
J. DIFFERENTIAL GEOMETRY
30 (1989) 191-205

PERIODIC POINTS OF THE BILLIARD
BALL MAP IN A CONVEX DOMAIN

MAREK RYSZARD RYCHLIK

Abstract

We study periodic orbits of the billiard ball map in a strictly convex
domain with a C°° boundary. We conjecture that the Lebesgue measure
of all periodic points is 0. We are able to prove the following partial
result: the measure of period three periodic orbits is 0.

The question of whether the mentioned measure is 0 appeared in the
study of spectral invariants of a planar region. The author learned about
it from R. Melrose.

0. Introduction

In this paper we study the Lebesgue measure of the set of periodic points
of a billiard ball map in a strictly convex region with a smooth boundary.
The question of whether this measure is 0 has some significance in the
theory of spectral invariants of a planar region (cf. [3]). We learned about
the problem from R. Melrose. We notice that if the measure is 0 then the
length spectrum of a billiard in a convex domain has measure 0.

In spite of our attempts to give a complete solution, we have only been
able to settle the simplest case of period three. (The reader will notice
that the case of period two is trivial since in this case the reflection has
to happen under the right angle with the boundary.) The case of higher
periods seems to be much more difficult for more or less the same reasons
as verifying that a critical point of a multi-variable function is an extreme
point in the case when the second derivative test fails. A solution along
the same lines as in this paper seems likely to be related to the singularity
theory of functions.

In our solution we use the length function 3*n (see §1). It is the same
function that Birkhoff used in his proof of the existence of many periodic
orbits (cf. [3]).
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Question. Do almost all critical points of S?n satisfy the Milnor con-
dition (cf. [2])?

In our opinion the problem and our result are interesting because they
distinguish a billiard ball map from a general twist map. From this point
of view our result is an exercise in using properties of the billiard ball
map other than the twist condition and symplecticity alone. (The reader
is encouraged to find his own example of a twist map which has a disk of
periodic points of period three.)

In the final stage of our argument we ran into a lengthy computation.
The author chose to apply MACSYMA1 to do the job of differentiating
and simplifying the expressions to a form which is used to draw the final
conclusions. We took a reasonable amount of trouble to verify that the
expressions after the simplification were equivalent to the ones we started
with. The computations can be done by hand, but we consider the com-
puter a more reliable tool for carrying them out. Besides, the computations
do not seem very enlightening.

Probably it is more important to say that the final product of our manip-
ulations has a surprisingly simple form. It could mean that our approach
is not the best and the whole proof could be done differently.

Perhaps the main idea which led us towards the final computation has
been lost in technicalities. The idea is that the class of billiard ball maps
possesses some amount of transversality amongst all symplectic twist maps
of a cylinder. A careful reader will also notice some similarity of conditions
(2.22) to the Frobenius condition of integrability of a two-dimensional
distribution in R3. In fact, it is possible to formulate (2.22) as a Frobenius
condition.

We would also like to point out that our result generalizes to billiards
which are not strictly convex, with piecewise C3 boundaries, where obvious
care has to be taken of the occurring singularities.

The author would like to thank A. Katok for his interest in the result.
This was an invaluable incentive to complete the work on this version of
our paper.

1. Preliminaries

Suppose that D is a strictly convex region in the plane R2. We assume
that the boundary dD is a C3 curve with positive curvature.

1 MACSYMA is the largest symbolic computation system developed at MIT and is a trade-
mark of Symbolics, Inc.
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Throughout the paper we use the notion of a directed angle between
two nonzero vectors vi and V2. The directed angle is a class of numbers
modulo 2π. A number θ belongs to the class Z(vi,V2) iff there is λ > 0
such that \2 = λe(θ)\\, where e(θ) is the rotation of the plane by θ given
by the matrix:

Γ cos θ - sin θ 1
[ sin θ cos θ J '(1.1)

We pick the counterclockwise orientation of dD and by T(P) we denote
the unit tangent vector to dD at P edD, pointing in the counterclockwise
direction.

The billiard ball map β is defined on the set of pairs (P, v), where P e dD
and v is a unit vector on the plane such that Z(T(P), v) n [0, π] Φ 0 . This
subset of R4 = R2 x R2 is often denoted by S+{dD), as it may be considered
a part of the unit circle bundle of dD, often denoted S(dD).

The value of β on the pair (P, v) is another pair (Q, w), where Q and w
are uniquely determined from the following conditions (see Figure 1):

(i) Q = p + fv, where t > 0;
(ii) w is the reflection of v through the direction of T(Q), or

(1.2) Z(T(β),v) = -Z(T(β),w).

T(P)

FIGURE 1

It is customary to use the following description of β employing coordi-
nates. Let h: R -> R2 be a parametrization of dD by length, i.e., ||λ;(f )ll = 1
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for every t e R, and h'(t) = T(A(0) Clearly, h is L-periodic, where L is
the length of dD. The curvature function k: R -+ R+ is defined through the
following equation:

(1.3) h"{t) = k{t).J h'{t\

where 7 = e(π/2)9 i.e. / = [? " ^ ] . We will always assume that k(t) > 0
for all t.

The fefl^/A function I: R2 -> R+ is defined as

(1.4) /(x,y) = |l*00-*(*)l|.
We introduce a map/?: R x [-1,1] —• S+{dD), which maps the pair (x,Φ)
to (A(JC),V), where v is determined from the condition

(1.5) COSZ(A'(JC),V) = Φ .

Obviously, p is a covering of S+(dD) and p(x + L,Φ) = p(jc,Φ). This
yields a natural identification of S+(dD) with a cylinder. (The reader will
notice that the natural orientation is reversed, though.)

It is well known that the lifting of β to R x [-1,1] can be described
purely in terms of the length function /. We denote the lifting also by β.
This new β maps (JC,Φ) to (y,Ψ)9 where y and Ψ should be determined
from the equations

One can show that the first equation can always be solved for y in terms
of x and Φ e [-1,1]. Then we determine Ψ from the second equation.
A reader familiar with hamiltonian mechanics (in the scope of [1], for
instance) will recognize / as a generating function of β. The map β is
symplectic, i.e., it preserves the 2-form dΦ Λ dx. Indeed, dl = -Φdx +
Ψdy, so 0 = d{dl) = -dΦΛdx + dΨΛdy. This is the desired invariance.
In particular, β is area preserving. We notice that β is not differentiate
at the boundary R x {-1,1}.

Let us fix a e R. One can easily verify that h' and h can be expressed
in terms of k. In fact, we have

(1.7a) h'(t)=

(1.7b) h{x) = h{a) + Γe ( ί k(τ)dτ\ ti{a).

From (1.7b) we can easily find that

(1.8) l(χ9y) = (Y jΓcos (fk(τ)dτ) dsdt) '
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This formula allows one to compute /, given the curvature function. How-
ever, later we will derive a differential equation connecting / and k, which
seems to be of greater value for our purposes.

Let -2J: Rn -> R+ be defined by

n

(1.9) -S5;(*i,*2, ,*/i)

(We tacitly assume that n + 1 = 1.)
There is a well-known connection between periodic points of β of period

n and the critical points of .5^. We introduce the following definitions (see
(1.6)):

Using the above notation we can write

(1.11) g

Now it is clear that {(^/,Φ/)}"=1 is a periodic trajectory of β (or, more
precisely, it projects down to a periodic trajectory) iff Φz = Ψ, for i =
1,2, , n. Now we are able to state our main results. For the sake of
clarity of our presentation, we will spend most of the time proving

Theorem 1.1. For n = 3 the set of periodic orbits of β is nowhere dense,
i.e., it has empty interior.

In §3 we will indicate how one can enhance the above result to obtain
Theorem 1.2. For n = 3 the Lebesgue measure of the set of periodic

orbits of β has Lebesgue measure 0.
In the sequel Fix,, c R2 means the set of all periodic points of the

billiard ball map of period n, and Critrt c Rn denotes the set of all critical
points of oS .̂ We adopted the notation d2Jϊ?n(x) for the Hessian matrix of
the function <5̂  evaluated a t x e R " .

2. Some computations with billiards

Let Φ and Ψ be as in (1.6) and let us define Φ = \/l - Φ 2 and Ψ =

Lemma 2.1. If I = l(x,y), then

(2.1) d2l(x,y) =
- * O O Ψ J '
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Proof. This formula can be derived by geometric differentiation, and
we recommend it as an exercise (see Figure 2). Here we present a different
proof based on (1.8). From (1.7b) it follows that

(2.2) h{y) -h(x) = j \ Qf k(τ) rfτ) dt • *'(*).

FIGURE 2. We can easily verify that the following formulas hold:

Δxύnφ . . . . dφ ύnφ . . . _
Aφ = — - - k{x)Ax, -*- = —γ- - k(x), Φ = cos φ,

φ2OΦ . ΰφ sin2 φ . . . . Φ z . . ~

Hence the matrix of the rotation that carries h'{x) to h{y) - h(x) is

(2 3) [I ~φV\[e{fx

k{τ)dτ)dt

This implies that

(2.3a) Φ= j Γ cos if k{τ)dτ\ dt,
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and similarly

(2.3b) Φ = j Γsin ( ίk(τdτ)\ dt.

In a similar way we obtain

(2.4a) Ψ=jΓcos( Γk(τ)dτ\ dt,

(2.4b) Ψ = j Γ sin ( Γ k(τ) dτ\ dt.

By differentiating (2.3a) we get

(2.5) +j(-l+Γήn(f k(τ) dτ\ dt • k(x)\

1 _ φ2 . φ2
= — + k{x)Φ = — j - + k{x)Φ.

In a similar fashion we derive the following formulas:

o , . dΨ Ψ2 , , , ώ dΦ ΦΨ dΨ ΦΨ
(2 6 ) a7 = T - ^ ) ψ ' β7 = ~ Γ ^ = T-
Now a part of the lemma follows from the observation that

a2/9Φ _ _θ_ (_dΓ\

9x ~ Ίhc V δjcj ~

Similar relations are true for other partials of /.

Lemma 2.2. In the notation of Lemma IΛ we have

(2.7) Φ Ψ - Φ Ψ = cos ( Γ k(τ)dτ) , φψ + ΦΨ = sin ( Γ

Remark 2.2. Geometrically (2.7) means that

(2.8) Z(T(/>), T(β)) = Z(T(/>), PQ)

(Also see Figure 3.)

Proof. We will only supply a proof of the first of the two equalities,
since the second one is very similar. It can be obtained by the following
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T(Q)

FIGURE 3. It is easy to verify that φ + ψ = jζ k(τ) dτ.

computation:
(2.9)

/2(φψ _ φψ) = Γ Γcos ί ί k(τ)dτ+ Γ k(τ)dτ) dtds
Jx Jx \Jχ Js )

= Γ Γcos (Γk(τ)dτ+ ί k(τ)dτ\ dtds

= Γ Γ cos ( Γ h(τ) dτ\ cos ( ί k{τ) dτ) ds dt

- Γ Γsin (Γk(τ)dτ\ sin (f k(τ)dτ\ dsdt.

The second term is 0 by symmetry, and the first one is

(2.10) cost Γ k(τ)dτ) • Γ Γ kcosίί k(τ)dτ) dsdt.

By comparison of formulas (2.10), (1.8), and (2.9) we get the lemma.
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Lemma 2.3. Ifx = {x\,x2, ••• ,xn) is a critical point ofJΐ?n, then

M i Bx 0 ••• 0 Bn

Bι A2 B2 •• 0 0

0 B 2 A-i ••• 0 0
(2.11)

where

(2.12) Ai = Φ]

0 0 0
[Bn 0 0

An-\ Bn-ι
Bn-l An

- 2k(Xi)Φh

h,i+\ =

Proof. The proof follows immediately from Lemma 2.2 and the defi-
nitions of §1.

Proposition 2.1. / / x = (xι,x2,X3) is a critical point of 5^ and
rankί/2^3(x) = 1, then

1

(2.13)

2 U + h hh
where we have used the following abbreviations:

l\ = l{X2,Xτ), h = /(^3,^l), /

Proof. Indeed, by Lemma 2.3 we have

{ Bx B

(2.14) Bx A2 B2

B3 B2 A3

If τankd2^(x) = 1, then all 2 x 2 minors of d2J%(x) must vanish. For
instance A\B2 = B\B^, or

, 2 , 5 ,

This implies the first of the formulas (2.13). We can prove the remaining
two formulas by considering other minors of df2J23(x). It is easy to see
that equations (2.13) imply that the rank of d2^f3(x) is equal to one.
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Proposition 2.2. If equations (2.13) are satisfied, then the nullspace of
d2J%(x) is given by the equation

(2.16) Φi dxx + Φ 2 dx2 + 4>3 dx3 = 0.

Proof We have A\ = B\B3/B2 from the previous proof. This implies
that the first column of d2^(\) is orthogonal to the vector (Φi,Φ2,<i>3).

Lemma 2.4. Ifx = (x\,X2, x$) is critical for 3^, then (see Figure 4)

(2.17)

• second and third pairs of these equations were obtained from the first
by a cyclic permutation of the indices.) Moreover, in those equations where
the choice of a sign is possible, the sign has to be the same, i.e., one has
either three pluses or three minuses.

Proof Let Pi = /z(x,) and let α, be the angle of the triangle Px P 2 P 3 at the
vertex Pi (i = 1 , 2 , 3 ) . Let (pi be the angle of reflection at /*,-. The situation
is drawn on Figure 2. It is easy to see that 2ψi = π - a,. Let us derive the
third pair of our equations. By the Cosine Theorem

(2.18) cosα 3 =
 ι \?~ 3 .

We also have the following trivial equalities:

(2.19a) cos(π - α 3 ) = - cos a3 = cos(2^3) = 1 - 2 sin2 φ3 = 1 - 2Φ 2 .

Similarly, we can write

(2.19b)
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FIGURE 4. We have the following relations:

These equations solved for Φ 3 and Φ3 are the desired formulas.

Proof of Theorem 1.1. Suppose that Fix3 has a nonempty interior.
Then there is a two-dimensional manifold N c R3 consisting of critical
points of 0S3. It is easy to see that if x e N, then rankί/ 2 ^(x) = 1. By
Proposition 2.1 equations (2.13) are satisfied on that manifold. We will
differentiate equations (2.13) to get a contradiction. Let us rewrite these
equations in the following form:

(2.20) k ( x i ) = f i ( l u l 2 , h ) ( / = 1 , 2 , 3 ) ,

where fi(l\,h>h) is the right-hand side of the /th of formulas (2.13) with
Φ, replaced by the /th of expressions (2.17). We can concentrate on the
first equation only, due to symmetry. Clearly, the equation for the tangent
space TXN is given by (2.16). In that plane there is a direction satisfying
dx\ = 0, namely (0, -Φ3,<ϊ>2). Differentiating (2.20) in that direction we
get

(2.21) 0 =

Since the right-hand side of this expression allows a representation in terms
of l\, h and /3, we obtain an equation which must be satisfied by any vector
{h>h*h) corresponding to a point x e N.
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Summarizing the last argument, we get a system of three equations for
three "unknowns" l\Jι and /3:

(2.22) ^

We examined this system of equations with MACSYMA and showed that it
has no solution (l\, I2, h) amongst triples of numbers representing sides of
a triangle. The details of the computation are presented in the Appendix.

3. The proof of Theorem 1.2

The proof of Theorem 1.2 can be obtained by making a few adjustments
in the proof of Theorem 1.1. One needs to verify that the differentiation
argument we used to derive (2.22) can still be applied under the weaker
assumption that Fix3 has positive Lebesgue measure.

This is how it can be done. Let us introduce a map q: R2 —• R x [-1,1]
via the rule (x,y) »-• (x,Φ), where Φ is determined from (1.6). It is easy
to see that if Fix3 has positive measure, then q~ι(Fixs) also does.

We pick a point xo € Crit3 such that its projection onto the {x\,xi)-
plane is a Lebesgue density point of q~l(Fixi). Then we show that any
direction in the plane given by (2.16) at xo can be approximated by a
sequence of vectors of the form (xw - xo)/||xm - xo||, where xm € Crit3,
xm ψ xo and xm —• x0 as m —• 00. Indeed, if that was not the case, then
one could find a cone at xo disjoint with Crit3 near xo. By definition,
Crit3 consists of the critical points of -S^. Hence the sequence xm must
approach the plane (2.16) faster than it approaches xo In fact, if 2^ is
of class C 3, then one can show that the distance of xm from the plane is
not greater than const ||xm - xo||3/2 This is enough to find a cone in the
(*i>*2)-plane disjoint with #~ !(Fix3), which contradicts the definition of
xo. The situation is sketched in Figure 5. The reader will easily fill in the
details.

Appendix. Symbolic computation with MACSYMA

We used MACSYMA to bring the system of equations (2.22) to a man-
ageable form. A glance at the expressions involved should convince the
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X1

disjoint with q~ι(Fix$)

FIGURE 5

reader that the formulas obtained after performing the differentiations are
a mess! As a matter of fact, they occupied about one and a half of a stan-
dard terminal screenful each. We applied MACSYMA's simplifier called
RADCAN (prepared to deal with expressions containing lots of square
roots) and after a computation, which lasted several minutes, we obtained
a simplified version of the first of the equations. It clearly was a rational
function, so we applied the FACTOR command to get the factorization
over the integers. Here is the final equation:

(A.1)
3(/3 - h - /Q(/3 - /2 h - h)(h + h + h)

32/,/|/f

The other two equations can be obtained from the above one by a cyclic
change of indices in variables l\9 h and /3.

This relatively simple form of (A.I) came as a surprise and, full of
suspicion, the author started comparing numerical values of the initial
complicated form of (A. 1) with the final form that the reader is looking
at. We plugged in several randomly chosen values of /'s (sides of triangles).
This finally convinced us of the correctness of the equation (A.I). (The
author has to admit that he tried different methods of completing the
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computation and one based on the RATSIMP command produced results
not necessarily equivalent to the ones we started with, apparently due to
the abuse of the "identity" y/a \fb = y/ab.)

A closer look at (A. 1) leads to the following conclusions:
(i) If l\, /2, h > 0 and (A.I) holds then both sides are equal to 0 (other-

wise they would have opposite signs);
(ii) Therefore one of the numbers l\, h, h would have to be equal to the

sum of the others, which cannot happen if they are sides of a triangle.
We provide the reader with the listing of the MACSYMA code which

can be used to generate equation (A.I):
kill (all);
/•This reinitializes macsyma; any previous formulas will be

lost.*/
writefile (''session-record'')
/•The record of the session will be put in the named file.*/

/•The next six lines correspond exactly to formulas (2.17).*/
phi_l_roof: (1/2) • sqrt((/l +/2 +/3) • (/2 +/3 - / l ) / ( / 2 •
phi.2_roof: (1/2) * sqrt((/l+ /2 + /3) • (/I+ /3 - / 2 ) / ( / l *
phi_3-roof: (1/2) * sqrt((/l+ /2 + /3) • (/I+ /2 -
phi_l: (1/2) • sqrt((/l +/3 - / 2 ) • (/l + /2 - /3)/(/2 •
phi_2: (1/2) * sqrt((/2 + / 3 - / l ) • (/2 + /1 - / 3 ) / ( / l */3))
phi.3: (1/2) • sqrt((/3 +/2 - / l ) • (/I+ /3 - / 2 ) / ( / l */2))
/•Declaration of dependencies, see Proposition 2.1.*/
depends (/I, [JC2, JC3], /2, Dc3, jcl] , 13, Del, X2~\ )
/•In the next six lines we define the partials of /l,/2,/3*/
/•with respect to the named variables, using formulas (1.6).*/
gradef(/l,x2,-phi_2);
gradef (/l, x3, phi_3)
gradef (/2, x3, -phi_3)
gradef (/2,xl,phi_l);

gradef (/3,xl,-phi_l)
gradef (/3,x2,phi_2);

/•The next formula is the right-hand side of the firsts/

/•of the formulas (2.13).+/

/ I : (1/2) • (l//3+l//2-/l)/(/2*/3)) •phi.ljroof;
/•This is the first of equations (2.22).+/
equation: diff (/l,x2) • phi_3_roof * diff (/l,x3) • phi_2_roof
/•We apply radcan to the above equation.•/
answer: radcan (equation);
/•We factor the result over the integers.•/
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final-answer: factor (answer)
/*We flush the output to the f i le named ζ (session-record' ' .*/
closefile (''session-record'')

Recently, this result of this computation has been confirmed using a
different system for symbolic computation (Mathematica).
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