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INFINITESIMAL RIGIDITY FOR SMOOTH ACTIONS
OF DISCRETE SUBGROUPS OF LIE GROUPS

ROBERT J. ZIMMER

1. Introduction

Let G be a connected noncompact semisimple Lie group with finite
center and no compact factors, and let Γ c G be a cocompact discrete
subgroup. If G has no simple factor locally isomorphic to any SO(1,Λ)

or S U ( 1 , Λ ) , we established in [15], [18], [20] a rigidity property for any
isometric action of Γ on a compact Riemannian manifold M. Namely,
we proved that any sufficiently small perturbation of an isometric action
(in the topology of pointwise convergence on Γ with the C°°-topology on
Diff(A/)) which is ergodic must also leave some smooth metric invariant.
In this paper, we examine some rigidity properties of nonisometric actions
of Γ. All presently known ergodic volume preserving actions of Γ on
compact manifolds are of an algebraic nature (at least in the case in which
G is of higher rank, i.e., all simple factors of G have real rank at least
2), and it is these algebraically defined actions which we examine. More
precisely, let π: G —• H be a homomorphism of G into another Lie group
H, and let Λ c H be a cocompact discrete subgroup. Then Γ acts on
M = H/A via π. Under mild assumptions this action will be ergodic (see
[6, Chapter 2]). Unless π is trivial, there is no Γ-invariant Riemannian
metric on H/A.

We recall that an action of a group Γ on a manifold M is called in-
finitesimally rigid if Hι(Γ, Vect(M)) = 0, where Vect(M) is the space of
smooth vector fields on M. This definition is of course motivated by
the fact that Vect(M) is the Lie algebra of the infinite dimensional group
Diff(Af), and the natural action of Γ on Vect(Af) is simply the composition
of the action Γ —• DifF(Af) with the adjoint representation of DifF(Af) on
its Lie algebra. We shall call an action ZΛinfinitesimally rigid if the map
Hι(Γ,Vect(M)) -+ Hι(Γ,Vect2(M)) is zero, where Vect2(Af) is the space
of ZΛvector fields on M. We can then state our main results as follows.
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Theorem 4.6. Letπ: G -> H be a homomorphism, Ac H a cocompact
lattice, and let Γ act on M = H/A. We assume that G has no simple
factor locally isomorphic to any SO(1, ri) or SU(1, n). Assume the Γ action
on M is ergodic. (This holds, e.g., ifH is semisimple, A is an irreducible
lattice, and π is nontrivial [16, Chapter 2].) Then the Γ action on M is
L2-infinitesimally rigid.

Theorem 5.6. With the hypotheses of Theorem 4.6, assume further that
H is semisimple and either:

(a) π(Γ) is dense in H; or

(b) H = H\ x H2, and π(Γ) projects densely into H{ and trivially into

H2.
Then the Γ action on M is infinitesimally rigid.

For any homomorphism π: G —> H, where H is a Lie group and G
has higher rank, the work of Weil [13], Matsushima-Murakami [6], and
Raghunathan [9] shows that Hι (Γ, Ad// o(π|Γ)) = 0, and classical results of
Weil [13] (see also [10]) show how to use this infinitesimal rigidity property
and the implicit function theorem to establish local rigidity. The implicit
function theorem in the infinite dimensional situation one encounters in
Theorem 5.6 is of course notoriously more delicate (see [4] for example).
However, it is natural to hope that further development will allow use
of Nash-Moser techniques to obtain a local rigidity theorem from results
along the lines of Theorem 5.6.

It seems likely that Theorem 5.6 is true for all the actions considered
in Theorem 4.6. In fact, most of the proof of Theorem 5.6 works under
the more general hypotheses of Theorem 4.6. We discuss what is needed
to complete the argument in the general case in §6 below. The arguments
of the proof of Theorem 5.6 also allow us to prove the vanishing of the
first cohomology group of Γ with coefficients in the smooth sections of
any natural vector bundle (in the sense of [12]) over M, where M is as in
Theorem 5.6. In particular, we obtain:

Theorem 5.8. Let Γ and M be as in Theorem 5.6. Then Hι (Γ, C°°(M))
= 0.

Simply from the fact that Γ is a Kazhdan group and preserves a finite
measure on M, it follows that Hx (Γ, C°°(Af)) -• Hι (Γ, L2(M)) is the zero
map, i.e., there is an ZΛsolution to the functional cohomology equation.
From this point of view, Theorem 5.8 is a regularity theorem.

We now outline the remainder of the paper which will simultaneously
give an indication of the techniques involved. It is of course a standard
technique to convert the computation of the cohomology of Γ (at least
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when Γ is torsion free) with coefficients in some vector space to the com-
putation of the de Rham cohomology of T\X with coefficients in an as-
sociated flat vector bundle, where X = G/K is the symmetric space as-
sociated to G. In §2, we develop this within our context, showing that
H*(Γ, Vect(Λ/)) can be computed via a de Rham complex of vector bundle
valued forms along the leaves of a foliation. In the classical case consid-
ered by Weil [13] and Matsushima-Murakami [6], one then uses the Hodge
decomposition for the Laplacian on the de Rham complex to reduce the
computation to the computation of the spaces of harmonic forms. The
Hodge decomposition has two aspects. The first is formal and does not
depend upon ellipticity of the Laplacian. The second is the benefits that
accrue from ellipticity. In our situation, the relevant Laplacian will act
only in the leaf direction of the foliation (and will be elliptic along these
leaves), and hence will not be elliptic as an operator on the manifold in
question. Nevertheless, we do have a formal Hodge decomposition, and
we will spell this out, together with some of the relevant analysis involved,
in §3. In §4, we apply the local computations of Matsushima-Murakami
for the Laplace operator to our situation. In particular, Lie algebra re-
sults of Raghunathan [9] can be applied to compute the relevant harmonic
forms, and this leads to a proof of Theorem 4.6. §5 completes the proof
of Theorem 5.6, by first proving the vanishing of the first cohomology of
Γ in suitable Sobolev spaces of vector fields. The basic issue that requires
understanding, given the results in §4, is the relation of the cohomology of
Γ with coefficients in these Sobolev spaces to the cohomology with coeffi-
cients in the space of ZΛsections of various jet bundles over M. This is
carried out in §5 under the hypotheses of Theorem 5.6. In §6 we formally
set forth the type of information that would complete a proof of infinitesi-
mal rigidity for other known actions of Γ. In §7 we consider the condition
ff\ (p? C°°{M)) = 0, and indicate how establishing such a result for general
measure-preserving actions of Γ on compact manifolds, combined with the
techniques and results in [20], would prove the main conjectures of [20].

Much of the research that this paper represents was carried out while
the author was a visitor at Harvard University. I would like to thank the
members of that department for their generous hospitality.

2. Preliminaries

We begin by establishing notation. We let G be a connected Lie group,
and K c G a maximal compact subgroup. Let Γ c G be a cocom-
pact torsion-free lattice. Let X = G/K, so that X is diffeomorphic to
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a Euclidean space, and Y = Γ\G/K, which is a compact manifold with
7Γi(Y) = Γ. (The condition that Γ be torsion free is, as usual in many such
matters, a technical convenience. As described in §4, our main results are
all true without this condition.) Let M be a manifold with a volume den-
sity μ. This defines a smooth measure on M, which we also denote by μ.
If E —> M is a (finite dimensional) vector bundle, we let Ck(M;E) denote
the C^-sections of this bundle, for k = oo, 0,1, , and if M is compact,
L2{M\E) will denote the ZΛsections (with respect to the measure μ). Fix-
ing a Riemannian metric on E then determines a Hubert space structure
on L2{M\E). As usual, Ck(M) will denote the space of Ck real valued
functions on M, and we let Vect^(M) = Ck{M\ TM) be the space of Ck

vector fields. If E —• M is a vector bundle, JkE —• M will denote the vec-
tor bundle of fc-jets of sections of E\ if E is the trivial bundle ¥ x R , w e
set Jk{E) = Jk(M',R). As usual, we let j k : C°°(M;E) -> C°°(M\JkE)
be the Ar-jet map. We denote the space of R-valued p-forms on M by
AP(M), and if E —• M is a vector bundle, AP(M;E) denotes the space
of ^-valued p-forms on M, i.e., A*{M\E) = C°°{M\A\XP{TM,E)), where
Alt*7 denotes a bundle of alternating p-linear maps. If E has the structure
of a flat vector bundle (i.e., E admits a reduction of structure group to a
countable subgroup of the relevant general linear group), then we have a
natural exterior derivative d: AP(M E) -* Ap+ι(M;E) with d2 = 0. We
denote the corresponding cohomology group by H^R(M;E). If a group H
acts smoothly on M, and this action is covered by an action of H on E
by vector bundle automorphisms, then all of the above spaces of sections
become //-modules. If M is compact and there is an //-invariant smooth
measure on M and an //-invariant Riemannian metric on E, then the ac-
tion on L2(M; E) is unitary. If H preserves a flat structure on E, then the
operator d on A*(M;E) commutes with //.

If T is any left Γ-space, we can form the associated bundle to the prin-
cipal Γ-bundle G/K = X -> Y = Γ\G/K. We denote this bundle by Bτ

and the projection Bτ —• Y by π^. Thus, Bτ = Γ\(Γ x X), where Γ acts
on T x X by γ (t,x) = (γt, γx). The fiber of this bundle is of course Γ,
and the images of sets of the form {/} x X in Bτ yield a foliation 9τ of
Bγ which is transverse to the fibers. We call (Bτ9&τ) the foliated bundle
associated to the Γ action on T. If E —• M is a vector bundle with fiber
V on which Γ acts by vector bundle automorphisms, then BE —> BM will
be a vector bundle with fiber V. If Γ preserves a flat structure on E —» M,
then 1?£ —• BM inherits a flat structure. We remark, however, that even if
E has no flat structure, we have a natural notion of a section of BE —• /?Λ/
being locally constant along the leaves
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We shall need another closely related and standard construction, namely
that of induced action. Thus, we let Iτ = Γ\(T x G) so that G acts on the
right of IT by Γ(t, h)g = T(t, hg). The stabilizers in G of points in IT are
all conjugates in G of stabilizers in Γ of points in Γ, and in particular the
action of G on Iτ is locally free (i.e. has discrete stabilizers). IT is a bundle
over T\G with fiber T, and the natural map fiτ'. IT —• T\G is a G-map.
We call the action of G on Iτ the action induced from the Γ-action on T.
If T is compact, IT is as well, and if Γ preserves a finite measure μ on
T, G will preserve the finite measure v on Iτ given by v = f®eΓ\Gμz dm,
where μz is the measure on the fiber over z e T\G defined by μ, and m is
the (/-invariant volume on Γ\<7. If E —• M is a vector bundle with fiber
F, so is IE —• /Λ/5 and if Γ preserves a flat structure or Riemannian metric
on E, G will as well on IE. We have a commuting diagram:

IE • IE/K = /?£

The orbits of G in /Λ/ project onto the leaves of 3^-
A particularly important case of a flat vector bundle E —• Λf on which

Γ acts by automorphisms preserving the flat structure is E - M x V, where
F is a vector space, and the Γ-action is given by γ{m,υ) = {ym,p(γ)v),
where p: Γ —• GL(F) is a linear representation. In this case C°°(M;E) =
C°°(M) (8) V as Γ-modules. We denote the corresponding bundle BE by
5^. In this case we also have associated to p a flat vector bundle Ep —•
7 = Γ\G/K, and we clearly have that 5^ = π*M(Ep), the pull-back of
£"/? by π M : BM —• ^. Similarly, we have an associated flat vector bundle
E* on Γ\G, and denoting /Λ/XF by Ip, we have that Ip = π*M(E*), where

If the representation p is actually the restriction to Γ of a representation
p: G —• GL(F), then it is well known that Ep-+Y can also be considered
as the vector bundle associated to the principal ΛΓ-bundle Γ\G —> Y and
the representation p\K: K —• GL(F) (see [10], e.g.; we recall the proof
below). We can give a similar description for Bp. Namely, we have the
following maps:

IM = T\(M xG) Mx G/K

BM = T\{M x G/K)
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The map IM —• BM is a principal ΛΓ-bundle.

Lemma 2.1. If p: G -• GL(K) ώ1 <z representation, then Bp -• 2?M w

naturally isomorphic to the vector bundle over BM associated to the principal
K-bundle IM -* #Λ/ tf«d the representation p\K.

Proof. Consider the map Φ:MxGxV^MxGxV given by

Φ(ra, g, υ) = (m, g, p(g)v). We let Γ x K act on M x G x V in two ways:

first, by γ(m,g,v)k = (γm,γgk,p(k)~ιv); and second, by γ o (m,g,υ) o
A: = (yra, ygλ;, p(γ)v). Then under the first action the map

Γ\(M xGx V)/K -> Γ\(M x G)/K

is exactly the projection of the associated bundle for the representation
p\K, and under the second action the map

Γ\(M x G x V)/K -> Γ\(M x G)/K

is the projection Bp —• BM. The lemma then follows from the observation
that

Φ(γ{m,g,v)k) = γo (Φ(m,g,v)) ok.

As in the classical case of Ep, this realization of Bp is no longer naturally
flat, but has the compensating feature that the structure group is compact.

If E -+ M is a vector bundle on which Γ acts by vector bundle au-
tomorphisms, we shall be interested in H*{Γ\C°°(M\E)). We first re-
mark that we can obtain a de Rham type realization of this cohomol-
ogy. Namely, if % -> BM is a vector bundle, we let AP{&M\%) be the
space of ^-valued p-forms along the leaves of ^ / , i.e., AP{^M\^) =
COO{BM'Λ\XP{T9ΓM^)), where T9M is the tangent bundle to &M. If
£ = BE, where E is a vector bundle over M on which Γ acts by vector
bundle automorphisms, then we have a natural exterior derivative along
the leaves of ^ , dp\ AP(&*M\BE) -> AP+1{^M;BE), with rf|. = 0. We
denote the corresponding cohomology groups by H^R(^M\BE).

Lemma 2.2. Let E —• M be a vector bundle on which Γ acts by vector
bundle automorphisms. Then there is a natural isomorphism

Proof The action of Γ on C°°(M\E) defines a local system on Y =
Γ\X9 and H*(Γ 9C°°(M;E)) is isomorphic to the cohomology of Y with
coefficients in this local system. For any open U c Y, let $f{U) be the
smooth sections of BE —• 5^/ defined on π~^(U) which are locally constant
along the leaves of &M- It is easy to see that the sheaf of locally constant
sections of the locally constant sheaf corresponding to the above local sys-
tem is naturally identified with the sheaf si on Y. Thus we have a nat-
ural isomorphism H*(Γ'9C°°(M9E)) = H*(Y9sί). For U c Y open, and
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0 < p < dim(F), let Λ?P(U) be the smooth sections of Alt p (Γy, BE) -+ BM

defined on πj}{U). Then s#p is clearly a fine sheaf on Y. Furthermore,
the maps d^\n-\.υ, define sheaf maps d&-\ srfp —• s/p+ι and

n

is clearly a chain complex of sheaves. A simple variant of the Poincare
lemma (performed "leafwise"; cf. [7]) shows that this complex is actually
a fine resolution of s/. The cohomology of $/ is thus the cohomology of
the global sections of the resolution, and the lemma follows.

We shall need a more explicit version of this isomorphism in the case
E = M x V and the section is given by p: Γ —> GL(F). Let q: M x
X —• BM - Γ\(Λ/ x X) be the natural quotient map, and pχ\ M x X —>
X the projection. Then Alf (p$TX,V) is the bundle of F-valued p-
forms on M x I in the "X-direction". We have a natural action of Γ on
C°°(M x X\ Altp (p*xTX, V)) and a natural isomorphism of the space of Γ-
invariants, C°°(M x X;Alf(p*x(TX, V))Γ, with Ap{βΓ

M\Bp). For any ω e
C°°(M x X, Alf (pxTX, V)), we can consider ω as a family of F-valued
/?-forms on X parametrized by M, i.e. m —> ωm e AP(X, V), m e M. Then
dgrω corresponds to the family d(ωm), where d is the ordinary exterior
derivative in A*(X,V). A form ω e C°°(M x X;Altp(p*xTX,V)) is Γ-
invariant if and only iί p(γ)γ*(ωγ-ιm) = ωm, where we consider GL(F) as
acting on AP(X9 V) by pointwise application in the range. We observe that
we can also apply both γ and d to sections of Altp(pxTX, V) for which
all ωm, m e M, are smooth, but for which ωm do not necessarily vary
smoothly in m.

For ω e Ax{SFM,Bp), with dgrω = 0, let ωm e Aι(X, V) be the cor-
responding family of closed F-valued 1-forms on X. For γ e T, let
aω(γ): M —• V be given by aω(γ) = fjCύm, where / is a path in X
from XQ to yjco> and Xo e X is some point fixed in advance. Since ωm

is closed and X is simply connected, αω(y) is independent of this choice
of path. It is easy to see that the Γ-invariance of the family {ωm} implies
that aω: Γ -> C°°(M, V) is a 1-cocycle. Namely, aω{y\y2){m) = $hIχ ωm,
where I\ is a path from co to y\X$ and /2 is a path from yix0 to
Therefore aω{yχy2){m) = /Λ ωm + //z ω m , and

ί ί ί *
/ o)m= p(y\)y\{ωv-ιm) = p{y\) JΊGV-I =

Since yf1^ is a path from Λ:0 to 72̂ 0? w ^ obtain

ωm = ρ{y\)oίω(y2)(y7xm) = γ{ aω(y2)
Jh
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for the action of Γ on C°°(M, V). This verifies that aω{yχy2) = aω(γ\) +

Vl(*ω(72).

Suppose now that d^θ = ωfoτθe A°(^; Bp). Letting θm: X -• V be
the corresponding functions, we have dθm = ωm. Thus,

otω{y){m) = ωm= dθm = θm(γx0) - θm(x0).
Ji Ji

But by the invariance of {θm}, we have

= p(y)[(y*θγ-ιm)(γχo)] = p(y)θγ-im{χo).γ-ιm)(γχo)] = p(y)θγ-

Therefore, if for x e X we let θx: M -+ V be θx(m) = θm(x), we
have aω(y) = γ θx° - θx° for the action of Γ on C°°(Af, V), i.e., α ω is
a coboundary, if ω = d^θ. Thus, ω H α ω induces a map H1(&M9BP) —•

; C°°(Af, F)). In this case, Lemma 2.2 becomes
Lemma 2.3. ω —• α ω induces an isomorphism

The above discussion shows that even if 0 is not smooth as a function
of m, but for each fixed m we still have dθm = ωm, then aω will be
a coboundary in a Γ-module consisting of functions more general than
smooth ones. More precisely, we have:

Lemma 2.4. Let p: Γ —• GL(F) be a linear representation. Assume M
is compact. Suppose that for each ω e Ax{SΓMyBp)9 there is a measurable
section θ ofBp —• 2?^ w/ίλ corresponding family of functions θm: X —• V,
me M, satisfying the following:

(i)θeL2(BM,Bp).

(ii) θ is smooth along the leaves of&M, or equivalently, each θm, m e M
is smooth.

(iii) For a.e. me M, dθm = ωm.
Then the map Hι(Γ, C°°(M, V)) -> Hι(Γ9L

2(M, V)) is 0.
Proof Let [α] e Hι(Γ, C°°(M, V)). By Lemma 2.3, we can assume

a = aω for some Γ-invariant section ω of Hom(pχTX, V) —• M x X.
Since C°°(MxX,Hom(p*xTX, V)f is naturally isomorphic to AX{9'M,BP)
(and this isomoφhism extends to sections which are only measurable), our
hypotheses and Fubini's theorem imply that there is a measurable function
θ:MxX-+ V such that:

(i) θ is a Γ-map;
(ii) for a.e. x e X9 θx: M -> V is in L2(M, V)\

(iii) for each m e M, θm(x) = θ(m,x) is in C°°(X, V)\
(iv) dθm = ωm.
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The argument preceding Lemma 2.3 holds for any xo e X. Choosing xo
such that θXo e L2(M, V), that argument proves the lemma.

Now assume that p: G —• GL(F) is a linear representation. Follow-
ing the classical case for describing the exterior derivative on A*(Γ\X,EP)
(which appears in [6], [8], e.g.), we now describe the complex
C°°(M x X9AΛt*{p*TX9 V))τ in terms of forms on IM, i.e., in terms of
^-invariant F-valued forms on Γ\(M x G), where the ίΓ-action is given
by Γ(m,g)k = Γ(m,gk). To do this, we use the isomorphism given by
Lemma 2.1. For ease of reference, we first recall notation for some maps
and label some other ones in the following diagram:

MxG

IM = Γ\(M x G) M x G/K = MxX

BM = Γ\(M x G/K)

Γ\G

Γ\G/K =

The action of G on IM is locally free, so we can let (9 be the orbit
foliation for this action. Thus, Tff = πJ/(Γ(Γ\G:)). The diffeomorphism
Φ in the proof of Lemma 2.1 induces an injective map

Ψ: C°°{M x X; Al\*{p*xTX, V))Γ - . C°°(/M; Alt*(Γ^, V))κ,

where K acts on V via p. If A e g, this clearly defines a vector field (which
we still denote by A) on IM with A taking values in T(9 c TIM at all points
in IM The image of Ψ is exactly {η°\i(A)η° = 0 for all A e ί}. Here i{A)
is the natural map

9 V)).

We set

C°°(/Λ/;

, V))

, V))ξ = {η°\i(A)°η = 0 for all A e t},
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so that Ψ is an isomorphism onto this space. The map Ψ(η) = η° is
characterized by

On the domain of Ψ, we have the exterior derivative in the X direction
(which we recall corresponds to d$r). We now give a description of this
differential operator carried over to C°°{IM\ Alt*(77?, V))ξ via Ψ. We first
observe that for y e IM, we have a natural identification of T(9y with g =
t θ p , where the latter is the Cartan decomposition of the Lie algebra of G.
We may thus identify C°°(/M; Alt*(T&9 V)) with C°°(/M; Alt*(g, F)), and
the G-action on the latter given by the G-action on IM, the representation
p on F, and Ad<? on g. By the condition i(A)(η°) = 0 for all A e t,
we may clearly identify C°°(/M; Alt*(g, V))ξ with C°°(IM, Alt*(p, V))κ =
C°°(/Λ/,Λ(P)* ® F ) * . Fix a basis {X/} of g orthonormal for the Killing
form, with Xt e p, 1 < / < N, and Xt e t, N + 1 < / < n = dim G. Let
ωz G g* be the dual basis. For any increasing /-tuple / = (z'i, , //), where
/ < N, let ω 7 = ω/j Λ Λ ω / r We let (/, j) denote the (/ - l)-tuple / with
ij deleted. Then any element η° e C°°(/A/,Λ(P)* (8) K) is given uniquely by
η° = Σi Άι ® ω / 5 where the ηr. IM -^V are smooth functions. We define,
for /70 E C°°(/M,A^(p)* 0 F), two elements of C°°{IMΛp+ι{p)* ® F). Let

7=1

and

7=1

Here we continue to denote by /? the representation of g induced by p.
The computation of [8, p. 24], [6] carries over essentially verbatim, and
analogous to the result for the classical case we have:

Lemma 2.5. Under the isomorphism Ψ(τ/) = η°, dη corresponds to

3. A formal Hodge decomposition

The operator d^r defined in §2 is an example of an operator on a func-
tion space of a foliated manifold which is a differential operator along the
leaves of the foliation. A general development of some basic properties
of such operators appears in [7], in the more general setting of a metric
space foliated by smooth manifolds. Rather than develop the most general
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theory, we shall indicate some developments in the special framework in
which we shall need them. We should emphasize, however, that while we
are considering differential operators along the leaves of a foliation, as are
Moore-Schochet [7], much of our development is in a very different direc-
tion from that of [7]. In the first place, the smoothness of the transversal
direction will ultimately play a basic role for us (see §5), while it plays no
role in [7]. More immediately, however, is that the spaces on which we
consider our operators to be acting are of a very different nature than those
in [7]. Namely, in [7], the leaves are "lifted out" of the ambient manifold,
and the differential operators act on smooth functions (or sections) which
are compactly supported on the leaf, or L2 on the leaf, etc. On the other
hand, we shall be interested in the operator acting on functions (or sec-
tions) defined on the ambient manifold itself. In the generic case, these
spaces will have very different behavior.

We suppose henceforth that there is a smooth Γ-invariant measure μ
on M. Since Γ\X is endowed with a natural volume form, the space
BM carries an induced smooth measure v. It is important to observe
that locally, v is a product measure. We formally record this for ease of
reference.

Lemma 3.1. IfUcY = Γ\X is a small open set, we have a diffeomor-
phism U x M —• π~^{U) of bundles over U such that v\π-i(u) corresponds
to the product measure (vol |t/) x μ.

Let (p, V) be a finite dimensional representation of G, and Ep —> T\X
the associated vector bundle. Then π*M(Ep) is a vector bundle over BM
Fix a AΓ-invariant metric on V. Then (via Lemma 2.1, for example), Ep

has a corresponding Riemannian metric and hence so does πlf(Ep).
Let D: C°°{Γ\X;EP) -> C°°(Γ\X;EP) be a differential operator with

adjoint D*. For any such D, define a differential operator Dp- on
C°°(BM; π*M(Ep)) by letting Dgr act as D in the leaf direction of the folia-
tion &M- The exterior derivative dgr of §2 is such an example.

Lemma 3.2. (D<?)m = (D*)p.

Proof. It suffices to see equality when applied to a smooth / with
support contained in π~^(U) where U c Γ\X is a small open set. This
follows easily from Lemma 3.1.

We now define the "leaf-wise" Sobolev spaces. Let Δ be the Laplace
operator on ^-valued forms on Γ\X. Thus, if d is the exterior deriva-
tive on ^-valued forms, then Δ = d*d + dd*. Then Δ$r operates on
C°°{BM\ Alt*(T^M.Bp)). The restriction of Δ^ to a fixed leaf is ellip-
tic, although ΔJΓ is itself not elliptic (as long as M is nontrivial.) The
leaves of &" will not in general be compact. Given such a Bp-valued form
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ω along the leaves of ^M, define ||ω||2,r,^ = ((/ + Δ^) r ω, ω) 1 / 2 where
( , ) is the ordinary L2 inner product. (We recall that both T^M and
Bp have metrics.) We let L2/(BM; Alt* (T^MiBp)) be the completion of
Coo(BM\A\X*(T^M,Bp)) with respect to || ||2,r,^. We may clearly iden-
tify L2^(BM',Alt*(T^M,Bp)) with a dense subspace of the corresponding
ZΛspace. The following is a straightforward consequence of the Sobolev
embedding theorem and Fubini's theorem (and Lemma 3.1).

Lemma 3.3. Iffe L2^ c L2, then (as an element of L2) f can be
represented by ω which is Cι on each leaf where I = r - dim(Γ\X)/2.

Proof. Suppose fj e C°° and fj -• / i n L£. Fix an open set U c Γ\X
over which we can write π~j^(U) = U x M. Then each fj and / can be
written on n^(U) as a family of Ep-valued forms on U parametrized by
m e M, say fp. Since {fj} is Cauchy in || \\2,r,^, by Fubini we have for
a.e. m e M that ((/ + AYifj" - fp), f™ - ff1) '-> 0 as j , k -+ oo. Since Δ
is elliptic of order 2, the usual Sobolev embedding theorem implies that
for a.e. m e M, fj" converges to a Cι function. Since fj —> / in L2, we
deduce that for a.e. m e M, f\π~j^(U) is Cι on the connected component
of m of the intersection of the leaf through m with π~j£(U). Let Mo c M
be the null set for which fm is not Cι. Then Γ Mo will also be null.
Hence f\n^{U) will be Cι along a conull set of leaves. Covering Y\X
with finitely many (or even countably many) such U, we see that / will be
Cι on a conull set of leaves. Letting / = 0 on the complementary null set
completes the proof.

For r even and all /, the map (7+Δ^) r / 2 defined on C°° sections extends
uniquely to a unitary isomorphism

Similarly, for each r the exterior derivative d extends to a continuous map

dp: L%(BM,Altp(T^,Bp)) - L%-{(B

For r even, the following diagram commutes:

Then a standard argument yields the following regularity result.
Lemma 3.4. Suppose that for every smooth ω e Coo(BM\A\\x(T9rM,Bp))

with d^rω = 0 we have that ω = d^rη for some η G L2^(BM\BP). Then η
is smooth along the leaves of
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Proof. If dgrω =• 0, we also have that for each even r,
d_gr{{I + A?)rl2ω) = 0 since dψ commutes with Δ$r. Thus, we can find
α G L^(BM;Bp) such that ^ α = (7+Δ^) r/2ω. Then^((/+A?-)- r / 2 a) =
ω, and by Lemma 3.3, (/ + A^)~rl2a is Cι along the leaves. If 1/1,172
are measurable sections of 2?̂  —> 5Λ/ which are C1 along the leaves and
dgτt\\ = d^η2, then d&{r\\ - r\i) = 0, so η\ - r\ι is locally constant along
the leaves. Thus, if one is Cι along the leaves, so is the other. Since r is
arbitrary, η is smooth along the leaves.

In addition to the Sobolev type spaces LJ£ for r a nonnegative integer,
we can use the standard "negative norm" construction to construct the
spaces l2fr [14] which are dual to L^-'. The standard argument which
gives the usual Hodge decomposition of the Laplace operator now yields
the following result. (Recall once again the basic point that Δ r̂ is only
elliptic along the leaves of &.)

Proposition 3.5 {Formal Hodge decomposition). For each p, let

Ar: L2(BM;Altp(T^M,Bp)) -> &-\BM\Alt'(TΓM,BP)),

y ^ B P ) ) - , L2{BM\

If these maps are all continuous, then we have the following:

(i) L2(BM',Ahp(T^M,Bp)) = i

(ii) If ω is smooth and d&-ω = 0, then ω G im(d^)
(iii) Every element ofkerA^r is smooth along the leaves.

For p = 1, we obtain:
Corollary 3.6. Suppose that for p = 1 we have kerΔ^ = 0 and i

is closed. Then the map Hx (Γ, C°°(M\ V)) -• Hι (Γ, L2(M, V) is 0.
Proof This follows from Lemmas 2.4, 3.4, and 3.5.

4. Application of the Matsushima-Murakami computations

We recall that under the isomorphism

Ψ: C°°(M x X; Alt*(p*xTX, V))Γ - . C°°(/M; Alt*(Γ^, V))ξ, Ψ(η) = η°,

given in §2, we have that the exterior derivative in the X-direction dη

corresponds to (D + dp)(η°) (Lemma 2.5). Under the isomoφhism of the
domain of Ψ with C°°{BM\ Alt*(7^/, £,,)), the action of Δ^ on the latter
space simply corresponds to the ordinary Laplacian on F-valued forms on
X applied in the X-direction on dom(Ψ). Following the computations of
[8, pp. 41-44] essentially verbatim, we obtain the following.
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Lemma 4.1. Under the isomorphism Ψ, A&-{η) corresponds to (Δ#
)> vvλm> AD,AP are differential operators on C°°(lM',Aϊt*{T#, V))ξ

such that the following hold:
(i) (ADη°,η°) > 0, (Apη°,η°) > 0 for all η°, where ( , ) denotes the

ordinary L2 inner product.
(ii) There is a linear operator Hp = Σf HP o n Alt*(p, F) swc/z that for

any y e IM,
(Ap(η°))(y) = Hp(η°(y)).

(Recall the identifications made preceding Lemma 2.5.) In particular, Ap

is of order 0.
(iii) [8, formula 5.12] Ifη e C°°(BM;BP) [i.e., is a 0-form), then

Here the Xj are as in the discussion preceding Lemma 2.5; || ||κ is simply
the norm on V deriving from the inner product on V.

We also recall here the fundamental result of Raghunathan [9], gener-
alizing earlier work of Weil [13].

Lemma 4.2(Raghunathan [9]). For p = 1, p nontrivial and irreducible
and for g with no simple factors isomorphic to any so(l, n) or su(l, n), Hp

is a positive definite (symmetric) operator on Hom(p, V).
Corollary 4.3. Assume the hypotheses of Lemma 4.2. Then kerΔ^r =

(0), and ivadgr is closed, where these maps are taken as in Proposition 3.5.

Proof. For any η e L2(BM\ϋom(T<9
ΓM,Bp)) which is smooth along

the leaves of ^M, we have

( Δ ^ , η) > (Apη°, η°) = f (Hι

p(η°{y))9 η°(y)) dy
JΓ\G

>cj(η\y),η\y))dy>c\\η%.

Thus, kerΔ^r =- 0. We now claim that im d& , dgr\ L2^(BM\BP) -•
L2(BM'Λx(T9r,Bp)), is closed.

Since A? = dgrd^ + d*Ψd?, if η e COC(BM,BP) we have (A#-η,η) =
\\dgrη\\l. It suffices to see that Wd^ηWj > c\\η\\2

u9Γ = c((I + Ar9-)η,η) (for
some constant c). Thus it suffices to see \\d^η\\\ > c\\η\\\. From Lemma
4.1 (iii), we have \\d^\\\ = (A?-η9 η) > / Σ y \\p(Xj)η°\\v s i n c e p contains
no G-invariant vectors, any vector υ e V for which p(Xj)v = 0 for all j ,
1 < j < N, must be 0. Namely, ρ(Xj)v = 0 for all j implies (p\ρ)(v) = 0.
Since [p,p] = t, we also have (p\t)(v) = 0, and hence p(A)v = 0 for
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all A G g, showing υ = 0. Thus for v φ 0, v -
is constant on lines and nonvanishing. Let c be its minimum; we have

fΣj \\P(Xj)*lo\\v ̂  cfW^Wh a n d t h i s completes the proof.
We can summarize our discussion to this point as follows.

Theorem 4.4. Let G be a connected semisimple Lie group, Γ c G a
cocompact lattice, and p: G —+ GL(F) a finite dimensional representation of
G not containing the identity. Let M be a compact manifold on which Γ acts
smoothly, preserving a smooth volume density. Let Γ act on functions from
M into V by translation in M, and p in V. Finally assume G has no simple
factors locally isomorphic to O(l, ή) or U(l, n). Then H\T\ C°°(M, V)) -*
// ι (Γ;L 2 (M,F)) isO.

Proof If Γ is torsion free, this theorem follows from 3.6, 4.2, and 4.3.
If Γ is not torsion free, we can choose a torsion free subgroup F of finite
index. Applying the theorem for F , we deduce that for an action of Γ on
L2(M, V) by affine transformations, there is a F fixed point. This is then
a point with a finite Γ-orbit, and the average of this orbit will be a Γ-fixed^
point, establishing triviality of the corresponding cohomology class.

When p contains invariant vectors, Theorem 4.4 is still true. To see
this, it suffices to consider the case in which p is the trivial representation.
Then L2(M, V) = L2(M) is a unitary Γ-module, and since Γ has Kazhdan's
property, Hι(Γ,L2(M)) = 0 [11]. Thus we have:

Theorem 4.5. Theorem 4.4 is true for any finite dimensional represen-
tation ofG.

Suppose now that φ: G —• H is a homomorphism where H is a Lie
group, and that Λ c H is a cocompact lattice. Let M be the Γ-space
M = H/A. Then TM can be naturally identified with ¥ x ( ) , and the
//-action is given by translation on M and Ad on ί). Applying Theorem
4.5 to M and the representation p = Ad// oφ, we obtain:

Theorem 4.6. Let G, Γ be as in Theorem 4.4, H a Lie group, φ: G —• H
a smooth homomorphism, and A c H a cocompact lattice. Then the Γ
action on M = H/A is L2-infinitesimally rigid.

5. Infinitesimal rigidity

We continue with the hypotheses of Theorem 4.6 and pursue the ques-
tion as to when the conclusion of Theorem 4.6 can be strengthened to assert
infinitesimal rigidity. As a G-module, we have C°°(M; TM) = C°°(Af)®ί).
For any vector bundle E —• M, let JkE —• M be the fcth jet bundle. Then
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we have (using an invariant connection) an isomorphism of G-modules

k

;Jk(TM)) = C
7=0

and a similar assertion for L2(M\ JkTM). From Theorem 4.5, we deduce
that for every k the map Hι{Γ,C°°{M',JkTM)) -> Hι(Γ,L2(M,JkTM))
is 0. We let L2>k(M;E) denote the kth Sobolev space of sections of E.
Then we have a commutative diagram:

C°°{M\E) —£-> C°°(M JkE)

I I
L2>k(M;E) * L2{M\JkE)

Let £ = ΓAf. We know that the right vertical arrow induces 0 on if1.
Our approach to proving infinitesimal rigidity will be to show that the left
vertical arrow induces 0 as well.

Let Qf denote the quotient space Coo(M;JkE)/jk{Coo{M;E)) and
Ql denote the space L2(M\JkE)/L2>k(M\E). There is a natural map
β£° —* Ql which is injective. We then have the following commutative
diagram with exact rows:

C°°(M;E)Γ —>C°°{M;JkE)Γ ^ {Q°°)Γ—>Hι(Γ,C°°(M',E))—• Hι{Γ, C°°(M;JkE))

L2{M\JkE)τ - ^ (Qlf —> Hx{L2>k{M\E)) -*U Hι{Γ,L2(M;JkE))

We know that φi - 0. We claim φ\ = 0. To see this, it clearly suffices
to see that ψ2 is surjective.

Lemma 5.1. ^oo is surjective. If Γ is ergodic on M, then dim(<2£°)Γ <
oc.

Proof. The injection j k : C°°(M; E) -* C°°(M; JkE) is naturally split
by the map induced by the projection JkE —• J°E = £". The naturality
implies that ŷ o is surjective.

To see the second assertion, we recall the beginnings of the Spencer
resolution [3], [2]. Namely, there are differential operators (called the
Spencer operators)

A : C°°(M; JkE) -> C°°(AΓ; Jk'ιE 0 TM),

D2: C°°(M; Z ^ " 1 ^ ® Γ*M) -> C°°(M; / ^ - 2 £ (8) A2{TM)
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such that

C°°{M\E) Ά C°°{M\JkE) -2U C°°(M;Jk-ιE®T*M)

^ ; Jk~2E ® A2{T*M))

is exact. In particular, im(Z)1) is closed (in the C°°-topology), and we
can identify Qψ and im(D\) as Γ-modules. Thus, it suffices to see that
C°°(Af; Jk~lE®T*M)r is finite dimensional. However, this follows from
the following lemma.

Lemma 5.2. IfE —> M is a rank n vector bundle, and a group Γ acts on
E by vector bundle automorphisms covering an ergodic action on M, then
ά\m(F(M\E)τ) < oc where F(M E) is the space of measurable sections.

Proof. We first observe that if {φi} is any countable family of mea-
surable invariant sections, then ergodicity implies that the set of points
m e M for which {φi{m)} is linearly independent in Em is either null or
conull. Suppose now that {φi}iei is a family of measurable invariant sec-
tions maximal with respect to the property of being linearly independent
at almost all m. Then card(/) < n. If φo is any other invariant section, by
maximality and our remarks above, we can write φo(m) = Σci{m)φi{m).
Since φi,φo are Γ-invariant, so are c, , which by ergodicity implies cz are
essentially constant. Thus, {φi} spans F(M\E)T over R.

We now return to consider the case when we have φ\ = 0.
Lemma 5.3. Ifφo{(Q^)Γ)is dense in (Q2

k)
Γ, then φ{ = 0.

Proof By Lemma 5.1 we have φ0 and ψoo are surjective, and hence
ψι is surjective.

Lemma 5.4. Suppose that for the homomorphism φ: G —• H we have
either.

(a) φ(Γ) is dense in H\ or
(b) H = H\ x Hi is semisimple, A projects densely into H2, and φ(Γ)

projects densely into H\ and trivially into H^.
Then Φo((Q^)Γ) is dense in (Q2

k)
Γ.

Remark. The condition on Λ in (b) (given the condition on Γ) is
equivalent to ergodicity of Γ on H/A. This holds, of course, if Λ c H is
an irreducible lattice.

Proof. (a) Let / e L2(M; JkE) such that ψ2(f) is Γ-invariant. Then
by continuity ψι{f) is also //-invariant. Let π be the representation of
H on L2(M\JkE). Then π defines in the usual way a representation of
Q°(//) on L2(M;JkE), and representations of H and Q°(//) on the
Hubert space Qfc. Since ψi(f) is //-invariant, we have for all a e C£°(H)
that π(a)(ψ2(f)) = ψi{f)- However, since a e C£°(H) and H is transitive
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onM, π(a)feC°°(M',JkE). Thus, ψ2(f) = {ψo°Ψoo){π(a)f), and hence

(b) Let / be as in (a). Then ψ(f) is also H\-invariant. Since H\ is
normal in H\ x H2, H\ x #2 acts on the space (Ql)Hι> Choose an ap-
proximate identity aj e C™(H{ x H2). Then π(aj)(ψ2{f)) e (Q2

k)
H' and

π(aj)(ψ2(f)) -> ^ 2 ( / ) . However, as in (a), π(aj)f e C™(M;JkE) so
π(aj)ψ(f) G im(0o), and hence im(φ0) is dense.

Corollary 5.5. Under the hypotheses of Lemma 5.4, for each k we have
Hι (Γ, C°°(M; TM)) -> Hι (Γ, L 2^(M; ΓM)) is 0.

Proo/ See 5.3 and 5.4.

Theorem 5.6. Suppose G is a connected semisimple Lie group, Γ c G is
a cocompact lattice, and φ: G —• H is a homomorphism where H is another
semisimple Lie group. Assume G has no simple factors locally isomorphic
to SO(1, ή) or SU(1, n). Let he H be a cocompact lattice. Assume either:

(a) φ(T) is dense in H\ or

(b) H = H\ x H2f φ(T) c H\ x {e} and is dense in H\, and Λ projects
densely onto H2.

Then the Γ action on M = H/A is infinitesimally rigid.

Proof Let c: Γ -+ C°°(M, TM) be a 1-cocycle. By 5.5, for each k we
can find /^ e L2>k(M, TM) such that γf^ - fk = c{γ). Thus, for any I > k,
yfk - fk- yfi - fh s o ^ a t fk - f is Γ-invariant. To see that fk is smooth,
it therefore suffices to prove the following.

Lemma 5.7. Let M be a compact manifold on which Γ acts ergodically
by volume preserving diffeomorphisms. We assume Γ c G is a lattice where
G is any semisimple Lie group with no compact factors. Let (p, V) be a
finite dimensional representation of G. Then any measurable Γ-invariant
section of M x V —• M is {essentially) smooth.

Proof. A measurable Γ-invariant section is of course simply a measur-
able Γ-map / : M -+V, where Γ acts on V by p. Let (p, V) = Σ®(Pi, */) be
the decomposition into (/-irreducible subspaces, and qι•: V —• Vj be projec-
tion. If pi is trivial, then any measurable section is constant by ergodicity,
and hence smooth, If V[ is nontrivial and μ is a Γ-invariant smooth mea-
sure on M, then (qt o f)*μ is a Γ-invariant probability measure on V[. By
[6, §3.2] and the Borel density theorem (ί/o/)*// is also G-invariant. Since
Vj is irreducible, [6, 3.2.2] implies that (fto/)*μ is supported at the origin,
i.e. qx o f = 0 (a.e.). Thus, / is smooth.

The proof of Theorem 5.6 shows that under the same hypotheses one
has vanishing first cohomology for the Γ-module of smooth sections of any
natural vector bundle over M in the sense of [12]. In particular, we have:
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Theorem 5.8. Under the hypotheses of Theorem 5.6, we have
//1(Γ,Coo(M)) = 0.

6. Remarks on the proof

The only point in the proof of Theorem 5.6 that required the special
nature of the homomorphism φ was the proof that the map ψ2 is sur-
jective. Thus, we make the following definition. Let M be a compact
manifold, E —• M a finite dimensional vector bundle, and assume a group
Γ acts by vector bundle automorphisms. Let Qk be the Hubert space
L2(M;JkE)/L2>k(M;E).

Definition 6.1. Call the action of Γ on E -+ M /c-admissible if the
map of Γ-invariants L2{M\JkE)τ —• (Qk)Γ is surjective. Call the action
on M /c-admissible if the action on TM is /c-admissible.

We then have:

Theorem 6.2. Let Gbea connected semisimple Lie group with finite cen-
ter, no compact factors, and no simple factors locally isomorphic to SO(1, ή)
or SU( 1, n), and let φ: G -> H be a homomorphism into another Lie group.
Let Γ c G and Ac H be cocompact lattices, and suppose Γ acts ergodically
on H/A. If the Y-action on H/A is k-admissible for all k, then the action
is infinitesimally rigid.

The arguments of §5 show that every natural vector bundle is /c-admissi-
ble for all /c, for the actions in Theorem 5.6. As observed in Lemma 5.1, the
corresponding map of Γ invariants for smooth sections is always surjective.

7. Relations with the automorphism groups of G-structures

Let G be a connected semisimple Lie group with finite center such
that every simple factor of G has real rank at least 2. Let Γ c G be
a lattice subgroup. We consider the implications of the condition that
Hι(Y, COC{M)) = 0 for actions on a compact manifold. For Γ cocompact
and special actions of Γ we have established this property in Theorem 5.8.
In this section we show how establishing this property in more generality
would lead to a proof of the main conjectures of [20].

Definition 7.1. Let G and Γ be as above. We say that Γ satisfies
property (V) if for every smooth action of Γ on a compact manifold M
which preserves a probability measure in the smooth measure class we
have//1(Γ,Coo(Λ/)) = 0.
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We remark that we do not know that any of the Γ under consideration
have property (V). We also recall that from Kazhdan's property, we have
Hι(Γ,L2{M)) = 0.

We now recall the basic conjecture of [20].

Conjecture [20]. Let G and Γ be as above. Let M be a compact n-
manifold, and H c GL(w,R) a real algebraic group that defines a volume
density. Suppose Γ acts smoothly on M preserving an H-structure. Then
either:

(i) there is a nontrivial Lie algebra homomorphism g —» ί); or
(ii) there is a smooth T-invariant Riemannian metric on M.

This conjecture implies in particular that there is an integer n(G), read-
ily computed from the Lie algebra of G, such that any volume preserving
action of Γ on Mn for n <n{G) is finite, i.e., factors through a finite quo-
tient of Γ (see [20] for a discussion). The conjecture has been established
for certain H in [17], [18], [19] (see [20] for a unified treatment). Here
we show that a basic technique in [20] establishes the conjecture for all //,
for any Γ which has property (V).

Theorem 7.2. Assume the hypotheses of the conjecture. If Γ has property
(V), then the conclusion of the conjecture is true.

Lemma 7.3. Suppose H is a connected Lie group with a closed normal
subgroup N c H such that H/N = Rn. If T has property (V) and P -• M
is a principal H-bundle on which Y-acts by vector bundle automorphisms,
preserving a probability measure of smooth class on M, then there is a
T-invariant reduction P to N.

Proof Since P/N —• M is a principal R"-bundle, we can choose a
smooth section. Thus, as principal R"-bundles we can write P/N = MxR".
The Γ action on P/N corresponds to an action γ(m, v) = (γm, a(γ, m) + υ)
where a: Γ x M —> R". Viewing a as a map a: γ -> C°°(M,R"), a is
a cocycle. By property (V), a is trivial in cohomology, so there is a Γ-
invariant smooth section of P/N —• M.

Proof of Theorem 7.2. Since H is algebraic, there is a simply con-
nected solvable subgroup S c H such that H/S is compact. Fix a posi-
tive integer k. Let P^k\M) —• M be the fcth order frame bundle of M
[5], so that P^k\M) is a principal GL(AZ,R)(/c)-bundle, where we can write
GL(/i, R){k) = GL(«, R) ix U, where U is a unipotent group. Let L = S x U9

which is thus simply connected and solvable. Since Γ preserves an H-
structure on M, there is a Γ-invariant reduction of P^k\M) —> M to a
principal (H x f7)-bundle Q —• M. Let M - Q/L, so that M is compact.
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If assertion (i) in the conjecture does not hold, we can apply the mea-
surable superrigidity theorem for cocycles ([6], [20, §4]) to deduce that
the measurable cocycle Γ x M —• H x U defined by the Γ-action on Q is
measurably equivalent to a cocycle into a compact subgroup of H K U.
It follows that there is a Γ-invariant probability measure of smooth class
on M. (We note, however, that the invariant measure may not itself be
smooth.)

Let π: M —• M be the projection, and π*(β) —• M the pullback of Q
under π. Then π*(Q) has a Γ-invariant reduction to L, say Q\ —• M. Since
L/[L,L] is isomorphic to R", Lemma 7.3 implies there is a Γ-invariant
reduction of <2i to [L,L], and continuing inductively, we can reduce the
group to {e}. Thus, there is a Γ-invariant smooth section of π*(Q) —• M.
From the argument in the proof of [20, Theorem 6.1], and the compactness
of M, it follows that for any smooth metric ω on M and any k, {y*ω}
has compact closure in the Ck-topology on metrics. The arguments of [20,
§6] then show that Γ preserves a smooth Riemannian metric. This proves
Theorem 7.2.

We remark that by a suitable version of Shapiro's lemma [1, p. 282],

where M' is the induced (/-space Γ\(G x M), and H% denotes differen-
t ia te cohomology. If Γ is cocompact, then so is M', and G preserves a
probability measure of smooth class on M' if Γ does so on M. By [1, p.
279], we can then also write

Thus, property (V) for Γ can be deduced from the analogous property for
differentiable G-cohomology or (g, AT)-cohomology for smooth functions
on G-spaces. However, since K is not in general transitive on M', COO{MI)
will not be an admissible G- (or (g, /Q-)module, and hence the many results
known under that hypothesis cannot be immediately applied.
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