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FIBRATIONS OF SPHERES BY GREAT SPHERES
OVER DIVISION ALGEBRAS

AND THEIR DIFFERENTIABILITY

THEO GRUNDHOFER & HERMANN HAHL

0. Introduction

Fibrations of §2n~ι by great (n-1)-spheres arise in the theory of Blaschke
manifolds; see Gluck-Warner-Yang [4], in particular §2, p. 1043. Their
Theorem B, p. 1041, states that every differentiable fibration of this kind
is topologically equivalent to the fibration of S2""1 determined by a divi-
sion algebra. (This division algebra is obtained by a certain linearization
process; see Yang [15], Gluck-Warner-Yang [4, §6, p. 1056] and [9, §3,
3.2]. Let us call it the "infinitesimal division algebra". It should be noted
that in general it is neither associative nor alternative.)

Here we answer the natural question: When is the fibration of S2""1

by great (n - l)-spheres determined by a division algebra differentiable (as
a locally trivial fiber bundle)? This turns out to be the case only for the
classical Hopf fibrations, which are determined by the classical division
algebras R, C, H or O (see Theorem 1.3 below). This result contradicts
Theorem 2 of Yang [15]; his proof contains a fallacy (see [9, 2.10]).

It is possible to construct examples of differentiable fibrations of S2""1

by great (n - l)-spheres for which the infinitesimal division algebras are
not classical; this shows that the approach of Gluck-Warner-Yang [4] is
really only topological (as they point out in Remark 1, p. 1075, without
further explanation), and it invalidates Theorem 4 of Yang [15].

However, we still conjecture that every differentiable fibration of S2""1

by great (n - l)-spheres is differentiably equivalent to the classical Hopf
fibration of the same dimension. For n = 1,2 this is more or less trivially
true; for n = 4, it has been proved in [9]. For the remaining case n = 8,
the problem seems to be open.
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The topic of this paper is connected with the theory of topological pro-
jective planes; see §2 below and [9, §§1, 2].

1. Fibrations determined by division algebras

1.1. Division algebras. A (real) division algebra D of finite dimension
n is a real vector space D = Rn equipped with a bilinear multiplication
(x,y) *-+ * y D2 -* D which satisfies

(i) every left multiplication map

λa: D —> D: x »-> a x

with 0 ψ a e D is invertible, i.e., λa e GL« R.
(ii) there is a "unit element" 1 e D with 1 x = x = x 1 for every

xeD.
Note that the multiplication is not required to be associative or alterna-

tive.
As a consequence of (i), every nonzero right multiplication map

pa: D —> D: χ\-^ x - a

is invertible as well. We denote the inverse operations by

a\b = λ-ι(b) and b/a = p~ι(b)

for a,b e D with a φ 0; in other words, a\b (resp. b/a) is the unique
solution x of the equation ax — b (resp. x a = b).

The classical examples are, of course, R, C, H (the quaternions) and O
(the octonions). But besides these there is a plethora of other real division
algebras. For just a few families of examples, cf. Yang [15], [6], [8, 2.6,
§3], [7, §4, p. 214]; the latter examples are also found in Benkart-Osborn
[1]. See also the references in [5, 7.2].

1.2. Fibrations determined by division algebras. Let D be a real division
algebra of dimension n. Define ^-dimensional subspaces of D&D = R2n

as follows:

Ua = {{x,a-x)\xeD} fovaeD, Uoo = {0} x D.

Then the intersections Ua Γ\S2n~ι for a G D u {oo} are the fibers of a
fibration π of the unit sphere S2""1 of U2n into great (n - l)-spheres (we
deviate slightly from Yang [15, Theorem 2, p. 580] by interchanging the
first and second coordinates). The classical division algebras R,C,H and
O lead to the Hopf fibrations.
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The fibration π obtained in this way from any division algebra D is
always a topological locally trivial fiber bundle (see the proof of Propo-
sition 2.5 in [9]). Here we are concerned with the question: When is π
a differentiable fiber bundle? Theorem 2 of Yang [15] asserts that this is
always the case. This assertion is drastically refuted by Theorem 1.3 below
(for the fallacy in Yang's proof see [9, 2.10]), which means that from the
multitude of finite-dimensional real division algebras, a differentiable fiber
bundle is obtained only in the classical cases:

1.3. Theorem. The fibration π determined by a real division algebra D
of finite dimension is a differentiable locally trivial fiber bundle if and only
ifD is isomorphic to R, C, HI or O.

Proof The Hopf fibrations are known to be differentiable locally triv-
ial fiber bundles. Conversely, assume π to be differentiable. We use the
differentiability criterion given in [9, 2.5] for arbitrary fibrations of S2""1

by great (n — l)-spheres (not necessarily determined by division algebras).
It states that the map

γ:Dx (D\{0}) - EndR(D): (x,y)
10 for x = 0

must be differentiable (even at x = 0). In particular, for every fixed vector
v Φ 0 the map

λ-fx for x φ 0,
0 for x = 0

is differentiable, with differential afo??; at JC = 0. For / € R\{0} and v, x e D
with x φ 0, bilinearity of the multiplication implies v/(tx) — t~ι(υ/x),
hence ^ / ^ = r ιλv/x and A^(/JC) = ί λ ^ . This yields

doϊυ (X) = —J
t=o

(=0

Thus γv is linear, by the linearity of a differential, and

(v/χ)\z f o r x Φ °

- 1

is a linear endomorphism of D = Rn for every z e D. In other words we
have obtained the identity
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which holds for υ9x,x'9 z e D with v,x,x',x + x' all distinct from zero.
Now the proof is completed by the following lemma, which requires only
the special case jc' = l,ι;=jt-l-l = (l-l-l /x) x (and hence v/x = 1 + 1 /x)
of the identity above.

1.4. Lemma. Let D be a real finite-dimensional division algebra which
satisfies the identity

for x, z e D, x φ 0, - 1 . Then D is isomorphic to R, C, H or O.
Proof. Replacing z by (JC + 1) z gives

x-z + z = (x+l) z = (l + l/x)\(x z + z) + z,

hence x z = (1 + l/x)\(x-z + z), which is equivalent to (1 + l/x) (x z) =
x> z + z. This yields (1/jc) (JC z) = z, i.e., D has the left inverse property
(cf. Hughes-Piper [10, p. 135] or Pickert [12, p. 106]; note that the special
case x - z = 1 shows l/x = x\l). By a result of Skornyakov-San Soucie
(see Hughes-Piper [10, Theorem 6.16, p. 140] or Pickert [12, 6.16, p. 182]),
D is an alternative division algebra, hence isomorphic to R, C, H, or O by
well-known theorems of Frobenius (cf. Palais [11] or Ebbinghaus et al. [3,
p. 161]) and Zorn [16] (cf. also Ebbinghaus et al. [3, p. 178] or Pickert
[12, p. 177]).

2. Differentiable projective planes over division algebras

2.1. A differentiable projective plane is a projective plane whose point
set P and line set <2? are endowed with the structure of a differentiable
manifold of positive dimension such that the points on a fixed line and
dually the pencil of lines through a fixed point form submanifolds and such
that the operations V and Λ of joining distinct points and intersecting
distinct lines are differentiable; cf. Breitsprecher [2]. We shall consider
lines as subsets of the point set (by identification with the set of incident
points).

It is a conjecture of Betten that the four classical planes over R, C, H, O
are the only differentiable projective planes; here we establish a special
case of this conjecture.

2.2. Theorem. The only differentiable projective planes which are trans-
lation planes as well as dual translation planes are the classical projective
planes over R, C, H and O.

2.3. Explanations. A projective plane is called a translation plane if
there is a line L such that the group of all translations with axis L acts
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transitively on the points not on L; the line L is then called a "transla-
tion line". The dual condition, i.e., the existence of a "translation point",
characterizes the dual translation planes. The projective planes which are
translation planes as well as dual translation planes are known as the planes
of Lenz-type (at least) V (cf. Pickert [12, 3.14, p. 70]); these are precisely
the planes which can be coordinatized by (nonassociative) division rings;
see below.

Proof of Theorem 2.2. Let L be a translation line. If some point not
on L is a translation point, then every point is a translation point; cf.
Hughes-Piper [10, Theorem 4.20, p. 101]. Hence we may assume that we
have a translation point v on L. We pick points o, u, e such that o, w, υ, e
form a nondegenerate quadrangle with L = u\/v, and we put

w = (o V e) A L.

Coordinatization of the plane with respect to o, u, υ, e amounts to the fol-
lowing: On D := (o V e)\{w} we define an addition and a multiplication
by

x + y := ((xu A oυ)w Ayv)u A oe,

x y := [[xu Λ ev)o A yv)u A oe,

for x,y e D\ here we have used the abbreviation xu = x V u for the line
joining x and u. Then (D,+, •) is a (nonassociative) division ring, or, in
other terminology, a semifield; see Hughes-Piper [10, Theorem 6.9, p. 134]
or Pickert [12, 3.3.8 and 3.3.9, p. 101] or Stevenson [14, 13.2.1, p. 372].
In particular, (Z>, +) is an abelian group, and for a e D\{0} the left and
right multiplication maps λa = {x »-• a x) and pa - (x ι-> x a) are
automorphisms of (Z>, +) (this expresses the distributivity and divisibility
properties of the multiplication).

Differentiability of join and intersection implies that the algebraic op-
erations of D and their inverses are differentiate. In particular, (D, +) is
an abelian Lie group, and (D, +) = (Rπ, +) for some natural number n (cf.
also Salzmann [13, 7.23]) since the left multiplications λa with 0 Φ a e D
form a transitive set of automorphisms. By continuity, the automorphisms
λa and pa are R-linear, and the multiplication is R-bilinear. Hence D is a
real division algebra as defined in 1.1.

The point set A of the affine plane with L as the line at infinity is
identified with DφD = R2n by mapping a pointp not on L onto the pair
(pv A oe,pu A oe). The lines of the affine plane are then just the subspaces
Ua,aeDU {oo}, as in 1.2 together with their cosets in DφD = R2".
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From this point on we indicate two ways to prove Theorem 2.2. The
first one involves the fibration determined by D. The map

π: A\{o} —• L: p h-> po Λ l

is the projection map of a differentiable fiber bundle whose fibers are the
subsets Ua\{0} = D\{0} = R"\{0} for a e D u {oo}; local trivializations
are given by

A\U0 - (L\{u}) x (Z>\{0»

p !-• (po ΛL,puΛoe)

and

A\Uoo - {L\{υ}) x (D\{0})

p ι-> (po ΛL,pυ Λoe).

In our coordinates, with Λ identified with D θ ΰ , these trivializations are
just the maps (x,;y) »-• (π(x,y),y) and (x,y) ι-» (π(x,y),x).

We now consider the restriction of π to the unit sphere §2n~ι of A = R2n,
i.e., the map

π: S2n~ι -+ L:p\-+poΛL.

The fibers of this restriction are the subsets UaΓ\S2n~ι = Sn~ι; thus we
get precisely the fibration of S2""1 determined by the division algebra D
according to 1.2. Local trivializations for this restriction are obtained
by appending the radial projection of D\{0} = R"\{0} onto Sn~ι to the
local trivializations above, so we still have a differentiable fiber bundle.
Therefore the assertion of Theorem 2.2 follows from Theorem 1.3.

(We remark that the trivializations in Yang [15, Theorem 2] can be
obtained as an algebraic transcription of these simple geometric ideas; see
[9, 2.9].)

The second (more direct) approach is based on the following geometric
calculation using our identification of the affine plane with D θ D: for
x,y,z eD with y φ 0 we have

((x9y) V (0,0)) Λ ((0, z) V u) = Uy/X Λ(Dx {z}) = (λ~ι

χ(z), z)

if x φ 0, and

((0,y) V (0,0)) Λ ((0, z)Vu) = UooΛ(Dx {z}) = (0, z).

Hence differentiability of join and intersection implies that the map γ in
the proof of Theorem 1.3 is differentiable, and we can proceed as in that
proof.
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