in the same manner as in the proof of Lemma 6.1 by induction on
t. So, the same conclusion as in Proposition 6.1 holds for this number m.
The author could verify the above conjecture for the case m < 16 by the
help of a computer. Concludingly, the number m(m + l)/2 in Theorem
1.2 is best-possible for all odd numbers m and for even numbers with
2<m < 16.
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