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CHARACTERIZATION OF
ARITHMETICALLY BUCHSBAUM SUBSCHEMES

OF CODIMENSION 2 IN pn

MEI-CHU CHANG

In some sense, the simplest subvarieties are the complete intersections.
In codimension 2, two varieties are said to be linked if their union is a
complete intersection and they have no common component. The result-
ing equivalence relation was studied extensively by Rao [12] [13], who
showed two curves in a projective 3-space P 3 are in the same linkage class
if and only if they have the "same" Hartshorne-Rao module 0 Hι(Jγ(k)).
For higher dimension, besides the same intermediate cohomologies
0 £ Hp(<yγ(k)), certain extension elements as defined by Horrocks [8] are
also needed. From the cohomological viewpoint, the simplest subvarieties
after complete intersections are the arithmetically Cohen-Macaulay ones,
whose intermediate cohomologies φkH

p(Jγ(k)) are trivial. In fact, for
n > 6, arithmetically Cohen-Macaulay varieties of codimension 2 are com-
plete intersections. This lends support to a conjecture of Hartshorne which
states that any subvariety of small codimension in higher dimensional pro-
jective space is a complete intersection.

The next simplest class is the class of arithmetically Buchsbaum varieties
which have trivial module structures for the intermediate cohomologies
φ///7(J*ynΛ/(λ:)), where M is any linear space. This is equivalent to the
property that their homogeneous coordinate rings are Buchsbaum rings.

The topic of Buchsbaum rings has been under intense investigation in
recent years. For a comprehensive introduction to the subject with ex-
tensive references, see the recent book by Stuckrad and Vogel [14]. Over
the past couple of years there has been a surge of activity in the area of
arithmetically Buchsbaum projective varieties, especially curves in P 3 .

The main purpose of this article is to prove the following characteriza-
tion which leads to a complete classification of arithmetically Buchsbaum
codimension 2 subschemes of P" for n > 3.
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Theorem. Let Y be a codimension 2 subscheme ofPn for n > 3. Then
Y is arithmetically Buchsbaum if and only if there exists an exact sequence

0 - e^(-fl/) ^ ®ljΩPJ(-kj)&?(-cs)-+Sγ - 0

where Pj Φ 0.

(See Definition 0.8 for a discussion.)
The easy case n — 3 was independently obtained by Amasaki and im-

plicitly contained in [1].
Corollary. Let Y be as above. Then J ^ has a free {maybe nonminimal)

resolution {see Remark 0.8.4)

The theorem coupled with a general result [4] concerning smoothness
or reducedness of the dependency locus of a map such as φ above allows
us to give an essentially complete classification of (smooth) codimension
2 arithmetically Buchsbaum subvarieties, [5] except for one aspect which
is not clear in our approach, namely whether the scheme is irreducible or
not (see Theorem 2.3 and Remark 2.3.1). This also allows us to construct
infinitely many families of nonsingular dependency loci of maps between
bundles E and F, such that 2?v ® F is not generated by global sections.

Next we give several consequences of our classification. To begin with,
by just reading off some of the numerical invariants involved, we general-
ize (see Theorem 2.4 and Remarks 2.6, 2.8) to arbitrary dimension some
results in [3], [6] and [2]. Then with some computation we are able to give
some analogues of results of [10], bounding such invariants as the degrees
and number of minimal generators of the homogeneous ideal and the reg-
ularity in terms of the degree of the variety (see Theorem 2.5 and Remark
2.7). In a different direction, we prove the nonexistence of nonsingular
codimension 2 arithmetically Buchsbaum subvariety of Pn for n > 6 (see
Theorem 2.2), other than complete intersection.

Due to their simple nature, Buchsbaum curves have been used as test
cases for various theories of curves in P 3, e.g. how far to shift to have a
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given module as the Hartshorne-Rao module of a nonsingular curve, and
whether every even liaison class has the Lazarsfeld-Rao property. The
Lazarsfeld-Rao property [9] is that there is a minimal curve YQ in the class
such that every other curve in the class is the deformation, within the same
Hartshorne-Rao module, of the union of YQ and complete intersection
curves. For the answers to these questions see Remarks 2.4.2 and 2.3.3.

Throughout this paper we work over an algebraically closed field of ar-
bitrary characteristic. Our schemes are always projective and nondegener-
ate. A Buchsbaum scheme always means arithmetically Buchsbaum. It will
be clear from the context that sometimes we exclude projectively Cohen-
Macaulay subvarieties from the set of Buchsbaum subvarieties without so
specifying. Our notation is standard, as in [7].

0. Preliminaries and notation

Let Ωp be the pth exterior power of the cotangent bundle Ω of Pn. We
have the following facts [11]:

Fact 0.1. The Euler sequence and its pth exterior power

0 - Ωp(p) -+ίn+ί\ffi-^ Ωp-\p) -> 0.

(We set Ω° = (9.)
Fact0.2 (Bott formula). H°{Ωp{p+l)) is the first nonzero//°-cohomol-

ogy, has dimension (£+}) and generates ΩP(p + l). hp(Ωp) = 1 is the only
nonzero intermediate cohomology for Ωp(*).

Fact 0.3. Ωp\H~Ωp

H® Ωp~ι(-1) for a hyperplane H.
Fact 0.4. Hom(ΩP(p)9ffi) = f\p V, where V = H°(<?Pn(l)). It clearly

follows that a nonzero υ e Hom(Ωp(p),&) induces a nonzero V\ €
Hom(Ωι

M(l),&M), where M is a general linear subspace of codimension

Lemma 0.5. Ext1 (Ωp, Ωq(k)) = 0 if either q > p + 1, or q < p + 1, and
kφq-p- 1, q-p-2.

Proof Tensoring Ωq{k + r) with the dual of the sequence in Fact 1, we
have

0 -> Γ~ι ® Ω«(fc) -^ 0Ω^(^ + r) -+ Γ ® Ω*(fc) -^ 0.

The hypothesis on p, ^ and /: and Fact 2 give, for r = p,p - 1, , 1,

Hp+{-r{Ωq{k + r)) = Hp+2-r{Ωq{k + r)) = 0,

which implies Hp+ι-r(Tr®Ωq(k)) = Hp+2~r(Tr~ι®Ωq(k)) for r = p, , 1.
In particular, Hι(Tp®Ωq(k)) = Hp+x(Ωq{k)) = 0.
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Fact 0.6. Let Qp = ΩP(p + 1) if p > 0 and Qo = 0, cp = c{(Qp),
c2,p = c2(Qp), cp = cχ(Qp(k))9 c2,p = c2{Qp(k)) and rp = mnkQp =

(n

p). Then cp = cp + rpk, c2,p = clφ + (rp - \)kcp + fc2(Γ|), and c2tP =

jcj + cp(p/(n - 1) - 5). The last formula is obtained by applying Fact
3 repeatedly, and computing the Chern classes on P 2 . (For / = 1,2,
*{GP{p + 1)) = c/((;:?)Ωί>2(2) Θ C 7 V P 2 ( 1 ) ) . )

Fact 0.7. The Koszul resolution for Pπ gives

0 -4 ̂ ( - Λ - 1) -• (Λ +

Remark 0.7.1. By Fact 0.7, it is easy to see that the theorem implies
the corollary.

Definition 0.8. A codimension 2 subscheme Y is said to have an Ω-
resolution if there exists an exact sequence

(1) 0 - e^(- f l ι ) Λ ®ljW{~kj) -> <Λ ^ 0,

where 0 < p} < n - 2, (/?y, Λy) are all distinct ordered pairs, and there is no
line bundle L appearing in both the middle and left terms, such that the
map L —• L induced by φ is nonzero (i.e., an isomorphism).

Remark 0.8.1. For n-2 > p3 > 1, hP>{Jγ(kj)) = lj are the only nonzero
intermediate cohomologies for J ^ So the Ω-resolution is unique.

Remark 0.8.2. The integers tf z appearing in (1) are the degrees of the
minimal generators of 0 Ext1 (ufy9#(-k))9 because

maps surjectively to it.
Remark 0.8.3. If Y has an Ω-resolution, then by restricting exact se-

quence (1) on a hyperplane H, and replacing Ω^"2 by 0 -• ^//(-«) -•
n$Ή{-n + 1), we see that YnH also has an Ω-resolution.

Remark 0.8.4. Let L ^ 0Ω^(it) ^ / y and ••• -> Lx -> Lo -*
φ Ωp(k) be the Ω-resolution of J ^ and the minimal resolution of φ Ωp(k).
Then the line bundles appearing both in L and Lo get cancelled out in the
minimal resolution of J^, because there is an induced injection H°(L(*))

Proposition 0.9 [14]. Let Y be a subscheme in Pn. Then Y is Buchs-
baum if and only if

for any linear subspace M of dimension m and p = 1, , m - 2.
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Remark 0.9.1. It is easy to see that if Y has an Ω-resolution, then (*)
holds, i.e., Y is Buchsbaum. This establishes the " i f part of the main
theorem.

1. Proof of the structure theorem

In the previous section we have seen that a subvariety Y with an Ω-
resolution is Buchsbaum. To prove the converse, first recall that

Ext1 GΛ,<?(-*)) ^ ωγ(n + 1 - k).

The minimal generators of ®H°(ωγ(n + 1 - k)) ^ φ Ext1

give the extension

where E is a vector bundle with Hn~ι(E(*)) = 0, and we have

(k - 1)) - ^ - > HP{JγnMM{k - 1))

Ί
HP(EM(k))

for any linear subspace M of codimension m < n - 3, and any 1 < p <
n - m - 2. Now our theorem follows from the following general criteria
(take i = n - 2) of a vector bundle being a sum of Ω^'s.

Theorem 1.1. Let E be a vector bundle on Pn with the following prop-
erties:

(ii) Hp(EM{*))'xn = Ofor any linear subspace M o/codimO < m < i-1,
and any 1 <p < i - m.

Then we have an isomorphism E ~φ ljΩ,pj(—kj), where 0 < Pj < i, and
hpj(E(kj)) = lj are the only nonzero cohomologies for 0 < p} < n.

As the conditions in Theorem 1.1 are sometimes difficult to verify, we
will state a special case whose conditions are, although more restrictive,
easier to verify (compare [14]).

Corollary 1.2. In Theorem 1.1 above we may set i = n - I and replace
conditions (i) and (ii) by

(i)' Hp(E{*)) M = 0 for p = 1, , n - 1.

(ii)' IfHP{E{k)) φ 0 φ H«{E{h)) and 1 < p < q < n - \, then
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Proof. Let H be a hyperplane. Then (i)' gives the following diagram:

0 • HP(E{k)) > HP(EH(k)) > HP+ι(E(k- 1)) > 0

I i i
0 • HP(E(k + 1)) > HP{EH(k + 1)) > HP+ι(E(k)) > 0

(ii)' implies that either HP+\E(k - 1)) = 0 or #*(£(*; + 1)) = 0. So the
map in the middle is 0.

Remark 1.2.1. To see that (i)' alone is not sufficient to draw our con-
clusion, we define E on P 4 by

0 -+ff _> Ω2(3) -> Ey -> 0.

E satisfies condition (i)', if hι(E) = h2(E(-2)) = 1 are the only nonzero
intermediate cohomologies, i.e., we need to check Hι(E(\)) - 0 which is
clear under the following identification:

> Hι(E(l)) - . 0

E cannot be a sum of Ω^'s by rank consideration.

Similarly define E1 on P 4 by

0 - > £ ' - > Ω3(3) θ ^ ( - l ) ^ ^ - 0.

Then A 1 ^ ) = A3(£'(-3)) = 1 imply A 1 ^ ) = h2{E'p,{-2)) = 1 are the
only nonzero intermediate cohomologies. However E'p2 does not satisfy
condition (ii).

We begin the proof with two technical propositions.

Proposition 1.3. Let F be a vector bundle on P" with Hι(F(*)) = 0,
and suppose there is an exact sequence

where K = φ p >{ Ωpj(kj) and L is a sum of line bundles, which are not

summands of F. Then F = 0Ω^+ 1(A:7).

Proof. We do induction on m(K) := the number of distinct (pj - fc/)'s
in K = 0 p ^ ΩPJ(kj). We may assume that K = φ nqW(q + l)®ΩpJ(kj),
where kj < Pj, and that L has no direct summand of positive degree. Let
N = h°(K). Then the N sections of K lift to N copies of ff in L, since
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Hι (F) — 0. So we have the following diagram:

I I
F -f V θ N(f -• φ«9Ω«(^ + 1)

II I I
F -+ L' -»

Let F' be the kernel of U -+ A:' := φ Ω * 1 ' ^ ) . Then /n(tf') = /«(*)-1 and
by induction F' = φ Ω ^ ' ^ ) if Hι(F'(*)) = 0. To see Hι(F'(*)) = 0,
we look at the sequence from the snake lemma

0 -+ φnqΩf+ι (q + 1) -» F -+ F' -> 0.

All we need to check is Hι(F'(-2)) = 0, i.e., when q=\. We have

0 = H\F{-!))-* Hι(F'(-2))^ H2(nιίϊ2) -* H2(F(-2)) -» //2(F'(-2))

Since

h2(F(-2)) = hι mnqW(q + 1) θ Ω f̂c,-)) (-2)) = Λ l = Λ2(niΩ2),

to see Hl(F'(-2)) = 0, it suffices to check that H2{F'(-2)) = 0. This
follows from the sequence 0 —> F' -* L' -+ φΩpJ(kj) —> 0 and
h>(Ωpj(kj-2)) — Owhenpj = 1 because fc, <Pj. Finally the extension 0 —>
φ ngai+l{q + 1) -> F -» 0 Ω^+1 (^) -+ 0 splits because of Lemma 0.5.

In the initial step, K1 = 0. 0 -> φ «9Ω«+1(ήf + 1) -» F -> L' -»• 0 splits
because ^ > 1 and Ext^L'.φw^Ω'+Hί + 1)) = 0.

Proposition 1.4. Lei F,, G, / te vector bundles in the following sequence
over P",

0 - E -» Ω'(l) θ G - /<? φ / -• 0,

wΛere //°(G) = 0, HomίΩHl),/) = 0 and the map Hι{E(-l)) Λ 7/>(£)
w trivial for all x. Then E = Ω'(l) θ E', where E' is the kernel ofG->
W®J->Q.

Proof. It suffices to show that Ω1 (1) Λ W is 0. Assuming the contrary,

v induces a nonzero map F v®ίf —> /<f and we have the following diagram:

0 _• £ _• Q i ( i ) e C ^ / ^ φ / ^ 0

I I II
0 _> F i
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where F by definition is the kernel. The left column gives

0 -H. H°(0) -

0 -f H°(F) -

The map given by x is 0, for all x is equivalent to imjc c imα, i.e.,
n

imα = H°(#(l)). However the map a factors through H°(F) —•
H°(VV ® (9 ® G) = Vw which is not surjective because the map F v A
H°il<?®J) is nonzero.

Proof of Theorem 1.1. We use induction on i = /(£") such that //^ (2?(*))
= 0 for / + 1 < p < n - 1. When / = 0, E is a sum of line bundles.

Hι(E(*)) gives

(2) 0 -• £ - . F -> L - . 0,

where L is a sum of line bundles and F satisfies the hypotheses in the
theorem plus Hι(F(*)) = 0. Now the minimal generators of Fv give

(3) 0 - F -> L' -> A' ^ 0,

where Hn-{(K(*)) = 0 and we have:

# ' ( * * ( * - 1)) — ^ H'+ι(FM{k - 1))

HP(KM(k)) ^-^ HP+\FM{k))

So A satisfies the induction hypotheses with /(A") = i(E) - 1. Hence A
is a sum of Ωp's. Applying Proposition 1.3 to sequence (3), we see that
F is also a sum of Ωp's. Now, in sequence (2), we may assume that
L = 0^ = 1 γj#(-Ci)9 where 0 = cs < < cu and that F =
where kj < pj if pj > 2 and kj < 0 if Pj = 0.

We do induction on s.

Case 1. kj < Pj for all j . Sequence (2) gives:

H°(F(l))

The map given by x is 0, for all x implies that the map H°(F(l)) —•
is surjective. H°(φΩpJ(kj + 1)) = 0 for pj > 2 implies that
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F(l) has TV := h°(γs0(l)) copies of 0. So we have

I

I _ I

i=\

I 1

φΩPJ{kj + 1) - θ 7 ^ ( - c , + 1)

Let £(1) be the kernel of φΩ^(fc, + 1) -> 0 ^ y^(-<:/ + 1) in the last
row. Induction on 5 implies that

φ

Using Lemma 0.5, we have Extols, ftΩ1) = 0. So E = φy/Ω^-Q) θ
(^ ) as claimed.

2. Some fc, = py , i.e., i 7 = Ω^(^) θ FQ. Let M be a general linear
subspace of codimension # - 1. Then Ωq(q)\ M ^ Ω«(q) θ Ω^ - 1(^ - 1 ) 0
• θ Ω ! (l) and sequence (2)| M is of the form 0 -• EM -• Ωj^(l) θ G ->
y5^M θ / —• 0. Proposition 1.4 implies that the map Ωj^(l) —> ys&M is
0. Hence the map Ωq(q) -+ ys@ is 0, i.e., Ωq(q) -+ L is 0 and Ωq(q) is
a direct summand of .E. Repeat this process until E = ®nqΩ

q(q) θ E',
where hp(Ef(-p)) = 0 for all 1 < p < n - 1, i.e., we have the sequence
0 — E' -> F 7 -». L -> 0, where F ' = φΩ^(fc7) and Ω^(fc7)'s are all the
summands of F with kj < pj if py > 2. We reduce the proof to Case 1.

2. Applications

We start this section with an immediate consequence of the theorem.

Proposition 2.1. Let Y be a codimension 2 Buchsbaum subscheme of
P", n > 3. If Y is a zero set of a rank 2 vector bundle E, then n = 3 and E
is {a twist of) the null-correlation bundle.
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Proof. The assumptions give the following diagram 

where the ai's appearing in the middle column are the degrees of the min- 
imal generators of Hn-I (E(*)). So m - 1 = the number of minimal gener- 
ators of Hn-'(E(*)) = Cp -, 1,. The last equality is by Serre duality. By 

I- 

observing the ranks in the middle column, we have that 

So CpJ + 1, (: ) = 0, n = 3 and the sequence is 

Tensoring the above sequence by B ( k  + 2), and letting b = k + 2 - al,  
we have that 0 = c3(E(k + 2)) = -b(2 + ( b  - 2)b), and hence 0 - B - 
n1(2)  - ~ ( k  + 2) -+ 0. 

Theorem 2.2. There is no nonsingular Buchsbaum subvariety of codi- 
mension 2 in Pn for n 2 6. 

Proof. Any nonsingular subvariety of codimension 2 in Pn for n 2 6 
comes from a rank 2 vector bundle. 

The next theorem which follows from some general smoothing criteria 
[4] allows us to construct (nonsingular) Buchsbaum subvarieties of codi- 
mension 2. 

Theorem 2.3. Suppose Y has an $2-resolution ( I ) ,  q~ is suficiently gen- 
eral and a1 5 . . . 5 a,. We replace each copy of @(-k) by (i) copies of 
@(-p - 1 - k)  i f p  > 0, and denote the new direct sum of line bundles by 
$j=, @(-bi) with bo 5 . . . 5 b,. Then the following hold. 

(a) ai 2 bi for all i i fand only i f Y  is of codimension 2. 
(b) If a,  2 b;,,, for all i, then Y is nonsingular except for a subset of 

codimension 2 min(2a + 1,4). Moreover when n 5 5,  the converse is also 
true. 

Remark 2.3.1. If there is no a > 0 such that a, > b,,,, then Y is 
reducible. 
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Remark 2.3.2. For n = 3,4 (resp. 5), we need a > 1 (resp. a > 2) to
have Y nonsingular.

Remark 2.3.3. To see that every even liaison class has the Lazarsfeld-
Rao property, we observe that for Buchsbaum curves X and Y with the
resolutions

0 - φ^(-bi) - £ -> JΎ(c) - 0,

we can define Z to be the dependency locus with the resolution

0 -> e ^ ( - Q ) - E -> Jfc(α) - 0,

where c, = min{α/,2>ι}. Then Z is a nonsingular Buchsbaum curve by
Theorem 2.3, and the argument of Proposition 1.4 in [9] implies that Z is
"smaller" than X and Y.

By a simple calculation we have:
Theorem 2.4. Lei {(pj, /:7 ,lj)} bea finite set of ordered triples of integers

such that kj > 0, lj> 0, I <Pj <n-2 for all j and k\+px < kj + py <
km+Pm Then there is a Buchsbaum scheme Y in Pn with hpj(Jγ(kj)) = lj
if and only ifkι+p{ + l> Σ™=x hCp1)- Moreover a nonsingular such a
Y exists if and only if either n = 3 or 4 and

" A J ί- I^YYl ~f FYYl ~Γ ι I / lj

7=1

or n = 5 and

3(fci +Pi + 1) > 2(fcm + PYYX -1-1)4- 2_^h (

Proof. Such a 7 exists if and only if there is an Ω-resolution
r

o -
i=\

Comparing the first Chern classes and using the notations as in Theorem
2.3, we have

r—a r r

di >

i=\ r—α+1 /=α+1 r—α+1

'+ Σ «*.
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i.e.,

1=0 \ rj / r-a+\

where a = 0, or 1 (resp. 2) if Y is nonsingular and n = 3,4 (resp. 5).
Combining with the facts that ba < k\ +p{ + 1 (since a < 2) and αr-α+i >
br > km -h p w + 1, we have

(α

Conversely, given the inequalities, it is easy to reverse the process and
choose the α, 's.

Remark 2.4.1. Let Y be a curve in P 3 with only one nonzero hx{Sγ(k))
— n (i.e., in the class Ln), nonsingular and of maximal rank. Then

< degΓ < In1 + 21 n + /2,

where / = k + 2 - 2n. Conversely, for any d in the range above, there is a
y, with all the properties above, of degree d.

Proof. Under the hypotheses, the smallest t such that h°(Jγ(ή) φ 0
is either k + 1 or k + 2. Use the Ω-resolution form in Theorem 2.4 and
choose the suitable c/s.

Remark 2.4.2. A graded module M with a trivial multiplication map
and k\ (respectively km) being the smallest (respectively largest) grading of
nonzero component is a Rao-module of a nonsingular Buchsbaum curve
after being shifted by km - 2k\ - 2 + 2N, where N is the sum of the lengths
of nonzero components of M.

Let Y be a subvariety in P"; we need the following notation:

e = max{n\H°(ωγ(-n)) φ 0},

μ = #{minimal generators of I(Y)}9

s = max{degrees of minimal generators of I(Y)}9

N=

Theorem 2.5. Let Y be a Buchsbaum subscheme of codimension 2 in
P". Then we have the following sharp bounds:

(i) μ< 1 + (Λ/8(/I - \)2d + (n - 3)2 + n - 3)ΛZ/4(ΛZ - 1);

(ii) V̂ < (V8(/i- l)2rf + (/i-3) 2 + /i - 3)/2(Λ - I) 2 ;
(iii) 5 < max{ύf - £2,1, '̂};
(iv) 5 < rf - t2/2 + 3ί/2 - (ί - l)/(/i - 1) - 1,
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where t = min{degrees of the minimal generators}',

(v) Ifk > max{tff - c2)i + l,s'} := τ', then J*y is k-regular;
(vi) e < τ' - n - 1

(vii) t<\- 1/(Λ - 1)

2 ' C " = ( p

We use a twist of the Ω-resolution

0 - 0<?(fl/) - Θβp,(*;) ^ ^ ( 0 ^ 0.
ι=l j=\

Here β p (resp. Qp{k)) has Chern classes c ,̂ C2,p (resp. cp, C2,p) and rank rp

as in §0.

Theorem 2.3 implies that α, < 6/, where fli > > flΓ> and 0 = 6o >
b\ > - > br. (Recall that the ordered set {bi}r

i=0 is derived from the
ordered set {kj}^ by duplicating each kj rPj times.) Let c, = 6/ - αz for
/ = 1, ,r. Then

'•*•/ • Σ β ί f l > = Σ α'c>

j

In each case, we will fix μ, N, s respectively, and find a low bound of

d:
e2j>j + λs ePιePj ~ λu aiQi ~ ι λ, a

Using Fact 0.6 and the formulas above, we simplify d and obtain

d — 2_^ c2,Pj •+• 2 ^ cPicPj •*" 2^ CPJ \ J "*" 2^Ci) ~^ z-*tCi I z-^ CJ Ui J
j i<j J \J>i J

For cases (i) and (ii), we first fix the ordered set {pj}jLr Since

-kj + ΣCi-° a n d ΣcJ~ai-0>
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d reaches minimal when -kj = 0 for all j \ C[ = 0, -β, = 0 if p, > 0; c, = 1,
-Λ/ = 1 if p, = 0; the Ω-resolution is

n-2

0 -> 0 ^ Θ /io^(-1) -> © «pβp θ n^ -> Sγ{t) -> 0,

" ) °

( ί ) ( 2
p=\ ^ ' p<q V

Case (i). μ = «o + Σ/7>o Λ/>(Λ/> - 0?) + 1 is constant. Treating d as
function of real variables no, n\, , nn-2, subject to the constraint ΠQ
X) «p(Λp - rp) + 1 = //, the Lagrange multiplier gives

- rp) = c2,p - 2

= CP [yz-[ ~ 2 oJ ,
while λ = Σ nPcp + «o + j So λ > 0 and

Λp-rp p .h.

cp n-\ cq n-\

for p,q > 0, where (hp - rp)/cp = /i/(p + 1). Solving A gives

χ = Lzl (hp-γp _ hlZll\X < o
Λ ~ 1 V Cp Cq )

which is a contradiction. Therefore there is only one nonzero np for p > 0.
Similarly, we have ΛQ = 0.

Let μ = μ- 1. Substituting np = /2/(Λp - rp) into rf = «pc2,p + (n{)cj
and simplifying, we have

d = ( +

which is an increasing function of p. So p = 1 gives the minimal

, 3 - « /i2 4

This bound is obtained by the Ω-resolution

0 -f 0 ^ - AΩH2) - ^ ( / i ( « - 1)) - 0

which corresponds to the minimal resolution

0 - fi&(-n + i)^...^μ{n + l\(?(-i)->μ&^ jrγ(β(n - l)) _ 0
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2where μ = 2(μ - l)/(n2 - ri).
Case (ii). N = Σ\<p<n/2np is constant. Here we assume np = 0 for

p > (n - l)/2, because for p' := n - 1 - p > p, we have cp> - cp and

Cltf > C2,p

Again there is only one nonzero np for p > 0. The reason is the same
as in Case (i). Here

n - i \ι,p c«7,

because 0 < q < p < n/2. So the minimal d occurs when p = 1,

and the minimal resolution is

0 -> Λ ^ ( - κ + 1) -f

(iii). s = t - br = t - km is constant. Formula (4) is

r-\ ( \ m-\

Σ

ι=l

Note that all terms are nonnegative, and at least some Pj > 0. Using

( m r-\ \ r-1 r-1

)

(
l l / l ;>/ l

we have
d > c1Λ + cPm(5 - cPm) + cr(5 - cPm),

since cPm and cr correspond to the same summand, either cPm = 0, cr > 1
and rf > cι,\ -I- ̂ , or cPm Φ 0, cr > 0 and d > C2,i + cPm(s - cPm). The bound
d = C2,i + s is obtained by taking m = 2, pi = 1 and /?2 = 0. In this case
the Ω-resolution is

0 -> (Λ - 1)# Θ ^ ( Λ - 1 - s) -> Ω !(2) θ ^ ( « - 5) ^ J^(n) ^ 0,
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and the minimal resolution is

Case (iv). The constants, the minimal and the maximal degrees of the
generators are t = Σ7 cPj + ΣΊ d and s = t - km = t - br. Therefore

Since -kj > 0, -bi > 0, Σ\ cf/2 > Σ[ dβ andcp(p/(n-1)-I) = - ( "

(n-2\ ,t2 t

We need to maximize ΣPjJto("p2) subject to Σ7 CPJ + Σ ί ci = t So we

maximize Σΐ ("p*) subject to either t = Σ? ("^ ') when /?m > 0 or ί - 1 =

Σ Γ ("p"') when pm = 0. If p m > 0, we have

lfpm = 0, then

Hence

d> τ + +
2

> τ + 5 + + 1
2 2 n- \

always, and equality holds for 0 -* {In - \)0 θ 0{t - s - 1) -+ IΩ{(2) θ
0{t -s)-> Jγ(t) -> 0 where l = (t- l)/(n - 1), with minimal resolution

(v). /y is a /:-regular if A: > max{ί -br,t- αr}, where δ r is the
smallest 6, corresponding to p > 0. Let τ = t -αrbt constant, i.e., in (iii)
replace s by τ - cr. Then rf > c2,i + (cr + cPm)(τ - cr - cPm) > c2,i + τ - 1.
We have seen that t -br <s'.

Case (vi). Let τ be as in Case (v). Then e = τ - n - 1.
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Case (vii). As in Case (iv), we have

An extremal example is 0^ f -> (*/(w - 1))Ω1(2) -> J ^ ( 0
Remark 2.5.1. For projectively Cohen-Macaulay varieties, the bounds

a r e μ< yjld + \ + ^,s<d- I, s < d - t 2 / 2 + t / 2 , k>d,e<d-n-l,

and t < -\ + \Jd+ \ with resolutions (μ- \)<f(-\) -• μ@ -+ / y , <f (-3)0

<?(-$ - 1) -+ 2^(-2) φ ^ ( - j ) -> J ^ , and (ί - 1 )<?(-* - 1) ®ffi(-s - 1) ->

Remark 2.6. In [6] the authors establish bounds involving various nu-
merical invariants of Buchsbaum curves in P 3 . The following result, which
is an evident reinterpretation of Theorem 2.3, generalizes to higher dimen-
sion most of the results of [6], including 1.3, 1.6, 2.10-2.12, 3.2, 3.3 and
3.6. To get the theorems there, one sets n = 3, p=p = q = I, m = r,
t = a, μ = v, N\ = N, h = 2N + h - 2, a = 1 for nonsingular curves and
a = 0 otherwise.

Let Np = Σjlχ Ipj, where mp is the diameter of Hp, and hp(Sγ(kj)) =
Ipj a r e t h e o n l y n o n z e r o c o h o m o l o g i e s for 1 <p<n- 2. D e n o t e

m = mq = m a x { m n } ,
P

h = min{n\hp(Sγ(n)) φ 0 for some 1 < p < n - 2}.

Then

{i)t>a{m-\) + Y%:lNp{»-1).

(ii) μ < t + 1 - a(m - 1) + Σ ^ ί ^ ί ) . I f * < Σ ^ P ( V ) ' t h e n

MPlι)
(iii) e > h+p - n + m - 1.
(iv) t + m-n-2 < e < t + 2(h - Σ^P(

n~1)) + 2P ~ (2a - 1)
• (m - 1) — n + 1 , if we use notation as in Theorem 2.5 and assume #z < bi+a

for / = 1, •• , r - a.
The equalities are obtained, e.g. when the middle term in the Ω-resolu-

tion is
/ m-2 \

®NpΩP(p + 1 ) 0 W{q +l+k)Θ(Nq-m + \)W{q + 1) (-m + 1),
\PH k=0 J

while αz = Z?z+α for / = 1, , r - a, and αz = -m + 1 for / > r - a + 1.
Remark 2.7. Let a be as in Theorem 2.3. Then some of the bounds in

2.5, 2.5.1 are obtained by varieties Y with codimysingΓ > 4, while the
others can be improved in terms of a.
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For projectively Cohen-Macaulay varieties we have

d a j ^ d a ^ Λ

s<——Γ + -Z, k>τ = — r τ ~ T + 1 ' e<τ-n-l.
α + 1 2 α + 1 2

(Note that setting a = 0 does not give bounds in 2.5.1, because the com-
plete intersections are excluded there.)

For nonprojectively Cohen-Macaulay Buchsbaum varieties with a > 0
we have

d ( Λ - 2 ) ( n + l)

- A Z - 1 + 2(Λ — 1) '

d (n-2)(n + l)

Equalities are obtained by

(α + l)^(-β) -> (a + 1 )<?(-/? + 1) Θ ^ ( - α - 1)

or

where j5 = s + 1 or τ, and γ = s or τ'.

Remark 2.8. Let /(7) = Σ,pZΪ{n

P-ι)NP b e t h e Buchsbaum invariant,
where Np = Σk hP{Jγ{k)). Then in Theorem 2.5 the formula of t which
is the minimal degree of the generators of I(Y), gives

4(n - 1)

. f n i s ^

" n 1 S even.
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