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FIBRATIONS OF SPHERES BY GREAT SPHERES
OVER DIVISION ALGEBRAS
AND THEIR DIFFERENTIABILITY

THEO GRUNDHOFER & HERMANN HAHL

0. Introduction

Fibrations of $2"~! by great (n—1)-spheres arise in the theory of Blaschke
manifolds; see Gluck-Warner-Yang [4], in particular §2, p. 1043. Their
Theorem B, p. 1041, states that every differentiable fibration of this kind
is topologically equivalent to the fibration of $2”~! determined by a divi-
sion algebra. (This division algebra is obtained by a certain linearization
process; see Yang [15], Gluck-Warner-Yang [4, §6, p. 1056] and [9, §3,
3.2]. Let us call it the “infinitesimal division algebra”. It should be noted
that in general it is neither associative nor alternative.)

Here we answer the natural question: When is the fibration of §27~!
by great (n — 1)-spheres determined by a division algebra differentiable (as
a locally trivial fiber bundle)? This turns out to be the case only for the
classical Hopf fibrations, which are determined by the classical division
algebras R, C, H or O (see Theorem 1.3 below). This result contradicts
Theorem 2 of Yang [15]; his proof contains a fallacy (see [9, 2.10]).

It is possible to construct examples of differentiable fibrations of $%"~!
by great (n — 1)-spheres for which the infinitesimal division algebras are
not classical; this shows that the approach of Gluck-Warner-Yang [4] is
really only topological (as they point out in Remark 1, p. 1075, without
further explanation), and it invalidates Theorem 4 of Yang [15].

However, we still conjecture that every differentiable fibration of §2”~!
by great (n — 1)-spheres is differentiably equivalent to the classical Hopf
fibration of the same dimension. For n = 1, 2 this is more or less trivially
true; for n = 4, it has been proved in [9]. For the remaining case n = 8,
the problem seems to be open.
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The topic of this paper is connected with the theory of topological pro-
jective planes; see §2 below and [9, §§1, 2].

1. Fibrations determined by division algebras

1.1. Division algebras. A (real) division algebra D of finite dimension
n is a real vector space D = R” equipped with a bilinear multiplication
(x,y) — x -y: D> = D which satisfies
(1) every left multiplication map

Ae:D—-D:x—a-x

with 0 # a € D is invertible, i.e., A, € GL, R.

(i1) there is a “unit element” 1 € D with 1 - x = x = x - 1 for every
x €D.

Note that the multiplication is not required to be associative or alterna-
tive.

As a consequence of (i), every nonzero right multiplication map

pa:D—>D:x—x-a
is invertible as well. We denote the inverse operations by
a\b=A17'(b) and b/a=p;'(b)

for a,b € D with a # 0; in other words, a\b (resp. b/a) is the unique
solution x of the equation a - x = b (resp. x - a = b).

The classical examples are, of course, R, C,H (the quaternions) and O
(the octonions). But besides these there is a plethora of other real division
algebras. For just a few families of examples, cf. Yang [15], [6], [8, 2.6,
§3], [7, §4, p. 214]; the latter examples are also found in Benkart-Osborn
[1]. See also the references in [5, 7.2].

1.2. Fibrations determined by division algebras. Let D be a real division
algebra of dimension n. Define n-dimensional subspaces of D @ D = R?"
as follows:

U,={(x,a-x)|xeD} foraeD, Us = {0} x D.

Then the intersections U, N $?"~! for a € D U {co} are the fibers of a
fibration 7 of the unit sphere §2”~! of R?" into great (n — 1)-spheres (we
deviate slightly from Yang [15, Theorem 2, p. 580] by interchanging the
first and second coordinates). The classical division algebras R,C,H and
O lead to the Hopf fibrations.
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The fibration 7 obtained in this way from any division algebra D is
always a topological locally trivial fiber bundle (see the proof of Propo-
sition 2.5 in [9]). Here we are concerned with the question: When is ©
a differentiable fiber bundle? Theorem 2 of Yang [15] asserts that this is
always the case. This assertion is drastically refuted by Theorem 1.3 below
(for the fallacy in Yang’s proof see [9, 2.10]), which means that from the
multitude of finite-dimensional real division algebras, a differentiable fiber
bundle is obtained only in the classical cases:

1.3. Theorem. The fibration n determined by a real division algebra D
of finite dimension is a differentiable locally trivial fiber bundle if and only
if D is isomorphic to R,C,H or O.

Proof. The Hopf fibrations are known to be differentiable locally triv-
ial fiber bundles. Conversely, assume 7 to be differentiable. We use the
differentiability criterion given in [9, 2.5] for arbitrary fibrations of §27~!
by great (n — 1)-spheres (not necessarily determined by division algebras).
It states that the map

A7} forx #0,
7: D x (D\(0) — Enda(D): (x.3) — {

0 forx=0
must be differentiable (even at x = 0). In particular, for every fixed vector

v # 0 the map

. ' Asl forx #0,
)’u.D—>EndR(D).xr—+{O for 3 = 0
is differentiable, with differential dyy, at x = 0. Fort € R\{0} and v,x € D
with x # 0, bilinearity of the multiplication implies v/(tx) = t~!(v/x),

hence Ay /(x) = t~'Ay/x and 4, /l(,x) = tl;/'x. This yields
d d,_
t=0 =0
d, ._ _ -
= 75 Au) W Ao = Pu(X).

Thus 7, is linear, by the linearity of a differential, and
(v/x)\z forx #0,
0 forx=0

is a linear endomorphism of D = R” for every z € D. In other words we
have obtained the identity

(v/(x +x)\z = (v/x)\z + (v/x')\z,

xe m0)(2) = {
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which holds for v, x, x’, z € D with v, x, x’, x + x’ all distinct from zero.
Now the proof is completed by the following lemma, which requires only
the special case x’ = 1, v =x+1=(1+1/x)-x (and hence v/x = 1+ 1/x)
of the identity above.

14. Lemma. Let D be a real finite-dimensional division algebra which
satisfies the identity

z=(1+4+1/x)\z+(x+1\z

forx,z€ D, x #0, —1. Then D is isomorphic to R, C, H or O.
Proof. Replacing z by (x + 1) - z gives

X-z+z=(x+1)-z=(1+1/x)\(x-z+2)+ z,

hence x-z = (1+1/x)\(x-z+ z), which is equivalent to (1 + 1/x)-(x-z) =
Xx-z+z. This yields (1/x)-(x-z) = z, i.e., D has the left inverse property
(cf. Hughes-Piper [10, p. 135] or Pickert [12, p. 106]; note that the special
case x - z = | shows 1/x = x\1). By a result of Skornyakov-San Soucie
(see Hughes-Piper [10, Theorem 6.16, p. 140] or Pickert [12, 6.16, p. 182]),
D is an alternative division algebra, hence isomorphic to R, C,H, or O by
well-known theorems of Frobenius (cf. Palais [11] or Ebbinghaus et al. [3,
p. 161]) and Zorn [16] (cf. also Ebbinghaus et al. [3, p. 178] or Pickert
[12, p. 177)).

2. Differentiable projective planes over division algebras

2.1. A differentiable projective plane is a projective plane whose point
set P and line set .2 are endowed with the structure of a differentiable
manifold of positive dimension such that the points on a fixed line and
dually the pencil of lines through a fixed point form submanifolds and such
that the operations V and A of joining distinct points and intersecting
distinct lines are differentiable; cf. Breitsprecher [2]. We shall consider
lines as subsets of the point set (by identification with the set of incident
points).

It is a conjecture of Betten that the four classical planes over R,C,H, O
are the only differentiable projective planes; here we establish a special
case of this conjecture.

2.2. Theorem. The only differentiable projective planes which are trans-
lation planes as well as dual translation planes are the classical projective
planes over R, C,H and O.

2.3. Explanations. A projective plane is called a translation plane if
there is a line L such that the group of all translations with axis L acts
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transitively on the points not on L; the line L is then called a “transla-
tion line”. The dual condition, i.e., the existence of a “translation point”,
characterizes the dual translation planes. The projective planes which are
translation planes as well as dual translation planes are known as the planes
of Lenz-type (at least) V' (cf. Pickert [12, 3.14, p. 70]); these are precisely
the planes which can be coordinatized by (nonassociative) division rings;
see below.

Proof of Theorem 2.2. Let L be a translation line. If some point not
on L is a translation point, then every point is a translation point; cf.
Hughes-Piper [10, Theorem 4.20, p. 101]. Hence we may assume that we
have a translation point v on L. We pick points o, #, e such that o,u,v,e
form a nondegenerate quadrangle with L = u vV v, and we put

w=(oVe)AL.

Coordinatization of the plane with respect to o, u, v, e amounts to the fol-
lowing: On D := (o V e)\{w} we define an addition and a multiplication
by

x +y:=((xuAov)w Ayv)uAoe,
x-y:=((xuAMev)oAyv)uAoe,

for x,y € D; here we have used the abbreviation xu = x V u for the line
joining x and u. Then (D, +,-) is a (nonassociative) division ring, or, in
other terminology, a semifield; see Hughes-Piper [10, Theorem 6.9, p. 134]
or Pickert [12, 3.3.8 and 3.3.9, p. 101] or Stevenson [14, 13.2.1, p. 372].
In particular, (D, +) is an abelian group, and for a € D\{0} the left and
right multiplication maps 4, = (x — a-x) and p, = (x — X -a) are
automorphisms of (D, +) (this expresses the distributivity and divisibility
properties of the multiplication).

Differentiability of join and intersection implies that the algebraic op-
erations of D and their inverses are differentiable. In particular, (D, +) is
an abelian Lie group, and (D, +) = (R", +) for some natural number n (cf.
also Salzmann [13, 7.23]) since the left multiplications 4, with 0 # a € D
form a transitive set of automorphisms. By continuity, the automorphisms
Aq and p, are R-linear, and the multiplication is R-bilinear. Hence D is a
real division algebra as defined in 1.1.

The point set A of the affine plane with L as the line at infinity is
identified with D @ D = R?” by mapping a point p not on L onto the pair
(pv Aoe,pu Aoe). The lines of the affine plane are then just the subspaces
U,, a € DU {oo}, as in 1.2 together with their cosets in D @ D = R*".
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From this point on we indicate two ways to prove Theorem 2.2. The
first one involves the fibration determined by D. The map

n: A\{o} - L:p—poAL

is the projection map of a differentiable fiber bundle whose fibers are the
subsets U,\{0} = D\{0} = R"\{0} for a € D U {oo}; local trivializations
are given by

A\Up — (L\{u}) x (D\{0})
p+— (po A L,puAoe)

and

A\Uso — (L\{v}) x (D\{0})
p+— (poAL,pv Aoe).

In our coordinates, with A4 identified with D @ D, these trivializations are
just the maps (x,y) — (n(x,y),y) and (x,y) — (n(x,y), X).
We now consider the restriction of 7 to the unit sphere $2"~! of 4 = R?",
i.e., the map
n:8" ' S L:p—poAL.

The fibers of this restriction are the subsets U, N $2"~! = §”~1: thus we
get precisely the fibration of §2”~! determined by the division algebra D
according to 1.2. Local trivializations for this restriction are obtained
by appending the radial projection of D\{0} = R"\{0} onto $"~! to the
local trivializations above, so we still have a differentiable fiber bundle.
Therefore the assertion of Theorem 2.2 follows from Theorem 1.3.

(We remark that the trivializations in Yang [15, Theorem 2] can be
obtained as an algebraic transcription of these simple geometric ideas; see
[9, 2.9].)

The second (more direct) approach is based on the following geometric
calculation using our identification of the affine plane with D @ D: for
X,y,z € D with y # 0 we have

(6, )V (0,00) A ((0,2) Vt) = Uy A (D x {2}) = (4;,(2), 2)

if x #0, and
((0,¥) v (0,0)) A((0,2) Vu) = Uso A (D x {z}) = (0, 2).

Hence differentiability of join and intersection implies that the map 7 in
the proof of Theorem 1.3 is differentiable, and we can proceed as in that
proof.
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