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THE BIHOLOMORPHIC CURVATURE
OF QUASISYMMETRIC SIEGEL DOMAINS

J. E. D'ATRI & J. DORFMEISTER

0. Introduction

Let D be a bounded homogeneous domain in C^ equipped with the
canonical Kahler-Einstein Bergman metric. Then D has nonpositive sec-
tional curvature if and only if D is symmetric [6]. For complex manifolds
natural generalizations of the sectional curvature are the holomorphic sec-
tional curvature and the holomorphic bisectional curvature as defined in
[10]. In this paper we want to investigate the holomorphic bisectional cur-
vature for quasisymmetric Siegel domains, a class of homogeneous Siegel
domains which lies strictly between the classes of symmetric domains and
general bounded homogeneous domains. Perhaps the simplest character-
ization of the irreducible quasisymmetric domains is that their Bergman
metric induces a symmetric metric on the tube subdomain [4]. A for-
mula for the holomorphic bisectional curvature for quasisymmetric Siegel
domains has been given in [15]—using the classification of quasisymmet-
ric Siegel domains and a case-by-case argument. It was shown in [15],
however, only that the holomorphic sectional curvature is nonpositive for
quasisymmetric Siegel domains.

In the present paper we give a classification free proof of Zelow's for-
mula for the holomorphic bisectional curvature and—as its main result—
show that the holomorphic bisectional curvature of quasisymmetric Siegel
domains is always nonpositive (§4.14). We would like to note that this
is in contrast with a recent paper of Mok-Zhong [11] which states that a
compact Kahler-Einstein manifold of nonnegative holomorphic bisectional
curvature and positive Ricci curvature is isometric to a Hermitian sym-
metric space. Thus there is no direct analog of the Mok-Zhong result in
the noncompact case.

The plan of this paper is as follows. One observes (in §4) that all ir-
reducible quasisymmetric Siegel domains of rank greater than 2 occur as
Kahler submanifolds of symmetric Siegel domains (in fact, as fibers of a
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fibration which arises by representing the symmetric domain as a Siegel
domain of type three). We also use a standard argument [10] to show
that the holomorphic bisectional curvature of the quasisymmetric fiber is
majorized by that of the ambient symmetric space and so is nonpositive.
This settles the case rank > 3. For the rank 2 case, we use a formula of
Zelow [15] and direct computations in the canonical nonassociative alge-
bra associated with the Siegel domain [8].

Since Zelow's formula was proved by a case-by-case argument, we give
(in §3) a new unified proof and in the process find a number of new re-
lations in the quasisymmetric case which should be valuable in the future
(§2).

1. Basic notation and results

1.1. Let D = {(Z, U) e Vc x U: Im Z - F(U, U) e Ω} be the homoge-
neous Siegel domain determined by the homogeneous regular cone Ω in the
real (finite-dimensional) vector space V, the complex (finite-dimensional)
vector space U, and the Ω-hermitian form F:U x U —> V c = V θ ί V . Let
G be the identity component of the automorphism group of D with Lie
algebra g. In G, there is a simply-transitive solvable subgroup S acting by
affine transformations on (V θ /V) x U; after choosing a base point b e D9

we can identify S with D by the map S —• D, g —• g b. This identifies the
Lie algebra s with T^D, and we may assume 5 is a normal ^-algebra with
respect to the pullback j of the complex structure and the inner product
( , ) induced by the metric. We have s = aΘn (orthogonal vector space
direct sum), where α is abelian, n = [s,s], and the adjoint representation
of α on n has only real eigenvalues. We have a root space decomposition
n = Σ*a, nα = {X e n: [H9X] = a{H)X for H e α}, and ja C n is the
sum of r one-dimensional root spaces, ja = Σ £ = 1

 n«*» where r is the rank
of D. All other roots are then of the form ^εk, j(εk ± εm), k < m, and we

SetS_! = Σfc< m n ( ^ + ε m ) / 2,S_i/2 = Σnεk/2,Sθ =jS-\ = αθΣ£<mn(ε*-εm)/2

1.2. It is easy to see that s_ i is an abelian ideal of s, whence s operates
on 5_i via the adjoint action. We extend this action C-linearly to the
complexification s_i θ /s_i of s_i.

Following [9] we consider the representation Y —• φy of s by affine
transformations on (s_i θ /s_i) x 6_1/2 which is given by

φγ(Z, U) = (L/72, Z] + (1/2)[M, U] - (i/2)[u,jU] + lu [jl2, U] + u),

where Y = l\ + jl2 + u e s, luh Ξ *-i> u ^ 5-i/2 and (Z, U) e (s_i θ
is-\) x 6-1/2- This induces an affine action of S on (s_i θ /s_i) x s_i/2,
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and there is a natural identification of s-\ with V and of s_i/2 with U
so that the S actions are equivariant. With this identification, F(u,v) =
\{[JU, V] + i[U, V]}, b = (iΣxk,0) where Xk e nεk is determined by
εk(jmX) = δkm, and the cone Ω is the orbit of Σ^k by the action of
expso on V.

1.3. Now V has an algebra structure defined in terms of the Bergman
kernel function [8]. Let V be the covariant derivative of the left-invariant
metric on S, which is the pull-back of the Bergman metric by the corre-
spondence S ~ D. Using the identification of s_i with V, we can express
the product as follows: X Y = -jVxY for X,Y es-{ [3]. Let L denote
V (or s_i) with this product. We note that the elements dk e V corre-
sponding to Xk form a complete set of primitive orthogonal idempotents
[5], and that the corresponding Peirce decomposition agrees with the root
space decomposition.

1.4. The notion of a quasisymmetric domain was originally defined
by Satake [13]; Dorfmeister [7] showed that this was equivalent to the
condition that L be a Jordan algebra. DΆtri and Miatello [6] proved that
an irreducible domain is quasisymmetric if and only if there are constant
a and b so that άimn^+^β = b, I < k < m < r, and dim^/2 = a,
\<k<r.

1.5. We note that VxY is given by

(1.5.1) 2(VXY,Z) = ([X, Y],Z) + ([Z,X], Y) + <[Z, Y]9X).

From this it follows easily with sf = s_ i + so

(1.5.2) VXY e s' for all X,Y e s'.

More precisely, an evaluation of (1.5.1) shows

Lemma. Let u,μ = 0, - £ , - 1 . Then

(1.5.3) VSι/sμcsu+μ

(1.5.4) Vs_,5_i C %

In general we have

where I = {ae {0,-^,-1}, a = (v + μ) mod(l)}.
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Corollary. V^s^ c S-1/2, ifv + μ = -\ mod(l).

2. Special relations

2.1. Let D be a homogeneous Siegel domain with notation as before.
In general, we know that for any X e s, Vx is a skew-symmetric endomor-
phism of (s, ( )), which commutes with j ; but there is no simple general
relation between VJXY and VxjY, unless one has commutativity for some
of the vectors involved. Thus for example

(2.1.1) VjuY = VγjU = jVγU = jVvY = VvjY

for U eβ-i/2, y e β - i ,

since 75-1/2 = s-1/2 and [s_1/2,s-i] = 0. In this section, we consider more
special relations of this type, concluding with some which hold only in the
quasisymmetric case.

Recall from §1.2 the relation between the Ω-hermitian form F and the
bracket product in 5:

(2.1.2) F(U9 U
1) = \{[JU, Uf] + /[£/, [/']} for U9 U' G s_1/2 = U.

An easy consequence (e.g. [2, Formula 8]) of the axioms of a normal j -
algebra is

(2.1.3) [JU, U'] = -[UJU'l U, U' e S_ 1 / 2 J

which is consistent with (2.1.2) and the fact that the complex structure
on the vector space U comes from j on s_i/2. Also for U, U' e s-i/2,
Y e s-u we have 2(Vi/C//, Y) = ([U, U']9 Y) since [$_1/2,s_i] = 0, while
2(VuU'JY) = -2{VvjU\ Y) = -{[UJU'l Y) = -UiUJU'lJY). These
formulas and VvU

f e so θ s - i follow from (1.5.1). As a consequence we
obtain for U, Uf e z-\/i

(2.1.4)

(2.1.5)

2.2. The following two results hold for arbitrary homogeneous Siegel
domains.

Lemma 1. Suppose Y e s_i and (VγR)\(s0 0s_i) = O, where R is the
curvature tensor. Then 0 = (VγY9 VJYJY).

Proof. We have X^ e n£k defined by the condition ε^iJXi) = δ^h Let
E = ΣXk. Then one has [1], [14]-[17]

(2.2.1) VuKβoΘβ-i) =./|(«oθβ-i), VJE = 0, V£ |s_1 / 2 = ^|s_i/ 2,
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(2.2.2) ad jE\s-ι = id, ad;£Ίso = O,

and therefore

0 = (V¥R)(E,Y)Y

= Vγ{R(E, Y)Y) - R(VYE, Y)Y - R{E, VYY)Y - R(E, Y)VYY.

But for any T e s_,, R(E, Y') = R(jEJY') = -VlJEJYΊ = 0 by (2.2.1).
Thus

0 = -R{VYE, Y)Y - R(E,VYY)Y

= -R{jY,Y)Y-R{jE,VYjY)Y

- V[YJY]Y + V[JEiVγjY]Y

where the last equality follows from the fact that VγjY e s-{ implies
-[YJY] + [JE, Vy T] = VJYY, while [VJYY, Y] = 0 implies VVjγYY =
VyV ; Ty. Hence

0 = 2{VγVjYY,jY) - {VjYVYY,jY)

= -2{\/jYY,VYjY) + (Vγ

Lemma 2. For any A, B e s_i, one has

(2.2.3) - 2(VJAjB, VAB) - (VjAjA, VBB) + 2(VjBjA, VBA)

Proof. First we note that

(VυΛjnB>M) = -([JA,B],VBjA) = -{VjAB,VBjA) + (VBjA,VBjA),

so that

(R(jA,B)BJA) = -(VBB,VjAjA) + (VjAB,VBjA) - (VlJA>B]BJA)

= -{VBB,VjAjA) + 2(VjAB,VBjA) - (VBA,VBA).

Also

(VlAJB]jB,A) = {[AJB],VBjA) = {VAjB,VBjA) - {VjBA,VBjA),

whence

(R(AJB)jB,A) = -{VjBjB,VAA} + (VAjB,VjBA) - {V[AJB]jB,A)

= -{VjBJB, VAA) + 2(VAjB, VjBA) - (VAB, VAB).

Since R{(jA,B)B,jA) — (R(A,jB)jB,A), comparing the above expres-
sions proves the lemma.
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2.3. We specialize the results of the last section to quasisymmetric
Siegel domains and obtain

Proposition. For a quasisymmetric domain and any A,B e s_i, one
has

(2.3.1) 0 = (VAA,VjBjB) + 2(VAB,VjBjA).

Proof. For an irreducible quasisymmetric domain, the tube subdomain
is a totally geodesic Riemannian symmetric submanifold with normal j -
algebra s_i Θso Hence for all Y e s_i, (Vyi?)|s_i Θso = 0. Applying
Lemma 1 of §2.2 to Y = A + B and to Y = A - B gives

(2.3.2) 0 = (VΛ+B{A + B), Vj{A+B)j(A + B))9

(2.3.3) 0 = (VA.B(A - B), Vj{A_B)j(A - 5)).

Expanding (2.3.2) and (2.3.3) and adding give

(2.3.4) 0 = (VAA, VjBjB) + 2(VAB9 VjAjB)

+ 2(VAB,VjBjA) + (VBB,VjAjA).

Adding (2.2.3) to (2.3.4) yields the result.
2.4. The following result is important for the description of the holo-

morphic bisectional curvature.
Lemma. For an irreducible quasisymmetric domain and U,V,W e s-iβ,

Y,A,B G s-i, one has

(2.4.1) (V[VJU]jY,Y) = 2(VVU,VYY) =4(VUY,VUY),

(2.4.2) (VyA, VWB) + {VwA,VvB) = (VVW,VAB),

(2.4.3) 2<yvjY,VjYU) = (VuU,VjYjY).

Proof. Since the domain under consideration is quasisymmetric, one
has from [7] that the fundamental representation φ satisfies

(2.4.4) φ(Y2) = (φ(Y))2.

From [3], one has in general

(2.4.5) φ(Y) = -2j o VHs-i/2, Y2 = -jVYY.

Thus (2.4.4) becomes

(2.4.6) VγVυY = VγVγU= ^Vc/VyF.

Using (2.1.4) and (2.4.6) we obtain

) = -(Vγ[UJU]JY) - ([UJU]JVγY) =

= -2(U,VuVYY) = -
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proving (2.4.1). The formula (2.4.2) is obtained from (2.4.1) by polarizing
twice.

Now, following the same kind of calculation as in the proof of Lemma
2 in §2.2, one computes

(V[UJY]JΎ, U) = (VaJY,VYjU) - (VJYU,VγjU),

whence

(R(UJY)jY,U)

(2.4.7) = -(VjYjY9VυU) + (VujY,VjYU) - (V[UJY]jY, U)

Moreover, (R(jU9 Y)Y9jU) = -(VγY9VjujU) + (VJUY,VYJU)'9 thus us-
ing (2.4.1) we obtain

(2.4.8) (R(jU9Y)YJU) = -(VjuWjuY).

By (2.1.1) we can drop j here. Finally we use (R(U,jY)jY,U) =
(R(jU9 Y)Y9jU) to obtain (2.4.3).

3. The Zelow-Lundquist formula

3.1. In the thesis of Zelow-Lundquist [15, p. 54] and in [16], a formula
is given for the holomorphic bisectional curvature of an irreducible qua-
sisymmetric domain. The proof given there is a case-by-case argument (for
each of the main classes of quasisymmetric domains). Below we present
a classification free proof. Before doing this we explain Zelow's notation
and relate it to ours.

Zelow uses vectors in the complex tangent space (and, in addition, has
developed what he calls a "more complex notation" [15, p. 40]) while we
work in the real tangent space. We identify a vector V in the real tangent
space TbD with the complex vector V = \(V - iV) of type (1,0) (see [10,
volume II, p. 129] and [15, p. 5]). For any X e s, s e S, and point
p = sb e D,we have two associated vectors in TPD; one coming from the
action of S on D and given by (3.1.1) below and one coming from the
identification of S with D and given by (3.1.2) below:

(3.1.1)

(3.1.2)

d

Uί t=o

d_

dt t=o

{εxptX -sb);

(sexptX)b.
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Of course, at the base point b, these agree and give an unambiguous iden-
tification of s with TbD. Next, since D is an open domain of V c Θ U,
which can be treated as a real vector space, we have an identification of
TbD with V c θ U. Combining the identifications s ^ TbD ^ V c θ U ,
we get the identifications of s_i with V (or L) and s_i/2 with U men-
tioned in the first section (see [5, pp. 298-9], [3, pp. 14-15]). Choose
an orthonormal basis of s (it will be useful to assume this basis consis-
tent with the decomposition o θ J ] n Q ) , and use this to define a real co-
ordinate system on V c θ U, in particular, correspondences between Rn

and V and between Cm and U. To avoid confusion, for a e Rn and
d e Cm, we let X~ι[a] e s_i and X-{/2[d] e S-\f2 denote the correspond-
ing elements (compare [5, p. 298]). Then, for aua2 e Rn, d e C w , the
complex vector denoted as (a\ + ia2)dz + ddu by Zelow and the element
{X-\[a\]JX-\[ci2\,X-\/2[d]) E s_i x 5o x s-1/2 correspond to the same
real vector at b. This gives a consistent identification of Cn x Cm with 5.

Zelow, following Satake, has a product structure on Rπ. With respect to
the identifications of RΛ, V, and s_i, this is the same used in [5] and [3].
In [3], this product is written in terms of the covariant derivative. Zelow
also extends the product C-linearly to Cn. Taking all this into account, we
have for a = a\ + ia2, a' = a[ + ia'2, a\,a2,a[,a'2 e Rπ, that the real vector
at b corresponding to (a o a!)dz is identified with

(3.1.3) -yVJr. l [ β l]JΓ-1[

Again following Satake, Zelow defines a linear map a H+ Ra of RΛ into
the space of endomorphisms of Cm and extends C-linearly to Cn. With
respect to the previous identifications, this is 1/2 the map described in [5]
(and called there φ) and [3]. One finds that for a = ax + ia2 e C\ d e Cm,
Rad corresponds to

(3.1.4) -Vx_άaΔjX_γ,2[d] + Vx_l[a2]X-l/2[d],

which, by (2.4.1), becomes

(3.1.5) Vx_ϊ/2[d](X.ι[a2]-jX-ι[aι]).

Finally, Zelow uses an inner product, which we will denote by { , }, on
C". This is defined by extending C-linearly [15, p. 10] the form on Rn

obtained from the Bergman metric at the base point b after identifying Rπ

with a subspace of TbD [15, pp. 26-28]. Thus, after identifying Rn with
5_i, { , } is the C-linear extension of our inner product (, ) (determining
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the left invariant metric on S). Hence, for given a = a.\+ici2, a' = a\+ia'2 e
C",

(3 1 6) {a'U} <X->["']>*-!Ml) - {X-x[a2],X-x[a'2])

+ i({X-χ[a2],X-{[a'{\)

(ΛΓ_, [α, ] + jX-, [a2], X-, [a\

= (ΛΓ_1[α1],Λ-_,[fl;

1]> + ^_,[fl2],ΛΓ_1[4]).

3.2. This section is devoted to translating Zelow's formula for the holo-
morphic bisectional curvature at b into our language. We note that in [15],
the element e € R" corresponds to E = Σ Xk e V = s_ i, and the base point
in both [15] and [5] is b = (iE, 0). In the following, we use the same sym-
bol F for Zelow's function Cm x Cm —• C" and our corresponding function
U x U ^ V c given by (2.1.2). We will also identify vectors adz + ddu with
X = Y + u + Z where r = Λli[αi], U = X-i/2[d] and Z = jX-ι[a2].

With these conventions we show

Lemma. For unit vectors we have

\({aoa',aoa'} + {aoa,a'oa'} -{aoα'.aoa'})

+ 4 Re{έ>, F(Λfl</, Λa'ίί')} + 2{<?, ^(ϋarf', ^a^')}

+ 2{e, F{Ra,d, Ra'd)} + 2{F(rf, d), F(d', d')}

+ 2{F(d,d'),F(d',d)}

= \(\\VγY' + VjzjZ'W2 + \\S7yjZ' - VjzY'W2

+ (VYY + VjzJZ,VY,Y' + Vjz jZ1) - IIVyΓ - 2

-\\VjzY' + VyjZ'\\2

+ 4(Vu(Y - Z),Vυ {Y' - Z')) + 2||Vϊ,,(r - Z)||

Remark. "Zelow's formula" asserts that the first expression in the
lemma above is—up to a negative constant multiple—the holomorphic
bisectional curvature for the unit vectors adz + ddu and a'dz + d'du.

Proof. An easy computation using (2.2.1) gives

(E,[U, U']) = (E,VVU' - Vv'U) = -(VuE, V) + (V^E, U)

(3.2.1) =-\{jU,U') + \{jV,U)

= (UJU') for£/,£/'€β_,/2 = U.
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Thus for d,d' eCm

4{e,F(d,d')}

(3.2.2) = (E,[jX_ι/2[d],X-l/2[d']]) + i(E,[X

= (X-1/2[d],X-ι,2[d']) + i(X-υ2[d]JX-ι/2[d']).
Now for a = <X\ + ia2, a' = a\ + ia'2 e C", d,d' e Cm, (3.2.2) implies with
(3.1.5),

(3.2.3) 4{e,F(Rad,Ra>d')}

In particular, if a = a',d = d', then (3.2.3) is real.
Next, for d,d' e Cm, (2.1.2) and (2.1.4) imply

{F(d,d),F(d',d')}

(3.2.4) = jξ(Uχ-V2[d],X-ι,2[d]],[jX-i,2[d'],X-ι,2[d']])

Also, F(d, d') = a = aι + ia2 = F(d',d) e C" with

X-\[a\] = \UX-\/2[d],X-ι,2[d']\, X-M = \[
Thus by (3.1.6),

(3.2.5) l6{F(d,d'),F(d',d)} = \\[jX-m[d],X-l/2[d']]\\2

+ \\[X-l/2[d],X-l/2[d']]\\2-

Finally, for a, a' € C" arbitrary, we have

aoa' — {a\o a\ - a2 ° a'2) + i(a2 o a\ + a.\ o a'2)\

therefore
{aoa1, aoa'}

= \\X-x[axoa\-a
( " ' ' | | V Z [ a '

{aoa,a' oa'}

= (X-\[a\ ofl| +a2oa2],X-ι[a\ oa[ +a'2oa'2])
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Using (3.2.3) to (3.2.7) the assertion follows easily.
Remark. Note that in proving the lemma we have not used any special

properties of quasisymmetric domains.
3.3. In the following sections we describe the holomorphic bisectional

curvature and show that it is given—up to a negative multiple—by the
formula in Lemma 3.2.

First we note that the holomorphic bisectional curvature determined by
the unit vectors X and X' is given by

(3.3.1) (R(XJX)jX',Xf)

= -(VjxJXWxX1) + (VxjX',VjχXf) - (V[XJX]jX',Xf)

and is determined independent of the choice of unit vectors X and X1 in
the planes HX Θ RjX and RX' Θ RjX', respectively [10, p. 372].

Expanding X and X' relative to s = s_i + s_i/2 4- so we obtain
Lemma, (a) R(su,sμ)$p c s_1/2, ifv + μ + p = -{ mod(l),

(b) R(so,so)δo C 50, i?(so,so)s-i C s_ b

(c) i?(so,s_1/2)s_1/2 Cso + s_ b

(d) R(so,s-ι)so C s-i, i?(so,s-i)s_i C s0,
(e) Λ(s_i/2,β-i/2)(so + s-i) C s0 + «-i,

(f) i?(s_i/2,S-l)5_i/2 CSθ+5-1,

(g) Λ(5_i,5_i)s0 C So, ϋ(S-i,S_i)S-i C S_i

Proof. The assertion follows easily from the results of §1.5.
3.4. Using Lemma 3.3 many terms in an expansion of (3.3.1) vanish.

If one also uses the special properties of the curvature tensor and j operator
in a Kahler space, one obtains, by noting that X = Y + U + Z and X' =
Y' + U' + Z ' as in 3.2,

Lemma. (R(XJX)jX', X') =R{+R2+ R3, where

R{ = 4(R(Z,jY)jY',Z') + (R(Z9jZ)jY',Y') + (R(ZfJZ')jY,Y)

(3.4.1) + (R(YJY)jY', Y) + (R(ZJZ)jZ',Z')9

R2 = 2(R(Z,jY)jUf, Uf) + 2(R(Z'JY')jU, U) + (R(ZJZ)jU', [/')

+ (R(Z'JZ')jU, U) + (R{YJY)jU'9 U1)

(3.4.2)

(3.4.3) R3 = (R(UJU)jU',U').

Remark. We would like to point out that this formula is still valid for
arbitrary homogeneous Siegel domains.
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3.5. In this section we will derive more concrete expressions for R{, R2

and i?3 under the additional assumption that D is irreducible and qua-
sisymmetric.

Lemma 1.

-R{ = \\VYY
f + VjzjZ'W2 + \\VYjZ' - VjzY'W2

- | |V y r - VjzJZψ - \\VjZY' + Vy Z'H2.

Proof. Note

4(i?(Z,;T)yr,Z/) = -4(RUZ9Y)jY',Z')

= -4(Vjzjr, VYZ') + 4(Vy7Ύ', Vyz

since [yZ, Y] = 0, while

<v[ZJz]yr, r) = - ( V H Z J Z U Γ )

= (VzjZ,Vγ,jYf) - (VjZZ,VY,jY')

implies

(R(ZJZ)jY',Y')

f) + (VjZZ,Vγ,jYf)

by (2.3.1). From these two formulas we obtain immediately also
(R{Z'JZ')jY,Y) = (VjZ'Z',VγjY), (R(YJY)jY',Yf) = -(VγY,Vγ,Y

f)
and (R{Z,jZ)jZ\Zf) = -{VjZZ,VjZ>Z'). Adding up the above curva-
ture expressions and completing the appropriate square one obtains the
assertion.

Next we consider R2. We show
Lemma 2.

Proof. We consider the terms in R2 separately. First we note that by

(2.1.1),

2(R(ZJY)jU', V) = -2(R(jZ, Y)jU', U'}

= 2(VγjU',VjzU') - 2(VjZjU',VγU')

which also yields

2(R(Z'JY')jU,U) =
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Similarly, by (2.1.1),

(R(ZJZ)jU',U')

zU') + (VzjU',VjZU') - (VιzJZ]jU',U')

= 2{Vu'Z,VzU') + (Vju'UWzjZ) - (Vju'UWjzZ),

which equals, in consequence of (2.4.2) and (2.4.3),

2φυ,Z,VzU') - 2(Vjυ,Z,VzjU') - 2(VJu.jZ,VjU,jZ).

Another application of (2.1.1) finally gives

(R(ZJZ)jU', U') = -2(Vu.Z,Vv.Z).

From these expressions we obtain also

(R(Z'JZ')jU, U) = -2{V[/Z', Vt/Z'),

(R(YJY)jU', U') = -2φυ.Y,Vυ.Y)

(R(Y'JY')jU,U) = -

Next we have

4(R(YJU)jU',Y') = -4(VjuJU',Vr

= -4(VuY,Vu,Y'),

where in the next to last step we used (2.1.1) and (2.4.2). Similarly, by
(2.1.1) and (2.1.4),

4(R(YJU)jU',Z') = -

= 4(VjUU',VγjZ')+4(Vu,Y,VuZ'),

which equals, in consequence of (2.1.1) and (2.4.2),

4(VVY, Vu'Z') - 4φυ, Y, VvZ1) + 4<Vί/<Y, VuZ1).

Whence
4(R(YJU)jU',Z') = 4(VUY,VU,Z'),

which also implies 4{R{Y'JU')jU,Z) = 4{VUΎ',VUZ). Finally,

4(R(ZJU)jU',Z') = -4(R(JZ,U)jU',Z') = -
Using the above expressions for the summands of Rι we obtain the asser-
tion.

Finally, we consider R3. We would like to point out that the following
lemma holds for an arbitrary homogeneous Siegel domain.
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Lemma 3.

-R3 = -(R(UJU)jU',U')

= 2(VvU, Vv U1) + \\\\jUt U']\\2 + \\\[U, U']\\\

Proof. Consider any U, U' e s_1/2. Then

(Vlujv]JV',U') = (jVu>[UJU],Ul)

(3.5.1) = -(jVujU,Vu'U') + {jVjυU,Vυ.U')

since [U',[UJU]] e [s_1/2,s_i] = 0. Also, using (2.1.4) we have

(R(UJU)jU',U')

(3.5.2) = -(VjuJU',VuU') + (VujUWjU1) - (VιυjmjU\ U')

= -2φυU',VυU') - 2(V[/[/,Vt/,t7'>,

which gives

(3.5.3)

since (R(UJU)jU',U') = (R(U'JU')jU,U}. Using (3.5.3) and (2.1.4)
we obtain

\\[jU, U']\\2 + \\[U, U']\\2

(3.5.4) = {VjuU',VjuU') - 2(VjυU',Vυ.jU) + (Vυ,jU,Vυ.

+ (VυU',VuU') - 2{VυU',VυU) + (Vυ.U,Vu U)

= 4{VUU',VUU').

Thus

(3 5 5)
= -(R(UJU)jU',U') = -R3.

Using Lemma 3.4 and the three lemmas of this section we have shown
Theorem (Zelow's formula). The holomorphic bisectional curvature of

an irreducible quasisymmetric Siegel domain is—up to a negative multiple—
given by the formulas of Lemma 3.2.

4. Holomorphic bisectional curvature

4.1. As mentioned in the introduction, we investigate the holomorphic
bisectional curvature of irreducible quasisymmetric Siegel domains in the
cases where rank > 3 and rank = 2 by different methods.
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The following lemma is an essential tool for the rank > 3 case. It is a
straightforward generalization of [10, IX, Proposition 9.2].

Lemma. Let Mbe a complex submanifold of a Kάhler manifold M' with
second fundamental form a. Let R and /?' be the Riemannian curvature
tensor fields ofM and M' respectively. Then

(R(X,jX)jX',Xf) = (R'(XJX)jX'9X') -2(a(X,X')9a(*>X'))

for all vector fields X, X' on M.
Corollary. Let M be a complex submanifold of a Kάhler manifold M1.

Then M has nonpositive holomorphic bisectional curvature if M1 has.
4.2. In this section we consider the case where rank > 3. Using well-

known results (see e.g. [14, II, §§6,7 and I, §5] one obtains
Theorem. Let D(Ω, S) be an irreducible quasisymmetric Siegel domain

and g its Bergman metric.
(a) If rank D(Ω,S) > 3, then D(Ω,S) occurs as a fiber in the realization

of a symmetric Siegel domain B as a domain of type III. The group J / of
linear transformations ofD(Ω,S) which are restrictions of automorphisms
ofB is reductive.

(b) The statements of (a) also hold for the quasisymmetric Siegel do-
mains for which the corresponding algebra is Herm(2, C) or Sym(2, R) or
Herm(2,H), where in the latter case we have to assume that in U only
one type of irreducible representation o/Herm(2, H) occurs and with proper
multiplicity.

(c) The Riemannian metric on the Siegel domain D(Ω,S) considered
in (a) and (b) which is induced from the ambient symmetric space B is a
multiple of the Bergman metric.

(d) The Siegel domains considered in (a) and (b) have negative holomor-
phic bisectional curvature in their Bergman metric.

Proof. In view of [14] it suffices to prove (c). We note that the metric
g induced on D(Ω,S) from the symmetric space B is a Kahler metric and
admits a connected transitive group G of affine holomorphic isometries
([14, III, §5], [7, II, §5]). Moreover, the linear part LG of G contains the
connected component of the group of automorphisms of Ω (a reductive
group) [14, III, Theorem 2.3]. This shows that G contains a transitive
subgroup H such that Ad A, h e //, has only real eigenvalues. Then an
argument of Gindikin and Vinberg shows that the skew form K induced
on \) = Lie// from the Kahler form on D(Ω,S) is actually of the form
κ(x,y) = ω([x,y]) for some linear form ω: i) -+ R. We write g = LieC? =
9_i -h0-i/2+9o? where the subscripts denote the negative of the eigenvalues
of adje in g, e being the maximal idempotent of ί). Moreover, t c go
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denotes the isotropy subalgebra of ie e D(Ω,S). Then for k e t and
x e Q-1 we have

0 = κ(A,x) = κ(A9 \je9 x]) = κ(je, [A, x]) = ω([je, [A, x]]) = ω([A9 x])9

where we have used the closedness condition for K and x9 [A,x] e Q-\
and A e go- We use the notation of [5, §1] and choose x = X_i[Z?^/]+ and
A = (L^ib/ci) - Ldχ(bid), *)• Then A et, and a direct computation shows
0 = ω([A,x]) = aω(Xk - X{)9 where a is a nonzero factor.

Hence ω(Xk) = ω(Xι) for all k,L From [6, §6] and [6, Proposition 3]
it follows now that ω is a multiple of the "Bergman form ωg"9 whence the
claim.

4.3. In the remaining sections of this paper we consider irreducible
quasisymmetric domains for which the associated (simple formally real
Jordan) algebra L is of rank 2, i.e., there exist a nondegenerate bilinear
form μ of signature (1, dim L-1) on L and an identity element E of L such
that the product in L is given by X Y = μ(X9E)Y + μ(Y9E)X-μ{X9 Y)E.

Opposite to the case where rank > 3, we do not consider a fibration of
some symmetric domain, but for a given tangent direction X we consider
a quasisymmetric Siegel domain with algebra isomorphic to Herm(2, C) or
Sym(2, R) which has also X as tangent vector. What makes things work
is the fact that the new Siegel domain has nonpositive holomorphic bisec-
tional curvature (by §4.2) and its curvature can be related explicitly to the
one of the original domain (see the proof of Theorem 4.14).

In order to be able to do this it is crucial to observe:

Let V c L be a subspace containing E. Then L' is a
(4.3.1) subalgebra of L. In particular, if dimL' > 3, then L' is a

simple formally real Jordan algebra of rank 2.

Set n = dimL and n' = dimL', and denote by K and K' the "domain
of positivity" of L and V respectively. Then for the "invariant" of the
corresponding cone we have (with some constants c, d e R)

(4.3.2) ικ{X) = cμ{X,Xynl\ X e K9

(4.3.3) ικ,{X) = Jμ{X9X)-»Ί2

9 X1 e K'9

These formulas follow from the fact that both sides have the same trans-
formation property relative to the automorphisms of the cone under con-
sideration (see e.g. formulas (1.7) and (1.8) of [8]).

4.4. We want to "restrict" the Ω-hermitian form F of the given Siegel
domain relative to a subalgebra L' of L. We set

F' U x U - . L'c F'(U9 W) = proj(Lfc)F(C/, W).
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Lemma. F' is a Ω'-hermitian form.

Proof. Since the sesquilinearity of F' follows immediately from the
corresponding property of F, it suffices to show F'(U, U) e Ω' for all
U e U and that F'(U9U) = 0 implies U = 0. But F'{U9U) = 0 just
says that F(U, U) is perpendicular to L' and in particular to E. Using σ
as in [5], i.e., σ is the restriction of ( , •) to L, and standard properties of
a and F we thus obtain 0 = σ(E,F(U, U)) = p(U9 U)9 whence U = 0.
To verify F'(U,U) G Ω' where " - " denotes the closure operation, we
note that Ω' is a self dual cone relative to τ' = σ\U x L'. We also note
fϊ' = {x2;x e V} c {x\x e L} = Ω. Hence, for X e Ω' we have
0 < σ(X,F(U, U)) = σ{X,F'{U, {7)), whence F'{U, U) e Π'.

Corollary. D(a',F') = {(Z;, U) e L'c x U ImZ' - F'(U, U) e Ω'} is
an irreducible quasisymmetric Siegel domain j/dim Lf > 3.

Proof. From the lemma above we know that D(Ω',Ff) is a Siegel do-
main. It is irreducible, since the cone Ω ; is irreducible. To prove that it is
quasisymmetric it suffices to show that there exists a reductive linear sub-
group of Aut D(Ω', F') which acts transitively on Ω'. With the notation of
[5] we denote by tf the Lie algebra generated by (L(b), jφ(b)), b e V, and
denote by G' the corresponding Lie subgroup of linear automorphisms of
D(Ω,F). Set τ' = σ\L' x L'. Then for XeV,U,VeV and (W9 W) e G'
we have

τ'{X, WF'(U, V)) = σ(X, WF(U9 V)) = σ(X,F{WU, WV))

= τ'(X,F'{WU,WV)).

Hence G1 c An\D(Ώ!,F') and the assertion follows.

4.5. For our final goal we need to investigate the relations between the
two quasisymmetric Siegel domains D(Ω,F) and D(Ω',Ff) more closely.
We know that the corresponding Bergman kernels are induced from
= aiςι{X)r and r\ςi'F'{X) = a'iςi'(X)r' respectively. (For a definition of
see [8, §2]. The transformation property stated there implies that ηςιF is a
power of the invariant ηςi since D(Ω, F) is quasisymmetric and irreducible.
For an explicit statement see e.g. [7, II, Corollary 1.4]). Using (4.3.2) and
(4.3.3) we thus obtain

(4.5.1) ηaF(X) = bηaF'(X)s fovXeΩfcΩ,

where b > 0 and s > 1.

Here the last statement follows from the fact that μ(X,X)~n/2 =
μ(X,X)-n>sl2 for X eΩ' implies n = n's, whence s > 1.
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Using the definition of σ and σ' for D(Ω,F) and D(Ω',F') from ηΩF

and ηςi'F as in [5] now shows

(4.5.2) σ\U xU = sσ'.

The definition of p in [5] then implies

(4.5.3) p = sp'.

To verify this we note p{U,V) = σ{E,F{U,V)) = σ(E,Ff(U,V)) =
sσ'(E,Ff(U,V))=sp'(U,V).

Thus for the map φ' given by σ'(X,F'{U, V)) = p'{φ'{X)U, V) we have

(4.5.4) φ' = φ\U.

4.6. In the following sections we discuss the cases 3 < dimL < 6
separately. We will need this for the proof of our main result at the end
of this paper.

The cases dimL = 3,4 follow from Theorem 4.2, so we mostly discuss
the cases dimL = 5,6. Since we assume that our domain is irreducible
of rank 2, our domain is determined once we specify dim L and the irre-
ducible representations of L which occur in U (with multiplicity).

If dimL = 5, then L has only one type of irreducible representation,
but if dim L = 6, there are two inequivalent irreducible representations.

If we are in the case dimL = m, we denote by D w the curvature ex-
pression which occurs on the left-hand side of the equation in Lemma
3.2.

If dim L = 6 and we know or assume that only one type of irreducible
representation of L occurs in U, we indicate this by adding the superscript
" + " , e.g. D^ denotes the corresponding domain and D£ the associated
curvature expression.

From Theorem 4.2 we know

(4.6.1) D + > 0 .

Assume now dimL = 6 and, for fixed a,a' eU0, set

(4.6.2) L' = span{£, Re(έi), Im(a), Re(fl')> Im(β;)}.

Then L' is a subalgebra of L and we can assume dimL' = 5.
An inspection of Lemma 3.2 shows

(4.6.3) D 6 = cΌ5 + A,

where D5 is the curvature expression for the subdomain determined by
L', c is a positive constant determined as in (4.5.2) and (4.5.3), and the
remainder is given by

(4.6.4) A = 2{F(d, d)\F(d'9 rf')x} + 2{F{d9 d')\ F(d', d^)}.
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Here F^.υ)^ denotes the component of F(u,v) perpendicular to L'.
If we are considering a domain in which only one type of irreducible

representation of L occurs in U, we denote the remainder term in (4.6.4)
by A+ so

(4.6.5) D+ = c D 5 + Λ + .

Note that no matter which type of L we start with, the D 5 term depends
only on the multiplicity of the unique representation of L'. That is because
the difference between (4.6.4) and (4.6.5) can only occur from the different
action of elements of L which are perpendicular to L', and this shows only
in A and A+ respectively.

To make this more precise and to evaluate it, we describe the domain D%
associated with dim L = 6 when there is only one type of representation of
L. Note that if all representations are of one type with a fixed multiplicity,
then the corresponding domains are equivalent, no matter which of the two
inequivalent representations is used.

4.7. We want to describe the domain D^ which corresponds to the case
where dim L = 6 and only one type of irreducible representations occurs
inU.

Let An denote the Jordan algebra of n x n Hermitian matrices with
entries in the real division algebra of quaternions. The Jordan algebra
product is related to the matrix product by a o a' = \{aa! + a'a), and
the identity element is the identity matrix. Every a e An has a block
decomposition

(4.7.1) a=(Z* ]>

where z e A2, w e Art_2, and u e A1 / 2 = Mat(2, n - 2; H). We also write

(4.7.2) a = a{

where

We use similar notation for the complexifications. Let β\ (resp. βo) denote
the identity element of A2 (resp., An-2), and note that the imbeddings
z -> a\{z) and w -• ao(w) are consistent with the algebra operations.
Then D£ can be realized as

(4.7.3) Z)J = {(z,M)G(A2®C)
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where Y^ denotes the domain of positivity of A*, and conjugation is
with respect to the complexification of A1/2. Note that here F(u,v) =
\(uϋ* + ϋu*). A straightforward calculation shows that the map

p(z,u) = a{(z) - $aι(eι)(aι/2(u))2 + aι/2(u) + iao{eo),

i.e.,

(4.7.4) />(*,«)=(

is a biholomorphism from D£ onto the submanifold B6 of the symmetric
tube domain Tn where

B6 = {a e An <g> C: I m a e Yn, a0 = iao(eo)},
( ' * Tn = {aeAn®C:lmaeYn}.

On Tn, we take the multiple of the Bergman metric defined by {a, a'} =
8ReTr(αα/), a, a' e An <S> C, where ReTr denotes the real part of the
quaternionic trace in H. Let i?£ denote the curvature expression as in
Lemma 3.2 for the tube domain Tn. A computation shows

Λ£ = ̂ ({αoα',5oα'} + {aoa,fl

;oa7} - {αoα' ,αoά ; } )

which in turn by Theorem 3.5 is just -\(R(X9jX)jX',X')9 where X =
X. i [Re a] + jX-1 [Im α], etc.

4.8. We want to compute the metric induced on B^ from Tn. To this
end we will show that the map p given in (4.7.4) is equivariant with respect
to a sufficiently large group.

We note that B^ inherits naturally biholomorphic transformations from
T
1 n

(4.8.1) taιz = (zi + α i ) - h z 1 / 2 + z0, a\ G A 2 ,

(4.8.2) taι/2Z = Z{+ ( z 1 / 2 + Λ1/2) + Z0, Λi/2 € A1/2.

It is straightforward to check that these two biholomorphic maps of B6

induce on D£ the following transformations:

(4.8.1)' ΐaι(z9u) = (z + auu)9

(4.8.2)' 4 ( z , u) = {z + 2iF(u, aι/2) + iF(aι/2, al/2), u -f aι/2),

where we have identified A1 / 2 (8) C with U by (4.7.2).
Note that (4.8.2)' is one of the typical biholomorphic maps of D^\ how-

ever, only real a\/2 occur here.
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Consider Bβ again; we have also linear transformations of Tn that leave
B^ invariant. Since all linear automorphisms g of Tn are of the type
gz = wzw* for some invertible n x n matrix with quaternionic entries, it
suffices to specify w:

(4.8.3) „ = ( £ «),

(4.8.4) . . ( * • ) .

We note that here q and h have coefficients in H, not in H®C. However,
in the induced transformations on D% complex entries will occur. This
follows from

(4.8.3)' g(z,u) = {z + 2i\ex{uΊq) + {ex(q2\ u + iq),

(4.8.4/ g(z9u) = (hzht, hu).

Here the first transformation corresponds to (4.8.2)', but has now purely
imaginary "parameter" iq. The second equation describes linear automor-
phisms of D£. One should remark that actually the Mat(2,κ - 2,H) ® C
component of u is multiplied by h from the left.

From (4.8.4)' it follows that the full group of automorphisms of Y2 acts
linearly on D£. Now the argument to prove Theorem 4.2(c) shows

Proposition. The metric induced from Tn on Be is a multiple of the
Bergman metric (after identifying D^ with B^ via p).

Remarks. 1. We would like to point out that the number of irreducible
representations of L = A2 in U of D£ is even. This follows from the fact
that L has n - 2 irreducible representations in Mat(2, n - 2, H) and that
U = Mat(2, n - 2, H) ® C. It is important to observe that the irreducible
representations occurring in the "real part of U" and the "imaginary part
of U" are the same as real representations. However, these real irreducible
representations are actually already complex representations. Hence com-
plexifying again splits the representations into complex and conjugate com-
plex representations. In the case of A2, i.e., quaternionic matrices, these
two representations are equivalent as complex representations. In case one
carries out the same construction with A = complex hermitian matrices,
two inequivalent representations will result.

2. As indicated just above, the construction of D£ can be generalized to
other formally real Jordan algebras. This has been carried out (even more
generally) in [7, Chapter II].
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4.9. In this section we want to give an explicit formula for the holomor-
phic bisectional curvature of D%. First, however, we describe the second
fundamental form of Be in Tn.

We note that the differential of p (as given in (4.7.4)) at the point iβ\ +ieo
is the identity map. Therefore a,a',d,df in Lemma 3.2 are the same as
those used in the computation of R£ with

a n d a - * ^ Q j .

Since T2 is naturally imbedded in both D£ and Be, we see that {X, Y} =
8 Re trace XY in Lemma 3.2. Note that here X, Y are 2 x 2-matrices.

Proposition. The square of the second fundamental form II of Be in Tn

is given by

(4.9.1) {II, II} = {eo(d od'),eΌtf <>*)}•

Proof. We will give a proof that actually applies to all formally real
Jordan algebras A. We have to compare

R = \({r o7 j o r1} + {r or,r'o7) - {r o r' J ojϊ})

to the expression D of Lemma 3.2, where r = a + d, r' = a! + df and
a,a' e A(e\) 0 C, d,df e A1/2(^i) ® C. Moreover, we will use F(u,v) =
\e\(uov) for u,υ e A{/2(eι) ® C, and Rad = a o d for a e A\(e\) ® C,
ύf G Ai/2(^i) (8) C. An expansion of R shows that R differs from D only in
terms involving solely d and d1. So for d, d' E A ^ ^ i ) ® C we have to
compute R(rf,d') - Ό(d,d'). Splitting dod' = e{{do d') + eo(d o d') etc.,
we obtain after a somewhat tedious calculation

{dIoe0{dod)9d'}]

ex(&od),d'}

{dJoeι{dod),d'}]

From general Jordan identities, the two square brackets are equal. Thus,
in view of Lemma 4.2, the proposition is proven.

Corollary.

D+(<2, a') = Re\mce(aaa'~a' + άada!)

+ 4 Re trace ^0(^1/2^1/2)^0(^1/2^).

4.10. We want to consider D5. If m irreducible representations of
L occur in U, and m is odd, then we embed D5 into the corresponding
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domain with m + 1 irreducible representations. Since this embedding is
totally geodesic, it suffices to consider D 5 for even m = 2n.

Let D£ be constructed from An as in the previous sections. Then
Corollary 4.9 gives an explicit formula for D£. Moreover, from (4.6.5)
we know D£ = cΌ5 + A+, where A+ is given by (4.6.4), i.e., A+ =
2{F(</,</)\F(aM') x} + 2{F(d,dY,F{d',d)±}. Here {•••} =
8 Re t r a c e - and F(d,d') = \eχ{dod'), where d,df e A 1 / 2 ®C.

Altogether we have thus to consider

S = Retrace(aaa'~af + a'aac?)

4- 4Retrace(£>o(ai/2 ° a[/2)e0(a^o a[72))
(4 io l) __

- 4Retrace(ei(α1/2 oaΓ/i^e^^ o a[/2)
±)

To compute expressions of type " ?-1" in (4.10.1) we write H = Rfo +
R/i H h R/3, where ô = 1 and To, ,/3 are the natural generators of
H. In particular we have f% = - 1 . We can assume that L', as defined in
(4.6.2), consists of all 2 x 2-hermitian matrices with entries in H θ R/3.

Moreover, from the definition of L' we derive that we can assume that
x E Sym(2, R)®C holds. Next we expand the term involving e§. We obtain

(4.10.2) 4 Re trace eo(tf 1/2 ° d[/2)eo(ά[/2 ° ~a\^)

= Retrace^*?; -h v*u)(ΰ*ϋ +Έ*n)9

where

j a n d Λ l / 2 ^
Expanding (4.10.2) yields

(4.10.3) Retrace^a*ΌM* + uv*ΰv*) -f Retmce{vv*ΰu* + uΰ*vv*).

4.11. We consider the contributions of the last three summands of
(4.10.1) which are perpendicular to L; ®C. We will denote these summands

by( ) x .
In view of (4.10.3) we obtain

(4.11.1) R e t r a c e ^ * ) 1 (ΰu*)1 + (uύ*)1^*)1]

- Retrace[(ww* + ΰu*)1- (vv* + vv*^],

(4.11.2) RetnceKvn*)-1^*)-1 + (uϋ*)±(uv*)±]

- Retrace[(m;* + vif^ivΰ* + nv*)1-].
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It is straightforward to see that here two terms cancel. Using (A*)-1 =
{A^Y we also have Re trace Λ - 1 ^ = Retrace^*)- 1 ^*)- 1 , whence (4.11.1)
and (4.11.2) finally yield

(4.11.1)'

(4.11.2/

On the other hand, an explicit computation of R£ with a{ = x = x*
and a\ = y = y* gives for the first summand

(4.11.3) Retrace[(xx + uΰ*){yy + υϋ*) + xuv*y + u*Xyϋ + u*Uυ*v],

and for the second summand

(4.11.4) Retrace[(yJt + vϊi*)(xy + uϋ*) + yϊiu*y + υ*xxv + v*uu*v].

We note that the first summand is also of type

(4.11.5) Ret race^"* + uϊi*)(BB* + vfl*),

where ^ = (* 0

Q)*ndB = (y. °Q).
4.12. Theorem. D5 > 0.

Proof. We first observe that all four summands of (4.11.4) are non-
negative. The last summand in (4.11.4) is

(1) Re trace uu*vv*,

and from (4.11.5) we get as one of the four nonnegative summands:

(2) Re trace uu*vv*.
Thus altogether we have

(3) Retrace{uu*vv* + nu*vυ*).

Note that here the argument satisfies w* = w. On the other hand, it is
easy to see that (4.11.1)' is real, hence, subtracting (4.11.1)' from (3) gives
as argument of "Retrace" the L' 0 C component of the argument in (3).
In view of §4.4 this gives a nonnegative summand.

Next we consider the first summand in (4.11.4). Since x e Sym(2, R)®C,
a straightforward computation shows (yx)± = 0. Hence

(4) {yx + vn*)-1- = (vn*^.
As a consequence, subtracting (4.11.2)' from the first summand of (4.11.4)
results in

(5) Retrace^* 4- vu* - 2(uw*)-L)(;cy + uϋ* - 2(WΌ*)-L) > 0.
This finishes the proof of the theorem.

4.13. Now we consider the case of general D$. It is easy to see that
U = Uf + U2 (orthogonal sum), where L acts as in D£ on Ui and different
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in U2. We recall that the difference in the action of L on Uj and U2
consists solely of the way

° /3

h 0
acts, namely, like kd\ on Ui and -kd2 on U2.

As in §4.10 we see that we can assume that the number of irreducible
representations of L in Ui and in U2 are both even, say 2nx and 2n2. Then
we consider D£ constructed from An, where n = ri\ + n2. An inspection
of Lemma 3.2 shows that Όβ differs from D£ only in terms exclusively
involving d = d\ + d2 and d' = d[ + d'2. To evaluate this we consider the
map a: A2 -> A2 that fixes fo,f\,f2 and maps β to -β. A direct calculation
shows that α is, indeed, an automorphism of A2. Moreover, denoting by
F the hermitian map associated with D6 we obtain F(qupx) = F(qupι)
and F(q2,p2) = aF(q2,p2), qr,pr e U r, r = 1,2, where F denotes the
expression of D£.

Note that this means F(d,d) = F(dud\) + aF(d2,d2). Therefore, D 6

and D^ only differ in contributions involving β (which will be denoted by
" -L" as before). Thus with D^ we have the expression

whereas Ό$ has correspondingly

2{F(dudι)-L,F(d[,d[)±}-2{F(d2,d2)
±,F(d'2,d!1)

±}

' +2{F(dud[)±,F(dl,dι)
±}-2{F(d2,d'2)

±,F(d'2,d2)
±}.

Now we can almost verbally repeat the argument of Theorem 4.12. In
the first step we no longer reduce to the L ' ^ C component of some ex-
pression, but replace its component perpendicular to L' 0 C by its negative
(this will not change the sign in question). The second step encounters
only different factors. This shows

Theorem. D 6 > 0.

4.14. In this subsection we carry out the last step to prove the main
result of this paper.

Theorem. Let Z)(Ω, F) be an irreducible quasisymmetric Siegel domain
of rank 2. Then £>(Ω, F) has nonpositive holomorphic bisectional curvature.

Proof. Since D(Ω,F) is irreducible, dimL > 3. If dimL = 3,4, then
the claim follows from Theorem 4.2. If dimL = 5 or dimL = 6, then The-
orem 4.12 and Theorem 4.13 prove the assertion. Assume now dimL > 6.
Let X = Y + U + Z and X' = T + U' + Z ' correspond to adz + ddu and



98 J. E. D'ATRI & J. DORFMEISTER

a'dz + d'du respectively. Then L' denotes the subspace of L spanned by
7, r , Z, Z', £ and F(U, U). We can assume dimL' = 6. Since rankL' = 2,
we know L' = Herm(2; H).

Now we consider the curvature expressions of Lemma 3.2—multiplied
by a negative constant. From §3.1 we know that {•,•} is the complex
bilinear extension of σ and Ra = %φ(a). Thus, computing the holomorphic
bisectional curvature K(X, X') in D(Ω, F)—up to a negative multiple—we
see that by the results of previous sections, the first six summands Q are
just sQ' where Q! denotes the corresponding terms computed in D(Q/,F/)
associated with L'. The next to the last term is

2σ(F(U),F'(Uf, U')) = 2σ(F'(U, U),F(U', U1))

= 2σ(F'(U,U),F/(U',U'))

= s2σ'(Ff{U,U),Ff{U',U')).

For the last term we have

2σ{F(U, Uf),Ff(U', U)) = 2σ(F'(U, U'),F'(U', U))

+ 2σ(F'(U,U),F(Uf,U'))

= s2σ'(Ff(U,Uf\F/(U',U)) + A,

where A = 2σ(F±(U,Uf),F±(U',U)) > 0. Therefore -cK(X,X') =
-c'sK'(X, X')+A, where A > 0 and c, c' > 0 are some constants. Note that
this does not contradict Lemma 4.1 because ^(Ω', F1) is not a submanifold
of D(Ω,F). It therefore suffices to remark again that all quasisymmetric
Siegel domains with L = Herm(2, H) have nonpositive holomorphic bisec-
tional curvatures (Theorem 4.13).

Combining the theorem above with Theorem 4.2 we thus obtain the
main result of this paper.

Every quasisymmetric Siegel domain has nonpositive holomorphic bisec-
tional curvature relative to its Bergman metric.

Added in proof. In a recent reprint, Azukawa has independently given a
classification free proof of Zelow's formula for the holomorphic sectional
curvature and has an illuminating formulation of some of the special re-
lations of our section 2.
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