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0. Introduction

The study of singularities of Gauss maps has played an important role
in the development of algebraic geometry. Two beautiful examples of such
work are the analysis of duals of cubic surfaces in projective 3-space P3

undertaken by Cayley and others in the nineteenth century, and Fano's
investigation of the cubic threefold in the early part of this century. More
recently, Andreotti exploited the Gauss map of the theta divisor to give a
new solution to the Torelli problem for curves; Clemens-Griffiths, using a
similar approach, proved that the cubic threefold is irrational.

Differential geometry and singularity theory are well adapted to the
study of Gauss maps. Cartan's moving frames provide a dynamic tool
which complements the static arguments of classical projective geometry.
Arnold's theory of Lagrange and Legendre singularities has roots not only
in classical mechanics, but also in projective geometry, for the Gauss map
is the prototype of a Legendre map. Singularity theory provides a rich
supply of analogies among singularities in different geometric contexts,
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including striking parallel classifications of singularities that arise in very
different ways. Using the deformation theory of singularities, we can make
precise the notion of a "generic" singularity, a concept which was some-
times abused by classical geometers.

This paper is an outgrowth of two of the authors' work [29] on the
singularities of the Gauss map of a smooth complex surface in P 3 . In the
present work we analyze the Thom-Boardman singularity hierarchy of the
Gauss map γ: M -+ P4* of a generic (Gauss-stable) complex hypersurface
M c P 4 of arbitrary degree. If M has degree d > 2, we compute the
following numerical invariants:

Thom-Boardman Arnold
locus symbol symbol degree

Π: parabolic surface ^ ( y ) A2 5d(d-2)
ΓΓ: singular points of Π Σ2(y) D4 20d(d - 2)3

C: cusp curve Σ u ( y ) M 5d(d - 2)(7d - 15)
Λ: second-order cusp points Σ1»1'1(y) A4 5d(d —

Each of these loci is the closure of the set of points with the corresponding
symbol. The Arnold symbol at x e M is the singularity type of the tangent
hyperplane section of M at x.

From the standpoint of singularity theory, the Gauss map arises from
the study of the incidence projection

(0.2) p: Γ -> P4*, Γ = {(*,//): x e H} c M x P4*.

The singular locus Σ(p) is canonically identified with M, and p\Σ(jp) then
gives the Gauss map of M. We say M is Gauss-stable if the germ of p
at (x, H) is stable for all (JC, H) e Γ. We prove that Gauss stability is a
generic property:

(0.3) Theorem. For d > 2 the set of Gauss-stable hypersurfaces is a
nonempty Zariski-open subset of the space ^ of smooth hypersurfaces of
degree d in P4.

We begin in § 1 by discussing the relation between the Gauss map and
the projective second fundamental form of M. Thus the parabolic surface
arises as in the classical differential-geometric theory of hypersurfaces. We
complete the first section by considering the global issue: we determine the
rational equivalence classes of Π and ΓΓ; by Gauss stability, ΓΓ consists of
ordinary double points of Π.

In §2 we begin to study the cusp curve and the second-order cusp locus
Λ. To compute their classes, we must first resolve the singularities of Π;
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then C and Λ are expressible in terms of the Chern-Mather classes of Π.
The proper transform of C is defined as the divisor of a section of a line
bundle, generalizing the approach of [29], and then Λ expressed in terms
of its intrinsic derivative. Gauss stability implies that C has triple points
at points of IT, is smooth otherwise, and that Λ n Π ' = 0.

It should be noted that the computation of the number of second-order
cusp points, say, is too complicated to be amenable to standard topological
Thorn polynomial techniques, for Λ = Σ 3 1 1 1 ( p ) is a fourth-order Thom-
Boardman singularity of the stable map p. It is the inherent differential
geometric structure which makes these singularities accessible.

We turn next in §3 to a detailed study of the geometry of the cusp curve
C, which is the closure of the set of points of M at which the tangent
hyperplane section has an ^3-singularity. We begin by reinterpreting this
condition in terms of contact with lines, motivated by the work of Kulikov
[22] and by one of the central results in [29], both dealing with surfaces.
We find the following

(0.4) Theorem. C = {x £ Π\some line in P 4 has order

of contact at least 3 with M at x).

It is most inviting, then, to conjecture that the second-order cusp locus
Λ corresponds to those points where the order of contact escalates to 4.
The most convincing way to check that this is wrong is to count the latter
set by a synthetic geometric argument. For M belonging to a Zariski-open
subset of Jίd we have the following:

degree{x e C\ some line in P 4 has order of contact

(0.5) at least 4 with M at x}

= 5d(d - 2)(39d2 -\Ί9d + 204), d > 4.

There are further loci associated to the projective geometry along C
(and lying away from the triple points):

κ = {x e C - Π'|Γ,Π is II-null},

μ = {x e C - Π'l kerdγx is an asymptotic direction in Π}.

Using Chern class methods, both these loci can be counted and we find

that

(0.6) deg/c = degμ = degΛ = 5d(d - 2){3d - l){\ld - 36).

This is suggestive indeed. When d = 3, these three loci coincide, but when
d > 4 there is a projective invariant p associated to the tangent hyperplane
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section of M at x which distinguishes among these loci. It follows that
for M belonging to a nonempty Zariski-open subset Jtd of Jt^ these zero
cycles in M are disjoint. In fact, we establish the following.

(0.7) Theorem. For d > 4 and M e Jf'd, p is a rational function on the
normalization ofC with degree p = 5d(d - 2){3d - 7)(17rf - 36).

The modulus p provides a fascinating invariant; p takes the value oo
at the points corresponding to Π', as well as at the locus defined in (0.5).
Thus these points are put into the same pencil of divisors as Λ, K, and μ.

We turn in §4 to the study of the cubic threefold. While our treatment
is self-contained and based on the results of §§1-3, the works of Fano
[11], Clemens-Griffiths [9], and the classic literature on the classification
of cubic surfaces (especially [32] and [8]) were useful to us. Our point of
departure is the two-parameter family of lines lying on the cubic threefold,
called the Fano surface; we distinguish the divisor 3 of special lines along
which every tangent hyperplane to M is bitangent. The lines of 3 generate
a developable ruled surface Σ and we identify our cast of characters in
terms of Σ and its curve of striction a. The culminating result is Fano's
identity:

(0.8) Theorem, a Π = 3Λ.
Our policy in §§1-4 is to prove all the results possible under the basic

assumption of Gauss stability. The latter half of the paper contains a
careful analysis of the ramifications and consequences of Gauss stability.
Gauss stability of M c P 4 can be characterized by a list of transversality
conditions on the Gauss map γ, which we dub the transversality package
(6.1). To discern more subtle properties of the singularities of γ, we use
the local analytic classification of these singularities; this is accomplished
by means of a list of normal forms (7.3). Each time we use (6.1) or (7.3)
we give a specific reference.

The main result of §§5-9 is the genericity of Gauss stability (0.3). We
give two proofs of this theorem. The first proof (§8) uses the theory of
versal deformations of singularities of projective varieties; the second (§9)
uses unfoldings of singularities of maps and jet transversality. These two
points of view are closely related but complementary. The deformation-
theoretic proof is more computational and yields a method for determin-
ing whether a given polynomial equation defines a Gauss-stable hypersur-
face. Given a point of a smooth hypersurface in P 4, we first determine
whether the singularity of the tangent hyperplane section (an isolated, 2-
dimensional hypersurface singularity) is (a) one of the types A\, A2, A3,
A4, Z)4 or (b) worse, and then, in case (a), we determine whether the
singularity is versally deformed by the nearby hyperplane sections of the
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same hypersurface. The methods introduced here are applied in several
instances in §§2-3.

The second proof of (0.3) is broader in scope; it can be adapted to the
study of contact of /c-planes with hypersurfaces in P". Both proofs employ
the universal degree d hypersurface in P 4 . This classical device has been
used recently and in the present context by Bruce [7] and Ronga [30], [31].
Our proof, while similar to theirs, has the advantage that it deals explicitly
with the Zariski topology on the space of smooth hypersurfaces in P 4 .

The remainder of the second part of our work provides an interpreta-
tion, in the geometric context of the Gauss map, of results in the theory
of complex analytic map germs. In §5 we give three equivalent charac-
terizations of Gauss stability at a point x of a smooth hypersurface in
p4.

(a) The family of hyperplane section germs is versal.

(0.9) (b) The incidence projection germ (0.2) is stable.

(c) The Gauss map is a stable Legendre map germ.

The equivalence follows from the work of Mather and Arnold.

In §6 we characterize Gauss stability by the transversality package. The
proof of this result is based on Boardman's description of Thom-Boardman
singularities in terms of intrinsic derivatives [6]. In §7 we present a clas-
sification of singularities from the three viewpoints corresponding to (a),
(b), and (c) in (0.9), following the proof of the equivalence to derive nor-
mal forms for the incidence projection p (0.2) and the Gauss map γ from
Arnold's classification of simple hypersurface singularities. The transver-
sality package can be checked directly from the normal forms for the Gauss
map exhibited in this classification. From §6 it follows that, conversely,
the package (6.1) guarantees that the singularities of the Gauss map have
the stated normal forms.

Related results have been obtained by several authors. Prior to the

work of Bruce and Ronga mentioned above, Roberts (unpublished) and

Vainsencher [35] studied the rank singularities Σ (γ) for smooth subvari-

eties of Pn, computing the degree of the image of Σι(γ) in PΛ*. A natural

context for the study of such degeneracy loci in geometry has been devel-

oped and applied by Harris, Tu, and others (cf. [34]).

The extrinsic geometry of surfaces in P 3 has been studied deeply by the
Russian school. Platonova and Landis have obtained a projective classifi-
cation of the points of a generic surface in 3-space (cf. [2, Chapter VI]).
It would be very interesting to extend their results to higher dimensions.
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The methods of Kulikov [22] do extend to hypersurfaces of P"; in fact, we
have verified several of our numerical results using his techniques.

There are many questions left to explore. We plan next to investigate
multiple points of the Gauss map of a smooth hypersurface in P 4, following
Ronga's computations for surfaces in P 3 . We would also like, as we did in
the case of surfaces [29], to interpret our results for nongeneric projective
hypersurfaces.

Preliminary reports on this work were given in April 1986 at the Uni-
versity of North Carolina's singularities year, and at the special session
on singularities in algebraic geometry at the October 1986 meeting of the
American Mathematical Society in Charlotte. We thank Gary Kennedy for
helpful remarks on Chern-Mather classes, and Felice Ronga for sending us
his paper [31] prior to its publication.

Guide to the reader. The geometric content of §§1-4 rests on the sin-
gularity theoretic foundations of §§5-9. We have chosen to put the geo-
metric results first in order to make the paper accessible to the reader not
versed in singularity theory; thus the geometric applications should pro-
vide the reader a more motivated and tractable entree to the technicalities
of the singularity theory. On the other hand, an understanding of our ba-
sic premise, Gauss stability, sufficient for our geometric purposes can be
obtained from the statements of the transversality package (6.1) for the
second fundamental form and the normal forms (7.3) for the Gauss map.

We have attempted to provide complete and accurate references for
all singularity theoretic results. Further background may be found in the
excellent expository works of Arnold, et al. [3] and Martinet [25].

1. The parabolic surface

Let M be a smooth hypersurface in P 4, with Gauss map y: M —> P4*.

Let

Π = Cl{x G M\ dimkeτ(dγx) = 1} = Σι(γ),

Π' = C1{JC G M\ d i m k e r ^ ) = 2} = Σ2(y),

where Cl and bar denote closure. (For an introduction to the Thom-
Boardman singularities Σ7, cf. [3, §2].) If M is Gauss-stable of degree > 3
then the transversality package (6.1) implies that dimΠ = 2, dimΠ' = 0
and Π° = Π - ΓΓ is smooth. We call Π the parabolic surface in M.

We wish first to relate γ, or, more precisely, its derivative and the pro-
jective second fundamental form of M. Let π: C5 - {0} —• P 4 be the
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canonical projection. We say that a basis Zo, Z\9 , Z 4 for C5 is a frame
at x G P 4 if π(Zo) = JC. A frame on an open set tj c P 4 is by definition
a holomorphic map U -+ GL(5,C), c -> (Z/(JC)), / = 0,1, ,4, such that
π(Zo(x)) = x. Given a hypersurface M c P 4, an adapted frame on an
open subset 17 c Λf is a frame on [/ satisfying the further condition that
π(Z 0 ΛZ{ΛZ2Λ Z3) = ΓxΛf c Γ*P4. We denote by fxΛ/ the three-plane
Zo Λ Zi Λ Z-i Λ Z 3 in P 4 tangent to M this is of course the Gauss image
γ(x).

Given an adapted frame field Zo, Z* on U c M, define one-forms
<*>{, 0 < /,7 < 4, on M by

(1.1) dZ^

Setting ωJ

Q = ωΛ one sees that ω 1, ω 2, ω 3 give a basis for the (holomorphic)
one-forms on U. Differentiating (1.1), we obtain the structure equations

(1.2)

since ω 4 = 0 on M, we infer that rfω4 = ^ = 1 ω α Λ ω 4 = 0, and hence, by
the Cartan lemma,

3

(1.3) ω4

a = Σhaβω
β, haβ = hβa.

β=l

It is straightforward (cf. [29]) to verify that the tensor II = Σhaβω
a ®

ωβ ® Z 4 is well defined. II is a section of the bundle Sym2(T*M) <g> NM

and is called the (projective) second fundamental form ofM.
On the other hand, the derivative of the Gauss map

dγx: TXM -+ Tγ{x)P
4* = Hom(fxMX5/fxM),

^ 4 ^
7=0

may be interpreted as a bilinear map

(1.5) TxM®fxM-^C5/fxM.

From the Euler sequence

J O - ^ Λ / ( - 1 ) ^TM-+ TM®0M{-1) -> 0,
( L 6 ) \ o - ^ p 4 ( - l ) - C5 - ΓP 4 ® ̂ p 4 ( - l ) - 0,
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it follows that C5/TM = NM ® ffM{-\). Moreover, the restriction of the
map (1.5) to TXM <g> Span( c) is trivial since ωj = 0 on M. Therefore, the
map (1.5) induces by (1.6) a bundle map

dγ: TM ®TM ®@M(-\) ^ NM

twisting the bundles by <^Λ/(1), it follows from (1.4) that this map is none
other than the second fundamental form.

For future reference we remark that if M is presented locally as a graph
{x4 = f(x\,X2,X3)} C C4, we may then take

^ = (1,0,0,/!), Z 2 = (0,l,0,/2), Z 3 = (0,0,l,/3), Z 4 = (0,0,0,1),

ωa = dxa, a = 1,2,3.

Then, writing fa = df/dxa, faβ = d2f/dxadxβ,

(1.7) II = (Σfaβdxa ® dxβ) ® Z 4 .

As a geometric consequence, it follows that the conic {U(υ9υ) = 0} c
PTXM of asymptotic directions at x is the tangent cone of M n TXM.
(Proof: take x = 0, TXM = {x4 = 0}; then M n TXM is defined in C3 by

The parabolic surface arises from the algebro-geometric viewpoint (e.g.,
in [11]) by way of the Hessian. Suppose Λf3 c P 4 is defined as the zero
locus of a homogeneous polynomial F of degree d in five variables. Let
Hess^) = det(Fij) be the Hessian determinant of F.

(1.8) Proposition. The parabolic surface Π is cut out on M by the equa-
tion Hess(.F) = 0.

Proof. Let A = [Fij(x)]. The function F; is homogeneous of degree
d - 1 and so Euler's theorem implies that Ax = (d - I)VF(JC). Suppose
now that v e kerΛ, so that vτA = 0. Then 0 = vτAx = (d - l)VF(x) v,
so υ G (VF(x))-1, whence υ e TXM. But from the commutative diagram

c 5 - {0}

•I
P4DM

it follows that dπ(υ) e keτdγx. Provided that dπ(υ) Φ 0, it will be the
case that x e Π . But dπ(v) = 0 if and only if v is a multiple of x, and
Ax φ 0 since M is smooth, q.e.d.

In fact, the proof shows more. The Hessian matrix A and the sec-
ond fundamental form II have isomorphic kernels, the isomorphism being
given by dπ. Using this observation, we now prove the stronger result:
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(1.9) Proposition. If M is Gauss-stable and p e Π°, then Hess(F) has
nonzero differential at p. Hence Hess(.F) = 0 defines the {reduced) scheme
Π c M .

Proof. Choose coordinates (xo, X\, • , x4) in P 4 so that p = (1,0, , 0),
VF(p) = (0,0,0,0,1), and Fυ(p) = 0. Locally M = {x4 = f(xux2,X3)}
for some analytic function / near 0 e C3. Setting x0 = 1, x = (xuX2,Xi),
and working in affine coordinates, we have

F(l,x9f(x)) = 0

=> F«β+F4βfa + F4faβ = 0, 1 < a,β < 3,

=> dfn(0) =-dFn(p).

Using the expression (1.7) for the second fundamental form we find that
since f\β(O) = 0, the transversality condition (6.1.1) may be expressed in
the form dfu(0) Φ 0. On the other hand, expanding Hess(F) in cofactors
along row 1,

c Φ 0 since rank A = 4, and so Gauss stability implies dHess(F)(p) Φ
0. q.e.d.

Let H denote the divisor class of a hyperplane section of M. We now
deduce easily from (1.8) the following.

(1.10) Proposition. If M is a hypersurface of degree d in P4, then Π is
an element of the linear system \5{d — 2)H\.

Proof Hess(/) is a homogeneous polynomial of degree 5(d-2). q.e.d.
In the case of a surface in P 3, the parabolic set is generally a smooth

curve [29]. However, here the parabolic surface Π will generally have zero-
dimensional singular locus as we remarked at the outset, and as one would
suspect from a naive dimension count. It is a straightforward application
of results of [19], [17] to compute the degree of the singular locus ΓΓ.

(1.11) Proposition. IfM is a Gauss-stable threefold of degree d > 3 in
P4, then the singular locus IT of the parabolic surface Π is a reduced zero-
cycle of degree 20d(d - 2)3 and consists of ordinary double points (i.e., the
tangent cone ofΠ at x elY is a rank three quadric).

Proof Let E be a bundle or rank 3, and L a line bundle on M. Ac-
cording to [17], the "general" symmetric bundle map Φ: E -» E* ® L has
rank < 1 on a subvariety whose rational equivalence class is given by the
formal determinant

4 C2 C3

CO C\
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where a = d(E* <g> vT). We apply this with E = TM, L = NM = 0M(d\
taking φ to be the second fundamental form and interpreting y/Σ formally.
The necessary transversality condition is guaranteed by (6.1.1) and (6.1.2).

Now a(E) = (5 - d)H, c2(E) = (10 - 5d + d2)H2, and c3(E) =
{l0-\0d + 5d2-d3)H3. Thusci = {-5 + %d)H, c2 = (l0-l0d+%d2)H2,
and c3 = (-10 + I5d - ^-d2 + ψd3)H3, from which one obtains

4{c{c2 - c3) = 4(-40 + 60d - 30d2 + 5d3)H3 = 20{d - 2)3//3,

whose degree is 20d(d - 2)3. The final assertion of the proposition may
be checked directly from (6.1.2) (cf. the proof of (3.3)), or, equivalently,
may be deduced from the normal form (7.3) (cf. (2.9)).

2. The cusp hierarchy

For the smooth hypersurface M cP4, let

C = tΛ(γ), A = tΛΛ(γ)

be the closures of the Thom-Boardman loci Σ l ι l(y), Σ 1 1 1 ^ ) respectively.
If Π° = Σι(γ) is smooth, then

Σι-ι{γ) = {xe Σ^yJIdimkerrfίylΣ1^)), = 1};

and if Σ u ( y ) is smooth, then

Σι^(γ) = {x eΣ^(γ)\dimktτd(γ\Σ^(γ))x = I}.

If M is Gauss-stable, we infer from the transversality package (6.1) that
Σ1 (y) and Σ1 '1 (y) are smooth, dim C = 1 and dimΛ = 0. We call C the cusp
curve and Λ the second-order cusp locus. Furthermore, C = Σ1 '1(y)uΣ2(y),
and the singular locus of C is Σ2(y) = IT, consisting, as we shall see, of
ordinary triple points of C. In order to define C and Λ by vector bundle
methods, we "are obliged to resolve the singularities of Π and it is to this
matter we turn first.

The normal form (7.3) for the Gauss map of a Gauss-stable hypersurface
at a point of IT is

(2.1) γ(x, y, z) = (2x3 + 2xy2 + x2z, 3x2 + y1 + 2xz, 2xy, z).

The resulting local analytic equation of Π in M is

(2.2) 3x2 -y2 + χz = 0,

which defines a quadric cone of maximal rank.

If we blow up the origin in C3, the proper transform of the quadric cone
{x2 +y2 + z2 = 0} (for simplicity) is a smooth surface with a smooth plane
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conic lying over the origin. Thus it follows from (2.2) that if we blow up
our threefold M at the singular points of Π, then the proper transform Π
of Π is a smooth surface with smooth conies as exceptional fibers. Denote
by σ: M -> M the blow-up, and for p e ΓΓ, let Zp = (σ\fΐ)-{(p) be the
conic over p; put Z = \JpeΠt Zp- Now consider the map σ|Π: Π —• Π. Off
Z it is an isomorphism; if ξ e Zp c P(TPM), however, then

(2.3) Ίm(dσ)ξ = span(£) c TPM.

Next we consider the Nash blow-up Π of Π defined as follows:

Π = closure{(x, TXΠ): X G Π ° } C P{TM)\Ώ.

Since a smooth plane conic is self-dual, it is immediate from (2.2) that
Π = Π; let Z correspondingly denote the fibers of Π over IT. Now Π
supports a naturally defined bundle 7Ή, called the Nash tangent bundle of
Π, obtained by restricting the tautological bundle of rank 2 on P(T*M) to
Π. Clearly,

( Γ Π ) | Π - Z = ( Γ Π ) | Π - Z ,

but the relation between the two bundles along Z will prove crucial.
Considering the projection σ: Π —• Π c M, its derivative provides by

continuity a bundle map

(2.4) dσ:

on Π = Π, which by (2.3) drops rank along Z. Work in local coordinates,
withΠ = {jc2 + y2 + z2 = 0} c C3, Π = {(x,υ,w) c C3\v2 + w2 -f 1 = 0 }
and

σ: C3 —• C3, σ(x,v,w) = (x,xv,xw).

Using the framings

d 3d

r d d d r d d
f ι = dϊ + υaϊ + wβ;> f l = wd-y-

υd-z

for Tfl and tΠ respectively, the map (2.4) is given by

dσ(e{) = fι, dσ(e2)=xf2.

From this computation we draw two conclusions:

(2.5) Viewing (2.4) as a sheaf homomorphism of locally free
sheaves, the cokernel K is a locally free #£-module of rank
one, i.e., a line bundle supported on Z.
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(2.6) The bundle map (dσ)~ι defined on Π - Z extends to give
a homomorphism ψ: fΠ<g><f(-Z) —• ΓΠ.

Pursuing the former remark, we have the following
(2.7) Lemma. K s ^ ,
Proof. First of all, it follows from (2.3) that, restricting to Z, K =

TΠ/(fz(-l), w h e r e ^ ( - l ) is the restriction to Z of^fp(Γ M)(-l). Working
in P 2 = P(TPM), let C be a smooth conic and let g: C -• P2* be its
Gauss map. Denote by L = &c{— 1) a n d by £ the pullback under g of the
tautological rank 2 bundle on P2*. Then cx (E/L) = 0: cx (L) C = -H C =
-2, while cx(E)-C = -H* g(C) = -2, where i/* is the "hyperplane" class
in P2*. Since C = P 1, E/L is the trivial line bundle on C. q.e.d.

We therefore have the exact sequence of coherent sheaves

(2.8) 0 -> ΓΠ -> ΓΠ ̂  ^ z - . 0

on Π; from this it is straightforward to compare the Chern classes of the
bundles ΓΠ and f Π.

(2.9) Proposition. Let M c P 4 be a Gauss-stable hypersurface of degree
d>3. Then:

(a) the canonical bundle K^ ofΐl is cut out on Π by the linear system
\{βd - \5)H\ [here we omit the ex*),

(b) ci(fΠ) = ci(7ϊϊ) + [Z], c2(/Ή) = c2(ΓΠ) + [Z]2.
Proof (a) Let σ: M -+ M be the blow-up of M at Π', and let E =

σ ' ^ Π ' ) be the exceptional divisor. Apply the adjunction formula (cf.
[15, p. 147]) to the smooth surface Π c M , using K^ = σ*KM + 2E [15,
p. 187]. Since Π' consists of ordinary double points, one checks easily in
local coordinates that

(2.10) [Π] = <

and so

* π = (KM + [Π])|Π = σ*{KM + [Π])|fί

= σ*((d-5)H + 5(d-2)H) by (1.10)

= σ*(6d-l5)H.

(b) We can use (2.8) to compare c*(ΓΠ) and c*(7TI) once we know the
Chern classes of the coherent sheaf (9% on Π (cf. [18]). From the obvious
resolution

it follows that c h ( ^ ) = ch(^j) - ch(<?n(-Z)) = [Z] - ^[Z] 2, whence
c\{0%) = [Z] and c 2 ( ^ ) = i^Ϋ- τ h e result now is immediate, since
d(Γί ϊ ) [Z] = -ΛΓft [Z] = 0 by (a), q.e.d.
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There is yet another resolution of Π, which we shall dub the kernel
blow-up Π# of Π, defined as follows:

Π# = {(x9ζ) e P(TM)\Ώ I ξ e kβrdγx}.

Insofar as dimktvdγx = 1 when x e Π°, Π# is birational to Π; on the
other hand, since dimkevdγx = 2 when x e Π', the exceptional fibers of
Π# are P*'s. Computing with the normal form (2.1) we find that (locally)
Π# c C5 c C3 x P2 is given by the equations 3x + z- xv2 = 0, y + xυ = 0,
w = 0, and hence is a smooth surface.

It follows from the structure theory of birational maps of surfaces (cf.
[15, p. 510]) that the three resolutions Π, Π and Π# of Π must all be
isomorphic. It is also easy to exhibit the isomorphism explicitly using
(2.1), viz.;

(2.11)
π

limiting secant

π
limiting tangent plane

(The latter arrow is reversible since z is determined whenever (x,y) Φ 0
by the equation (2.2) of Π.)

We are at last in a position to address the geometry of the cusp curve
C. Let x e Σι>ι(γ). Then keτdγx c TXΠ, so that under the projection

TXM-+TXM/TXΠ=(NU,M)X

the kernel direction span(kerdγx) maps to zero. The advantage of this
point of view is that it is amenable to globalization on Π. Let J?7 be the tau-
tological line bundle on Π obtained by restricting &P(TM)(- 1) to Π#. Since
£f C σ*TM, we may consider on Π the homomorphism of line bundles

proj: & -> σ*TM/fYl = ftn.
def

Changing notation somewhat, let s be this section of the homomorphism
bundle Hom(^, Nn), and set C = (s)9 the zero divisor of s; then C = σ*C.

If M is Gauss-stable, it follows from (6.1.4) that s is transverse to the
zero section away from Z and hence that C is a smooth (reduced) divi-
sor on Π away from Z. It follows from (2.11) that the limiting kernel
direction &ξ at ξ e Z is contained in TξΠ <* ξ = [(0,0,1)], [(l,/,-4)],
or [(1,— /, — 4)]; i.e., C meets each component of Z in three points, and
hence C has an ordinary triple point at each point of IT. Moreover, it is
an easy calculation to check from (2.1) that the three branches of C at Z
are given in these local coordinates by the three lines

(2.12) ft: {ί(0 f0,1)}, ft:{ί(U,-4)}, C3:

Thus C is smooth.
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To compute the divisor class of C on Π, we use (2.9):

[C] = cx{&* ® σ*TM/fΠ) = -cx{&) - σ*KM - (c{(TΪl) + [Z])

= -a (5?) -(d- 5)// +(6d-l 5)H - [Z]

= 5(d-2)H-Cι(J?)-[Zl

(2.13) Lemma. If M is a Gauss-stable hypersurface of degree d > 3,
then we have {on Π) cx(S?) = (-2d + 5)7/ + \\Z\

Proof Let ^ c Γ M b e the annihilator of 3>\ then

(2.14) g*i{TMI&)*.

If we interpret the second fundamental form of M as a section of
Hom(ΓM, T*M 0 NM), then we obtain the exact sequence of bundles on

(2.15) 0 -> -2* -• ΓM ^ r 0 iVM -* 0.

That is, we have on Π the induced bundle homomorphism

(2.16) TMI&^g^NM,

which is an isomorphism on ΐl-Z and fails to be injective on Z. Condition
(6.1.2) of the transversality package implies that II is transverse to the
stratum of elements of Hom(TM/<3p,g' ® NM) of rank one. Hence, by
Thom-Porteous [12], the scheme along which II drops rank is given by the
divisor c\{& ® NM - TM/J?), and so

= -2cι(TM/&) + 2cχ(NM) by (2.14)

Therefore c\{£?) = {-2d + 5)H -h \\Z\ as required, q.e.d.
We are now in a position to conclude
(2.17) Proposition. [C] = {Id - 15)// - \\Z\ on Π, and hence [C] =

σ*[C] = {Id-15)//, as a rational equivalence class on H. As a consequence,
degC = 5d(d-2)(Ίd-\5).

We turn next to the second-order cusp locus Λ. On IΊ° this locus is
described by the condition that the kernel direction becomes tangent to C,
i.e., that the projection 3* —• NC/n vanishes. We observe that ΛnΠ' = 0:
the kernel plane z = 0 (cf. (2.11)) is certainly transverse to the three
branches (2.12) of C. Nevertheless, globalizing our description of Λ on Π
is subtle, for the "obvious" bundle map
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while having the requisite zeros at the lifts of Λ points, is not holomorphic
across Z!

To remedy the situation, we begin by observing (cf. [6] and §6) that
v is the intrinsic derivative Ds of the section s defining C. Recall that if
L is a line bundle on X, and Y c X is the zero divisor of a section s of
L, then the intrinsic derivative Ds: [TX)\Y -> L should be interpreted as
a one-form dn X, defined along Y, with values in L. (Moreover, if s is
transverse to the zero section, we have L\Y = NY/χ.) So in our case, still
restricting our attention to Π°, the projection v is obtained as follows:

s: & - TM -> Nn/M
Ds: (JΉ)|C -> H o m ^ , N n / M ) s ΛΓC/Π.

V ' U / V

To globalize this construction on Π, we must utilize (2.6). On Π we have
the section s of Hom(<5*, TVπ) defining C. Hence its intrinsic derivative
gives the map

Ds: {Ttl)\C -> Hom(^,Λh) = NC/tι.

Unfortunately, Sf is a subbundle of ΓΠ, not of ΓΠ. Applying (2.6), there
is an injection of Sf ®*f (~Z) into ΓΠ, and so we define the bundle map
v in the obvious way:

Ds: {TΠ)\C-+NC/tι

U Ϋ

Of course, away from Z, v is equal to the map i/ already discussed, and
so we define A = (£), Λ = cr*Λ.

(2.19) Proposition. If M is Gauss-stable of degree d > 3, then Λ w α
reduced zero-cycle of degree 5d(d - 2)(3d - Ί)(\Ίd - 36).

Proof Let ξ denote the bundle H o m ( ^ ® ̂ ( - Z ) , H o m ( ^ , iVn)) de-
fined on Π. We compute its Chern class:

a (ξ) = -2ex {&) + [Z] + 5(rf - 2)7/ - [Z]

= (W - 20)H - [Z] by (2.13).

Applying (2.17), we find

cι(ξ) [C] = ((9rf - 20)i/ - [Z]) ((7rf - 15)//- | [Z])

= (9rf - 20)(7d - 15)(degΠ) + | [ Z ] 2

= (9d - 20)(7d - I5)5d(d - 2) + |(-2)(degΠ ;)

- 2)((9d - 20)(Ίd - 15) - I2(d - 2)2)
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note that [Zp]
2 = - 2 for p e IT, since Zp is a conic in the exceptional P 2 .

Now v is transverse to the zero section of ξ as a consequence of (6.1.5)
(cf. also ((6.2g)). Therefore, if M is Gauss-stable, A is a reduced zero-
dimensional subscheme of C; since A n IT = 0, it is immediate that the
same is true of A in C. q.e.d.

Query. It is not hard to see that C cannot be cut out on Π by a divisor
class on M. For example, at p e IT, the fiber of Π is a conic and that of C
is three points on the conic. But is some multiple of C a scheme-theoretic
complete intersection? (In the case of surfaces [29], twice the cusp locus
is cut out on the smooth parabolic curve by the asymptotic flex curve &.)
Similarly, is A or some multiple thereof a complete intersection of C and
some other curve in Π?

3. Geometry of the cusp curve

We begin by recalling the notion of order of contact of a hypersurface
M c P 4 with a line L: we say M has λ th order contact with L at x e M
if their intersection multiplicity *f(M L)x at x equals k + 1. In affine
coordinates, if x = 0 € C4, L is the Xi-axis, and M = {x4 = f{x\,xi,xι)}
locally, then M has /cth order contact with L at 0 provided

(3.1) | ^ ( 0 ) = 0, ι = 0,...,*, ^ p W ^ O .

For example, M has at least zeroth order contact with L at x if x e MnL,
at least first order contact if L is tangent to M at x, and at least second
order contact if L is an asymptotic direction in M at x.

Consider the sequence of incidence correspondences [22]

2^k = {(x,L) e M x G(l,4)|Af has at least kth order contact with L at x}.

Given d > 3 and k < d, for generic M c P 4 of degree d, 2k is a sub-
manifold of JZό of codimension k (cf. (9.6) and [5]). With M = {x4 =
/(xi,X2,X3)} c C4, we use d/dx\, d/dX2, djdx^ as a framing for ΓM
with corresponding coordinates p\, /?2> P3- Then it follows from (3.1) that,
for k > 2, Zk is cut out in <2^_i by the equation (homogeneous of degree
k in/?)
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We infer from (1.7) that

%i = {(x,v) e PTM\Ux(v,v) = 0}.

It will be useful to introduce the higher forms

TTT =

TV

1/1=4 '

άxh ί

[f , - , ,

1 < I i , Z2,13

1 < '
X|4,

< 3 ,

< %

While the cubic form III, for example, is not intrinsically defined, the
subschemes of PTXM

{II, = 0} D {II, = 0} {III, = 0}

represent the fibers of Zι and 3%, respectively, over x.

It is enlightening to consider what these fibers look like at points of the
various loci which we have been studying. A few sketches below represent
study yet to follow.

The first result on our agenda is the characterization of the cusp locus
by the behavior of the cubic {III = 0}, as pictured in (3.3): the curve C
is the locus of points of Π at which the cubic passes through the vertex
of the conic {II = 0}. This generalizes the result of [29] for surfaces.
But the picture suggests more: the tangent line to the cubic at the vertex
of the conic (which is intrinsically defined) coincides with P(Γ,Π). We
are also led to consider the locus K of Cayley points x with the property
that the tangent space TXU becomes II-null; K is then distinguished by the
pictures above. Another locus contained in C is μ = {x e C\keτdγx is
an asymptotic direction in Π}. The last locus we shall consider is the set
Γ of points x e C with the property that the quartic {IV, = 0} as well
passes through the vertex of the conic {II, = 0}. The rest of this section
is devoted to finding the divisor classes of the zero-cycles Λ, /c, μ, Γ, and
IT in C and to describing any geometric relations among them.

We begin by enunciating the following fact which supplements the re-
sults at the end of §9.

(3.4) Lemma. Let M be a Gauss-stable hypersurface of degree d > 2.
Then Zι is a smooth hypersurface in Z\ = PTM.

Sketch of proof. A careful analysis of the usual proof of Sylvester's law
leads to the following parametric version. Let x e M\ then there is an
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LOCUS {II = 0} {Π = 0}, {III = 0}

(3.3)

open set U c M containing x and a frame for TM over U so that

"1 0 0"
11= 0 a β

.0 β y_

(where α, /?, 7 are analytic functions on U), and so that, furthermore,

x e Σ° =>we may take a = γ = 1, /? = 0;

JC e Σ1 =ί-we may take a = 1, /? = 0, and

γ a local defining function for Π;

xeΣ2 ^aγ - β2 = 0 on Π, a = β = γ = 0 at x,

but daf\dβ Ndyφ 0.
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Now the equation of ^ is p\ + ap\ + 2βp2p3 + yp\ = 0, whose differential
in each of the three cases, as is easily checked, is nonzero, q.e.d.

Next, to understand the behavior of the cubic form III at points of
C, we investigate the intersection J 3 n l l * c S ^ We remark that, for a
Zariski-open set of hypersurfaces M e ^ , d > 3, 55 is a smooth three-
dimensional variety (9.6).

(3.5) Proposition. Let M be a Gauss-stable hypersurface of degree
d > 3, and assume Z3 is smooth and of dimension three. Then Z3 is
transverse to Π# in Z2, and Z3 Π* = C* = C.

Proof We first prove that the set-theoretic intersection of ^ and Π# is
isomorphic to C. Let x e Π°; represent M as a graph x4 = f{xx, x2, x3), as
usual, with x at the origin and choosing linear coordinates on C3 so that
d/dx\ spans the kernel direction at x. Then II is given by the Hessian
matrix H = [fj] and Π by det H = 0. Let α ί y be the zy-cofactor of H; thus

Π = {fuOίu +/l2«12 + /l3«13 = 0},

Z3 = {ΣfijkPiPjpk = 0}.

Now x G C - Π' <& d/dx\ is tangent to Π at x <& fiu&u = 0 at
0 <* /ni(O) = 0. That is, x <E C - IT <* (x,d/dx{) eZ3Π (Π# - Z # ) .
Provided ^ contains no exceptional fiber of Π#, it then follows that C# =
C -Z = C. If the fiber Z# over x e IT is given by p3 = 0 and Z# c -2*3,
then fjic(x) = 0, 1 < ij,k < 2, whence the tangent hyperplane section of
M at x is of the form z 2 + z^(x,y, z)-\ , where q is quadratic and
denotes terms of degree > 4. It is easy to check, blowing up the origin,
that x could not then be a D4-singularity; cf. (8.14ii) and (8.20).

Lastly we must check that the transversality package (6.1) implies the
intersection is transverse. We work near x e Π°. The section s of
H o m ^ , Nn) defining C may be given as follows, using the coordinates de-
fined earlier: if Π = {λ = 0}, then s = dλ/dx{ and s ά) 0 o d(dλ/dx{) φ 0
when dλ/dx\ = 0. The transversality condition (6.1.4) translates to the
condition dfm Φ 0. Now to check that JΓ3 rh Π#, it suffices to verify that
^τ&iz + ^iiz *s a four-dimensional subbundle (locally) of T*3\\C*.
Let gi = ΣfjPj = 0, / = 1,2,3, define Π# in Z\\ then we must establish
that

(3.6) dλ Λ dg{ Λ dg2 Λdg3φ0 on C#.

Set p\ = 1 and compute in local coordinates X\,X2,X3,P2,Pi Then dg\ Λ
dgi Λ dg3 = andfn Λ dp2 Λ dp3; since dλ = dfm mod(dp2,dp3), (3.6) is
equivalent to

dfnΛdfmφO.
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Finally, since dfn spans N^/M, the latter is in turn equivalent to the con-

dition that dfnχ\Ώ Φ 0.

(3.7) Corollary. Let xeC, and let L e PTXM denote the kernel direc-
tion. Then PTXΏ = TL{lllx = 0}.

Proof. Using the notation of the proof of (3.5), TXΠ is cut out by the
equation

0 = dfn =fu\dx\ + find X2 + f 113d X3

= And X2 +find x3.

But in terms of affine coordinates P2, P3 on PTXM,

{III* = 0} = {/112P2 + /naft + Σf\ijPiPj + ΣfjkPiPjPk = 0}.

So TL{lllx = 0} = {fn2P2 + fmP3 = 0} = TXΠ. q.e.d.
We turn next to a brief investigation of the projective differential geo-

metric invariants at a second-order cusp point. The following result will
be useful in our analysis of the cubic threefold in §4.

(3.8) Proposition. Let M be Gauss-stable, and let x e A. Then the
following are equivalent.

(a) TXΠ is ll-null
(b) The kernel direction L at x is asymptotic in Π, i.e., is null for the

second fundamental form 0 / Π c P 4 .
Proof. Choose two frame fields Zo, , Z 4 and "Zo,-- , Z 4 near x on

Π so that

(i) Z, = Z z for / φ 1, and Z\= Z\ along C;
(ii) ^ZUZ2 span 7Ή, Ύx.Z^Z^ span TM; and

(iii) Z\ spans the kernel direction.

Since ω\ = 0 identically on Π, we infer from (1.2) that

0 = dω\ = (ω\ - ω\) Λ ω\ + ω\ Λ ω\ + ω\ Λ ω^;

evaluating on (Z{,Z2) at x e C, we find

0 = A22ω?(Z0 + Λ32ωf (Z0 - Λ2iω?(Z2) - A3iω?(Z2).

Therefore

(3.9) ω?(Z1)A22 + ωJ(Z1)A23 = 0.

To compute the second fundamental form IIΠ of Π, we use the barred
frame field:

= (ω\ ® ω 1 -f ω\ ® ωΠ π = (ω\ ® ω 1 -f ω\ ® ω2) ® Z 3
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Hence, if x e C, then

Imposing the further condition that JCGΛ, since Z\ = Z i along C and Z\
is tangent to C at x, we have ω{(Zi) = ω{(Zi) at x, 7 = 3,4, and so we
conclude that L is asymptotic at x o ωJ(Zi) = 0.

On the other hand, since h{j = 0, TXΠ is Il-null *> h21 = 0. Thus from
(3.9) it follows that (a) =» (b), as rank II = 2 implies A23 7* 0. Conversely,
if ω\(Z\) = 0, then by (6.1.6) we cannot have dZχ(Z\) = 0 mod(Zi),
whence ώ\{Z\) Φ 0 and A22 = 0, establishing (b) => (a), q.e.d.

We turn next to the task of understanding the loci K = {x e C\TXΠ
is Π-null} and μ = {x e C\ kevdγx is asymptotic in Π} as divisors of C
For the moment, we assume they are zero-dimensional loci, disjoint from
Π', and use bundle-theoretic methods to compute their degrees. We will
see later in this section that for a nonempty Zariski-open subset of the
Gauss-stable hypersurfaces, those loci are in fact reduced zero-cycles.

(3.10) Proposition. The loci k = σ~x{κ) and μ = σ~x{μ) are cut
out on C by the linear system \{9d - 20)H - [Z]|, and both have degree
5d(d-2)(3d-7)(Πd-36).

Proof. On C, the "kernel bundle" £? is a subbundle of f Π, and the
second fundamental form II induces a bundle homomorphism

ϊϊ:

defining the divisor k. Using (2.9) and (2.13), we compute

d ( H o m ( ( f n / ^ ) 2 , ^ M ) ) = 2cx(&) - 2d(fΠ) + cx{NM)

= (9d - 20)H - [Z].

To define μ, it is more convenient to work on the surface Π c M and
to use its second fundamental form

Πfl:
 2 t

Using (2.6), consider the bundle map

{& ® d?(-Z))2 - Sym2(ΓΠ)

To compute its divisor, we note that by (2.10), Cι{Nn/]iί) = σ*[Π] - 2[Z];
thus μ is denned by the divisor class

- Z ) 2 , Nm)) = -2c, ( ^ ) + 2[Z] + σ*[Π] - 2[Z]

= (9d - 20)// - [Z].
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Comparing with the proof of (2.19), we see that the same linear system

cuts out Λ on C, and so

deg/c = deg/i = degλ = 5d{d - 2)(3d - 7)(17rf - 36),

as required, q.e.d.

Now we relate the loci JC, μ, and Λ more carefully. Before doing so, we
complete the cast of characters with the locus Γ = {x e C\M has at least
fourth order contact at x with the line spanned by \&rdyx} = {x e C\ the
quartic {IV* = 0} passes through the vertex of {II* = 0}}. To study Γ, we
introduce the ruled surface S c P 4 generated by the kernel lines along the
cusp curve. More precisely, let E be the rank 2 bundle on C corresponding
to the line bundle S? according to the Euler sequence

(3.11) 0->&(-l)^E^5?®&(-l)-+0.

Provided that there are only finitely many lines L c P 4 having (at least)
third order contact with M at each of two distinct points ;c,y, the map
P{E) —• S is birational. We now check that if d > 3, this is a generic
property.

(3.12) Lemma. Let d > 4. There is a nonempty Zariski-open subset of
the moduli space Jί^ of smooth hypersurfaces of degree d for which the map
P(£) -• S is birational.

Proof (i) d > 8. For x,y e P 4 fixed and L = Icy, generically eight
conditions are imposed on M e Jίd if M is to have intersection multiplicity
four with L at x and at y. Now a dimension count shows that the Zariski-
closed set {M £ Jί^M has intersection multiplicity 4 with infinitely many
lines at more than one point} is a proper subset of ̂ .

(ii) If 4 < d < 1 and M has intersection multiplicity 8 with a line L,
then L c M. Now a dimension count again shows that if d > 6, the
generic hypersurface contains no line and if d = 5 it contains only finitely
many.

(iii) d = 4. Suppose L c M and M has third order contact with L at
x and at y, x φ y. Then restricting the Gauss map γ of M to L gives a
linear system |ί?| of degree 3 on L = P 1 and of dimension at most 2. The
points x,y are ramification points of γ\L, and a plane cubic curve cannot
have two cusps. On the other hand, if dim |ί?| = 1, γ\L gives a threefold
cover P 1 —• P 1 branched at four points; but then L must be a singular
point of the Fano variety of M, and by [5] for generic M this variety is
smooth, q.e.d.
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Assuming the map P(E) —• S is birational, we may compute the degree
of the ruled surface S (cf., for example, [15, p. 410]):

by (3.11)

= {{2d - 3)H - \[Z\) {{Id -\5)H- \[Z]) by (2.13), (2.17),

and so

(3.13) degS = 5d{d - 2){Sd2 - lid + 21).

(3.14) Proposition. Suppose M is Gauss-stable of degree d > 4, 2^
is smooth, Γ is a zero-cycle disjoint from Π', and the map P{E) —• S is
birational. Then

degΓ = 5d{d - 2){39d2 - \19d + 204).

Remark. It follows from (8.1), (9.6), (8.21) and (3.12) that these condi-
tions are generic, and from (3.22) that for a nonempty Zariski-open subset
of Jίd the zero-cycle is reduced and of the appropriate degree (cf. (3.22)).

Proof We work with the ruled surface S: by (3.5) M has intersection
multiplicity at least four with each kernel line at the corresponding point
of C. Therefore

(3.15) S M = 4C + τ,

where the residual cycle τ is either a certain number, β, of lines contained
in M (if d = 4) or a multi-section of the ruled surface S (if d > 5). We
then have, respectively,

The curve C and a ruling L generate the homology of S subject to the
intersection properties

C L= 1,

L L = 0,

C C = Cχ{L)-C.

Therefore S H ~ C + nL, where

n = degS - degC = 5d{d - 2){%d2 - 34d + 36).

Since M ~ dH, SM ~dC + {nd)L\ juxtaposing with (3.15), we find that
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whence

= 5d{d-2){39d2-Π9d + 204). q.e.d.

We now devote the rest of this section to an analysis of the relation
among the five divisors Λ, JC, μ, Γ, and ΓΓ on the cusp curve C. At this
point it is quite telling to work with the equation of a tangent hyperplane
section of M.

(3.16) Proposition. Let p e C - TV and taking the equation in affine
coordinates of the hyperplane section MnTpM to be of the form

(3.17) 0 = x2 + y2 +

cubic quartic

then

p e μ o a2 + β2 = 6γ,

Proof Note first of all that the kernel direction is d/dz and so the
coefficient of z 3 in (3.17) vanishes by (3.5); likewise, p € Γ <» γ = 0. Now
the tangent line to the cubic {III = 0} c PTPM at (0,0,1) is ax + βy = 0;
this line is Il-null <» a2 + β2 = 0. By (3.7), this then is the condition for
TpΠ to be Π-null. The condition characterizing the locus Λ is given by
(8.19).

Lastly, to distinguish the locus μ, we make the following computation.
Working at the origin in C4 with TQM = {{x,y, z,w)\w = 0}, we write M
as a graph w = f(x,y, z), / analytic. Then

w = f{x,y, z) = u(x,y, z)(x2 + y2 4- (ax 4- βy)z2 + γz4 + ),

where u is a unit in ^ C 3 0 , say with u(0) = 1. Using this equation for M,
we can calculate that the equation for Π is

x + βy + (6y - <*2 - β2)*1 + = o,

where denotes other terms of degree > 2. Thus the kernel direction
d/dz is asymptotic in Π <» 6γ - a2 - β2 = 0.

Remark. From the equation of Π given above, we can also deduce the
characterization of K without referring to (3.7); in addition, (3.8) follows
directly, albeit less geometrically, from (3.16).
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The foregoing proposition leads us to consider the quotient p =
(α2 + β2)/γ. Let G c P GL(5) denote the subgroup stabilizing the form of
equation (3.17), i.e., fixing the point (1,0,0,0,0), the hyperplane x4 = 0
and the quadratic form x2 + y2. Then G consists of matrices a = [α//] of
the form

1
0
0
0
0

001

0 n

021

031

ό

002

012

022

032

0

003

0
0

033

0

004'

014

024

034

044.

where 033, #44 Φ 0, and

'011 012I (

.021 022 J '

Under the action of (7, α, β, γ transform to

(3.18) a' = {ana + a2iβ)al39 β' = (aι2a + a22β)a\^

respectively, so that the quotient (a2 + /?2)/y is indeed well-defined and
thus a projective invariant associated to the point p eC -TY.

To investigate its behavior as we approach a point of IT, we consider
the family of equations (3.17) with parameter t —> 0:

(3.19) x2 + ty2 + (ax + A^)*2 + * * * + γz4 + .

Passing to a branched double cover, we replace y by y/y/t and then we
find

ta2 + β2

(3.20)
ty

Provided β does not approach 0 as t —• 0, we have />, —> 00 as ί —• 0. It
follows from (8.20) that βo = l im^o β cannot be zero at a Z>4-singularity
(if the root (0,1) of the cubic φ(y, z) = βoyz2 -\ is to be simple), and
hence p does indeed take the value 00 at the points IT of a Gauss-stable
hypersurface.

Let Jt'd - {M G JίdW i s a Gauss-stable hypersurface with Λn Γ = 0},
d > 4. Using (3.16) it is easy to exhibit an ^-singularity on a surface in
P 3 which is not a Γ-point; hence by (8.21) the condition Λ n Γ Φ 0 defines
a proper Zariski-closed subset of ^ . Thus Jt'd is a nonempty Zariski-open
subset of Jΐd We now come to the culminating result on the geometry of
the cusp curve.

(3.21) Theorem. If M e Jt1^ d > 4, the invariant p defines a rational

function on C of degree D = 5d{d - 2)(3d - Ί){\ld - 36).
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Remarks. We have seen (cf. (2.19) and (3.10)) that A, k, and μ are
cut out on C by the same linear system; this theorem puts them all in a
particular pencil. On the other hand, the locus Γ enters with the value p =
oo, as do the 3 degΠ' points of Π' = C Π Z (by our preceding discussion).
Hence Γ + Π' is another divisor in this pencil; this explains the relation
degΓ = degΛ-3degIΓ.

Proof, We use notation and an approach similar to that of §8. Let V
be the set of (x, H, M) e P 4 x P4* x JPd such that x is an Ay, A4-, or D4-
singularity of MnH which is versally deformed by the nearby hyperplane
sections of M, and let n: V -> Jt'd be the projection. The fiber π~ι(M)
is the cusp curve of M. Let W be the subset of V consisting of these
(x, H, M) such that x is an Ay or ^-singularity of M n H. The fiber of
W over M e Jt'd is the curve C° = C - ΓΓ; clearly V = W, and W is the
nonsingular locus of V. Define

V = closure{(x,/ί,M;0 e W x PΓΛ/|ί = kerd(γM)x}

Then F is smooth and the fiber of V over M is the curve C.
We begin by showing that there is a well-defined rational function

p: V —> P1 whose restriction to each fiber is the invariant p: C —• P 1 .
By (8.11) the projection

ίΓ -. J^ = {(JC,//) E P4 x P4*|x € # }

displays PF as a Zariski fiber bundle with fiber Wo = {M e Jt^\(1,0,0,0,0)
is an Ay or ^-singularity of M n {̂ 4 = 0} versally deformed by nearby
hyperplane sections}. Let X be the space of polynomials / : C3 —• C of
degree d, mod scalars, so that f~ι(0) has a versally deformed Ay or A4-
singularity (obtained from Wo by dehomogenization). Let Y be the set of
polynomials / : C3 —• C of degree d of the form

f(x,y9 z) = x2 + y2 + 0z3 -h (ax + βy)z2 + + γz4 + ,

(c*2 + ^ , 7 ) ^ ( 0 , 0 ) .

Let // c GL(3) consist of matrices of the form

0(2, C)

Let U c J be an open set over which the bundle W —• ^ is trivial. We
obtain a map /7c/: W^ -* 7/// as the composition

Wv^Wo-+X-> Y/H.
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It is shown in (8.18) that an ^-singularity of the form f(x,y,z) = 0 as
above is versally deformed if and only if a and β are not both 0. The
condition that Λ n Γ = 0 if M e Jt'd translates to (a2 + β2, y) φ (0,0) by
(3.16), and so the map ηu makes sense.

Now p0 = (a2 + β2)/y is a rational function on Y; the calculation
(3.18) shows that po descends to a function on Y/H. It also follows from
(3.18) that if U, U' are two open subsets of,/ over which W is trivial,
then pooηu = Poorluf on (7Π U'\ thus po pulls back to a globally defined
function pw on W whose restriction to any fiber of W over Jt'd is the
invariant p: C° —> P 1 . To see that pw> W —• P 1 is analytic, note that
there is a local analytic map X ^ Y (Sylvester's law with parameters; cf.
also (8.12)) making a commutative diagram:

Now we wish to show that pw extends to an analytic map, hence rational
function, p: V -> P 1 . Given a /^-singularity x e M, by a linear change
of coordinates in P 4 we may take the defining equation of M n H to be
x2 + φ(x9y9z) = 0 (where φ has degree > 3); if we consider the family
of equations x2 + ty2 + φ(x,y9 z) = 0, it follows from (8.13) that there is
a corresponding family of hypersurfaces Mt e Jt'd so that (x,H,Mt) is a
curve in V which lifts canonically to V. Now the calculation (3.20) shows
that p has the value oo at the corresponding point x over x. (Since any
one-parameter family Qt of quadratic forms with rank Qo = 1 and rank
Qt = 2, t Φ 0, is locally analytically equivalent to x 2 + tvy2 (some i/ e N),
one can see that p is in fact well defined at x e V.)

The differential of p0: Y -^ P1 is

<//>o = (2α ί/α + 2β dβ - podγ)/γ

and is everywhere nonzero. Since the map Wu —• WQ —• X is clearly a
submersion and the locally defined map ^ : X —> F is as well, it follows
that />ff is a submersion. For s e P1 fixed, we obtain a submanifold Ws

of ί r , ^ = pw\s)- Since π: F -• ^ is proper, π|H^: Ws -+ Jt'd is
proper, at least for s Φ oo. Since dim Ŵ  = d i m ^ , the branch locus of
π\ Ws is a subvariety of Jf'd of codimension at least one, and so we obtain
a nonempty Zariski-open subset Jtd(s) c ^ with the property that s is a
regular value of p: C° -+ P 1 if M e Jtd(s).

Since Λ is the fiber of π\ W^ by (3.16) and consists of D distinct points
for all Gauss-stable M by (2.19), it follows that π\W4 is unramified, i.e.,
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that 4 is a regular value of p: C° -• P1 for all M e / j . Therefore 4 is a
regular value of p: C -> P1, and degree p = D for all J l /G^j .

(3.22) Corollary. For M in a nonempty Zariski-open subset ofJίdy d >
4, the zero-cycles Λ, κ> μ, Γ, and Π' are disjoint and reduced, with degΛ =
degK = degμ = degΓ + 3 deglΓ.

Proof. For M e Jf'd by (3.16) the cycles Λ, K, μ, and Γ are disjoint,
and Π' is disjoint from Λ, K, and μ since p(tl') = oo. By (8.21) the
condition Γ n IT = 0 is also generic. For Gauss-stable M, Λ and IT are
reduced and Λ has degree D (cf. (2.19) and (1.11)). If we assume now
that M e ^/(0) ΠΛ^/(6), then K and μ each consist of D distinct points,
hence are reduced by (3.10).

Referring to the proof of (3.21), consider the function pt =
(ta2 + β2)/{tγ) obtained in (3.20) by evaluating p on the curve (x,H,Mt)
through x e V. Then dpt/dt\t=o = v/β2- For γ φ 0, then dp* Φ 0. By
(8.21), this condition is generic. Thus for a Zariski-open subset Jίd{ρ6) c
^ ; , oo will be a regular value of p: C —> P1 as well, and so by (3.14) Γ
will be a reduced zero-cycle of degree D - 3 degΠ'.

Remark. It follows that if we relax the condition Λ n Γ = 0, the linear
system on V defined by p acquires base points, and so the degree of p will
decrease on a Gauss-stable M with Λ n Γ ^ 0 .

4. The cubic threefold

For the duration of this section, M will be a Gauss-stable cubic hypersur-
face in P4, defined by the homogeneous polynomial F(xo,X\, -,XA) = 0.
The crucial observation with which we begin is this: since degΛf = 3, a
line L has contact order at least three with M at x if and only if L is
contained in M and so we may identify

^3 = {{x,L) eMx G(l, 4)\x G l a n d l c M}.

(4.1) Lemma. The projection 3$ -> M has degree six; i.e., counting
multiplicities, through each point ofM pass six lines contained in M.

Proof. The fiber of ^ over x e M is given by {11* = 0} {III* = 0} c
PTXM. q.e.d.

Projecting to the other factor, the image of 3£$ in 6(1,4) is a surface
called the Fano surface S associated to M. The Fano surface is smooth
(cf. [5], [9]). There are two types of lines L c M, distinguished by the
behavior of the Gauss map γ of M along L; since γ is a linear system
of conies on M, its restriction to L = P1 is a subsystem of |^ p l(2)| of
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dimension one or two, for γ: M —• P4* has finite fibers. We say the line
L c M is

(i) general if γ\L: L —• P4* embeds L as a smooth plane conic in

P 2 * c P 4 * (^WL/Λ/ = ̂ θ ^ ) ;
(ii) special if y|L: L —• P4* is a branched two-fold covering of a line

P1* c P4* (o NLIM = d?(-l)Θd?(l)).

(4.2) Proposition. The special lines constitute a divisor 2 in S.
Remark. Fano proves moreover that the divisor is bicanonical.
Proof. L is a special line o there are two points P\, Pi e L so that

d{γ\L)pi = 0, i = 1,2 <» L is the kernel direction for έ/jτ>., i = 1,2 ^
(P, , L) e 2?ι Π Π#, / = 1,2 o Pu P2 e C (by (3.5)). Since there is a two-to-
one correspondence between C and 39 2J c 5 is a curve (cf. also (4.10)
below), q.e.d.

At a point of C the kernel direction is tangent to Π; hence we infer
from the proof just given that each special line L is bitangent to Π (cf.
Proposition (2.7) in [29] for the analogous statement for the case of the
cubic surface). On the other hand, since by (1.8) the parabolic surface is
cut out on M by the Hessian of F, which is a quintic, any line on M must
intersect Π five times. That is,

(4.3) L Π = 2Λ+2P2 + Λ,

where R is a residual point.
It is natural to consider next the ruled surface Σ = \Jse& Ls generated

by the special lines. Its crudest invariant is, of course, its degree.
(4.4) Lemma. degΣ = 90.
Proof. We alluded in the proof of (4.2) to the correspondence between

C and 2J. Each ruling of Σ intersects the cusp curve C twice; when it
does, it is the kernel direction. Comparing with the discussion of (3.12),
in this case we see that the map P(E) -» Σ has degree 2, and hence by
(3.13)deg<7 = i(180) = 90. q.e.d.

Now since γ maps a special line to a line in P4*, we obtain by projective
duality a P2(L) c P 4 which is everywhere tangent to M along L. It seems
plausible then that Σ is the envelope of these V2(Ls)y s e £&, and hence is
a developable surface. Rather than make this reasoning precise, we take a
more analytic tack.

We begin with a quick review of ruled surfaces. A ruled surface Σ c P "
is a curve Γ c G(l, n), i.e., a one-parameter family of lines (rulings) in Pn.
We say Σ is developable if its tangent plane is constant along the rulings.
Recalling that

TLG(l9n) s H o m ( I , C Λ + 1 /L),
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we give a criterion for the ruled surface Σ to be developable.

(4.5) Lemma. Let ξ(s) be a tangent vector to Γ at L(s); z/rank<!;(s) < 1
for all L(s) e Γ, then Σ is developable. Indeed, //rank£(.s) = 1 for all s,
let Z(s) e Pn span keτξ{s); then the curve {Z(s)\L(s) e Γ} is called the
curve ofstriction σ ofΣ, and the tangent line to σ at Z(s) is the ruling ofΣ
through that point.

Remarks. In the more graphic classical style, ξ e TiX is called "the
infinitely near ruling of Σ," and Σ is developable precisely when each ruling
meets the infinitely near ruling. Moreover, their point of intersection lies
on the curve of striction.

Proof Choose a frame field Z0(s), Zι(s), -,Zn(s) along Γ so that
Z0(s) spans ker£(s), Z0(s) Λ Z{(s) = L(s), and so that Z[(s) = a{s)Z2{s)
modL(i ). Now the ruled surface Σ is given parametrically by X(s, t) =
Zo(s) + tZ\(s); its tangent plane at X(s, t) is

A{s9 0 = X(s, t) Λ ΘX/ds Λ ΘX/dt

= -ta(s)Z0(s) Λ Zχ(s) Λ Z2{s).

It is now patent that dA/dt = 0 modΛ, i.e., that Σ is developable. The
tangent line to σ at ZQ(S) is ZQ{S) Λ ZQ(S) = L(s), since ZQ = 0 modL
(if we had ZQ = 0 modZo, then Σ would be a cone and we would have
rank£ = 0). q.e.d.

To apply (4.5) to our case of the special lines on the cubic threefold, we
need to study the geometry of the Fano surface and the divisor 31 near a
special line LQ. TO this end, we work in affine coordinates in C4 with Lo

the xi-axis and π = {x^ = x4 = 0} the 2-plane tangent to M along Lo. We
take γ to be given along Lo by γ(x\, 0,0,0) = (0,0, x\ + x\, 1).

We also assume that 0 is not a parabolic point; by a linear change of
coordinates, then, we may take as the defining function of M

F{l,XUX2,X3,X4) = X4

+ (f + δx\x\ + μx\

where denotes either terms which are cubic in {xi,Xz,x4) or those of
the form x\ times quadratic in (xi.x^x*), other than the terms already
included. We shall soon see the importance of the parameters δ, μ, and v.

We specify coordinates near Lo on the Grassmannian of affine lines in
C4 as follows: let a = (α 2 ,α 3 ,α 4 ) , β = {βi.β^β*) € C3, and put L{otfβ) =
{(0,a2,Qί3,a4) + /(l,/?2, /?3,/?4)}. LQ is, of course, the line L(o,o) Now if we
impose the condition that L^β) lie on M, we find a two-parameter family
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{L(u,v)} given as follows:
(4.7)

Oil = U, β2= V,

α 3 = (δ - \)v2 - 2δuv + , β3 = -δυ2 + ,

α 4 = -u2 + , β4 = -δu2 + (δ - l)(2uv - v2) +

these Taylor expansions are valid in a neighborhood of (0,0), and de-
notes terms of degree > 3. The first conclusion we draw from (4.7) is that
TLQS is spanned by d/du and d/dυ that is,

(4.8) Proposition [9]. Let LOGS be a special line, and let π be the P 2

tangent to M along LQ. Then

(4.9) Corollary. The ruled surface Σ of special lines in M is developable.
Proof Any infinitely near ruling lies in TLQS, hence is represented by

a line contained in π, which must perforce intersect Lo. Alternately a
tangent vector ξ GTL0S is represented by a matrix of the form

"*
0
0

*"
0
0

which has rank < 1. q.e.d.
Next we restrict γ to the line L(u,υ); that restriction ramifies if and

only if L(u, v) is special. A somewhat tedious calculation shows that 2J is
given in these coordinates by

(4.10) u = lzlυ + ...9
o

where, as usual, denotes terms of degree > 2 in v. In particular, the
tangent space TLQ2 to the divisor of special lines is spanned by

δ- 1 d d_
ζ~ δ du + dυ'

from which follows the
(4.11) Lemma. The origin lies on the curve of striction σ of the devel-

opable surface Σ if and only ifδ = 1 in (4.6).
Proof Applying (4.5) again, we see that the infinitely near ruling ξ is

coplanar with L$ and hence intersects it. If δ = 1, the infinitely near
ruling ζ is a line through the origin, whence the origin lies on the curve of
striction. q.e.d.

We saw at the outset that through the general point of M pass six lines
contained in M. In this light, we may characterize the general point x eΣ
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by the coalescence of two of these six lines, and the general point x e σ
by that of three. To do so, we will make use of the basic

(4.12) Observation. The cubic form III* on PTXM differs from the
restriction F\PTXM by the product of a linear form and the quadratic
form II*.

As a consequence, we have
(4.13) The intersection multiplicity at LQ G PTXM of II* and III* equals

the intersection multiplicity at Lo of II* and F\PTXM.
But the latter is easy to compute using (4.6): setting x 4 = 0, X\ = 1,

x2 = y, JC3 = z, we must in turn compute

S(z + y2,z + δy2 + μy3 + vyz + )0

in C2. Here the significance of the parameter δ emerges again: if δ Φ 1 (so
that by (4.11) we are at a general point of Σ) this intersection multiplicity,
is 2; if δ = 1 (so that we are at a point of σ), we see it is > 3—provided
μ - v ψ 0, it is equal to 3.

Assembling this information in pictorial fashion, we have sketches anal-
ogous to (3.3):

(4.14)

The natural question remaining is this: how do we characterize σ Π Π?
We need the following.
(4.15) Lemma [ 11, §§ 11,12]. Let L c M be a special line. Let Q be the

unique point of σ on L and let R be the unique point with γ(Q) = y(R)-
Then R is the residual point of intersection ofL and Π (cf (4.3)).



THE GAUSS MAP OF A GENERIC HYPERSURFACE 721

Proof, We use the defining equation (4.6) for M with δ = 1. By (4.11)
the origin is the point Q of σ lying on the special line L, the ti-axis. One
may easily check that γ(Q) = (0,0,0,1) = y(-1,0,0,0). We must therefore
show that R = (-1,0,0,0) lies on Π but not on C. Centering coordinates
at R, i.e., replacing X\ by X\ + 1, we have

= X4 - (X\

II III

Since II has rank 2, R e Π. Now we apply the criterion (3.5): the kernel
direction is spanned by (-u, 1,0) and the cubic III = 0 does not pass
through this point of PTRM provided μ - v ψ 0. Hence R e Π - C. (In
the event that μ - v = 0, Q is a cusp point of σ and the residual point R
lies on C—but with kernel direction distinct from L.)

Remark. Fano speaks of Q and R as being harmonic conjugates on
L with respect to the cusp points P\, P2. That is, γ\L gives a branched
two-fold covering with branch points Pi, P2 and with Q + R a fiber. This
can be seen directly from the calculations above: on the x raxis, P\ = -j,
Pi = oo, Q = 0, and R = -1, the harmonic conjugacy being established by
x^(x + {)2.

Now we can provide a picture at a point of σΠΠ. If the point Q belongs
to Π, then R must coincide with Q (or else L would meet Π six times!),
and hence Qe C. Thus we complete (4.14) with

σnΠ

and this leads to the set-theoretic statement
(4.16) Proposition, σ Π Π = Λ.

Proof. If x e σ nΠ, then by (3.7), TxYί is Il-null, i.e., x e K. Applying
(3.16), we see that x eA, since γ = 0 on a cubic. Conversely, if x e A = K,
J ^ I I * UIX)L > 3, and hence x e σ. q.e.d.

It is by far more interesting to investigate the cycle-theoretic intersection
σ Π. First of all, we claim that σ Π D 3Λ: if x e σ Π Π = Λ, then from
the proof of (4.16) and (3.8) we infer that the kernel direction L at x
is asymptotic in Π. Since L is tangent to σ at x, this means that the
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osculating plane of σ at x equals TxTl, unless x is a flex point of σ. That
is, / ( ( j Πjjc > 3, as required. Armed with this information, we now prove
a much more detailed statement.

(4,17) Theorem. The curve ofstriction σ has genus g - 136, has β =
720 cusps, and no flexes. Hence σ Π = 3Λ.

Proof. (1) From the adjunction formula [15, p. 471], (2.9) and (2.17)
it follows that

= 1 + \{6H - §[Z] + 3H) - (6H - | [Z]) = 271.

Since C is an unbranched two-fold cover of σ, the genus of σ is

(2) To count the cusps of σ, we use the Plϋcker formulas [15, p. 270].
Let fi\ σ —• G(/,4), / = 0,1,2, denote the rth associated curve of cr, έ/, =
deg fi(σ), and βi = the number of ramification points of /}. Then

β = βo = 2do-dι+2g- 2.

Now d0 = degσ > 270, since degσ Π > 3degΛ = 3 - 4 5 0 by (2.19) and
therefore degσ > | 450 = 270. dx = degΣ = 90 by (4.4). Therefore
β > 2 270 - 90 + 270 = 720. Next we wish to compute βx = the number
of flexes of σ.

βι = 2dχ -do-d2 + 2g-2.

(3) We turn to the calculation of di, the degree of the Gauss image
of Σ in G(2,4). Then dι is equal to the number of intersections of a
generic line / c P 4 with the one-parameter family of two-planes π = P2(L)
tangent to Σ. Suppose / and one such plane π intersect; then their span is a
hyperplane which is bitangent to M (for contained in π is the special line
L). Conversely, every bitangent hyperplane must arise in this manner: the
line joining the two points of tangency has intersection multiplicity at least
four with M, and hence must lie in M. Thus dι is equal to the number of
hyperplanes bitangent to M and containing a generic line / (cf. also [11,
§10]).

Rephrasing this slightly, let

B=\J γ(Ls) c P4*;

then dι — degB. But B is a ruled surface in P4*, and γ\Σ: Σ —• B is of
degree 2. Since y: M —• P4* is given by a linear system of quadrics, γ pulls
the hyperplane class H* on P4* back to twice the hyperplane class H on M.
Thus 2B (H*)2 = Σ-(γ*H*)2 = Σ4H2, whence rf2 = deg£ = 2 degΣ = 180.
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(4) Assembling these data, we have

βι < 2 - 9 0 - 2 7 0 - 1 8 0 + 270 = 0.

Since βι > 0, we must in fact have βλ = 0, β = 720, and d0 = 270, and
we conclude a fortiori that σ Π = 3Λ.

5. Gauss-stable hypersurfaces

Our study of the Gauss map is based on the geometry of the hyper-
plane incidence correspondence. Let M c P 4 be a nonsingular algebraic
hypersurface, with Gauss map γ: M —• P4*. Let Γ c M x P4* be the in-
cidence correspondence, Γ = {(x,H)\x € H}, and let p: Γ -» P4* be the
incidence projection, p(x,H) = H. Let Σ(/?) be the singular locus of p.
Then Σ(/?) = {(x,H)\H is tangent to M at x}y so M is isomorphic with
Σ(p), and y is the composition of p with this isomorphism:

One can interpret the incidence projection p in two ways—as a family
of complex analytic spaces, or as an analytic map of complex manifolds.

(a) The incidence projection is a family. The fibers of p form a family
of complex hypersurfaces of M, namely the family of hyperplane sections
of M in P 4 . From this viewpoint we apply the theory of deformations of
complex spaces and their singularities (cf. [20], [24]).

(b) The incidence projection is a map. From this viewpoint we apply the
theory of singularities of complex analytic map germs, which is parallel to
the Thorn-Mather theory of singularities of real C°° maps (cf. [25], [26]).

A third, more basic approach is that of Arnold [1], [2]:
(c) The Gauss map is a Legendre map. This point of view brings

into play the contact structure on the big incidence correspondence J ^ =
{(x,H) G Pn x P"*!* G H}. A Legendre map is the composition of the
inclusion of a Legendre submanifold with the projection of a Legendre
bundle. The incidence projection p: J 2 ' —• P4* is a Legendre bundle, and
the canonical inclusion /: M —> J" is a Legendre submanifold, so γ = pd
is a Legendre map. For details, see [2, pp. 108-110]. (The affine version
of the Gauss map is the Legendre transform.)

(5.1) Theorem. Let M c P 4 be a smooth hypersurface, x e M, and
H = γ(x). The following are equivalent:
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(a) The map p: (Γ, (x, H)) —> (P4*, H) of local complex spaces is a versal
deformation of the local complex space (M n H, x).

(b) The germ at (x, H) of the incidence projection p is a stable analytic
map germ.

(c) The germ at x of the Gauss map γ is a stable analytic Legendre map
germ.

Definition. A smooth hypersurface M c P 4 is Gauss-stable if (5.1)
(a)(b)(c) hold for all xeM.

Proof of (5.1). (a) o (b). For the theory of deformations of complex
spaces we refer to [20]. A deformation of a local complex space Xo is a flat
map π: (X,Xo) —• (Γ, t0) of local complex spaces for which π~ι(to) = Xo-
The deformation π is versal if every other deformation W —• S of Xo is
induced from π by a map S —• Γ. Now suppose Xo is the hypersurface
/(JCI, ,xn) = 0 in C", the base space T is C^, X is the smooth hyper-
surface F(Xi, , xn, t\, , tjc) = 0 in Cn+k, and π is the restriction of the
projection Cn+k -> C^. Then π is a versal deformation if and only if the
functions dF/dti\t=o, i = 1, , k, span the complex space

which is called the space of first order deformations of Λfo Here ^c«,o is
the local ring of germs at 0 of analytic functions on Cn. Note that π is flat
since Xo is a hypersurface and X is smooth. This criterion for versality is
identical to the statement that the map germ F: (Cn xCk,0)-^ (C, 0) is an
infinitesimally F-versal deformation of the map germ / : (CΛ,0) —• (C,0),
which is equivalent to the statement that F is a F-versal deformation of
/ (cf. [25, Theorem 4.4, p. 20]).

To apply this discussion to the family of hyperplane sections of Λf, we
introduce the following standard coordinates, which will also be useful in
§§6, 8, and 9.

Coordinates for P 4 x P4* at (a,B) e <y are defined as follows. Let
x = (xo,Xi,X2,X3,X4) be homogeneous coordinates for P 4, so that a has
coordinates (1,0,0,0,0). Let t = (t 0 , t i , t 2 , t 3 , t 4 ) be dual coordinates on
P4*, so (x,t) G J if and only if x t = 0, with B = (0,0,0,0,1). Let
Xi = x//xo, tj = tj/U be the corresponding affine coordinates with origins
at a, B.

Analytic coordinates for Γ at (a, B) e Γ are defined as follows. Express
the germ of M at a as the graph of an analytic function in affine coordinates
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M = {(*i,X2,*35*4)|*4 = f(Xl,X2,X3)}> With

/(0,0,0) = 0 and f£(0) _ f£(0) - § L m = 0.

The incidence correspondence Γ c M x P4* is defined in these coordinates
by

(5.2) F(Xι,X29X3,tl9t2,h) =f(Xl,X2,X3)-(tO + tlXl +t2X2 + t3X3) = 0;

thus (x\,x2,X3, t\,t2, t3) are coordinates for Γ at (*9B), and the incidence
projection p: Γ —• P4* is given by

(5.3) p(XuX2,X3,tutl,t3) = {-f(XuX2,X3)-t\X\ - t2X2 -

Now we return to the proof of (5.1). Let Xo = (AT Π #,x) , X =
(Γ, (JC, i/)), T = (P4*, i/), and π = /?. We have shown so far that TΓ : X -+ T
is a versal deformation of Xo if and only if, in standard coordinates (5.2),
F is a F-versal deformation of / .

The relation between F-versality and stability is due to Mather. We fol-
low the description of this relation given in [25]. A map germ is stable if all
its unfoldings are trivial. Stability of a germ is equivalent to the F-versality
of an associated deformation [25, pp. 26-27]: Let x = (x\, -,xn), y = to,
andί = (*i, -Jι). If F is a deformation of the form F(x,y,t) = g(x,t)-y,
then F is versal if and only if the map germ h(x, t) = {g{x, t), t) is stable.
Applying this criterion to the incidence correspondence, in standard coor-
dinates (5.4), we conclude that F is a F-versal deformation if and only if
the map

is stable. But this is just the incidence projection p in local coordinates
(5.3).

(a) *> (c). A Legendre map is Legendre stable if every nearby Legendre
map is Legendre equivalent to it. Stability of a Legendre map germ is
defined similarly [3]. Arnold proves that if a Legendre map germ is given
by a generating family of hypersurfaces F(x,t) = 0 with parameter t,
then the map germ is Legendre stable if and only if F(x, t) is a F-versal
deformation of f(x) = F(x,0) [3, p. 333]. So we just need to see that
the Gauss map γ is generated by the family of hyperplane sections of M
(taking F to be the local equation of the incidence correspondence given
in the proof (a) o (b)). Arnold's definition of a generating family of
hypersurfaces [3, pp. 319, 322] adapted to our case uses the following
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diagram:

M x P4*< PT*(M x P4*)

u
PA

I

The projection M x P 4 * —• P4* is the auxiliary bundle, with big space
M x P4* and base P4*. The mixed space PA is the subset of P Γ ( ¥ x P4*)
consisting of contact elements (hyperplanes in T(M x P4*)) which contain
TM. The projection PA -> PΓ*P4* assigns to such a hyperplane the
corresponding hyperplane of ΓP4*. Now the incidence correspondence
Γ c M x P4* is the generating hypersurface of the Legendre submanifold
X c PΓ*(M x P4*) consisting of all the contact elements tangent to Γ. Let
Y be the projection of X n PA to PΓ*P4*. Y is a Legendre submanifold
of PΓ*P4*, which is a Legendre bundle over P4*, and Γ is by definition
the generating family of the Legendre map /: Y -+ P4*. But PΓ*P4* can
be identified with the incidence correspondence / c P 4 x P4*, and then
Y = {(x, H)\x e M and H is tangent to M at x}, so / is the Gauss map γ.
This completes the proof of Theorem (5.1).

6. The transversality package

We show that the hypersurface M c P 4 is Gauss-stable if and only
if its second fundamental form II (the derivative of the Gauss map γ)
satisfies certain transversality conditions, viz., first, that II be transverse to
the rank stratification of quadratic forms, and second, that the line field
Ker(II) have nondegenerate contact with the parabolic surface.

Let Q = Sym2(T*M) <g>N be the bundle of quadratic forms on TM with
values in the normal bundle N of M inP4. The second fundamental form
II is a section of the bundle Q (see §1). Let Q1' c Q be the forms of corank
/. The rank stratification Q = Q° U Q1 U Q 2 U Q 3 is an algebraic Whitney
stratification of Q, with codimQ* = \i{i + 1). Let Σ^Π) = II"^Q1 ') =

{x e M\ corankll* = ι}. Thus Σ^Π) = Σ'(y), so Σ^II) = Π and Σ2(Π) =
IT.

For k = 1,2,3,-•• , let Σ !*(Π) = Σ 1 * ^ ) . Thus Σ\1(U) = Π, and if

\is smooth, then Σ\k+ι (II) is the set of x e Σ^(II) such that
is tangent to Σ1* (II).
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If Y is a submanifold of X and K is a field of lines in TX\Y, we say K
has nondegenerate tangency with Y in X if the section of P(TX\ Y) defined
by K is transverse to the subbundle P(7Ύ).

(6.1) The transversality package for M c P 4 . The second fundamental
form II is transverse to the rank stratification of Q:

( l ) Π r h Q 1 ,

(2) II rh Q2,

( 3 ) Π Π Q 3 = 0.

Kerll has nondegenerate contact with the parabolic surface:

(4) Ker II has nondegenerate tangency with Σ ι (II) in M,

(5) Ker II has nondegenerate tangency with Σ^^Π) in Σ^II).

We will show in the proof of Theorem (6.2), part (g), that (6.1)(5)

implies Σ1 '1 '1 '1 (Π) = 0.

Recall that Π = Σl(γ), IT = Σ2(γ), C = Σ U (y) , and Λ = ΣlΛΛ(γ). So
(6.1) implies that Π is a surface, IT is O-dimensional, Π° = Π - Π' is
smooth, C is a curve, Λ is O-dimensional, and C° = C - IT is smooth.

(6.2) Theorem. The transversality package (6.1) holds for M if and only
ifM is Gauss-stable.

There are two steps in the proof. First, we show stability of the incidence
projection/? is equivalent to the transversality of the jet map Jp to a certain
stratification of the jet space. Second, this transversality condition on Jp
is equivalent to the transversality package (6.1) by a theorem of Boardman
on intrinsic derivatives.

(6.3) Stability and jet transversality. The hypersurface M is Gauss-
stable if and only if the germ at z of p: Γ -• P4* is stable for all z eΓ.
Mather proved that the (complex analytic) map germ / : (Cm, 0) —> (C", 0)
is stable if and only if it is infinitesimally stable (cf. [25, pp. 10-11], [3, p.
141]). He also proved that / is infinitesimally stable if and only if the n-
jet extension Jnf: (Cm, 0) -> Jn(m, n) is transverse to the orbit of Jnf(0),
the «-jet of / at 0 (cf. [3, p. 140]). Here Jn(m, n) is the space of «-jets at
0 of maps (Cm, 0) —• (Cπ, 0), with orbits under the action of the group of
isomorphism germs of the source and target (left-right equivalence).

If Xm and Yn are manifolds, the space of fl-jets Jn{X, Y) is a bundle
over X xY with fiber Jn(m, ή). If Σ c Jn(m, n) is invariant under change
of coordinates in the source and target, then there is a corresponding subset
Σ(X, Y) of Jn(X, Y). For a map f:X->Y, the germ of / at x is stable if
and only if the jet map Jnf: X -• Jn(X, Y) is transverse to Σ(X, Y)9 where
Σ c Jn{m, n) is the orbit of the n-jet extension of / at x. We conclude
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that M is Gauss-stable if and only if J4p: Γ -• / 4 (Γ, P4*) is transverse to
Σ(Γ, P4*) for all orbits Σ c / 4(6,4).

(6.4) The Thom-Boardman stratification. For an introduction to the
Thom-Boardman singularities, see [3, §2]. For a pair of manifolds X, Y,
and a multiindex / = (i'i, ••-,/*), Boardman [6] defined a submanifold
Σ7 of the infinite jet space J(X, Y) with the property that if / : X -> Y,
then Σ7(/) = (Jf)-ιΣ!. J(X, Y) is the inverse limit of the /-jet spaces
Jι(X, 7), and Σ7 is the preimage of a set Σ\k) c Jk(X, Y) [6, 2.20]. If
/ > k, let Σ7(/) c Jι(X, Y) be the preimage of Σ7(λ;) by the projection
Jι{X, Y) -> Jk(X, Y). Given / > k, / / rh Σ7 if and only if Jιf rh Σ7(/).
Thus we can project to Jι{X, Y) to detect transversality of / / to all Σ 7 of
order < /. In the following discussion we will abbreviate Σ7(/) to Σ7.

The orbits of /4(6,4) of codimension < 6 are the following Thom-

Boardman sets. (This follows from the techniques of Mather, cf. [26,

XVII] and §7 below.) Arrows denote incidence: Σ7 <— ΣJ means Σ DΣJ.

Subscripts denote codimension. γ3,i,i,i

γ2 γ3,0 γ3,l,0 γ3,l,l,0IC

^ ^3,2,0

The union Ω of the orbits of codimension > 6 equals the union of
the Thom-Boardman loci Σ4

8 ), Σ ^ 1 , and Σ ^ . Furthermore, Σ 3
 D Σ 3 > 1 D

Σ3,I,I D Σ3,i,i,i a r e s m o o t h submanifolds of /4(6,4), with Σ 3 - Σ 3 1 =

are smooth, Zariski locally closed subsets of /4(6,4) [28], and the above
Thom-Boardman decomposition is a Whitney stratification of /4(6,4) - Ω
(cf. [27, (9.30)]). This means that each pair of strata is Whitney regular
and satisfies the frontier condition (cf. [13]). That the Thom-Boardman
decomposition of /4(6,4) - Ω is a Whitney stratification can be checked
directly using the normal forms (7.2).

(6.5) The intrinsic derivative construction of Σ 7. Boardman [6, §7] gave
a description of the loci Σ7 using Porteous' intrinsic derivative. He also
showed that transversality of the jet map to Σ7 is equivalent to a sequence
of intrinsic derivative conditions. We summarize Boardman's setup, with
notation slightly different from his:

Given / : V -+ W and / = (iu , ik), let Σr = Σ^'"ir(f)9 1 < r < k.
We inductively define Σr and give a condition (iΓ) such that

Start with D{ = df: TV -> f*TW.
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Inductive step: Given Dr; Kr-\ —• Pr_\ a bundle homomorphism over
a submanifold Σr_i of V, let Σr = {x e Σ r_i|dimKer(D r) x = ir}, Kr =
KeτDn Qr = CokerDr.

Construction ofDr+χ\ (1) Take the intrinsic derivative of Dr:

D(Dr): ΓΣ r _! |Σ r -> Hom(ϋ:r, Qr).

(2) Restrict the target to the symmetric subbundle:

dr+ϊ: TΣr-X\Σr^Pr.

The condition (ιr) is that dr+\ is surjective on every fiber.
(3) Restrict the source to the kernel subbundle:

Dr+ι:Kr->Pr.

We have omitted two essential features of Boardman's setup: the definition
of Pr and the exact inductive hypotheses needed. If Kr or Qr has rank 1,
then Pr = Hom(Kr, Qr). We need only one case when Pr φ Hom(JίΓr, Qr),
and there we give a concrete description of Pr. The condition (ir) assures
that the induction can continue. If (ιt) holds for 1 < t < r, then D{Dr)
does factor through Pr, and Kr is contained in ΓΣ r_i |Σ r . If (ιr) holds as
well, then ΣΓ is a manifold. For further details, see [6, §7],

(6.6) Properties of the incidence correspondence. To apply Boardman's
analysis to the incidence correspondence /?, we first need to derive some
geometric properties of p. Recall from §5 the basic incidence diagram:

M x Pv

4*

Here Σ is the singular set of p, and Σ = {(x,H)\H tangent to M at x}.
The map q': Σ —• M is an isomorphism, and its differential dq' is an
isomorphism of TΣ with (q')*TM. Since p = P\Γ, d imKer(^) < 3, and
(x,H) £ Σ o dimKer(i//7)(Xj//) = 2, (x,H) e Σ =* dimKer(rfp) ( j c^ = 3.
Now TΓ c T(M x P4*) = β*ΓΛ/Θ P*ΓP4*, and Σ = {(x,H)\T{xM)Γ D
Q* TM}, so Kev(dp) = {q'Y TM.

Let Λ̂  be the normal bundle of M in P 4, N = TP4/TM, and let C be
the cokernel bundle of dp\Σ, C = ΓP47Im(rf/?|Σ).

(6.7) Proposition. There is a canonical isomorphism (q')*N = (p')*C.
Proof. Let / c P 4 x P4* be the big incidence correspondence, S =

{(x,H)\x G H}. Let η be the line bundle on J with fiber over (x,H)
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equal to TXP
4/TXH. Then (q')*N = η\Σ. Let E c TS be the subbundle

of contact hyperplanes with v e E(X,H) ^ the projection of υ to ΓP 4 lies
in TXH. Then η = TJ?/E.

Dually, let ξ be the line bundle on J with fiber over (x9H) equal to
THP4*/THX, where X is the hyperplane of P4* corresponding to x. Then
(p')*C = ξ\Σ. Let F c TS be the subbundle of contact hyperplanes with
v e F{xM) & the projection of v to ΓP4* lies in THX. Then ξ = TS/F.

But these two contact structures on <J are equal (cf. [2, p. 109, Example
1]), so £ = F, which implies η = ξ, and hence (q')*N = (p')*C.

Remark. Using Euler sequences, one can show that η = <̂ P4 (1) <8>̂ P4* (1)
= ξ to prove the proposition without using the contact structures.

Let D(dp) be the intrinsic derivative of dp: TY -• ΓP4*:

D(dp): ΓΓ|Σ -+ Hom(Ker(rfp), Coker(rfp)).

(6.8) Proposition, {/nrfer ίΛe canonical identifications Keτ(dp) = TM,
and Cokeτ(dp) = N given above, we have D(dp)\Keτ(dp) = II7: TM —>
Hom( TMjN), where II' w the homomorphism defined by the second fun-
damental form II.

Proof In standard coordinates (5.3) dp has matrix

0 0 0
0 0 0
0 0 0

Thus D(dp) is the derivative of

1
0
0

-xi ~
0 0
1 0
0 1 )

u dx2

 2 j

and D(dp)\ Ker(dp) is the derivative of

dxι' dX2 dx3j'
But this is also the local coordinate description of the second fundamental
formir (cf. (1.8)).

Proof of Theorem (6.2). We show that J4p is transverse to the Thom-
Boardman strata if and only if the package (6.1) holds. Specifically, we
show that JιpπΣ4 = 0, Jιp rh Σ3, and that the remaining jet transversality
conditions are equivalent to parts (l)-(5) of (6.1).

(a) JιpΠΣ4 = 0. As noted above, p = P|Γ implies dimKeτ(dp) < 3.
(b) Jxp rh Σ 3 . According to Boardman, this is equivalent to the con-

dition (i\) that

d2 = D(dp): TΓ\Σ3(p) -H. Hom(Ker(rfp),Coker(έ/p))
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is surjective on fibers. We saw in the proof of (6.8) that D(dp) is the
derivative of {-df/dx{ - tu -df/dx2 - t2, -df/dx3 - t3), so D{dp) has
rank 3 everywhere.

(c) II rh Q1 & J2p rh Σ3>1. Now Π = Σ3Λ(p) and Π° = Σ 3 ' » = {z e
Σ3(p)|dimKer(Z)2)z = 1}. We have seen in (6.8) that D2 can be identi-
fied with IT: TM -• Hom(ΓM, AT). With this identification, Boardman's
condition (ι2) that J2p rh Σ 3 1 is that the intrinsic derivative

D{lΐ): TM\Σ3>ι(p) - Hom(KerII',CokerIl')

is surjective on fibers. So (c) follows from the existence of a commutative
diagram of bundle homomorphisms over Σ31(/?) = I I ' ^ Q 1 ) :

D(ll)

TM *T Q
D(lϊ) I I

Hom(ϋ:? C) —Ξ—•ΓQ/ΓQ1

where K = Kerll' and C = Cokerll'. To establish this, let

R = Hom(ΓΛ/, Hom(ΓM, N)) = T*M (8) T*M (8) N

DSym2(Γ*M)(8)iV = Q,

and let R1 c R be the subbundle of homomorphisms of corank 1. Then
the normal bundle of R1 in R is isomorphic with Hom(K, C), where K and
C are the kernel and cokernel bundles (cf. [14, Corollary 3.4, p. 150]). If
s is the section of R corresponding to II', then Z>(II;) is the composition
TM £ TR -> ΓR/ΓR1 Ξ Hom(K, C) (cf. [14, Proposition 3.6, p. 151]).
Now Q1 is the transverse intersection of Q and R1, and s = /oil, /: Q —• R

the inclusion, so D(lΐ) is the composition TM d^] TQ -• TQ/TQ1 =
Hom(K, C), as desired.

(d) II rh Q 2 <=>• J2p ά\ Σ 3 2 , and as a consequence J3p rh Σ 3 2 1 = 0.
Recall that IT = ΣX2(p) and Σ3'2(/?) = {z G Σ3(/?)|dimKer(D2)z = 2}.
Identifying Z>2 with II' (6.8), Boardman's condition (ι2) for J2p rh Σ 3 ' 2 is
that dι is surjective on fibers over Σ3'2(/?), where d3 is the target restriction
of D{D2) to the symmetric subbundle P2 of Hom(A:2,62), and K2 and 02
are the kernel and cokernel bundles of II ; on Σ 3 2 (p) (so K2 and Q2 have
rank 2):

It follows from [14, Corollary 3.4, p. 150] and the definition of P2 [6,
7.8] that P2 is isomorphic to the normal bundle of Q2 in Q, and from [14,
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Proposition 3.6, p. 151] that over Σ3'2(/?) = I I ' ^ Q 2 ) there is a commuta-

tive diagram of bundle homomorphisms:

P2 — - — > Γ Q / Γ Q 2

Therefore II rh Q 2 «• J2p rh Σ3>2, as desired.

Note that if J2p rh Σ3-2, then d3 is an isomorphism, since TM and P2

both have rank 3. By definition we have

Σ3 2 '(ί>) = {ZG Σ3'2{p)\ dimKerZ>3 = 1},

where D3 = d3\K2, so J2p rh Σ3 2 =• / 3 p Π Σ3-2-1 = 0 .

(e) II n Q 3 = 0 <*> / 2 ? n Σ3 3 = 0 . Σ3'3(j?) = {z e Σ3(/?)|

dimKer(D2) z = 3} = {x e Af| dimKerll* = 3} = Π~'(Q3)

(f) If J2p ιtι Σ3>1, then Kerll has nondegenerate tangency with Π° =

Σ3 '(p) in M <*• / V fh Σ3-1-1. Now C = Σ 3 > 1 >V) and C° = Σ3-1-1^) =

{z € Σ3'1(p)|dimKer(Z)3)z = 1}, where D3 = d3\K2 = Z)(Π')|KerII'. Let

K = K2 = Kerll' and Q = Q2 = Cokerll'; K and Q are line bundles on

Π°. Boardman proves that if J2p ά\ Σ3'1 then Pp rti σ3-1-1 -Φ> ( I 3 ) holds,

where (13) is the condition that

D2(lΐ): TΏ° -+ Hom(K,Hom(K,Q))

is surjective on fibers over Σ 3 ' 1 ' 1^), and D2(lΐ) = ί/4 is the intrinsic

derivative of Z>(Π')|AΓ: K — Hom(A:,β). Since J2p rti Σ 3 1 , we have

Hom(ίΓ,ρ) s TM/TU0 = Nπo, the normal bundle of Π° in M, and

Z) D ^ ) Hom(^,Q) = ΛΓπ0 is the composition K c ΓΛ/ -»• iVπ0. Let

5 : Π° —»• Hom(AΓ, Λ'JJO) be the corresponding section. By [14, Proposi-

tion 3.6, p. 151], the intrinsic derivative of D(ΐl') is the composition

ΓΠ° dΛ THom(K, ΛΓπo) - Hom(K, Nπ0), completing the proof of (f).

(g) If J2p rh Σ3-1 and Pp ά\ Σ 3 1 > 1, then kerll has nondegenerate tangency

with C° in Π° <* J4p rh Σ3-1'1'1 and as a consequence J5p n Σ3'1'1-1-1 = 0 .

Now Λ = Σ3XU(p), and Σ3-1-1'1^) = {z e Σ3 ' 1(p)|dimKer(D 4) z = 1},

where Z)4 = ^ 4 ^ 3 = Z)2(II')I^: ^ -* Hom(A:,Hom{K, Q)), K = Kerll',
Q = CokerlΓ. Boardman proves that if J2p rh Σ3-1 and J3p rh Σ3-1-1, then
J4p rh Σ 3 ' 1 1 1 •«• (ι4) holds, where (i4) is the condition that

d5 = I>3(IΓ): TC° -» Hom(is:, Hom(A:, Hom(A:, β)))
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is surjective on fibers over Σ 3 1 1 1 (/?). Now Hom(K, Hom(K,Q))^TΠ°/TC0

= Nc0, the normal bundle of C° in Π°, and K D2^] Hom{K, Hom(A:, Q)) Ξ
Nco is the composition K c ΓΠ° -• Nc0. Let S: C° -> Hom(K,Nc0) be
the corresponding section. The intrinsic derivative of Z>2(H') is the compo-
sition TC ^ ΓHom(Λ:, iVc0) -> Hom(Λ:, Nc0), so (i4) & K has nondegen-
erate tangency with C° in Π°. If J4p rh Σ 3 1 1 1 then d$ is a bundle isomor-
phism. By definition, Σ 3 ' 1 ' 1 ' 1 ' 1 ^) = {z e Σ3>ι>ι>ι(p)\dimKβτ(Ds)2 = 1},
where D5 = ds\K. So J4p rh Σ 3 ' 1 ' 1 ' 1 =• / ^ Π Σ 3 ' 1 ' 1 - 1 ' 1 = 0 .

7. Classification of singularities

For a Gauss-stable hypersurface M in P 4 , we classify the singularities
of the family of hyperplane sections M Π H, of the incidence projection
p, and of the Gauss map γ. For each of these three parallel classifications,
which correspond to the three parts of Theorem (5.1), we give normal
forms, i.e., explicit equations displaying the singularity types.

Remark. Although the singularities of M n H, /?, and γ are projective
invariants of M in P 4 , the classification of these singularities is much
coarser than that induced by projective transformations of P 4 . Thus, the
germ of the hypersurface M at a point x can be recovered up to projective
equivalence from neither the singularity type of the tangent hyperplane
section of M at x, nor the singularity type of the Gauss map at x.

(a) The classification of singularities of hyperplane sections is up to
analytic isomorphism of the local complex space (M πH9x). There are
five singular types, with the following Arnold symbols and normal forms:

Ax x

A2 x2+y2 + z3

(7.1) A3 x2+y2 + z4

A4 x2+y2 + z5

D4 x2+y3+yz2

(b) The classification of singularities of incidence projection germs is
up to analytic changes of coordinates in the source and target (left-right
equivalence). The five types correspond to versal unfoldings of the hy-
perplane section types (7.1). The Thom-Boardman symbols and normal
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forms are the following:

+ z2,a9b,c)

+ z3 + az,a,b,c)

(7.2) Σ3>lΛ>°{p) {x2 +y2 + z4 + az2 + bz, a, b, c)

Σ3,l,l,l,O(/7) ( χ 2 + y2 + Z 5 + α z 3 + £ Z 2 + c z ? fl> ^ ^

Σ3'2'°(p) (x2 + y3 + yz2 + <zy2 + fty + cz, α, ft, c)

(c) The classification of singularities of Gauss map germs is also up to
analytic changes of coordinates in the source and target. The five types
have the following Thom-Boardman symbols and normal forms (the first
type is nonsingular):

Σ°(γ) (x,y9z,0)

Σι'°(γ) (3x2,2x\y,z)

(7.3) Σ u °(y) (3x4 + x2y, 4x3 + 2xy, y, z)

Σi,i,i,o(7) ( 4 j c 5 + 2x*y + x2z, 5x4 + 3x2y + 2xz,y, z)

Σ2'°(y) (2JC3 + 2xy2 + JC2Z, 3x2 + y2 + 2xz, 2xy, z)

Given the normal forms (7.3) for the Gauss map, the transversality
package (6.1) can be verified by direct computation.

The normal forms (7.2) for p follow from the normal forms (7.1) for
M Π H by versal unfolding, as in the proof (a) o (b) of Theorem (5.1).
Given an analytic hypersurface germ /(JCI, -,xn) = 0, consider the space
of first order deformations

T} = 0C*,θ/{f,df/dXι9 • df/dXn).

The Tjurina number τ of the hypersurface germ is the dimension of Tj as
a complex vector space. (For A^ or D^, τ = k.) If τ is finite, let gu--,gx

be a basis for Tj. Then

' -,Xn, tU , tτ) = f(x) + tχgχ(x) + - +.tτgτ(x)

is a versal deformation of f(x\, ,x n ) = 0.
Suppose ^ τ = 1 Then the unfolding

h:CnxCτ-{ ^ C τ ,

is the stable map germ corresponding to the hypersurface f(x) = 0.
The normal forms (7.3) for γ are obtained from the normal forms (7.2)

for p by restriction to the singular locus, since the Gauss map is the com-
position of p with the canonical isomorphism M —> Σ(p).
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Example. Consider the Z)4-singularity f(x9y9 z) = x2 +y3 +yz2. Then

with basis y2,y, z, 1. Thus

h{x,y,z) = (x2+}>3 + yz 2 + fly2 + £>> + cz,a,b,c)

is a normal form for Σ3'2'°(/?). The singular locus of h is given by 2x = 0,
3y2 + z2 + lay + b = 0, 2yz + c = 0, so Σ(h) is parametrized by (y, z, α)
andΛ|Σ(Λ)is

(y, z, a) -> (-ly3 - ay2 - 2yz2, a, -3y2 - z2 - lay, -lyz).

Changing signs, permuting the target coordinates, and renaming the vari-
ables, we obtain the stated normal form for Σ2'°(y):

(2.x3 + x2z + Ixy2,3x2 + y2 + 2xz9 Ixy, z).

This description is a special case of Arnold's recipe for finding normal
forms of stable Legendre singularities [3, 21.6].

Proof of the classifications. The classification (a) of hyperplane section
singularities of a Gauss-stable hypersurface follows from Arnold's classifi-
cation of simple hypersurface singularities (cf. [1, p. 254], [10, p. 158],
[24, p. 132]). The Tjurina number of a local complex space is the mini-
mum number of parameters in a versal deformation. Since the family of
hyperplane sections of M c P 4 is parametrized by P4*, the only hypersur-
face singularities which can occur as hyperplane sections of a Gauss-stable
hypersurface in P 4 are those of Tjurina number at most 4. According to
Arnold, any singular local complex space with τ < 4 is one of the five types
A\, A2, A3, A4, D4, all of which are simple singularity types. (It follows
from the numerical formulas of §§ 1 and 2 that each of these types actually
occurs for all Gauss-stable hypersurfaces of degree d > 3.)

Now let Xo and XQ be hypersurface germs at the origin in Cn, and let
X —• T and X1 -> V be /c-parameter versal deformations of XQ and XQ,
respectively. Let h, h!\ (Cn x C * " 1 ^ ) -• (C*,0) be the stable map germs
associated to X —• T and X1 —• V as in the proof of Theorem (5.1),
following [25, pp. 26-27]. Then Xo is analytically equivalent to XQ if
and only if h is analytically equivalent to h' [25, Proposition (1.3), p.
27]. (This is a key result in Mather's classification of stable map germs.)
Thus the classification (a) of singularities of hyperplane sections gives the
classification (b) of singularities of incidence projections.

If h and h' are map germs with Σ(h) and Σ(Λ') smooth, and h is equiv-
alent to h', then h\Σ{h) is equivalent to h'\Σ(h'). Thus the classification
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(c) of singularities of Gauss maps follows from the classification (b) of
singularities of incidence projections.

8. Genericity and deformations

Let ^ / be the space of nonsingular hypersurfaces of degree d in P 4 .

(8.1) Theorem. The set of Gauss-stable hypersurfaces is a nonempty

Zariski-open subset ofJίd for all d > 2.

We give two independent proofs:

(a) In this section, we consider the set of hypersurfaces such that at
every point the family of hyperplane section germs is versal; we prove that
it is Zariski open and nonempty. The proof is a direct analysis of the first
order deformations of a hyperplane section.

(b) In the next section, we consider the set of hypersurfaces such that
the incidence projection is stable; we prove that it is Zariski open and
nonempty. This proof is a jet transversality argument, valid for d > 4.
(The case d = 2 is easy, and a separate argument can be given for the case
d = 3.) This second proof is essentially due to Ronga for surfaces in P 3

[30], [31]. A similar but less general method was developed first by Bruce
[7].

Theorem (8.1) is false for hypersurfaces Mn c P" + 1 for large «. The
appearance of nonsimple singularities prevents the versality of the family
of hyperplane sections for n > 6. However, it seems likely that the theorem
is true for n < 5. (The case n = 2 is proved in [29, 3.1] and [31].)

We turn now to the first proof of Theorem (8.1). Consider a singular-
ity of a hyperplane section of M3 c P 4 and the 4-parameter deformation
of it obtained by varying the hyperplane section. First we prove that the
versality of this deformation for all local hyperplane sections of M is a
Zariski open condition on M e ^ . Then we analyze how the various ex-
pected generic phenomena could fail. In particular, we give local methods
for studying this situation and find, by dimension count, no failure on the
generic hypersurface.

We will carry out the local analysis in the following standardized no-
tation (cf. §5). By projective change of coordinates, we place the point
in question at (1,0,0,0,0) and make x4 = 0 the tangent hyperplane there.
Then we dehomogenize: where xo φ 0, let (x,y, z, u) be affine coordinates.
Thus, we consider a polynomial f(x,y, z, ύ) such that the affine hypersur-
face / = 0 passes through the origin (0,0,0,0) and is smooth there with
tangent hyperplane u = 0.
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Expanding in powers of u, 

where fo(x, y, z) = quadratic + higher order terms, and fi (0, 0,O) # 0. 
We are concerned with the singularity at the origin of the (affine) tangent 
hyperplane section fo = 0 in C3. Its space of first order deformations is 

(8.2) Lemma. The deformation of fo = 0 at the origin by the hyperplane 
sectionsof f = f o + f i u + . . .  = 0 is versalifandonlyiffi, xfi, yfi, zfi 
span Tjo. 

Proof: In the original homogeneous coordinates we need to look at 
sections of M by hyperplanes Ha: x4 = aoxo + + a3x3 near x4 = 0. 
Then, in our affine coordinates, u = a 0  + alx + a2y + a3z; substituting this 
into f = 0 realizes the deformation of fo = 0 inside c3 as 

where the omitted terms are quadratic or higher in the parameters ao, . . ., 
a 3 .  To finish we use the fact that a deformation of a hypersurface singu- 
larity over a smooth base is versal if and only if the linear terms of the 
deformation span Tjb (cf. [20]). 

Example. Suppose the tangent hyperplane section of M is fo(x,y, z) = 

x2 + y2 + z4 = 0. The hyperplane sections of M cannot versally deform 
this singularity since Tjo is 3-dimensional but xfi and yfi are zero in T)o 
The point is that this equation, .which is an analytic normal form for an 
A3 surface singularity (cf. (7.1)), is projectively special. Later we will see 
A3 hyperplane sections which are versally deformed. 

Now we consider the universal family of hyperplane sections of nonsin- 
gular hypersurfaces of degree d > 1 in p4, 

where SY = {(x, H, M)IM E Ad, H E p4*, x E M n H),  Y = P4* x Ad, 
and p(x, H, M)  = (H, M). The universal critical locus is 5F = {(x, H, M)lx 
is singular on M n  H): its image p(E),  the discriminant locus of p, consists 
of pairs (H, M)  such that H is a tangent hyperplane of M. For (x, H, M)  E 

$? we are interested in whether the singular germ (M n H,x)  is versally 
deformed by the hyperplane sections of M. Let V = {(x, H, M) E 271 the 
deformation of (M n H,x)  parametrized by the germ (p4*, H)  is versal), 
and let .9 be the complement of the projection of 5F - V to Md. Thus 
.9 = {M E Ad[ for all (x, H) with H tangent to M at x,  the deformation 



738 CLINT McCRORY, THEODORE SHIFRIN & ROBERT VARLEY

of (MnH,x) parametrized by the germ (P4*,i/) is versal}. By (5.1), 9 is
the set of Gauss-stable hypersurfaces of P 4. To prove (8.1), we will show
that 9 is a nonempty Zariski open subset of ^ .

The case d = 2, quadric hypersurfaces of P4, is very elementary; a
tangent hyperplane section has an A i -singularity and this is (versally)
smoothed by a generic 1-parameter variation of the hyperplane section
(cf. the proof of (8.8.1) below). From now on in this section we assume
d>3.

(8.3) Proposition. V is Zariski open in &.

This implies immediately that & is Zariski open in J?d. For if B - *%— V
is Zariski closed in g7, it is Zariski closed in Sf, so that projection of B to
J?d is Zariski closed.

Proof of (8.3). Associated to our family p: 3? —• y of hyperplane
sections of nonsingular hypersurfaces of degree d > 2 in P4, we have a
Kodaira Spencer map (cf. [23], [24, Chapter 6B], [33, pp. 14-15]) for
deformations of singularities: &y —• p*(^ί/y), a homomorphism of co-
herent sheaves on JΛ Let q and r denote the projections of ψ = P4* x ^
to the respective factors; t h e n ^ = q*(&^4*)®r*ffird). We are interested
in the map φ: q*(<9^4*) —• P*{^/y)9 governing the (first order) variation
of singularities as the hyperplane H varies but the hypersurface M stays
fixed. At a point y = (H,M) e ff, the homomorphism φ\y on fibers is
Γ//(P4*) -> H°(^}nH), the natural map associated to the deformation of
MπH obtained by varying H. Notice that this map φ\y measures the simul-
taneous effect of varying H upon the singularities of if Γ\H. Our definition
of V measures the effect of varying H upon the individual singularities,
one at a time. Since &&,y is an ^-module, pA^iγ) - ^*(^r/j/)> where
η = p\(g>: & —>pr

9 so we can equally well express φ: q*(^**)

(8.4) Lemma. The restriction ofp: 8? -+y to 9? is a finite mapping.

Proof Since p\& is a proper mapping, it suffices to check that it has
finite fibers. This follows from the fact that the Gauss map of a nonsingular
hypersurface has finite fibers, q.e.d.

Now we are in the following situation. We have a finite morphism
η: & —• %f, coherent sheaves %\ & on y, & resp., and a sheaf homo-
morphism φ: g7 —• η*{&~). For each y £ gf, the fiber η+{&')\y decomposes
into a direct sum of vector spaces Hx = T^MnHxy indexed by the points x
of η~ι(y). We want to show that {y € y\ for each x e η~ι(y), the map
ψx <̂ |>; —• Hx is surjective} is Zariski open in y .
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(8.5) Lemma. There exists a canonical surjection η*η*(^) -» & of
coherent sheaves on Ψ9 such that for each x e ^ , the induced pointwise
surjection (η*η*(^))\x -» &\x sends the summand Hx isomorphically to

Applying the lemma, we get the composite homomorphism Φ:

which on the fiber at a point x e & is simply φx. Thus, {x eW\ the map
<Px' V*{^)\χ -* Hx is n o t surjective}=Supp(cokerΦ), hence is closed in ^\
Take the image under η and the complement in y to complete the proof
of Proposition (8.3).

Proof of'(8.5). To get the quotient sheaf ^ of η*η*(&') on g7, consider
the fiber product Π = ^x^W, the projections η\, ηι to the two factors, and
the relative diagonal Δ c Π, whose role here is to provide a section of η\.
Let J' c ^ π be the ideal sheaf of Δ. We claim that %f = ηx*(ηl{9Γ)IJrv

r\\(^)) will work for sufficiently large v. It suffices to replace y by an
affine open subset ^6 and ^ by the preimage 8o of ^6. Since η is a finite
morphism, % is also affine.

Let us restate the problem in terms of commutative algebra. We have
an affine algebra A and a finite y4-algebra B; these are the coordinate rings
of po and ^o, respectively. Also we have a finitely generated 5-module N,
the sections of & on ^o. Now η*η^(^) is given by the J?-module B ®A N,
where B acts on the 5-factor in the tensor product. Modulo a maximal
ideal m of B, this module becomes (B/m) ®A N = N/μN, where μ is
the maximal ideal md A of A. But 7V///7V = (B/μB) <£>/? TV and 5/μJ?
decomposes into direct summands, one for each maximal ideal m over μ
(cf. [4, Chapter 8]). We want to construct the quotient of B 0^ N which
induces, for each m, the corresponding summand of N/μN. It suffices
to carry out the quotient construction for the case N = B\ the general
case follows by tensoring. Thus, if / is the kernel of the multiplication
homomorphism B ®AB -> B, consider (B ®A B)IIV (B ®A B) as a B-
module, where B acts on B ®A B via the first factor. Modulo m, we get

(B/m ®A B)/F (B/m ®A B) = (B/μB)/mv - (B/μB),

and this last quotient is certainly isomorphic to the desired summand of
B/μB for large v. All we have left to do is choose v large enough to work
for all maximal ideals m of 5, say v > dimc(B/μB), which is bounded by
the number of generators for B as ^-module, q.e.d.

The proof of Proposition (8.3) has the following consequence, which
we use later.
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(8.6) Corollary. For each nonnegative integer k, {(x,H9M) e &\
dim(T{MnHχj) > k} is Zariski closed in &.

We contrast the openness of & with the following easier global version.

(8.7) Proposition. The set of M in Jϊd such that, for all H, the de-
formation of the singularities of M n H by hyperplane sections of M is
simultaneously versal (i.e., φ\y is surjective), is Zariski open in ^ .

Proof The set {y e y\φ\y is not surjective} is the support of the
(coherent) cokernel sheaf of φ\ hence it is closed in y . Therefore, its
projection to ^ is Zariski closed so the complement is open.

Remark. We do not address the nonemptiness of the Zariski-open subset
(8.7) of Jίd, but it seems that an extension of the methods of this section
should apply.

Example. Consider a hyperplane section of M c P 4 with five ordinary
double points {A\i). The simultaneous deformation of the singularities
cannot be versal since it takes place over the 4-dimensional base space P4*,
but the deformation of the individual singularities is versal (cf. (8.8)(1)).

The rest of this section is devoted to showing that 9 is nonempty. The
following theorem summarizes our strategy.

Recall that ^ is the universal critical locus, V c ^ is the locus of ver-
sally deformed singularities, and B = W - V. Given an (analytic isomor-
phism type of) singularity τ = (X, 0), let f ( τ ) = {(x, H, M) e &\{MnH, x)
= τ}. Also, let F(τ) = W(τ) n V and B(τ) = &(τ) - F(τ), the "bad" sin-
gularities of type τ.

(8.8) Theorem. (0) & is irreducible of dimension = dim(P4* xJtd)-ί.

(1) &(Aι) is Zariski open in &; B(A{) is empty.

(2) <S?(A2) is an irreducible, codimension 1, Zariski locally closed subset
of^i B(A2) is empty.

(3) %?{A3) is an irreducible, codimension 2, Zariski locally closed subset
ofW; B(Ai) has codimension > 2 in &(Ai).

(4) ^(AΔ) and ^(D^) are irreducible, codimension 3, Zariski locally
closed subsets of&; B(A4) and B(D4) have codimension > 1 in &(A4) and
W(D4), respectively.

(5) Let W = Ψ - (Ψ(AX) U (W(A2) U &(A3) U W(A4) U &(D4)). Then W
is Zariski closed in &, of codimension > 4. Moreover,

W = {(x,H,M) e Ψ\άim{TlMnH,x)) > 5}.

(8.9) Corollary. B{Aι)\jB(A2)UB{A3)\jB(A4)uB(D4)[jW is Zariski
closed in %\ of codimension > 4, and coincides with B = W - V.
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Proof. Recall from (8.3) that B = W - V is Zariski closed in g\ By
(8.8), the union in the statement of (8.9) coincides with B and has codi-
mension > 4 in if. q.e.d.

Now we can deduce the following more precise version of Theorem
(8.1).

(8.10) Corollary. Let & be the set of Gauss-stable hypersurfaces of de-
gree d > 3 in P4. Then & = {M e Jtd\ all tangent hyperplane sections have
only A\; Aι-> Ay, A+ , or D^-singularities, and each singularity is versally
deformed by the hyperplane sections of M}, and & is Zariski open in J[d

and nonempty.
Proof By (8.9), together with (8.4) and (8.8)(0),

p(B) = p(B(A{) U B(A2) U B(A3) U B(A4) U B(D4) U W)

is Zariski closed in P4* x ^ , of codimension > 5. Therefore, the projection
to Jfd is a proper, Zariski closed subset. Now take the complement, q.e.d.

Before proceeding to the proof of (8.8), we need some elementary lem-
mas and background on surface singularities.

Consider the projective group G = GL(5)/C*. This is a connected alge-
braic group, hence irreducible, and the natural action on P 4 =
(C5 - {0})/C* is algebraic. There are induced algebraic actions of G on
^ d i p 4* (= jfx)9 and products; the action on P 4 x P ^ x / ^ preserves 8?
so that the projection p to P4* x JKd is equivariant and W is preserved.
Consider the incidence correspondence J? = {{x,H) e P 4 x P4*\x e H}.
The action of G on P 4 x P4* preserves J^, and the projection π: Ψ —• J^
is an equivariant Zariski fiber bundle.

(8.11) Lemma. If S is a G-invariant subset of&, then S is a Zariski
fiber bundle over J with fibers SXiH = Sn {{x} x {H} x J(d), x e H. More
precisely, the restriction ofπ to S induces the local triviality ofS over ^f.

Proof First we show that S is a Zariski fiber bundle over P 4 with
fibers Sx = S Π ({x} x P4* x Jίd\ x e P 4 . For each / = 0, , 4, restrict
the projection q: ^ —• P 4 to [//: JC, φ 0, and identify t/, with C4 as usual.
Then translation to the origin 0 in C4 induces an algebraic isomorphism
q-ι ([//) = [// x Wo compatible with projection onto C/, . Now if S c W is
a G-invariant subset, then since q is G-equivariant and translation to the
origin 0 in C4 = J7Z can be induced by elements of G, the trivialization of
W over Ui restricts to a trivialization q~ι(Uj)Γ\S= Ut x So of S over U(.

Next we fix x e P 4 and show that Sx is a Zariski fiber bundle over Jx
with fibers SxM = SXΠ ({x} x {H} x Jtd), H G / , . For each j = 0, , 4,
identify V}: aj Φ 0 with C4 and restrict r\Ψx -+ J^ to Vj Π J"x. Now
notice that translations in C4 preserving the hypeφlane VjΓ\Jχ of Vj can
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be induced by elements of Gx, the stabilizer in G of x. Hence, translation
to the origin in C4 induces an algebraic trivialization of ^ over V) ΠJ^
and restricts to one of Sx.

Now we know that S and <J are Zariski fiber bundles over P 4, and that
for every x € P4 the fiber Sx is a Zariski fiber bundle over the fiber J^:

Sx-+S\
I I P4

Jx^S /

We want to conclude that S —• J is a Zariski fiber bundle. Indeed, we can
trivialize S -» P4 over ί/, = C4 by translation to the origin as above, and we
can trivialize J —• P 4 over C/, in the same way. Therefore S|C7, —• *f\Ui
is isomoφhic to a constant family t/, x So —• U\ x JQ over [/,-, so the local
triviality of So -> Jo implies the local triviality of S —> J*\ q.e.d.

Therefore, for any (/-invariant subset Sof g7 we have: S is irreducible,
Zariski locally closed (resp., is Zariski closed) of codimension < r in ^
if and only if, for some (x9H) e J ^ the same holds for SXfH in %X,H =
%?Γ\({x} x {H} x^j). Therefore, to prove Theorem (8.8), we may fix x =
(1,0,0,0,0) and H: x4 = 0 and verify, in convenient affine coordinates,
the corresponding statements (8.8)(0)-(5) for ̂ / / .

Now we justify fixing, for each possible rank, the quadratic part of
the equation of the hyperplane section. Let 5^x be the space of surfaces
of degree d in P 3 which are singular at x. In ̂  we have the Zariski-
open subset J? 5̂2 of surfaces with a double point at x and a morphism
τ: ^ , 2 —• @ — the space of conies in PTX(P3) = P 2, S —• Qx, associating
to a surface with a double point at x the projectivized tangent cone at
x. Now £f is stratified by rank; let βi c S denote the (Zariski locally
closed subset of) corank i quadrics (i = 0,1,2). Let J^ z c ^ , 2 denote the
preimage of ff\ i.e., the surfaces with a corank i double point at x. The
subgroup Gx of PGL(4) fixing JC acts on S?x preserving each S?1 and also
induces an action on β so that τ is equivariant.

(8.12) Lemma. Let S be a Gx-invariant subset of 5^\ Then S is a
Zariski Ίso-trivial" bundle overβ*. Precisely, over an etale cover ofS1 there
exists an algebraic trivialization of the map τ: S?1 —• & which induces a
product structure on (the pullback of) S.

Proof. We will take / = 1; the other cases are similar. Fix a point
[q] G &x, i.e., a rank 2 conic in P 2, which is a union of two distinct lines.
Applying a fixed linear transformation of the x,y,z variables, we may
assume that q = x2+y2. Now we have to give a Zariski open neighborhood
U of x2 + y2 in £?*, an etale surjection ϋ -* U, and a trivialization of
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> Sx over U which preserves S. Let U be the conies for which the
(1, l)-entry and the upper left 2 x 2 minor are nonzero; on U we assume
that the coefficient of x2 is 1. Then we have an (algebraic) algorithm
for transforming a quadratic form into x2 + μy2, μ ψ 0; namely, if the
coefficient of xy is α, we replace x by x - jay and eliminate the xy
term, preserving U. Similarly we eliminate the xz and yz terms and
arrive at x2 + μy2, μ Φ 0 (the coefficient of z2 is zero since the rank is
2). Now we need the etale cover; letting μ be a square root of μ, we
replace y by μ~ιy to obtain x 2 + y2. Finally, the finite, etale surjection
C - {0} —• C - {0}, μ —• μ2 = μ, defines by pullback the desired finite,
etale surjection ϋ —> U. q.e.d.

Therefore, for any G^-invariant subset S of *£*', to check that S is
irreducible, Zariski locally closed (resp. Zariski closed) of codimension > r
in J?J, it suffices to check, for some q e S\ that S Π τ~ι(q) is irreducible,
Zariski locally closed (resp. Zariski closed) of codimension > rz in S?x n
τ~x{Q) = {surfaces of degree d in P 3 with a double point at x and tangent
cone [q] there}. Here, r0 = r since codinv(^f3) = 0, π = r - 1 since
codim^^ 1 ) = 1, and r2 = r - 3 since codim^(£f2) = 3.

The proof of the following result (using Bertini's theorem) is left to the
reader.

(8.13) Lemma. Let S be a surface of degree d in a hyperplane H ofP4

with only isolated singularities. Then there exists a nonsingular hypersur-
face M of degree d in P 4 with hyperplane section M n H = S. Therefore, if
we let P(d,S) = {hypersurfaces M of degree d with prescribed hyperplane
section M nH = S} and Jίd,s = {nonsingular M in P(d,S)}, then ^,s is
a nonempty, Zariski-open subset ofP(d,S).

Consequently, if we prove the irreducibility of a Zariski locally closed
subset of P(d,S), then the intersection with ^ j 4 s , being open in the irre-
ducible subset, is irreducible. Similarly, if we prove a subset of {surfaces in
H singular at x} is Zariski locally closed and irreducible, then its preimage
in %X,H is Zariski locally closed and irreducible.

To prove (8.8) we need to be able to recognize singularities of hyperplane
sections fo(x9y, z) = 0 of M of types Aχ9 A2i A3, A4, and D4. We start
with the characterizations of these singularities by their normal forms (cf.
§7):

(i) A point p of a surface S is an ^-singularity if and only if the germ
(S,p) is analytically isomorphic to the germ of x2 + y2 + zn+ι = 0 at 0 in
C3.
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(ii) A point p of a surface S is a /^-singularity if and only if the germ
(S9p) is analytically isomorphic to the germ of x2 + y{y2 + z2) = 0 at 0 in
C3. (In general, for Dn, n>4, use x2 + y(yn~2 + z2).)

In addition to the quadratic tangent cone, there are two tools we will use
to analyze these surface singularities: (a) their blow-up properties, and (b)
the structure of the space Tι of first order deformations and its intrinsic
filtration.

The following characterization of An and D4 by blowing up is a special
case of D. Kirby's analysis [21] of isolated double points of surfaces in
3-space.

(8.14) Proposition. Let (S,p) be the germ of a surface singularity in C3.

(i) For n>3, (S,p) is an An-singularity o {S,p) is a rank 2 double point
and the blow-up S has along the exceptional curve an An-2singularity and
no other singularities. {The blow-ups of A\ and A2 are nonsingular.)

(ii) (S,p) is a D^-singularity <* (S,p) is a rank 1 double point and the
blow-up S has along the exceptional curve three A\-singularities and no
other singularities.

Remark. Kirby characterized the "DuVal-Arnold singularities" {An,
n = 1,2, Dn, n = 4,5, \Eβ,EΊ, E%} as the absolutely isolated double
points of surfaces in C3. (Absolutely isolated means that the singularity can
be resolved by finitely many point blow-ups, i.e., each blowing-up is only
allowed to have a single, reduced point as center.) It follows that a germ
{S,p) of a surface in C3 at a double point is one of {An,Dn,E^Eη,E%} if
and only if the blow-up S has only such singularities along the exceptional
set E.

(8.15) Proposition. Let (S,p) be a germ of surface singularity in C3.

(i) (S,p) is an An-singularityf n > 2 o it is a rank 2 double point and
= n.

(ii) (S,p) is a D^-singularity *> it is a rank 1 double point and dim(T{sp^)
= 4.

Proof (i) =!>: Assume An, n > 2. Then we can use the analytic normal
form x2 + y2 + zn+ι. Now, since n > 2, the quadratic form is x2 + y2,
which has rank 2, and Tι £ C[[x,y, z]]/(x,y, zn) £ C[[z]]/(zn), which has
dimension n.

<=: Assume (S,p) is a rank 2 double point and dim Γ1 = n. Then (S,p)
is analytically equivalent to x2 +y2 + zk+ι for some integer k > 2 (cf. [24,
7.16, p. 127] or [21, Theorem 4i]). But now, k = dimΓ 1 = n so (S,p) is
an An -singularity.

(ii) =>: Trivial.
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<=: Assume (S,p) is a rank 1 double point. Then the equation for (S,p)
is analytically equivalent to x2 + g(y, z) for an analytic g = φ H , where
φ is a homogeneous cubic polynomial. Now

,y, z]]/(x2 + #, x, gy, gz) s C[[y,

and (5,p) has a /^-singularity <=> p(y, z) has three simple roots in P 1 (cf.
[21, §2.6]). Next, φ has three simple roots in P1 & φy and φz have no
common zeros in P1 <» yφy, zφy, yφz, zφz span the cubics in y and z.
Now we see that our second hypothesis dim Γ1 = 4 implies D4. Indeed, if
φ did not have three simple roots then dim Γ1 would be at least 5 because
l,y, z, a quadratic, and then a cubic not in the span oϊyφy9 zφy, yφz, zφz

would be linearly independent in Γ1. To see this, note that (g, gy,gz, all
quartics)=(^, <pz, all quartics) since g = φ (mod the ideal generated by
all quartics) and φ = (l/3)(yφy + zφz).

(8.16) Corollary. Let (S,p) be a germ of surface singularity in C3. Then
(S,p) is one of the five types A\, A2, A^ A4, D4 <=• dim(Γλ A < 4.

For an isolated singularity (^,0), Γ1 together with its structure as an
^Vo-module is a complex analytic invariant; indeed, for a hypersurface
this is just the invariance of the Jacobian ideal / generated by the defining
equation and its partials. In particular, we have an intrinsic filtration of
Γ1 defined by the powers of the maximal ideal m = mx$ of 0χ$\

Note that always (if (X, 0) is singular), dim(Tι/m Γ1) = 1 and an element
/i(mod/) € Γ1 induces a basis for Tι/m Tι & fx (0,0,0) φ 0. Also, by
Nakayama's lemma, m^+1 Γ1 is properly contained in mk Tι unless
mkTy= 0.

(8.17) Lemma. For any normal form x2 +y2 + (higher) of an equation

for An, zk(modJ) E mk Tx induces a basis for the (I-dimensional) vector

spacemkTι/mk+ιTι fork = 0, , / i - l . Hence{l9z9'"9z
n~1} induces

a C-basis for Tι.

Proof Since dim Γ1 = n, it suffices to show that, for all /c, zk spans
Gk = mk - Tι/mM Γ1; it then follows, by using the filtration, that
{l,z, -,zn~1} spans Γ1 as a C-vector space, hence forms a basis. As-
sume, by induction, that zk spans G^ (this is true for k = 0). Then
{ jcz^yz^z^ 1 } certainly spans Gk+X = mk+ι Tι/mk+2 Γ1. But, by the
form of the equation, x and y are in the ideal (/, m2), so xz^ and yzk are
0 in (jfc+i and z^+1 spans, q.e.d.

We postpone a precise look at Γ1 for a /^-singularity until later. Here
we simply note that for any normal form x2+ (higher in x,y,z) of an
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equation for Z>4, 1 (mod/) e Tι induces a basis for Tι/m Γ1, y,z
(mod J)em Tι induce a basis for m Tι/m2 Γ1, and last, m2 Tι/m3 Γ1

is 1-dimensional.
Proof of (8.8). By (8.11), we fix the point x and the hyperplane # ,

and look at ΨXtH (so the hyperplane H is tangent to M at x) in affine
coordinates. To simplify notation, we write ^ , &{A\), etc. for 8^//,
^ ( ^ 1 )*,//> etc. We consider all the affine equations fo with a singularity at
the origin, so

fo(x,y, z) = β(x,y, z) + c(x,y, z) + rf(*,y, z) + ,

where q is quadratic, c is cubic, d is quartic, etc.
Now we will prove (8.8)(0)-(5) in turn.
(0) This is well known. Indeed, after our normalization, we have a pro-

jective space of polynomials / = fo + uf\ H — of dimension =
4 (since the constant and linear terms of fo are zero), and
d i m ( P 4 x P 4 * ) - 1.

(1) We have an Ai-singularity if and only if q{x,y, z) is a nondegenerate
quadratic form if and only if the discriminant of q is nonzero. Therefore
&{A\) is open in ^\

To see &(Aχ) = V(A{), we apply (8.2) and note that since /i(0,0,0) Φ
0, /i(mod/) e Tι is nonzero and therefore spans Γ1, which is a 1-
dimensional vector space in this case.

(2) Now consider an ^-singularity. We want to show W(A2) is irre-
ducible, locally closed, of codimension 1. We know by (8.15)(i) that Aι
is characterized by #'s being a rank 2 quadratic form and dim Γ1 = 2, so
by (8.6) we have that &(A2) is locally closed in W. Note that g7 - Ψ{A\)
has pure codimension 1 in ^ since it is defined by one equation (the dis-
criminant). But ^{Ai) is open in ^ - &{A\) as it is the complement of
{rank(^) < 1 or dim Tι > 3}. This proves ^{Ai) has codimension 1 in &.

Now we prove the irreducibility of ^{Ai). The set of rank 2 quadratic
forms is Zariski locally closed in the vector space of all quadratic forms
in x,y, z. The set is irreducible since it is an orbit under the action of the
connected algebraic group GL(3). Hence {surfaces in H, singular with a
rank 2 quadratic form at /?} is Zariski locally closed and irreducible and
{surfaces in H with an ^-singularity at p} is an open subset; therefore it
is also Zariski locally closed and irreducible, and so is %?{A2).

By (8.12) we may normalize the equation projectively to the form fo =
x2 + y2+ higher. To see &(A2) = V(A2), we only have to show that
z/i (mod/), which lies in m Γ1, is not in m2 T{ = 0. But fx = λ +
(linearH ), where A is a nonzero constant, so zf\ = λz (mod/) since
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z - (linear + ) em2Tι = 0. Thus we only need to check that z (mod /)
is not in m2 Γ1; this is given by Lemma (8.17).

(3) For Λ3, the closed conditions are that the quadratic form have rank
2, hence 1-dimensional kernel, and that the cubic vanish on this kernel.
This is one linear condition on the cubic. The A3 locus is open in this
Zariski locally closed, irreducible set.

Next we prove that codimg>(Λ3) B(A3) > 2. To show this we may normal-
ize the equation fo for our ^-singularity by linear transformation in C3 to
the form x2 + y2 + c(x,y, z)-\—, where c(0,0,1) = 0. Then the Jacobian
ideal / is (x2 +y2 + c(x,y, z) + , 2x + cx + , 2y + cy + , cz + ).

(8.18) Lemma. {f\, xf\, yf\, zf\} fails to span Tι if and only if the
coefficients ofxz2 and yz2 in c are both 0.

Proof First recall from (8.17) that f spans Tι/m Tι, zfx spans
m - Tι/m2 T\ dime Tι = 3, and m3 Γ1 = 0. Now note that mod-
ulo J, x = -j{cx + •••) G m2 and y = -\{cy + •••) e m2. Thus, in
Γ1, xf\ and yf\ lie in m2 Γ1 and equal λx and λy respectively where
f{ = Λ + (linear H — ) . It follows that /i, JC/I, y/i, zf\ do not span Γ1 if
and only if x and y are both 0 in Γ1, i.e., if and only if (x,y) c /, or
equivalently, (x,y, z3) = J in C[[x,y, z]]. Next, (x,y, z3) = J if and only
if the image of / is 0 in C[x,y, z]/(x,y9 z3) = C[z]/(z3). The image of /
is 7 = {cx,cy,cz) c (z2)/(z3); now the z2 term in cx comes from the xz2

term in c, in cy from the yz2 term, and cz has no z2 term since c has no
z3 term, q.e.d.

Therefore, by (8.2), after our normalizations, B(A?>) is defined in ^(^3)
by two independent linear conditions.

(4) For the analysis of A4 we use (8.14)(i). Suppose we blow up our
surface singularity S: fo{x,y, z) = 0 in C3 at the origin. The exceptional
curve (as a scheme) in the blow-up S is the projectivized tangent cone Q
to S at 0. Since the exceptional curve is a Cartier divisor in the surface
5, at points where Q is nonsingular S must be nonsingular. Assume (5,0)
is an An-singularity, n > 2, and that the quadratic part q(x,y, z) of fo is
x2 + y2 (or xy). Then to analyze the singularities of S it is only necessary
to look at a single point of S, namely the vertex (0,0,1) of the degenerate
plane conic Q: q = 0 in P 2 .

The blown-up surface S can be realized as the proper transform of S in
the blow-up C3 of C3 at 0. Now C3 is covered by U9 F, W, three affine
open subsets isomorphic to C3. On the coordinate patch W the blowing-
up σ is given by (u,υ,w) -> (uw,vw,w) = (x,y,z) and the (possibly)



748 CLINT McCRORY, THEODORE SHIFRIN & ROBERT VARLEY

singular point of S is at the origin. Now pulling back fo under σ we get

fo(uw,vw,w) = q(uw,vw,w) + c(uw,vw,w) + d(uw,υw,w) -\

= w2[q(u,v, 1) + wc(u,v, 1) + w2d(u,v, 1) H ].

Let us write out the cubic part of fo,

c(x,y, z) = (ax + βy + ξz)z2 + (other terms, not divisible by z2),

and the quartic part of fo,

d(x,y, z) = γz4 + (terms involving an x or y).

Then the equation in W for the proper transform is

fo(u, v, w) = ξw + [u2 + υ2 + w(au + βυ + γw)] + (cubic terms) H .

The (w^iί^-origin is nonsingular on S o ξ Φ 0; hence by (8.14)(i), this
^-singularity, n > 2, is Ai & ξ Φ 0. Now assume ξ = 0, i.e., that we have
an An-singularity, n > 3. Then the singularity is As o the quadratic form
q(u, v, w) = w2 + v2 + κ;(αM + βv + γw) is nondegenerate. We find that ^
is degenerate, i.e., has rank = 2 <» γ - [{\ά)2 + (^β)2] = 0 <* a2 +β2 = 4γ.
(If <7(x,)>, z) = xy then ^ is degenerate <* aβ = γ.)

To summarize:

(8.19) The equation

f o ( x 9 y i Z ) = x 2 + y 2 + [ ( a x + β y ) z 2 + - - ] + [ γ z 4 + .••] + •••

defines an ^44-singularity <& a2 + β2 = 4γ and an open condition on the
5-jet of fo holds. Namely, fo has an ^-singularity; i.e., the cubic term c
of fo does not vanish on the kernel of the rank 2 quadratic term q.

Let us see now that ^(A^) is an irreducible, codimension 3, Zariski
locally closed subset of &. In g7 we have the irreducible, codimension 1,
Zariski locally closed subset R defined by rank(#) = 2. In R we have an ir-
reducible, codimension 1, Zariski closed subset S defined by the condition
that the cubic c(x,y, z) vanish on the kernel of the quadratic q(x,y9 z); the
complement of S in R is &(A2). Now define a subset T of S by the con-
dition (in normalized coordinates): a2 + β2 = 4γ. When the degree d > 4,
we can view a and β as free parameters and γ as a polynomial function
of them; so we obtain irreducibility of Γ. If the degree d = 3, then γ = 0
so we have a2 + β2 = 0. This locus (with Q fixed) has two irreducible
components; however, the components β = ±ia can be interchanged by
monodromy.
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Next we will give explicitly the Zariski open condition for W (A^nT in
T. Write:

c(x,y, z) = (ax + βy)z2 + {λxx
2 + λ2xy + λ3y

2)z + ,

d(x,y, z) = γz4 + (μxx + μ2y)^3 + ,

e(x,y,z) = vz5 + '-- .

Then c(u,v,w) = w(λ\U2 + ̂ w^ + A3V2) + w2(μ\U + μ2^) + w3i/. The
kernel of # is spanned by the vector (α, /?, -2) so the final condition for
exactly an ^-singularity is:

2{μχa + /ι2jί) - (λγa
2 + A2α^ + λ3^2) ^ 4i/.

To see whether the ^4-singularity is versally deformed we compute the
span of {f\,xf\,yf\,zfι} in terms of the basis for Tι induced by the
powers of z. The question is whether xf\ and yf\ span m2 Tι. For this
we first express x and y (as operators on Γ1) as linear combinations of z2

and z3. The results of the calculations are as follows:

(0) Modulo /, x = -\{cx + rfx) and y = -j(cy + dy) since m4 c J
for Λ4.

(1) Modulo (/, m3), Λ: = - | α z 2 and y = -\βz2.
(ii) Note that x2, xy, y2 and all the cubic monomials except z3 lie in

/.
(iii) Modulo /,

(iv) If /1 (x, y, z) = 1 + Ax + By + Cz + , then modulo /,

χfx=x + Cxz = -^αz2 - \{μx - [λx - C)a - ^λ2β)z\

yfx = -\βz2 - \(μ2 - μ2a - (λ3 - C)β)z\

(v) Thus, JC/I and yf\ are given by the vectors - j(α, μ\ - (λ\ - C)a -
\λ2β) and -j(β,μ2 - \λ2a - (A3 - C)β), whose linear dependence is ex-
pressed by the 2 x 2 determinant μ2a -μ\β- \λ2a

2 + (λ\ - λ3)aβ + \λ2β
2.

(It is interesting that the C-terms cancel out in the determinant; hence
the versality of the deformation of the ^-singularity depends only on the
hyperplane section and not on the nonsingular hypersurface M of P4 from
which the given section arises.) From this, the existence of ̂ 4-singularities
which are versally deformed on a nonsingular hypersurface of degree d > 3
in P4 certainly follows.
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In any event, it is easy to check directly that fo = xy+xz2+y2z+(*) = 0,
where (*) is any sufficiently small choice of higher order terms such that
the coefficient of z4 is zero, is an ^-singularity at (0,0,0) and is versally
deformed on the hypersurface fo + u-l-\ .

Here is the analysis of D4. Suppose (5,0) has a rank 1 double point,
with equation

fo(x,y, z) = x2 + c(x,y,z) + d(x,y,z) + • -.

To give the condition for the point to be exactly a £>4-singularity, we blow
up. On an (r9s, t) coordinate patch V, σ(r,s, t) - (rs9s9st)9 so the equation
in V for the proper transform is

f o ( r , s 9 t ) = r 2 + s c ( r , l , t ) + s 2 d ( r , l 9 t ) + •••.

The singularities along the exceptional curve s = 0 occur at (0,0, t)9 where
c(0, \9t) = 0. Next we make the same calculation on the (u,v,w) patch
W9 on which σ(u9υ9w) = (uw,υw,w); since the tangent cone to S at
0 is x - 0 (counted twice), the proper transform of S in C3 is already
contained in the union of V and W. On W the proper transform is

fo(u9υ9w) = u2 + wc(u,υ,l) + w2d(u,υb l ) + .

The singularities along w = 0 occur at (0, υ, 0), where c(0, v, 1) = 0.
Thus, using the two coordinate patches we have located all the singular

points of the blow-up S but we need to relate the two patches. On V n W
(given in V by t Φ 0, or in W by v Φ 0), from (rs,s,st) — (uw,vw,w), we
have r = u/v9 s = vw, t = l/v. If E = P1 denotes the reduced exceptional
curve in 5, we know En V is {(0,0, t)\t e C} and En W is {(0, v, 0)\v e C}
with the identification t = l/υ in V Π W. We conclude that the singular
points of S are the points of E = P1 at which the cubic form φ = c(0, y, z)
vanishes; there are three such points, counting multiplicity.

Let p G E be a point at which φ = c(0,y, z) vanishes. A computation
shows that (S,β) is an ordinary double point (A\) <»p is a simple root of
φ. Therefore, by (8.14)(ii) we have:

(8.20) (S9p) is a /^-singularity «» φ has three simple roots.

Now we look at the condition for a D4-singularity of a hyperplane sec-
tion fo = 0 to be versally deformed on the hypersurface fo + uf\ + ,
i.e., by (8.2), the condition for fΪ9 xfu yfu zfx to span Γ1 = ΓjL First
we note, since f{ (0,0,0) Φ 0, that f{ induces a basis for Tι/m Tι and
y/i, z/i induce a basis for m Tι/m2 Γ1. Since JC = -\cx mod/ (D m3),
xfx (mod/) lies in m2 Γ1 so /i, JC/I, yf\, zf{ span Γ1 =̂> xf\ is not zero
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in Tι <& x is not zero in Tι <*> cx $ J. Now, since cx is a homogeneous
quadratic, we look at the "quadratic part" of /, (/ Π m2)/m3 (in general
the "quadratic part" of / would be ([/ + m3] n m2)/m3, but here / D m3).
Clearly, the quadratic part of / is the linear span of cy, c2, x

2, xy, xz
so cx G / <» cx is a linear combination of cy, cz, x2, xy, xz <=> ~Cχ~ is a
linear combination of φy = ty and φz = cj, where the bars mean reduction
modulo x. To give the condition in terms of the coefficients of fo, write
out c as a linear combination of the cubic monomials in x, y, z and hence
<Py,φz, and ZJ as linear combinations of the basis y2, yz, z2 for quadratic
forms in y, z. Now φy and φz are certainly linearly independent (they
have no common roots since φ(y, z) has simple roots) so the condition
that Cχ~ be a linear combination of φy and φz is that the corresponding
3 x 3 determinant vanish. If

c{x,y, z) = ay3 + βy2z + γyz2 + <Jz3 + Λxy2 + Bxyz + Cxz2

4-(lin. comb, of X3,x2y,x2z),

the determinant is

(6j8(J - 2 y 2 μ - (9α5 - βy)B + (6αy - 2jS2)C.

In particular, the D4-singularity

fo = x2 + (y3 + z3 + xyz) + (any choice of higher order terms)

is versally deformed on any nonsingular hypersurface having it as a hyper-
plane section.

(5) Recall first that W = {dim Γj > 5} by (8.16), and then that the latter
set is Zariski closed by (8.6). It remains to show coding W > 4. To do
this, it suffices to check that the codimension in ^ is > 4 after intersecting
W with each of the three Zariski locally closed sets: ^? 1 .= {rank(#) = 2},
g72 = {rank(^) = 1}, and ^ 3 = {rank(#) = 0}. We have seen that T =
{rank(ρ) = 2 and not Aι or A^} is an irreducible, Zariski locally closed
subset of codimension 3 in (S?, and that Ψ(A^) is nonempty and Zariski
open in this set. Therefore, T-<S?{A^)9 which is Wn^ 1 , has codimension
> 4 in Ψ. Next, since we know that ^ 2 is irreducible, of codimension 3 in
g* and &(D4) is a nonempty, Zariski-open subset, W2 - ^(Z>4) = Wn&2

has codimension > 4 in ^ . Finally, ^ 3 = W3 n fF has codimension 6 in

This completes the proof of Theorem (8.8). q.e.d.
Notice the following consequence of the irreducibility of ^{A4) and
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(8.21) Proposition. Let Z c V(A4) {or V{D4)) be a proper Zariski
closed subset. Then {M\{x,γ{x),M) £ Z for all x £ M} is a nonempty
Zariski-open subset ofZ/, the set of Gauss-stable hypersurfaces ofJίd-

Proof Since Z φ V{A4) and V(A4) is irreducible, dimZ < dim V(A4)
= dim^\ The restriction of p: V —• & to V(A4) is proper. Hence the
image of Z in & is a Zariski-closed subset of positive codimension. The
latter case is obtained by substituting D4 for A4. q.e.d.

With regard to the actual occurrence of the five expected types of sin-
gularities on the hypersurfaces in ^ , note that the various (good) loci we
have in g7 have codimension < 4 so the images in P4* x *§ have codimen-
sion < 5 and also have the expected fiber dimensions over *§. Hence the
images in <& have the expected dimensions, i.e., are all of *§\

9. Generidty and jet transversality

In this section we give a second proof of Theorem (8.1).

The smooth hypersurface M c P 4 is Gauss-stable if and only if J4p: Γ —•
/ 4(Γ,P 4*) is transverse to Σ(Γ,P4*) for all orbits Σ c /4(6,4) (cf. (6.3)).
Since the orbits of /4(6,4) of codimension < 6 are Thom-Boardman loci
(6.4), it suffices to prove that the set of hypersurfaces such that J4p is
transverse to the Thom-Boardman loci is a nonempty Zariski-open subset
of ^ / .

We will use two properties of the Thom-Boardman sets Σ7. First, each
Σ7 is invariant under unfolding (i.e., it is "w-stable" in Ronga's terminology
[31]). Second, the Thom-Boardman sets of codimension < 6 in /4(6,4)
form an algebraic Whitney stratification (cf. (6.4)).

Recall that an r-parameter unfolding of a map germ / : (C", 0) —• (Cp, 0)
is a germ F: (Cn x C , 0) -> (C* x Cr, 0) such that F(x, t) = (/(*, t), t) and
/(JC,O) = f(x) for all x, t. (Thus / is an r-parameter deformation of /.)
Given integers «0> c, k, with n0 > 0 and k > 0, let Σ = {Σ(n,p)}, n > n0,
p = n + c, be a sequence of singularity types, with Σ(n,p) c Jk(n,p) for
all n,p. (Σ(n,p) is a singularity type if Σ(/i,/?) is invariant under analytic
changes of coordinates in source and target.) We say that the sequence Σ
has order k and degree c.

Definition. The sequence Σ is unfolding invariant if for every map germ
/ : (Cn,0) -• (C7,0), n > n0, p = n + c, for every r > 1 and every r-
parameter unfolding F of /, the following two conditions hold:

(1) /*/(0) 6 Σ(n,p) *> JkF(0) e Σ(n + r,p + r),

(2) Jkf (h Σ{n,p) <* (JkF)\(Cn x 0) rh Σ(n + r9p + r).
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(9.1) Lemma [31]. The Thom-Boardman sequence Σ 7 = {Σ7(A2,/?)|

p - n = c} is unfolding invariant
Proof. This follows from [6, Theorem 7.15, p. 56], since Boardman's

intrinsic derivative descriptions of Σ 7 and the transversality condition (ιs)
are unfolding invariant, q.e.d.

By an analytic family Ft: Xt —• Yt of maps, we mean an analytic map
F: X —• 7 of manifolds, together with proper analytic submersions
Px: X -• T, PY : Y -> T with px = pYoF:

X > Y

For t eT, Ft\ Xt-+Yt is the restriction of F to the fibers over t.
The following is an immediate consequence of the definition of an un-

folding invariant sequence.
(9.2) Lemma [31, 2.1]. LetΣ = {Σ(n,p)},n > n0 bean unfolding invari-

ant sequence of singularity types of order k and degree c, and let Ft: Xt -• Yt

be an analytic family of maps, with dim Yt - dimX, = c and dim A", > no-
(1) IfJkFt rh Σ(Xt, Yt) at x e Xu then JkF rh {X, Y) at x.
(2) IfJkF rh Σ{X, Y) at x e Xt, then JkFt ά\ Σ(Xt, Yt) at x if and only if

Xtά\(JkF)-ιΣ(X,Y) atx.
An algebraic stratification sequence 5? = {S^(n,p)} of degree c and

order k through codimension s consists of the following. For each n> no,
p = n + c, S^(n,p) is an algebraic Whitney stratification of U(n,p) -
Ω(n,/?), where U(n,p) is a singularity type that is a Zariski-open subset of
Jk(n,p) and Ω(n,p) is a singularity type that is a closed algebraic subset
of U(n,p) of codimension > s. (An algebraic Whitney stratification is a
decomposition for which each stratum is a Zariski locally closed set, and
each pair of strata is Whitney regular and satisfies the frontier condition
[13].) Furthermore, we require that {U(n,p)} and {Ω(n,p)} be unfolding
invariant sequences. Finally, we require that there be unfolding invariant
sequences of singularity types Σ7 = {Σ7(/ί,p)|n > n0, p = n + c}, / e <J,
such that S^(n,p) = {Σ\nyp)\I e <J}.

\iS? is an algebraic stratification sequence of order k and degree c, and
Xn, Yp, n > n0, p = n + c are smooth algebraic varieties, let S^(X, Y)
denote the stratification of Jk{X, Y) corresponding to S^(n,p), and let
U(X,Y), Ω(X,Y), ΣJ(X,Y) correspond to U(n,p), Ω(/i,p), Σ!(n,p)9 re-
spectively. For F: X -> 7, we say JF rh S? if JkF{x) e U(X, Y) for all
x e X, (JkF)-ιΩ(n,p) has codimension > s in X, and JkF rh Σ\X, Y)
for each stratum Σ!(X, Y) of &(X, Y).
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(9.3) Lemma. Let S? = {S^(n,p)}f n > n0, p = n + c, be an algebraic
stratification sequence of degree c and order k, through codimension s. Let
Ft: Xt -> Yt bean algebraic family of maps, with dimX, > n0, and dim Yt =
dim Xt + c.

(1) IfJFt d\<9>for all t e T, then JF rh S?.

(2) IfJFώS*, then {t\JFt rh S?} is a nonempty Zariski-open subset of
T.

Proof Part (1) follows from (9.2)(1). Part (2) follows from (9.2)(2)
together with the Whitney regularity condition. If JF rh S*, then C(Ω) =
{t\dim(JFt)~ιΩ(Xt9 Yt) > dimX, - s} is a closed algebraic subset of T
of codimension at least one. If JF rh S? and Σ is a stratum of S?9 then
(9.2)(2) implies that C(Σ) = {t\JFt is not transverse to Σ} is a constructible
subset of T of codimension at least one. Whitney regularity yields that the
closure of C(Σ) is contained in the union of C(Ω) and the sets C(Σ;) for
Σ' c Σ. Thus {t\JFt is not transverse to Σ} is a proper closed algebraic
subset of Γ. q.e.d.

Now to prove Theorem (8.1) we put the incidence projection p into
the universal family P: 3? —• y and use the unfolding invariance of the
Thom-Boardman sets. Recall3? = {{x,H, M)eP4xP4* xJtd\x e MnH},
ψ = P4* x Jtd, P\8? -+<$/, P(x,H,M) = (H,M). The map P can be
viewed as a family of maps either over Jίd or over P4*:

,4) be the stratification of /4(6,4) through codimension 6 using
the Thom-Boardman loci Σ1, Σ3 '0, Σ3 '1 '0, Σ 3 1 ' 1 ' 0 , Σ 3 ' 1 ' 1 ' 1, Σ 3 ' 2 ' 0, and let S? be
the corresponding algebraic stratification sequence (with «o = 6, c = — 2),
which exists by (6.4) and (9.1). We want to show that {M\JPM rh <¥*} is
a nonempty Zariski-open subset of Jtd. By Lemma (9.3) it is enough to
show JP ά) S*, or that JPH rh S? for all H e P4*. For d > 4 this is a
consequence of the case m = 3 of the following basic proposition.

Let My be the space of all degree d hypersurfaces (singular or nonsin-
gular) in P m . Thus 1^ is the projectivization of the vector space of homo-
geneous degree d complex polynomials in m + 1 variables, and dim M^1 =
("70 - 1. Let I™ = {(*,/) G Pm x My|/(jc) = 0}, and let q: 1™ - M^
be the projection q(x,f) = / . The fiber of q over / is the hypersurface
{x e Pm\f(x) = 0}; thus iy is the universal degree d hypersurface in Pm,
and dim iy = (m+d) + m-2.
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(9.4) Proposition. Jdq rh Σ(I™, MJ1) for all orbits Σ of

Let H™+1 = {(*,/) € I™+1|x E Pm, f{y) φ 0 for some y e Pm} and
(H™+1)' = {(*,/) G H™+1|/ is smooth}. Since (H™+1)' is a Zariski-open
subset of H™+1, and H ^ + 1 is a Zariski fiber bundle over iy, Proposition
(9.4) implies the corresponding result for (H™+1)'. Taking m = 3, it fol-
lows that, for rf > 4, JPHΠ^ for all i/ e P4*, completing the proof of
Theorem (8.1).

Proof of (9A). We abbreviate M™ by M and I™ by I. Let (ZQ, ,zm)
be the standard homogeneous coordinates on P w . Let (7 be the affine
subset zo 7̂  0, and let (x\, -,xm) be the affine coordinates *,• = zz /zo. By
dehomogenization, M = P(N), where N is the vector space of polynomials
of degree < d in xΪ9' ,xm. Let N o = {/ € N - {0}|/(0) = 0} and
Mo = P(No). Define A: C"1 x Mo - • I by A(JC,/) = (x,f-f(x)), an
isomorphism onto I n ( I / x M ) . Consider the map Q: Cm x No —• N,
Q(x,f) = f-f(x). Since Q is a trivial unfolding of #oA (i.e., Q is locally
isomorphic to the suspension of qoh), it is enough to prove (9.4) for Q. In
other words, it suffices to check that JdQ rh Σ(Cm x N 0,N) for all orbits Σ

Let Jtf(Cm x N 0,N) be the space of jets that map 0 to 0. The standard

coordinates identify J{f(Cm x N0,N) with Jd({mf) + m - 1, ("T*)). Let

C w x No ̂  / o

r f (C w x N0,N)

assign to the vector v e Cm x No the J-jet at 0 of the map Qv(w) =
Q(v + w)- Q(υ). Then JdQ rh Σ(Cm x No, N) if and only if J*Q rh Σ.

For J G N write g{x) = Σβ/X7, using the multiindex / = (i\, , / w ) .
The α/ are the standard coordinates on the vector space N, and g e N o if
and only if ao = 0. With respect to the coordinates x = (x, ) and a = (ai),
we have Q(x, α) = b, where f?o = -Σaix1 and &/ = #/ for 7 ^ 0 .

An element i 7 of / 0

4 ( c m x N o ? N) is a polynomial map (truncated to
degree 4) in the variables X = {X{) and ^ = (Λ7) such that F(0) = 0.
For each multiindex /, let Fj denote the /th component of F. Then
J*Q: Cm x No -+ / 0

4 (C w x No,N) is given by J$Q(x,a) = F, where

Fo = -Σ(^/ + ai)(X + x) 7 + Σα7x
7,

Fj = Aj9 JφO.

We will verify that the differential D of J$Q at (JC, α) is transverse to the
orbit of J$Q(x,a) in /0

4(Cm x N 0,N).
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We compute with the coordinates Λ:, , <Z/ on Cm x No and coordinates ψj
on /Q (Cm x No,N) defined as follows. Let {φa} be a basis of monomials
in Xi, Aι, and let {ψa} be the dual basis. Let ξj be the dual basis to the
standard basis on N, and let ψj = ψa ® ζj. For F € / 0

4 ( c w x No>N),
^"(F) is the coefficient of <pa in the polynomial Fj.

First note that by (9.5), we have

(D(JL\\ = ^ £ = J -(χ + χY + χI> J = °>
\ \dajjjj dai l θ , JφO,

so by induction on |/| the image of D contains the subspace V spanned
by the tangent vectors d/dψg for φa = X1, I φ 0. Therefore, letting T
denote the tangent space to the orbit of JfiQ(x,a), it is enough to show
that d/dψj e T (mod V) for all other coordinates ψj. We show

(1) d/dψg e T for all <pa except <pa = X1,1 φ 0,
(2) d/dψJeT (mod V) for all φa and all / φ 0.
To show that these vectors are in T (mod V), we construct curves

through J$(x,a)9 in the orbit of J$Q(x,a) in /0

4(Cm x N0,N) (under the
action of the group of germs at 0 of analytic coordinate changes in the
source Cm x No and the target N). These curves are constructed as orbits
of JQQ{X,O) under germs of 1-parameter subgroups.

Let φ be a monomial in the variables Aj. The 1-parameter family of
target coordinate changes F —• F + tG in (9.5), where Go = φ and Gy =
0 for / ^ 0, shows that (1) holds for all monomials not involving the
Xi. Next let K Φ 0 be a fixed multiindex, and consider the simultaneous
source-target coordinate changes in (9.5): (X,A) -> (X,A + tB), F ->
F - ίG, |ί| < ε, where Bκ = φ, Bj = 0 for / ^ ϋΓ, and Gκ = φ, Gj = 0
for J Φ K. The tangent vector at / = 0 of the resulting curve has 0-
component -φ{X+x)κ and /-component zero for / Φ 0. Thus (1) follows
by induction on \K\.

Finally, let φ be an arbitrary monomial in Xi and Ai, let K Φ 0 be
a fixed multiindex, and consider the source coordinate changes (X,A) —>
(Λf, ^ -h ί5) in (9.5), where Bκ = φ9 Bj = 0 for / φ K. The tangent vector
at / = 0 of the resulting curve has 0-component —φ(X + x)κ, which lies
in T (mod V) by (1). The AΓ-component of this vector is φ, and all other
components are zero. This implies (2).

Remark. An obstruction to extending the technique of proof (b) of
Theorem (8.1) to higher dimensions is that the Thom-Boardman strata do
not, in general, satisfy the frontier condition. So one is forced to work
with a finer decomposition of the jet space. For Mn c P Λ + 1 , the incidence
correspondence Γ c Mn x P Λ + 1 * has dimension 2n. A nice stratification



THE GAUSS MAP OF A GENERIC HYPERSURFACE 757

of Jn+Ϊ(2n,n + 1) would give, via the technique of proof (b) of (8.1),
a classification of singularities of the incidence projection (or the Gauss
map) of a generic n-dimensional hypersurface of degree d > n + 1.

Genericity for contact with lines. If M is a smooth hypersurface in P4,
let Γi c MxG(l,4) be the incidence correspondence Γi = {(x,L)\x e L},
and let p\: ΓΊ —• G(l,4) be the incidence projection, p\(x,L) = L. The
singular locus Σ(p\) is {{x, L)\L tangent to M at x}, which can be identified
with the projectivized tangent bundle PTM. In analogy with the Gauss
map M -• P4* = 6(3,4), the correspondence M <- Σ(p\) -+ G(l,4) is the
Gauss correspondence.

Now dim Γi = dim G( 1,4) = 6. The fibers of p\ are the one-dimensional
linear sections MπL. Of particular interest are the Morin singularities of

Pi:

Zk = Σι*(pι) = {(x,L)\L has at least kth order contact with M at x},

where d is the degree of M.
(9.6) Theorem. The set of smooth hypersurfaces in P4 such that 3?^ is

a smooth (6 - k)-manifold is a nonempty Zariski-open subset of^ for all
k<d.

The proof is similar to proof (b) of Theorem (8.1), using Ronga's
method. The same proof works for Mn c Pn+{ for all n. Note that the
case k = d, which corresponds to lines contained in M, does not follow
from this proof, but is an immediate consequence of [5].

Proof We put the incidence projection into the universal family param-
etrized by Jtd. Let JT = {(x,L,M) e P4 x G(l,4) x JTd\x e MnL},
y = G(l,4) x Jtd, P: ̂ ^^9 P(x,L,λf) = (L,M). The map P can be
viewed either as a family over Jtd or over G(l, 4):

Note that dP has corank < 1 everywhere, since for each M, PM is the
restriction of the big incidence projection {(x,L) eP4 xP4 x G(1,4)|JC G
L}-.0(1,4) .

Let J({)(69 6) be the subset of Jd(6,6) consisting of jets with corank < 1.

Consider the Thom-Boardman loci Σ1^0 c 7^(6,6), 0 < k < d - 1, with

Σio,o = Σo T h e n Σo ? Σi,05.. .9i}d-\,o i s an algebraic Whitney stratification

of /M)(6, 6) - Ω, where Ω has codimension d. Let S? be the corresponding

algebraic stratification sequence. To show that {M\JPM rh S*} is generic,
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it suffices by Lemma (9.3) to show that JP rh S", or that JPL ά\ S? for
each L e G(l,4). This follows from Proposition (9.4) with m = 1. (The
case k = 2 is not covered by this argument, since then codimΩ = 3. But
we saw in (3.4) that JB2 if smooth if M is Gauss-stable.)

Remark. A similar analysis can be made of contact of hypersurfaces
with /-planes for any /, at least for small n and large d. Contact of 2-
planes with hypersurfaces in P 4 seems particularly interesting.
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