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THE ADIABATIC LIMIT, HODGE COHOMOLOGY
AND LERAY'S SPECTRAL SEQUENCE

FOR A FIBRATION

RAFE R. MAZZEO & RICHARD B. MELROSE

0. Introduction

Consider a fibration of a compact manifold, M, with fibers modeled
differentially on the compact manifold F:

F —+ M

Here, and throughout, we work with W°° maps and spaces. Let h be a
Riemannian metric on the base space Y. Suppose that g^ e ^°°{M\ S2M)
is a Ψ°° symmetric 2-cotensor on M which is positive definite on the fibers.
In particular g^ induces a Riemannian structure on each fiber. Combining
these two forms gives a 1-parameter family of metrics on M:

(1) gx = goo + x~2π*h (x>0).

Let ΔJC be the Laplace-Beltrami operator of this metric and let ^x be the
null space of Δ*, the space of g*-harmonic forms on M. We are inter-
ested in the behavior of %?x as x j 0, the so-called 'adiabatic limit', as
discussed recently—with somewhat different objectives—by Bismut [1],
Bismut and Freed [3], Cheeger [5] and Bismut and Cheeger [2] (see also
Witten [11]). We shall show that β^x has a basis which extends to be
smooth for x e [0, oo). This basis remains independent at x = 0, span-
ning %o = HχL(M) (which we call the Hodge-Leray cohomology), and this
limiting space represents the cohomology of M. The determination of
which forms on M lie in the limiting space H^L(M) can be carried out
by a Taylor series analysis. We show that this approach gives a Hodge
theoretic version of Leray's spectral sequence for the cohomology of M.
An attractive treatment of the spectral sequence can be found in [4].

Received January 29, 1988 and, in revised form, August 11, 1988. This research was
supported in part by the National Science Foundation under a Postdoctoral Fellowship and
Grant DMS-8603523.



186 RAFE R. MAZZEO & RICHARD B. MELROSE

To discuss the Taylor series computation we first consider the decom-
position of forms on M. The tensor g^ fixes a horizontal space, or normal
space to the fiber, at each point of M:

Th

pM = {ve TpM;goo(υ,w) = 0Vwe TpFy, Fy = π~ι(y), y = π(p)}

= TyY.

Since π*h vanishes on the tangent space to each fiber, this splitting is
orthogonal with respect to gx

TpM _L TpFy with respect to gx Vx > 0, y = π(p).

There is an associated splitting of the form bundles
k

(2) AkM = 0 Λ ^ M , Ak/M =M = 0Λ^M, A/
j=0

Forms on M depending on the parameter x can be regarded as sections
of the pull-back to

X = [0,oo)xM

of the bundle Λ* Af. We shall rescale this pull-back in a manner related to
the splitting (2) and suggested by the form of the metric gx in (1). Thus
let

(3) TA\XΦ)M = 0 ^ p ) M = AJ,Fy®χ-^Ak

y-n, (χ9p) e X.
7=0

This means that
k

(4) u e ff°°(X; τAkM) ~u = Σχ-^-j)Uj with Uj e ^°°{X\Ak^M).
j=0

The invariant significance of this rescaling, especially down to x = 0, is dis-
cussed in § 1. Analytically the important property of these bundles comes
from the fact that the action of Δ* on them is more readily decomposed
than is the action on (g>oo{X\AkM).

Observe that the norm induced on such forms by gx does not be-
come singular at x = 0. Because of this the Laplacian Ax of gx maps
C°°(X\ ^A^) into itself (see Lemma (26)). Now define a nested sequence
of spaces of forms over MQ = {0} x M = dX:

Ek

N = {u;3ύ G ̂ °°{X\ ^AkM) with u\dX = u

(5) and Axύ = xN+ιv, v e ff°°(X', rAkM)}, NeN,

N=\
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The spaces Efa are Hodge theoretic analogues of the successive terms in
the Leray spectral sequence for the cohomology of M in terms of the
cohomology of the base and the fibers. For this reason we call ^H^M)
the (2^)-Hodge-Leray cohomology of M with respect to the metric family
gx in (1). Let J ? be the ring of Laurent series in the parameter x:

(6) a eJϊ? o a = Y2 ajχj f°Γ some p e Z.
J>P

(7) Theorem. If N is large enough, then ΨH^M) = Ek

N = E^ and
this space, when tensored with 3*, is naturally isomorphic to the deRham
cohomology:

(8) ^ ( A / ) ® & ~ H^(M) ®5? (asS? modules.)

In particular it follows from (8) that

(9) dim ^H^(M) = dim Hk

R(M).

As in the Leray spectral sequence the terms E\ and E2 can be explicitly
identified. Let H^ά(Fy) be the Hodge cohomology of the fiber Fy, i.e., the
space of harmonic y-forms with respect to the metric induced by £00 (and
hence each gx, x > 0). These spaces vary smoothly with y and so define
vector bundles, ^ / d ' over Y. The tensor product with the form bundles
gives bundles which we denote by

k

(10) τLk = Σ / H d ^ J C " ( H ) Λ H 7

7=0

We shall show below that the sections of these bundles are just the spaces

( 1 1 ) hχ =& (Y, L ).

That is, the space E\ consists of the fiber-harmonic (^-)fc-forms over Y.
Trivializations of the fibration π give identifications of neighboring

fibers by diffeomorphisms which are near the identity and so induce the
identity mapping on cohomology. The bundles ^ * d therefore have natural
locally flat connections, where a section is locally constant if it represents,
locally, a fixed cohomology class on the fibers. Exterior differentiation
therefore extends from forms on Y to a differential operator, d'γ, on el-
ements of E\, i.e., sections of vLk, so that (df

γ)
2 = 0. (In general this

connection is not orthogonal.) The L2 inner product on fiber-harmonic
forms and the metric inner product on the form bundle over Y together
give Ef an inner product which allows the adjoint δ'γ of d'γ, and hence the
associated Laplacian

(12) A'γ = d'γδ'γ + δ'γd'γ
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to be defined. Then

Ek - {u is fiber-harmonic and a harmonic section of ^Lk}

= {ueWoo(Y'^Lky,d/

γu = δ/

γu = 0}.

The ellipticity of A'γ means that Ek is finite dimensional. The determina-
tion of the remaining terms in the sequence

(14) £^£fD£fD£h"O4 = 4+i="' = £ » = ^

is more subtle.
The spaces is*, are fixed by formal power series computations. The main

analytic result of this paper is that this (^-)Hodge-Leray cohomology is
actually the limit as x [ 0 of the Hodge cohomology with respect to the
metrics gx. As already noted the proof depends on the use of ^-forms.

(15) Theorem. The space of smooth harmonic Ψ -forms is the space of
^°° sections of a vector bundle over [0, oo):

(16) {u e W~(X; ΎAk)Άxu = 0} = ^°°([0,oo); * 3 » )

where the fibers of the (T -)Hodge-Leray bundle, ^ ^ L , are

{^L)X = HUMX), χ>o,

i.e. harmonic Ψ-forms in the sense of formal power series are realizable as
the Taylor series of harmonic Ψ -forms.

From this it is easy to deduce the results mentioned above for ordinary
forms.

(18) Corollary. The space of smooth harmonic forms is the space of^°°
sections of a vector bundle over [0, oo) :

(19) {u e ^{X'ΛkyAxu = 0} = r~([0 ,o

where the fibers of the Hodge-Leray bundle J?^L are

(20) (*ίbχ = U

(JgL)o = H^M) = {φe g
3φ e W°°(X;AkM) with Axφ = O{x°°)},

i.e., harmonic forms in the sense of formal power series at x = 0 are realiz-
able as the Taylor series of harmonic forms.

The main step in the proof of Theorem (7) is the proof of (13) which
implies in particular that E\ is finite dimensional and hence that the se-
quence (14) stabilizes. The remainder of the proof uses Hodge theory
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in the sense of formal power series. This is carried out in §5. The cor-
responding formal part of Corollary (18) is proved in §6. The proof of
Theorem (15) is mainly analytic, namely the construction of a parametrix
for Δ c which is uniform down to x = 0, to remove the rapidly vanish-
ing error terms which remain after the application of BoreΓs lemma to the
formal power series construction. To construct such a uniform parametrix
we follow the general idea of the "microlocalization of boundary-fibration
structures" which underlies [7], [8] and [9].

The results obtained here arose from joint work with Boyd Livingston,
in the examination of the boundary behavior of harmonic forms for cer-
tain degenerate and singular metrics on manifolds with boundary [7]. The
computations needed to analyze the L2 cohomology there bring out the
connection between such degenerate boundary problems and the adiabatic
limit for a fibration. Apart from our collaborator, we are happy to ac-
knowledge useful conversations concerning this note with Charlie Epstein,
Dan Freed, Victor Guillemin and Bob MacPherson.

1. Boundary-fibration structure

We start by carrying out the rescaling of the lift of the form bundle on M
to the product X = [0, oo) xM. This product has an induced fibration, with
leaves F and base [0, oo) x Y. Consider the space <V of ^°° vector fields on
X which are tangent to the fibers, M, of the product structure and which
are as well tangent to the fibers of the fibration, π, above Mo = {x = 0}. In
local coordinates y\, ,y p, z\, , zs in M, where the y's give coordinates
in Y, the elements of Ψ are exactly the vector fields of the form

P s

(21)

Since the coefficients in (21) are arbitrary, there is a vector bundle,
which we denote ^TXM = ^TM, of which T is the full set C°° sections:

Notice that as a bundle this is isomorphic to the lift, TχM, to X of the
tangent bundle to M but not naturally so. The natural map is a bundle
map

(22) TTXM -+ TXM.

This is an isomorphism except over MQ where it has range equal to the
tangent bundle to the fibers. The dual bundle, TT*M, to ^TM plays an
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important role below. The transpose of (22) gives a ^°° map

(23) lψ \ 1XM —> 1 M,

where TχM is the dual to TχM, the bundle of Λf-valued forms over X.
The range of (23) over Mo is a subbundle which is naturally isomorphic
to the bundle of forms on the fibers, since the null space of (23) is just the
conormal bundle to the fibers.

In fact the restriction of ^T*M to the boundary, Mo, of X naturally
splits

This means that all the "compressed" form bundles, i.e., the exterior pow-
ers of ^T*M, also split at the boundary

k

(24) \=^p Λ J> A J = Ap

 J(Fy) ® x JAJ

yY,
j=0

y = π(p) e Y.

The family of metrics gx on M lifts to a nondegenerate inner product,
G, on TTXM, and dually on ψTχM. Moreover, the decomposition over
the boundary (24) is orthogonal with respect to this metric. This splitting,
together with power series expansion, replaces the more algebraic passage
from the filtration of the form bundle to the associated gradation which
occurs in the spectral sequence of the fibration (see [4]).

Starting as an operator on ^°° sections of Λ*Af, the exterior differential
operator, d, can be lifted to act on sections of A*XM and hence, since
the spaces of sections are the same away from Mo, to ^A*M, where we
denote it diu> The action there can be expressed in the following way. Let
Diffî -(ΛΓ) be the ring of differential operators which can be written locally
as sums of products of elements of Ψ'. Since this is clearly a local &°°(X)-
module, the definition can be extended to sections of any vector bundle
over X\ we denote by ΌifF^-(X',E,F) these "^-differential operators" (of
order at most q) from sections of one bundle, E, to another, F. Then,

This is quite obvious in local coordinates, where it follows from the for-
mula
(25)

= d2a • dz Λ dza A (If)0 + (-l)M(xdya)dza Λ ̂  Λ (^
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(26) Lemma. Acting on the T'-form bundles the Laplacian is a CV-
differential operator

(27) Δ

Proof, The metric G gives a positive-definite fiber inner product on
the bundles τAk. Moreover the volume form for gx is of the form x~pvx

for a smooth nonvanishing volume form vx on M. Since the adjoint of
a ^-differential operator with respect to such a volume form and inner
product is again ^-differential, it follows that

(28) δeΌifίι^(X',rAk,rAk-1) Vfc

and hence that (27) holds for Δ = δd + d<5.

2. Formal deRham theorem

For any vector bundle, E, over a manifold with boundary, X, the space
of Laurent series (at the boundary) with coefficients in E can be defined
as follows:

&{X\E) = {ue Ψ°°(X,E)\xqu e ^°°{X\E) for some q e Z}/t°°{X;E)

where &°°(X;E) is the space of ^°° sections vanishing to all orders at the
boundary. If x is a defining function for the boundary then &{X\E) is a
module over the ring of formal Laurent series

in the variable x. From the definition of the bundle ^Λ*M (see in par-

ticular (4)) it follows that for any element u e ^°°(X, ^λ*M) such that

xPu e &°°(X; rA*M), for some p e N, xq e W°°(X;A*M), for some

(generally larger) q e N and conversely. Thus the space of Laurent series

sections is the same as for Λ*Λ/:

(29) &{X\ TA*M) s &(X\ A*M).

Any differential operator D e ΌiίΓ(X'9E,F) lifts to an operator on

formal power series D:5?(X;E) -+ S?(X\F). Thus we can define the

various spaces of formally closed and exact forms

g? = {u e &{X\A*M)\du = 0},

£ = {ue 5f(X;A*M); u = dv,ve £?(X;A*M)},
rW = {ue&(X\ ψA*M)\dMu = 0},
r r = {ue &{X\ ^Λ*M); u = dMv, v e &(X; rΛ*M)}.
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Since [d,x] = 0 these spaces are J?-modules. In fact the isomorphism
(29) identifies g7 with ^g7, and also % with ^IP, since it identifies d with
UM> From this we conclude:

(30) Lemma. The formal deRham cohomology is

(31) g v r

3. Ej

The restriction to the boundary (always in the sense of ^Λ*) of
depends only on the restriction of a to the boundary, assuming a to be
smooth. From (25) we conclude that the resulting operator, called the
indicial operator of dM,

/(dJt; = 4 w r Mo if w e &°°(X'9 *λ*), u\M0 = v,

is just

(33) I(dM) = rfF,

where rf^ is d acting on the fibers with respect to the decomposition (24).
From the definition by duality the same is true of the adjoint

(34) I{δM) = δF, i.e. δMU\x=o = δFu if u = ή μ = 0

Hence

(35) /(Δ) = Δ/Γ, Aύ]x=Q = AFu ifu = ύ[x=0 e ^°°(M0; ^Ak).

Now, for a fixed partial metric g^ consider the space of sections of ̂ Λ*
which are fiber-harmonic at the boundary:

(36) {u G &°°(X\ ^Ak);AF(u \ Mo) = 0}.

The boundary values of these sections therefore give the bundle

L, — Φr=o^Hd\^) ™ x ** * over /, UQ — & [i, L, J.

(37) Lemma. In terms of definition (5) £$ = E\ for all k so

(38) Ek

x=&°°{Y^Lk) \/k.

Proof Since 2?f c E§ we only need to show the reverse. Suppose that
W G £ Q , i.e., there is an extension ύ e ^°°{X\ TAk) of u such that ΔU\X=Q =
0. As already noted this means that AFu = 0 and hence that dMU = xv



THE ADIABATIC LIMIT 193

and δMu = xw for some ϋ e ^°°{X\ ^λk+ι) and w e W°°(X; )
Thus

(39) Au = xg, g = (δMv+dMw).

Since g = g\x=0 = δFv + dFw it follows that g is in the range of AF, g =
AFq. If (7 is an extension of q, then

(40) A{u

This is just the condition that ue £f, proving the lemma.

4. £2-term

As just noted, if ύ\x=o e E\ then dMU vanishes at x = 0. Thus the
boundary value x~ιdMU \ Mo makes sense. Let Πj be projection onto the
fiber-harmonic part of a form on the fibers. Then consider

(41) dγU = Π\[x di^ϋ], ύeE\, ύ = u \ Mo.

If w \ Mo = 0, so ύ = xuf, uf smooth, then dMu = xdMuι and from (33)
du1 ί Mo = dF(uf \ Mo) is exact, so is annihilated by Πi. This means that
the operator

ίΛΊ\ /I1 . Q?OΩ ( ΛT. UTK\ v (2POO / V
y\L) Uγ. <O yi ] Li ) —>• (Ω i ϊ \

is well defined.
(43) Lemma. For the operator defined by (42) on &°°{Y\ τLk),

dy2 = 0.
Proof. By Lemma (37) if u e ^°°{Y\ τLk\ i.e., u e &°°(M; ^Ak), and

AFu = 0, then u can be extended to ύ e Ψ°°[X\ <rAk) with dj^u = xv. So,
setting v = V\x=o, d'Yu = Yi\V. Now 0 = d2

Mύ = xdjuv so dMV = 0. This
implies that v = Π\V + dFw for some w e ^^(M; <rAk~ι). Then v -dMw
extends v - dF w if w extends w, and hence

d'fu = Uγ[x"\dM{v - dMw))lx=0] = 0.

By analogy with (41) we set

(44) δ'Yu = Y\χ(x~xδύ\x=o) if ueEk, ύe ^°°(X; τAk) and u = ύ\x=0.

Here δ is the family of adjoints δx of d with respect to the metrics gx. By
(28) δ maps W°°(X', rAk) into <g?oo(Λr; rAk~{). Moreover it is easily seen
that δy is well defined as an operator

(45) δy'.W (Y, L ) —• & (Y, L ) V/c

as in the discussion surrounding (42).
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(46) Lemma. The adjoint ofd'γ with respect to the fiber metric induced
by goo and h on the τLk and the volume form ofh is precisely δ'γ so that
the associated Laplacian is

(47) A!Y = δ'Yd'Y + d'Yδ'Y.

Proof. Notice that the inner product on E\ is just the sum over the
decomposition (3) of the tensor products of the inner products induced
by #oo on TD$ and by h on x~^k~J^Ak~JΎ integrated over the fibers of π.
Thus if Ui, i = 1,2, are elements of Ek and ft, are ^°° sections of TA*
with boundary values M/, then, always evaluating at x = 0,

(uι,u2) =XP(U\,U2)G, p = dimY.

From this it follows that

(dYuuu2) = (xp~

That is, the adjoint of dY is given by δ'Yu = Yl\[x~xδMu\. This proves
(48) Lemma. The differential operator dY from sections of τLk to sec-

tions of r'Lk+{ over Y commutes with the decomposition (10) and is such
that xdY defines a map from sections of^ά to sections of^ά<S>Aι over Y
which is just the natural flat connection on the bundles of the fiber-harmonic
forms.

Proof We have already noted that dY only depends on the choice of
the metric g^ restricted to the fibers, which enters through the definition
of the Hodge cohomology on the fibers. If the Hodge theorem is used to
identify the harmonic forms with the cohomology then we need to show
that dY does not depend on the metric at all. If a is a fiber-harmonic
form for one metric then the form a' representing the same section of the
cohomology bundle is of the form a + dfa" with the property Yl\a - a'.
Lifting a" to a ?°° form γ note that the exact term dγ is annihilated
at x = 0 by Πj, the projection for the second metric. This shows the
independence of the choice of metric.

Since dY is defined locally in the base, a product metric can be used
to compute it. This shows directly that dY is flat as a connection on the
cohomology bundles. Hence the lemma is proved.

From the definition in (5)

Ek = {ve g?°°(Λ/o; 7Ak);v e &°°(Y, τLk)

3ϋ e &°°(X\ rAk) with Aϋ = x3w and ϋ\x=0 = v}.

(49) Lemma. The space E% e 5?°°(Λ/o; rAk) consists precisely of those
elements v e E\ which, when viewed as ^°° sections of τLk over Y, are
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harmonic in the sense that

(50) A'γv = 0.

Proof. Essentially by definition the space E\ = Efi is characterized
as the boundary values of harmonic ^Ak-forms modulo first (or second)
order errors. Now if UMU = xϋ\ and SMU = xv2, then

(51) Axu = x(δMϋι + dMv2).

Denote the boundary values of the 0, by v,. As shown in the proof of
Lemma (37), there exists w e W°°(X'9 ̂ Άk) such that

(52) [ϋ{ - dMδMw]\χ=o = Π ^ i e Ek+\

[v2 - δMdMw]\x=o = Uxυ2e E\-χ.

Now, from (51),

(53) Δ(fi - xw) = x[δM{v\ - dMw) + dM{vi

Using (52) this can be written

Δ(β - xw) = x2ϋ, ϋ = [x~ιδM(v\ - dMw) + x~xdM(v2 - δMw)],

From (41) and (44)

d'y[n{υ2] = χ-ιdM(v2 -

Combining this with (44) we conclude that the boundary value, υ, of ϋ is
just

(54) v = ίylliVi + d'γΏιυ2 = {δf

γd'γ 4- d'γδ'γ)u = A'γu.

This shows that if A'γ u = 0 then u e E\. The converse follows similarly,
proving the lemma.

Certainly then, as the null space of an elliptic operator, E\ is finite
dimensional.

Choosing an extension map

&°°{Mo; rΛ*) -> &°°(X; ^Λ*) ^

we can identify J ? E\ with a subspace of &(X\ ^λ*). This subspace is
finite dimensional over & so has a basis e{, , ^ The inner product G
gives a bilinear form

r rΛ*) ^ &.
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Using this to orthonormalize the basis we obtain a projection operator
onto a complement to 3? E\:

(55) Lemma. ΓΛe operator P2 = Πf ΔXΠ^ w aw isomorphism on

By Lemma (49) the leading term of any element of
2 ^Λ*) in the null space of P2 must be zero. Thus Pi is injective.
Surjectivity follows by an inductive argument. If / e Π^-Jz^X; 'rAk)

then the leading term xιfi, I e Z, must have coefficient fi LE\. Thus we
can choose ut e ^°°(M0;

 ψAk) so that f{ = AFuι -fie ff°°(Y, ^Lk), i.e.,
is fiber-harmonic. If u' has leading term w/? then

f' = Axu'-f has leading term xι(f[).

In fact yj' = ΔyM/_2 for some W/_2 which is also a section of ^ZA By
Lemma (49) we can choose u" with leading term xι~2U[_2 s o that

Δxw
/; - / has leading term xι{Af

γUι__2 - JJ) = 0.

ThusAx{uf-u")-f= O(xι+ι). It follows that U^Ax(u'-u")-f = O{xM).
Let v = Πf (M; - w;/). Since v' = u" - v = Π2(w' - u") and υ! - u" has
leading term x1'2, from the definition of IΊ2 it follows that Axv' = O(xι+ι)
is three orders smaller than u1 - u". Thus U^Axv - f = O(xι+ι) too.
Proceeding inductively in the Laurent series we can construct u such that

5. Formal Hodge cohomology

We are now in a position to prove a version of the Hodge decomposition
in terms of Laurent series at x = 0.

(56) Proposition. Let Jf e ^(X; ^A*) be the null space ofAx in Lau-
rent series. Then JV is finite dimensional as an J?}-module, Ax is an iso-
morphism on its orthocomplement

(57) JίL = {u e 5?(X; TA*)\ (u9 v)G -QMv

and the inclusion N <—»- ^ in the space of formally closed ^Λ* -forms
projects to an isomorphism

(58) ^HH
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Proof. Certainly JV is a finite dimensional J^-module, since the pro-
jection Π2 is injective on it. Let B be the inverse of Πf Δ xIlf from Lemma
(55). The projection of the matrix equation

p v j
 \T^AXΠ2 π ^ π f U v " \ f " )

onto the image of Π2 is then

(60) Qv = [Π2ΔXΠ2 - Π2AxΠiBΠiΔ^Π^ = g = f - Π2Axnϊ Bf".

That is, if («',*/') satisfies (59) then υ = uf satisfies (60), and conversely
if v satisfies (60) then

(ίH
satisfies (59). The null space of this self-adjoint operator, Q, is Π2./Γ, and
by standard arguments it is an isomorphism on the orthocomplement in
Y12£?{X\ ̂ A*). This shows that Ax is an isomorphism on JV^.

The remainder of the proposition follows directly. The decomposition
(57) as usual is a consequence of the commutation properties [AX,C1M] =
[AX,SM] = 0. The identification, (58), of the Hodge cohomology with the
deRham cohomology follows from this and (31).

One immediate consequence of Proposition (56) is the solvability in
formal power series of

(61) Axu = f.

Set

(62) N(k) = min{N;Ek

N = E^}.

(63) Corollary. / / / E W°°{X; τKk) and ( / » = O(x°°) for all v e
&°°(X;Ak) with Axv = O(x°°), then there exists u e χ-N^°°(X\ τKk)
satisfying (61) in the sense of Laurent series at x = 0.

Proof Since Ax is an isomorphism on J^-1, the only point to check is
the order of singularity of the solution. If u e χ-p&°°(X; τKk) then

Ax(xpu) = O(xp) ^uo = (xpu)lx=0 G Ek.

Thus, if P > N{k) then l i n φ , υ) = {u0, v0) = 0 for all v e Ek = E^. This

implies UQ = 0, so P < N(k).

6. Hodge-Leray cohomology

We proceed to prove the formal part of Corollary (18), and more par-

ticularly
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(64) Lemma. The space H&L(M) defined by (20) consists of&°° closed
forms on M representing the deRham cohomology, i.e.,

(65) H^L(M) Bφ^[φ]e H£R(M) is an isomorphism.

Proof. Certainly H^L(M) consists of closed forms since the smooth
extension φ is closed to infinite order at x = 0. Thus the map (65) is well
defined.

Consider the space Φ c ^o o(^;Λ / c)/ί/g ? o o(^;Λ / c) of formal power se-
ries of ^°° forms which are formally harmonic, φ G Φ & Axφ = O(x°°).
Then H^L(M) is by definition just the set of boundary values of Φ. Simi-
larly let Φ c Jϊf(X;Ak) be the space of Laurent series of harmonic forms.
Clearly

(66) &(X, Ak) = &{X\ τAk) &Φf=yK

is just the space of formally harmonic 2^-forms. Suppose that ψ is a closed
W°° fc-form. Let ψ be its trivial extension to X, independent of x. Let

(67) Ψ = Ψd + Ψδ + Ψo

be the decomposition of the Taylor series of ψ as a 2^-form, from (57).
Certainly dM ψ - 0 so ψ# = 0. Writing out (67) as an equation in Jΐ?(X, Λ*)
rather than J?(X9 ^A*) and equating coefficients of x show that ψ = φ+dη
for some ^°° form η. Thus the map (65) is surjective. The injectivity of
(65) is similar.

(68) Corollary. If N(k), defined by (62), is the length of the sequence
(14), then N{k) is at most the number ofsummands in (10).

7. The parametrix for Ax

The transition from the formal power series result, Proposition (56),
to the existence of a smooth basis, as in Theorem (15), is accomplished
by the construction of a parametrix which is uniform as x [ 0. From the
smoothness of the error term in the parametrix one can extract a basis
for ^ H L smooth down to x = 0. The construction itself is quite typical
of the (more intricate) methods used in [9] and [7]. Thus we proceed to
construct the Schwartz kernel of the parametrix directly, but on a blown up
version of the product manifold. The construction proceeds in three steps.
The first is a symbolic construction equivalent to the construction of a
parametrix on a compact manifold, but uniform up to the boundary. This
is followed by a global construction on a Euclidean bundle over the fibers
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which distinguishes the fiber-harmonic forms at the boundary. Finally
there is a formal power series step essentially reducing to Corollary (63).

First we describe the blown up product on which the construction takes
place.

8. Stretched product

Since x is a parameter throughout, we consider the partial product

Z = [ 0 , o o ) x ¥ x ¥

with its fibrations and two Lie algebras Ύl and % , being respectively *V
on the second and third (left and right) factors. Inside Z consider the
submanifold Q:

where TIL and ΆR are the left and right fibrations. This is simply the
"fiber diagonal" over the boundary. We carry out the construction of the
parametrix on the manifold with corners which is obtained by blowing up
Z along the submanifold Q:

ZQ = SNQ u [Z\Q\.

As a set it is given by replacing Q by its inward-pointing unit spherical
bundle. It comes equipped with the "blow-down" map

(69) πQ:ZQ^Z,

which is the identity away from the "front face" SNQ, which we will
denote ff(Zρ). The blown up space ZQ has a unique &00 structure such
that UQ is ^°°, is a diffeomorphism from ZQ\ ff(Zρ) to Z\Q and has rank
dim Y + 2dimF + 1 at ff(Ze) (see for example [10]).

The manifold ZQ is just the natural domain for polar coordinates around
Q. The front face ff(Zg) is fibered by hemispheres πQl(q), q e Q. In fact
the projection of Q down to the right factor of M in Z shows that S(ZQ)
fibers over M with fibers F xSp

+, p = dim Y:

FxSp

+ — fί(ZQ)

(70) j
M

The hemispheres Sp

+ are parametrized nonsingularly by the component
ω of polar coordinates around Q induced by coordinates on M:

ZQD [Oi^xS? x R p xFxF

(71) 3 (R = (x2 + \y - y'|2)1/2, ω=(x,y- y')/R,y, z, z')

H+ (x,y,z,y',z')eZ.
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More usefully for computations one can introduce projective coordinates

(72) x,u = y^Z9y,z,z>

valid except at the boundary of the front face. Since u takes values in HP,
the interior of each fiber of the front face has a Euclidean structure, which
is independent of the choice of coordinates.

The significance of ZQ is mainly related to the following simple result.

(73) Lemma. The closure, Aψ , in ZQ of the submanifold {{x,p,p);
x > 0, p e M} of Z\Q is an embedded submanifold which meets the
boundary ofZQ only in the interior of^{Zq) and does so transversally. The
Lie algebras % and ΨR lift to algebras of^00 vector fields on ZQ which
are tangent to all boundary faces, each is transversal to Ay, tangent to the
spherical fibers of^{ZQ) and restricts to them to the translation invariant
vector fields spanning the Euclidean structure.

Proof These statements are all local. Moreover they are clearly invari-
ant, so can be checked in any local coordinates x,y,z,y\z', where y,yf

are local coordinates in the base. Since Q projects onto the diagonal in
Y x Y, the y-coordinates can be taken the same in the two factors. Then
Q is just y = y',x = 0. In the projective coordinates (72) A^ is given by
u = 0, z = z' so is obviously an embedded submanifold transversal to the
local boundary component x = 0.

The transversality of the lifted Lie algebras also follows from this com-
putation since

(74) dZi9xdyj=dUj+xdyj

span *VL and restrict to span the translation-invariant vector fields. This
proves the lemma.

The bundles ^AkM, defined as they are from ^TM, lift to the left factor
cfZ = XxM and then up to ZQ where they embed naturally in Λ* over
the interior of ff(Zg).

(75) Lemma. The metrics gx lift to ZQ from the left factor of M to a
Ψ™ 2-cotensor near ff(Zρ) which restricts to a product metric on F x Rp

with second factor Euclidean. The Laplacian lifts to a differential operator
with ^°° coefficients on ZQ which is transversally elliptic, with respect to
Ap , and tangent to the fibers F xRp of the interior 0/ff(Zg). Its restriction
to a fiber is Af + AE with AE Euclidean.
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Proof. These statements are all coordinate invariant so can be checked
in the projective coordinates (72). The Laplacian is an elliptic combination
of the vector fields (74) with Ψ°° coefficients on X.

9. Symbolic construction

We wish to construct a right parametrix for Ax, i.e., an operator Gx on
compressed /c-forms on M such that

(76) AxG = ld-F,

where F is to be made as "small" as possible, in successive steps. Initially
then G\, the first part of G, is a distribution on Z, or rather a distributional
section of the homomorphism bundle with density factor

G\ e^-°°(

Here Ω,R is the density bundle lifted from the right factor of M, allowing
the formula

(77) G\u(x,y) = ί G\u= ί G, udgx,
JM JM

to be interpreted correctly, where the Riemannian density dgx has been
used to trivialize the density bundle. Thus G\ is a distributional section
of the homomorphism bundle. It should be noted that

(78) dgx - x~rμ, μ is W°° and nonvanishing,

as a density on M\ so this normalization introduces factors of x.
The successive kernels will be extendible distributions on Z, a manifold

with boundary. Since ZQ is obtained by blowing up a submanifold of the
boundary of Z the space of extendible distributions on ZQ is canonically
isomorphic to the space of extendible distributions on Z (see for example
[9]). Thus we can just as well consider

(79) Gx e W-

where the lifts of the bundles over Z (whence they have arrived from
M) are not distinguished from the bundles on Z. Thus we shall lift the
equation (76) from Z to ZQ.

Consider the kernel of the identity operator. As a distribution on Z
it is a nonvanishing Dirac delta section over the diagonal. With the den-
sity factor removed by the Riemannian density it takes the form in local
coordinates

Id = xphδ(y - y')δ(z - z') on Z,
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where h is an isomorphism on the bundle. Lifted to ZQ the factors of x

just compensate for the homogeneity of the delta function

(80) Id = hδ(z - z')δ(u) on ZQ.

Lemma (75) shows that the lifted operator is ̂ °° and transversally el-
liptic (i.e., noncharacteristic with respect) to the lifted diagonal Δ^ . Since
this is the carrier of the singularity of the kernel of the identity, in (80),
for the first step in the construction of a parametrix, we can use standard
elliptic theory.

(81) Lemma. The kernel G\ in (79) can be chosen as an {elliptic) conor-
mal distribution with respect to the submanifold Δ ^ :

(82) G{ e Γ2(ZQ,A^Hom(^Ak, *λ*)),

which vanishes in a neighborhood of dZ()\fΐ(ZQ), the part of the boundary
other than the front face, and is such that

(83) AXG{ -Id = F{e &°°(ZQ, Hom(*Ά*, *λ*)).

Proof This is a standard symbolic argument. Since G\ will be cho-
sen ^°° away from the lifted diagonal, Δ^, and this submanifold only
meets the boundary in the front face, by Lemma (73), the extra vanishing
condition is trivially obtained.

10. Laplacian on Euclidean space

The main step in the iterative solution of the model problem, carried
out below, is the inversion of the standard flat Laplacian on Euclidean
space. The only subtlety is that we need to solve

(84)

where / may have an asymptotic expansion at infinity, and we need to con-
trol the asymptotic behavior of the solution at infinity. We shall introduce
a suitable space on which this can be done.

Supposing throughout that p > 2 set

(85) $[={fe&°°(Rp\0)\3qeN such that

f(η) = \η\-2qg(η) with g e S"{ΈtP), \f(η)\ < C\η\~ιh I G Z,

S"(RP) being Schwartz's space of test functions of rapid decrease. We shall
define a regularization map

(86) e:$[~S»{Wy, / /
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There is a reasonably natural choice, once the norm is fixed, given by the
introduction of polar coordinates. Consider the "Laurent" series expansion
of / written in polar coordinates

f(rθ)= £
(87) ,•>„-!

Then, recalling that the Lebesgue measure in polar coordinates is dη =
rP~ιdrdθ, set

e(f){Φ)= Σ (κΛ~X~i,j^_χβj{θ)φ{rθ)dθ"sj

+ Γ I f(r,θ)φ{rθ)drdθ, Vφe<¥>(Rp).
Jo JSP~I

Here, the first pairing is of tempered distributions on the line, with r+

 k

the regular part at z = -k of the meromorphic extension of

Certainly definition (88) has the desired restriction property (86) and is
independent of / since only the expansion (87) is involved. It follows easily
that for any symbol p

(90) e(pf) = pe(f) V/ e % Vp e 5°°(R^).

Clearly if p vanishes at the origin, the "order" decreases:

(91) peS°°(Rp), Dap{0) = 0 V|α| < r ^p:^-^^2r.

Of course the selection of a regularization of r~k means that some am-
biguity is involved in the definition. This appears in the argument below
in the form of the noninvariance under general linear transformations.

(92) Lemma. For any /, j and I

(93) e(ηidηjf)-ηidηje(f)= Σ c^δ^ί) if f *%
|α|</-p+2

Proof, The noncommutativity arises from the fact that r~k is not ho-
mogeneous. Rather it is quasihomogeneous of degree -kin the sense that

(94) rdrr-k = -kr-k + ckdr

k-ιδ(r).

From this (93) follows easily.
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Now using the regularization (88) and Fourier transform we define

(95) ^c^'iW), ge^^g = e(f), f z% ^ί~%

The point of this construction is simply that the map

(96) AE:^~Jί_2 VI eZ

is always an isomorphism. Indeed the inverse is given by / »-> \η\~2f.
To make use of this isomorphism we need some information on the

asymptotic behavior of the elements of &[. This is easily deduced form
formula (88).

(97) Lemma. If p > 2 then any f e^[ is a symbol on Rp with complete
asymptotic expansion at infinity of the form

f(u)

(98) J-°

0<\a\<l-p

Notice that as a consequence of the properties of &{ we have

(99) dUj:&ι^&ϊ-i, uidUj:J[-^^+^ι_p,

where ^ is the space of polynomials of degree at most s.
The case p = 1 is even more elementary since no lower order terms and

no logarithmic terms arise. Thus set

(100) J[=

Then (96) and (99) hold, the latter without any polynomial error terms.

11. Model problem

It is important to note that the error term F\ in (83) is not a smoothing
operator on M, although it is an operator on M, which is smoothing for
x > 0 and depends smoothly on x down to x = 0. To obtain a smoothing
(and hence compact) error, we need to choose a second kernel Gj on Zρ,
which will remove the Taylor series of F\ at the front face. Let p be a
defining function for the nonfront face of ZQ. The choice of G2 will be
(initially) of the form

(101) °2 e
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with the logarithmic term absent if p = 1. The fact that the logarithmic
term has as coefficient a 8"°° section on the original manifold Z is impor-
tant because of its effect on the regularity properties of the operator G2.
The splitting (101) is not unique, but the space formed by the sum is well
defined.

(102) Lemma. Ifp > 1 then a kernel G2 of the form (101) can be chosen
so that

(103) AxG2-Fι=Fl + logp F2,

where F^F^' € xp-2W°°{Z;Hom(rAk))f and F2" = 0 in Taylor series at
Q. Ifp = 1 then a kernel G2 e p-ι&°°(ZG;Hom(^Ak)) can be chosen so
that

(104) AXG2-G{ =F{ eχ-ι^°°(Z;HomC"Ak)).

Proof. Initially we consider the case k = 1, and the action on func-
tions, and assume p > 1. In terms of the polar coordinates (71) we can
take the defining function for the nonfront face of ZQ to be p = ωo.
We shall use the two symbols interchangeably. The desired kernel will be
constructed in the form

et e pP'2'i9?oo(SP xFxF), e' e &°°(Z)9

by solving recursively for the e^ The logarithmic terms will arise naturally
in this recursion.

Notice that x = pR where R is a defining function for the front face, so
the sum in (105) does represent the Taylor series at the front face of a ^°°
function. Writing the Taylor series as in (105), in terms of x, introduces
extra singularities in the ez, but has the advantage that a corresponding
series for AXG2 is easily obtained because [Δx,x] = 0:

(106) AXG2 - J ^ x ' Δ ^ ί ω , z ' z ' ) + A*Vogp e']9

ι=0

although now the coefficients may depend on all variables. Consider the
form of the Axeι in the projective coordinates (71). Notice that the func-
tion \j p = 1/ωo is of precisely linear growth in \u\\ this follows from

x y - y' ,
ωou = - '—f- = ω'.

K x
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Expanding the coefficients of the operator expressed in terms of the vector
fields (74) gives:

(107) Axei(u,y,z,z')

B(2)

As an operator in u, this has constant coefficients.
From Lemma (75) it follows that Bo is simply the Laplacian on F xW

with its product metric, as a fiber of the interior of the front face of ZQ.
To invert the operator we treat the harmonic and nonharmonic parts on
F separately:

T' -> ,*", r = {e e &°°(ff(ZQy9 ^A*)ΆFe = 0},

i = {ee y°°(ff(Zβ); ^Λ*);e = δFe'

In fact

where Δ £ is a Euclidean Laplacian acting on the fibers. Although a constant
coefficient operator on each fiber, Rp, the coefficients of this Euclidean
Laplacian Δ £ may well depend on the base variables y, since this is just
the y-dependence of the metric h.

To apply the discussion of the Laplacian above it is therefore natural to
make a linear change of variables in u to reduce the Euclidean metric to
standard form. This is easily accomplished by replacing u by

(108) U = A(y)u,

The main adverse effect of this transformation is the change

(109) dy*-+dy + -

which adds a linear vector field in U to dy. In terms of the variable U we
can consider the space ^/Όf (95), with W°° dependence on the parameters
y and z.

The second of the pieces of Bo is the more easily inverted. Let ̂ ^ be the
part of &{ which is orthogonal to the harmonic functions (i.e., constants)
on the fiber F. Since the spectrum of Δ^ is strictly positive (and discrete)

(110) 2?o_L is an isomorphism on «9/" V/ E Z.
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To prove (110) take the Fourier transform in U. If η is the variable
dual to £/, then the inverse of 2?0_L becomes (AF + M 2 ) " 1 . This preserves
smoothness in z e F and the parameters y. Acting on ̂ ± it preserves
the orthogonality to harmonic functions, and since it is a multiplication
operator in η, it preserves the form (85) of &[ (see (90)). Thus (110) holds.

The invertibility properties of Boo have already been discussed. In par-
ticular we shall use (96). Let ̂ ° denote the part of &f which is harmonic
(i.e., constant) on the fibers. Then

(111) AE:^°^^2 V/.

To use these invertibility results we need to consider the behavior of the
higher order terms in (107). First consider Bx. This arises from the second
term in the Taylor series of Δ* on X together with the cross terms arising
from (74), i.e., the fact that xdy lifts to du + xdy, not du. By (51) the first
part has values in the %Ί. On the other hand the second part must have a
factor of du, and it therefore reduces the order at infinity. Recalling that
the change of variable (108) has been made and using (109) we see that

(112) Bι:&[±^&ί+&'ι-p> Bι:&[°^&£ι+&[±+0>ι-p V/€ Z.

Here of course the polynomials (in u or equivalently U) depend smoothly
on y and z. The higher order terms have no special properties so

(113) Bi:#[^&ι+&fι-p V/>2.

This allows us to solve (103) inductively with

(114) eie^2+^;±
 V/<EN.

This is accomplished by writing the formal power series version of (103),
using (105), (106) and (107), as

where the J?z and Fu are the Taylor series of B and F{ in x. The initial
step is

Then the inductive assumption (114) means that

ϊ-2

Applying (112) and (113) gives the inductive step.
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Thus we have constructed a formal power series as in (105). Notice that
u = (y - y')/x and this means that the series for e' is a Taylor series at Q
on Z. Using BoreΓs lemma to sum this to a 8̂ °° function on Z and the
other series as a 2P°° function on ZQ gives G2 as in (101) satisfying the
conditions of Lemma (102).

The case p = 1 is similar but simpler, without logarithmic terms. Ex-
tension to the case of positive form dimension involves only notational
changes, so Lemma (102) is proved.

12. W°° regularity of the parametrix

We shall slightly modify G2 before examining its regularity as an oper-
ator. Writing (101) in the form G2 = g2 + log/? g2 we notice that (106)
implies that Axg2 = 0 in the sense of Taylor series at Q. Thus consider

G2 = G2- log* g2 = g2

since x = Rp. Then G = G\ - G2 is a true parametrix for Ax:

(116) AXG = Id+F 2 , F2 e xp~2^°°(Z, τAk).

One should however recall that a factor of x~p has been absorbed into the
measure in (77) and (78). Thus as an operator the error term is a map

r2.& (Λ, Λ ) —• X & [Λ, Λ ).

We next consider the regularity properties of the operator with kernel
G. Away from x = 0 it is a pseudodifferential operator of order -2 . The
important point is therefore the uniformity up to x = 0.

(117) Lemma. The parametrix constructed above, G = G\ — G2, satisfies

G:&°°(X; τAk) -> χ-2W°°{X\ τAk).

Proof. To show the regularity of Gu we use an extreme form of a stan-
dard method, namely showing tangential and normal regularity separately.
The tangential part is in the form of conormal regularity:

(118) G:&°°(X',

Here the conormal space is defined by

\ rAk) = {ue Ψ~™{X\ τAk\,

for some s = s(u), %{X)ru e HS{X\ τAk) Vr e N}.
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The Lie algebra, 3^(X)9 consisting of all ^°° vector fields tangent to the
boundary of X, acts through some connection, and HS(X) is the standard
Sobolev space.

The main step in proving (118) is to note that there is a lifting map

SL: %{X) - %{ZQ\ with /L(V) tangent to Δ^.

Suppose that V e %(X) has support in [0,oo) x π - 1 (Ω) where Ω c Y is a
coordinate patch over which π is trivial, π~ι(Ω) = Ω x F . Thus V can be
written

p

V = a(x,y, z)xdx + £ aj(x>y> z)dy} + v'
/=o

with V tangent to the fibers F. Let φ e ^°°([0,oo) x Ω) be identically
equal to 1 on the support of the coefficients, and consider

(119) a{x
1=0

This vector field on Z projects to V and is tangent to the diagonal Δ.
Since it is also tangent to Q, lifting to ZQ gives SL{V), locally, as desired.
A partition of unity gives a global lifting.

Consider the space & of all kernels of the form of a sum (82) and (101).
Applying V (through some connection) and integrating by parts gives

(120) VGu = i/L{V)G)u + Σ G(W'u)9

j

where W is the transpose of the projection of /L(V) onto the right factor
of M in Z. Since SL(V) is tangent to the boundary of ZQ, the kernel
/L(V)G € 3?9 so has the same singularity type as G. Hence iterating (120)
it suffices to note that any operator with kernel in ^ G is bounded from
&°°(X; τAk) into some fixed Sobolev space. Since the elements of & have
some fixed regularity, this is certainly so, proving (118).

To show the normal regularity we shall investigate the analyticity prop-
erties of the product

(121) ^ ^

Here μ is a nonvanishing smooth density on the left factor of M, and
dgx is the Riemannian density from the right factor. Certainly this is well
defined for 9t(0 > 0. We shall show that, as a supported distributional
density on Z, it is in fact entire in t. To see this we lift to ZQ. This is
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unambiguous in 9t(ί) > 0. Notice that the lift is of the form

(122)

Here v is a smooth, nonvanishing section of the standard density bundle
over ZQ. The singular factors in (122) arise from the introduction of polar
coordinates:

(123)
x2[μdxdgx] = x2~pμdxμf = x2~pRphdRdωdydzdzf = R2p2~pv.

Here h φ 0.
Now G\ contributes an entire term to this, since it is ^°° up to R = 0

(the front face) and on its support p φ 0. Thus we have only to consider
(122) with G replaced by G2 (see (115)). Since ρ2~pg'2 is ^?o°, we conclude
that

R V ' ' Ά

is entire. The presence of the factor \o%R in the second term in (115)
introduces the possibility of simple poles at the negative integers, i.e.,

τ - τ | γ - logi? R2ρ2~pg2 has at most simple poles at t e - N .

Combining these two statements we see that the distribution (122) is
meromorphic in C with at most double poles at - N . Consider the form of
the residues. Since p*/Γ(t) is entire and R* is entire away from the front
face, where p2~pG2 is also smooth, the support of the residues must be
contained in the front face. Moreover all these residues must be smooth
in z, z', y as distributions in (R, ω). Projecting down to Z from ZQ (dual to
lifting of smooth functions) gives the distribution (121), which is therefore
at worst meromorphic with residues supported in Q. To remove the poles
we need only subtract a distribution of the form

L = (logx)2f2(x,y, z, z',y - y') + (log*)/i{x,y, z, z',y - / ) ,

where f\ and fz are S^00 in x and are chosen to have the correct Taylor
series at x = 0 to reproduce the residues. Now applying Δ* we find

AXG2 = Ax(Gi - L)+AXL e ^ ( Z Hom^Λ*)).

Since x ' x 2 ^ - L)μdx/Γ(t) is entire (by construction), the same is true
ofx'x2Ax(G - L)μdx/Y{t). This implies that

(124) Axfi^0 for/ = 1 , 2
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in Taylor series at x - 0. However, from the support and regularity con-
ditions on the kernels noted above, the operators defined by the fi are of
the form

That is, they are differential operators in y with coefficients which are
smoothing operators in z and smooth in y. Then (124) implies that the
ranges of these two formal power series operators lie in the null space of
ΔJC (in the sense of formal power series). Since the latter space has finite
dimensional coefficients, and a differential operator with finite dimensional
range must vanish, the f vanish as Taylor series in x. By definition this
means that (121) is entire. This is the "normal regularity" of G.

Finally then observe that (remembering the density factors)

/ e &°°(X\ ^Ak) => x2G{f) ej*(X\ ψAk) ns/'(X\ τAk).

Here the dual space is characterized [9] by the condition that for any
element κ,jt'M/Γ(ί) is entire. In [8] or [9] (see also [6, Volume 3, Chapter
18]) it is shown that on any manifold with boundary

This completes the proof of Lemma (117).

13. Proof of Theorem (15) and Corollary (18)

To complete the proof of Theorem (15) we only need to improve the
parametrix constructed above to a precise generalized inverse, i.e., inverse
modulo a finite rank remainder. By finding an appropriate formal power
series we can add to G a term G3 e x~l(£?oc(Z,Hom(rAk)), to remove all
but an error of rank b^ = dim Hk(M) so that G = G + G3 satisfies

bk

AX(G) = Id+

F' e ^°°(

To see this first note that the leading coefficient of xp~2 in F2 arises directly
from the coefficient of xp~2 in G - Gι, at least away from Q where this is
^°°. Thus it must be in the range of Δ/r. In particular we can remove it
by adding to G a term with leading power xp~2 and ^°° coefficient. Thus
we can assume that F2 e xp~xW00{Z,ΊΆom{τAk)). Using Lemma (37) the
coefficient of xp~{ in F2 can be similarly removed, without making G more
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singular, since it must also be in the range of AF. Thus we can assume
that Fι e x/7^7°°(Z,Hom(^A/:)). Now, solving in formal power series we
can remove any terms orthogonal to the null space of AX9 at the expense
of adding to G a term in χP~N(F00{Z,Yiom{rAk)) where N is given in
Corollary (68), and is bounded by p + 1. Thus the new term (73 is such
that xG3 is &°° and (125) holds.

For x small the operator Id +Ff can be inverted, giving an operator of
the same type. Since composition of G with an operator such as Ff gives
another operator with g"00 kernel vanishing to all orders at x = 0 the extra
term G3 in (125) can be chosen so that F' = 0 identically near x = 0.
Thus

h
(126) AX{G) = Id+ £ aijix)hi(x9y)h'j(x9y

9)9 hhh\ e ^°°{X\ *λ*),

and hence the rank of the remainder term is precisely the dimension of
the cohomology.

Since the operator Ax is self-adjoint and has range of codimension b^
(when x > 0), the Ψ°° sections h\ must lie in its null space. These provide
the basis of the bundle ^ j ^ , considered as a subbundle of &°°(X, ^Άk).
Thus the proof of Theorem (15) is complete.

Corollary (18) also follows immediately. That ^ L extends to be W°° as
a subspace of the usual form bundle &°°(X;Ak) follows from the formal
power series discussion (see §6).

Various solvability properties of Ax also follow from (126).
(127) Corollary. Iff is a &°° form on M depending smoothly on x G

[0,00), then there exists a smooth form u e W°°(X;AkM) such that

Ax[χ-p~ιu] - fe ^°°{X\AkM) is gx-harmonic.

One can also give L2-continuity results for the projection onto the har-
monic part by noting the (straightforward) L2-boundedness properties of
the parametrix, and hence generalized inverse.
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