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THE GEOMETRY OF THE YANG-MILLS
MODULI SPACE FOR DEFINITE MANIFOLDS

DAVID GROISSER & THOMAS H. PARKER

0. Introduction

The moduli space Jΐ of self-dual connections on a compact Riemannian 4-
manifold carries a natural L2 Riemannian metric. In [9] the authors explicitly
computed this metric on the moduli space Jί\(SA) of self-dual k = 1 SU(2)
connections on the standard 4-sphere. The result was a complete description
of Λ£Ί(S 4 ) as a concrete Riemannian 5-manifold.1 Its geometry turns out to
be that of a slightly distorted hemisphere of S5; in particular it has finite
diameter and volume and its boundary is isometric to S 4 (up to a constant
conformal factor 4τr2). In this paper we examine the Riemannian geometry of
the moduli space ^ of k = 1 self-dual SU(2)-connections on a general class of
4-manifolds: compact oriented simply-connected 4-manifolds M with positive-
definite intersection form. For such manifolds (M, g) the moduli space Jί is
(possibly after perturbing the metric g) a smooth 5-manifold except at the
finite set of points {pi, ,pn} E Jί corresponding to the reducible self-dual
connections [8]. The well-known result of Donaldson [6] asserts that there is
a compact set K C Jΐ such that Jί — K is a disjoint union of N + 1 ends
(Figure 1). One end—the collar of Λί—is diίfeomorphic to (0,1) x M. Each
of the others is diffeomorphic to a cone on CP2 with vertex at a reducible
connection pi G^. The basic question of whether Jί has finite diameter and
volume depends on the geometry of the ends.

The L2 Riemannian metric on Jΐ is obtained from metrics on the infinite-
dimensional spaces used in constructing Jt'. This construction is standard,
and goes as follows (see [2], [8], [10] for details). Given a compact Lie group
G and a principal G-bundle P —* M we consider the affine space sf of all
smooth connections on P and the gauge group & of all automorphisms of P
covering the identity. A connection A E sf is called self-dual if its curvature
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1This has been done independently by Doi, Matsumoto and Matumoto [5].
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*" collar

FIGURE l

FA is a self-dual 2-form (FA = *FA). The moduli space ^ = ^ ( P , #) 0/ se//-
dual connections is the space J/SyΓ, where ^ 5 ^ C J/ is the set of self-dual
connections.

When G is equipped with a bi-invariant metric Λ, the metrics g and A
determine inner products on the spaces Ωfc(AdP) of fc-forms with values in
the vector bundle Ad P = Px Aά9 (a bundle of Lie algebras; g is the Lie algebra
of G). We can then define Riemannian metrics on the spaces J / , J / / ^ and
Λί, as follows. First, at each A E srf the canonical identification between the
tangent space TA<& and Ω1(AdP) gives an L2 inner product on j / (obtained
by integrating the pointwise inner product against the Riemannian volume
form) which is invariant under the action of %? on j / . This ^-action is locally
free on the open dense set J/* of irreducible connections and, by completing
sf and J / / ^ in appropriate Sobolev norms in the usual way, we can give
38* = j / * / ^ 7 the structure of a Hubert manifold. The L2 metric on s/ then
descends to a (weak) Riemannian metric on 3§* by declaring sf* -+ &* to
be a Riemannian submersion (see [9, §2]). Finally, Jt* = Λί Γ\3§* is a finite-
dimensional manifold (with singularities), and hence inherits a Riemannian
metric by restriction. We denote this metric by p.

This L2 metric can also be described in terms of harmonic forms. For any
self-dual connection A one has the "fundamental elliptic complex"

(0.1) 0 -> Ω°(AdP) ^4 Ωι(AdP) dΛ n2_(AdP) — 0,

where d^ is the exterior covariant derivative and d\ is dA followed by the
orthogonal projection p_ onto the space of anti-self-dual 2-forms. The prin-
cipal stratum J?1* of ^#* consists of the gauge orbits [A] of those A for
which dA: Ω° —* Ω1 is injective and d~^: Ω1 —• Ω?_ is surjective. For such
A, the tangent space T\A]^'* can be identified with the harmonic space
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%?A = {ω G Ω1 (Ad P)\d*Aω = 0, d~Aω = 0}. The metric on ΛT' is simply the
restriction of the L2 metric to %?A (this is well-defined since the assignment
A ι-+ %?A is ̂ -equivariant and & acts isometrically).

The analysis underlying these descriptions of the L2 metric was described in
detail in a previous paper [9, §§1,2]. We will generally adhere to the notation
introduced in that paper, and will assume that the reader is familiar with the
background presented there.

The L2 metric on Jϋ is analogous to the Weil-Petersson metric on
Teichmύller space, which had been studied extensively. In both cases it is diffi-
cult to make explicit statements about the Riemannian geometry because any
such statement necessarily involves global analytic quantities on the original
manifold. In fact, the metric on Jί is more complicated because it inherently
depends on the metric on M, whereas the Weil-Petersson metric depends only
on the topology of the underlying Riemann surface.

In this paper we examine the geometry of the moduli space near the ends
depicted in Figure 1. The paper is divided into two parts, corresponding to
the two types of ends—the cones and the collar.

The first two sections are devoted to studying the geometry of the cones.
Our approach is to resolve the singularities of JK using the "based moduli
space" Jt\ Specifically, we fix a basepoint xo G M and consider the based
gauge group &o = {g G &\g(xo) = Id} and its orbit space 38 = J&/%. In §1
we prove that 38 is a smooth Riemannian Hubert manifold with an isometric
SO(3)-action and that <5?* —• 38* is a Riemannian submersion. Restricting to
self-dual connections gives a smooth Riemannian manifold Jί with an SO (3)-
action whose orbit space is Jί'. The map Jί —• Jί desingularizes the cones.

This viewpoint leads to a much more concrete picture of the geometry of
the cones in Jt'. Questions which a priori involve global analysis (perturbation
theory for Green operators, for example) are reduced to rather straightforward
questions about finite-dimensional Riemannian geometry. We analyze this in
§2, and obtain the following description of the metric and sectional curvatures
of the cones.

Theorem I. Let (M,g) be a compact oriented l-connected 4-manifold
with positive-definite intersection form, and let (JKk,p) be the moduli space
of self-dual SU(2) connections on the bundle P over M with instanton number
k = ̂ pi(AdP) > 1 (with its L2 metric). Fix a reducible connection [A] G Jί\z-
Let go be the standard metric on P = CP 4 *" 2 (see Definition 2.7). Then there
are a number ro, a neighborhood U of [A] in ̂ , and a diffeomorphism

F:(O,ro)xP->t/-{[A]},
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which extends to a homeomorphism from the open cone [0, ro) x P to U. In
this coordinate system:

(a) The metric satisfies

(0.2) F*β = dr2 Θ r2(g0 + O(r2)).

(b) As r —• 0, ίΛe sectional curvatures σ of F*# satisfy

σ(^x) =0(1),

(0.3)

X,Y G TP and J ώ ίfte complex structure on P.
This theorem shows that both the metric and the sectional curvatures of

the cones in Jί are, to leading order, those of the standard cone on P. The
higher-order terms in the expansions (0.2) and (0.3) can be expressed in terms
of the Green operators of certain Laplacians constructed from the connection
A (see §2 for details).

The expansion (0.2) of the metric shows that U has finite volume and that
the radial rays to [A] in Jt^ have finite length. Thus the geometry of the
cones is as depicted in Figure 1.

The second part of this paper is an analysis of the geometry of the collar
when (M, g) is as in Theorem I and k = 1. In essence, our approach is
to compare the local geometry of Jί in the collar with the corresponding
geometry of the moduli space ^ i ( 5 4 ) , which was described in [9].

The collar consists of a self-dual connections ("instantons") whose energy
densities | F Λ | 2 are sharply concentrated bump-functions. Each such instanton
A has unique center point p(A) G M and scale A (A) E R+ (cf. §4). These
define a map

(0.4) Φ: Collar of Jί — 0(0, λ0) x M

which Donaldson [6, §111] has shown to be a diίfeomorphism. The inverse
map Φ " 1 provides a convenient coordinate chart which we use to describe the
metric in the collar.

The most direct approach to computing the metric on ^ is to identify
T\A}JH with the harmonic space %?A and evaluate the L2-norms of these ω G
2%?A- Of course, for a general manifold (M, g) we cannot explicitly solve for
these ω. Instead, we define in §3 a set of 1-forms {ώ^ € Q1(AdP)} which
are approximately harmonic then [A] is in the collar. The span of these {U)Λ}
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defines a space TΆ which approximates the tangent space T[A\Jf. We then
compute the L2 norms of the {UA} and obtain estimates—with explicit λ-
dependence—on how good the approximation is.

Our choice of the approximation TA is motivated by analogy with the case
M = S 4. In that special case, TA is precisely {ω = ΪZFA}, where Z is a
conformal vector field on S 4 obtained by projecting a constant vector field
on R5 onto TS4 [9, Proposition 4.3]. As λ = λ(A) -> 0 the forms ω become
concentrated around the center point of A. One expects a similar localization
of the harmonic forms to occur on a general manifold (which has no conformal
vector fields). Thus given a connection A with center p G M and scale size
λ < 1, we use normal coordinates at p to define vector fields (obtained from
the four coordinate vector fields and the radial vector field rd/dr on R4) which
are nearly conformal in a neighborhood of p. The approximately harmonic
forms UA are then defined by contracting FA with these vector fields. These
forms have support near p, and hence the estimates on their L2 norms (done
in §3) are essentially local calculations.

§4 is devoted to the calculation of the differential of the coordinate chart
Φ " 1 ; we write it as an explicit bundle map T((0, λo) x M) —> TJί plus an
error term, and keep track of the λ-dependence of the error term. These
calculations parallel those of Donaldson [6, §111], but our purposes require
considerably more detail (Φ^"1 has an expansion in powers of λ which we must
compute to an additional order in λ). The improvements require combining
the gauge theory with a certain amount of Riemannian geometry on M.

The results of §§3 and 4 are tied together in §5, where we construct an
approximate inverse to Φ* and again estimate how good our approximation
is. This enables us to conclude that the L2 metric p on the collar is asymptotic
to a product metric. Specifically, we prove:

Theorem II. Let £ denote the product metric 4τr2(2dλ2 (Bg) on R x M,
and let Φ be the collar map (0.4). Then p ~ Φ*/^ as λ —• 0. More precisely,
given ε > 0 there exists λo > 0 such that for any [A] £ Jt with X(A) < λo
and any W e

(0.5) (l-ε)

Theorem II allows us to attach a geometric boundary to Jί. To do this,
we let Jί be the completion of {Jt^) as a metric space. In §5 we prove
that the metric on J( extends to a C° metric on Jl. Equation (0.5) then
implies that the scale size λ is (asymptotically) proportional to the distance
to dJί. In particular, the distance to the boundary is finite. This observation
immediately leads to several important conclusions about the metric space
structure of the moduli space
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Theorem III. (a) Jίf is compact, and hence has finite diameter and
volume.

(b) Jϋ is incomplete.

(c) The distance function ρ([Λ\) = dist([A], dJί) is asymptotic to (8τr2)1/2λ
as λ —• 0 (i.e., the ratio of these functions approaches 1, uniformly in [A]).

Part (c) above shows that /0([A]), which is a function depending on the
geometry of the moduli space, is essentially equivalent to the scale λ, which
is a characteristic of the individual instantons on M. In particular, each
instanton has a natural scale size p([A])/y/Sπ2 which is independent of the
arbitrary choices (of cut-off function, etc.) involved in the local definition of
λ given in §4.

Another implication of Theorem II is that the function λ on the collar
extends smoothly to Jΐ, and that the boundary dJί is precisely the set
{λ = 0}. Thus, formally, dJΐ consists of "instantons of scale zero". Such
instantons are completely characterized by their center point p £ M. This
suggests that dJK and M might be equal as Riemannian manifolds. The next
theorem asserts that this is true, except for a factor of 4τr2. It generalizes
Corollary C of [9], which dealt with the case M = S4.

Theorem IV. The metric completion^* of the moduli space (Jί* ,p) is
a compact singular manifold-with-boundary. Its singularities are the (isolated)
cone points described in Theorem I, and its boundary c t#* = dJί = {λ = 0}
is a smooth submanifold of Jf isometric to (M,4π2g).

If we truncate the cones of Jf by removing the open neighborhoods U{ of
the singular points we obtain a smooth, compact, Riemannian manifold-with-
boundary which is a cobordism from M to a disjoint union of CP2 's. From
this one can easily show that the intersection form of M is standard. This is
almost exactly Donaldson's original proof of this fact [6]. However, the above
theorems give a much sharper picture of the moduli space; in particular, they
show that Donaldson's topological compactification of the moduli space is
naturally implemented by the L2 metric.

Finally, we briefly consider the moduli spaces of instantons on more general
4-manifolds and with instanton number k > 1. These moduli spaces are
stratified manifolds. The various strata consist formally of multi-instantons,
some of whose scales are zero. Thus they are similar to the boundary of
the collar in Figure 1, except that they usually have high codimension and
a rather complicated topological structure (as described in part in the work
of Taubes and Donaldson). Nevertheless, much of the analysis of the second
part of this paper should carry over to these general strata. One therefore
expects Theorem III to be valid for general moduli spaces.
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PART I. GEOMETRY OF THE CONES

1. The moduli space of the based gauge group
Reducible connections prevent the action of the gauge group <^onj/ from

being locally free, and consequently the orbit space 38 and the moduli space
Jί C 38 are usually not manifolds. In the next section we will examine the
geometry of Jf in neighborhoods of the singular points—the cones of Figure
1. This section provides the analytical foundation on which that discussion
is based. This analysis is of independent interest. It requires no assumptions
on M, P, and G, save that the 4-manifold M be compact and oriented, and
that the Lie group G be compact and semisimple.

From a topological perspective the singularities of 38 are best understood
by fixing a basepoint x0 £ M and considering the normal subgroup S'0 C 9
consisting of those automorphisms of P which restrict to the identity on PXQ,
the fiber over x$. This "based" gauge group acts freely on J / , so J/ —• 38 =
$f /&0 is a principal ^°-bundle. On the other hand, the full gauge group &
acts on sf and the stabilizer at each irreducible connection is the center of *§.
This center is the group J = Γ(Px A d^) , where Z is the center of G (Z = Z
is finite since G is semisimple). Thus the action of 8? on srf induces an action
of &I(3Γ x &°) s G/Z on 33 which is free on the open dense subset 3B* of
irreducible connections, and whose orbit space is 38 = srf!*§\ Restricting to
the self-dual connections S^S C J/, we get a moduli space Jΐ C 33 with a
G/Z-action whose orbit space is the usual moduli space Jf = S^/& C 38.

(1.1)

The singularities of Jί and 38 can then be described by studying this G/Z-
action.

From an analytical perspective the situation is more complicated. There are
standard "slice theorems" which show that Jί* and 38* are Hubert manifolds
(cf. [2, §6] or [8, §3]), and it is frequently asserted that the same arguments
show that JK and 33 are manifolds. A closer examination reveals that the
usual method for obtaining a slice of the ^-action—which makes use of the
L2 inner product on ΓJ/—will not work for ^°, essentially because &° is not
a closed subgroup in the L2 topology. However, &° is closed after completing
in an appropriate Sobolev topology, and if we use this Sobolev metric to define
slices, we do get a slice theorem. This yields smooth structures on Jif and
<5?, and the vertical arrows in (1.1) become Riemannian submersions with
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respect to the Sobolev Riemannian metrics on Jf and 3S. Furthermore, with

our specific choice of Sobolev norm, the Sobolev metric and the L2 metric on

Jΐ are equal. This key fact will enable us, in §2, to use the Sobolev metric

on Jί to obtain information about the L2 geometry of Jf near the singular

points. In the remainder of this section we will carry out the construction just

described, giving the details of the Hubert space structure and the Sobolev

metrics on the spaces in (1.1).

We begin by recalling the fundamental elliptic sequence (0.1) (which is a

complex if and only if A is self-dual). The Laplacians D ^ = d\dA + Id and

D ^ = dA&\ + 2(GΓ^)*GΓ^ + Id are invertible for each A o G J / . Fix a smooth

connection AQ and write E = T*M 0 Ad P. For each integer s > 0 we define

the Sobolev s-norm on T(E) by

(i 2) (Φ,η).;ΛO = (ΦΛn1

Ao)
βη)L*.

Remark. This definition extends to all real s as follows. By the generalized

Hodge theorem [1] there is a complete orthonormal basis {φk} of L2(E) where

each φk satisfies Ώι

AQφk = λkΦk for some real positive eigenvalue λfc. Hence

we can expand any φ G T(E) as ΣdkΦh and define

(i 3) ll0llU = Σ λ * Ω *
This agrees with (1.2) for integral s > 0 (note that for any s e R w e can

choose k G N with s < k and then \\φ\\l < \\φ\\l = {φ,Πkφ) is finite, so the

sum in (1.3) converges).

Let L2{E) denote the completion of T(E) in the Sobolev s-norm. By

identifying $f = TAQS& = Γ(i?), we obtain a complete space of connections

s/3. One can similarly complete the gauge group to a group S?a+i (see [9, §1]

for details). The results of Uhlenbeck [16, §1] imply that, for s > 1, <%+i

is a smooth Lie group acting smoothly on £/s, and that the topologies on

these spaces are independent of the choice of the connection AQ used to define

them. Furthermore, each g G &s+ι is continuous (as a section of P XAd G)

and &a\ι = {g G S?9+i\g{xo) = Id} is a closed Lie subgroup of ^ + i . The Lie

algebra of 5ζ°+1 is jg + 1 = {X G L2

3+1(AdP)\X{x0) = 0}. (We define the L*+i

metric on Γ(AdP) analogously to (1.2), with ( Π ^ ) s + 1 replacing (Π^) θ .)

We can eliminate the special role of the connection AQ by introducing the

natural L2 Riemannian metric on«i/θ. It is defined at A G S& by replacing

AQ in (1.2) or (1.3) by A. The Sobolev inequalities imply that for s > 1 the

norms || \\3;A on Γ(£7) are all locally uniformly equivalent and that || | | s is a

smooth Riemannian metric on s/a.

The space stfs thus carries both a strong L2 metric and a weak L2 metric.

Each defines a slice for the action of ^ + i . Since the infinitesimal action of
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&a+x at A G srf is the map dA: £*+i(AdP) -• L2(E), the L2 slice is defined

as the L2-orthogonal complement of Im(d^). Thus this slice is

(1.4) HΛ = {

Similarly, the L2 slice HA is defined by

(1.5) 0 = (dAX,η)s = {X,d\{Ώι

A)
sη)L2 VX

For general A this does not lead to an expression as simple as (1.4). How-

ever, when FA = 0 we have d ^ Π ^ = Ώ°Ad*A, so that (1.5) is equivalent to

(X, {Π°A)
sd*Aη) = 0; i.e. H% = ker((D^) 5 od*A). Because D ^ is invertible, this

simplifies to

H% = keτ(d*A).

Thus the slices HA and HA coincide (independently of s) when A is self-dual.

It is trickier to describe the corresponding slices, for the action of the based

gauge group S?0. First consider the L2 slice HA for the action of ^J+j. on

s/s. As above, η G HA if and only if η satisfies (1.5) for all X G β2+i

Thus, for such 77, there is some v in the fiber (AdP) X o for which η solves the

distributional equation

(1.6) dA(ΠA)
sη = δv,

where the delta function δυ is defined by (δv,Y) = (υ,Y(xo)) (here ( , ) is

the inner product on ( A d P ) ^ ) . To obtain a more useful and direct form of

(1.6) we separately consider the cases where A is reducible and irreducible.

First suppose that A is irreducible, so the Laplacian Δ ^ = d\dA on

Γ(AdP) is invertible. Let GA{X,V) denote the Green function of Δ^; for

distinct x,y this is a linear map from (AdP)x to ( A d P ) y . Fixing x = xo,

each v G ( A d P ) X o thus determines a section Gv

A(y) of A d P which is smooth

for y φ xo? is singular at y — zo> and satisfies d\dAG\ = δυ. Hence (1.6) can

be written as d^((D^) sr/ - dAG
v

A) = 0.

When A is reducible Δ ^ is not invertible. In this case we can solve (1.6)

only for certain υ G ( A d P ) X o . Indeed, if v satisfies (1.6) and Φ G ker(Δ^) =

ker(cU), then (V,Φ(XQ)) = (C^'3ι)
θry,di4Φ) = 0, so v lies in the orthogonal

complement to the subspace KXo — span{Φ(zo)|Φ ^ ker(dΛ)} C ( A d P ) X o .

Conversely, when v J. KXQ we can solve (1.6) by modifying the argument in

the preceding paragraph, as follows. Even when A is reducible Δ ^ is invertible

on the L2-orthogonal complement of its kernel, and this inverse is given by

convolution with the Green function defined by

(1-7) GA(x,y) =
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where {φi E Γ(AdP)} is an L2-orthonormal basis of eigenfunctions with
eigenvalues {λ;}. Fixing x = x0, we obtain sections Gv

A(y) of AdP as above;
these are again singular at y = Xo and smooth elsewhere. They satisfy
Δ°AG

V

A = δv — Σ{Φjiχo))V)Φj, where {Φ }̂ is an L2-orthonormal basis of
ker(cU). (The construction of such Green functions is standard; one obtains
them by an integral transform of the heat kernel (as in [13, §2]), or by directly
proving the convergence of (1.7) [3].) In particular, when v JL KXo we again
have Δ^G^ = δυ. Thus for all connections A, the equation (1.6) defining the
slice HA is equivalent to

(1.8) d*A((Π1

Ayη-dAG
υ

A) = 0

for some v J_ KXo, where KXo = {0} if A is irreducible and where GA is
defined by (1.7). Henceforth whenever we write GV

A we assume v _L KXo.
Now suppose that A is self-dual. Then ^\d\ = d^Ώ\^ so multiplying

(1.8) by {BO

A)~S gives

(1.9) d*A(η-dA(n°A)-sGv

A)=0.

Hence when A is self-dual,

(1.10) H% =

and this splitting is L2-orthogonal. Thus for self-dual A the L2-horizontal
slice for stf —> 38 is spanned by the Δ^-harmonic forms (which are smooth)
and the sections dA{Ώ°A)-sGv

A.
Remarks. (1) One can check that dA(P°A)~8Gv

A E L2 for p < 2s - 1 so,
since s > 1, this space lies in the tangent space to sfs, on which the L2 metric
is well defined. This is where we would run into trouble were we only to use
the L2 metric throughout. Formally, we would find HA — spanίi/^cUG^},
but dAGv

A £ L2 so the L2 metric on HA would not be defined.
(2) If we let A vary through self-dual connections, then, as we pass through

a reducible connection Ao some of the sections G\ vary discontinuously; fur-
thermore, άim(HA nkercf^) jumps up by dim(ker(d^0)) and

jumps down. Nevertheless, one can show that %?A = HA Π ker(d^) varies
smoothly.

(3) When A is irreducible, W^1 = span{(D^)"sG^} is the L^-orthogo-
nal complement of g^+1 in g s + 1. For if φ E Q®+x we have

(φ,(D°A)-sGA)s+1 = (Φ,Π°AGA)L* = (φ,Sv)=O,
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so Wsj^1 is orthogonal to 0g+ 1, and since codim(^ + 1 ) = dim(AdP) X o =

dim(W^+ 1), W9jfι is a complement. When A is reducible W^1 is still orthog-

onal to 0s + 1 , but is too small to be a complement. In this case W^1 Θker(ύU)

is a (nonorthogonal) complement.

Theorem 1.1. For each s > 1, «# s = Λ ^ / ^ + i ώ α sraootfi Hausdorff

manifold and s/s —• ̂  zs α smooth fibration of Hilbert manifolds. There is

a natural (strong) L2 metric on 38s which makes this fibration a Riemannian

submersion.

Proof. We begin by showing that (1.8) defines a slice for the action of

&s+λ. Fix A E stfs and consider the afBne subspace SA = A + H% C sf8. The

group action gives a map

which is smooth for s > 1 [16, Lemma 1.2]. Identifying TASA with HS

A, the

differential of Φ at (Id, A) is

Suppose that dAX + η = 0. Then ( G U ^ , G U - * 0 S = — (^A^^)s = 0, implying

d ^ ^ = 0. In particular \X\ = const = 0 since X{xo) = 0. Hence X = 0,

77 = 0, and DΦ is injective.

To show that it is surjective, note that for every A E $ίa, s > 1, there

is a Poincare inequality for fls+1: there is a constant c such that | | X | | L 2 ^

c||dΛ^||L2 for every X E gg+1 (the proof is similar to that of [11, Theorem

3.6.5], using the facts that the embedding L^+ 1 -̂> C° is compact and that

dAX = 0 implies X = 0 as above). This immediately extends to the inequality

\\X\\L2

S X < C | | G U X | | L 2 , which implies that dA$+! C ^ s ( ^ ) is closed. Hence

L2

S(E) is the orthogonal direct sum dA$°s+\ ΘH%, so every element of TA &S =

L2

S(E) lies in the image of DΦ. Therefore DΦ is an isomorphism, so by

the inverse function theorem Φ is a local diffeomorphism of neighborhoods

The argument for ^2 injects into the quotient (i.e., that g -@2 Π&2 = 0 for

every g φ 1 in &s\ι) and that the quotient is Hausdorff proceeds exactly as

in the slice theorem for sf -* 3S (see [2, §6], [8, §3], [10, §11.10], or [12, §4]).

Finally, given [A] E <ίi?s, use the isomorphism T^A]^S — H% (f°Γ a n y r e P "

resentative A of [A]) to pull back the L2

S metric from H% to T[A]BS. Our L?s

metric on 3SS is gauge-invariant, so the result is independent of the choice

of A and is well defined. By construction, s/s —• 38S is then a Riemannian

submersion, q.e.d.
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As noted in the proof above, the L2

S metric on s/s is gauge-invariant, so

the residual action of 2?/%?o = G/Z on 3& is isometric. This action is free on

3&* C 38. Thus we have a commutative diagram of Riemannian submersions,

(1.11)
7Γ'

where all spaces have their L2

S metrics; moreover π[ is a principal G/Z-bundle.

We can now restrict this diagram to the self-dual connections. Let si1 =

{A € j/|ker(cΓ^)* = {0}}. An application of the implicit function theorem

shows that <93ί's = <93ίs Π srfj is a smooth Hubert manifold for s > 1 (cf. [8,

§3]). Writing Jt£ = <92t'9l&s+λ and Jta = &3f'J&?+1, we have a commuta-

tive diagram

(1.12)

where TΓQ is a Riemannian submersion, and τr,τri are submersions over the

subspace Λ T * = JT ΐ\3§*.

Since TA(^3^') — ker(d^), we obtain slices for π and π 0 by intersecting

HS

A and HS

A with ker(d^). Denoting these restricted slices by %fA and ^ s ,

we thus have identifications

1 13)

These will be used frequently in later sections.

We now state the main theorem of this section. It describes the natural

Riemannian metrics on the moduli space Jί1.

Theorem 1.2. (a) The differentiαble structure on Jf's is independent of

s > 1. This based moduli space Jiί1 = Jίf^ is thus a well-defined smooth

finite-dimensional manifold.

(b) */#' carries an analytic family of smooth metrics {^s\
s > 1} induced

by the L2

S norms. The action of G/Z on «/#' is isometric with respect to each

(c) For each s > 1 there is a commutative diagram (1.12) where Jf's —

Jΐ1. The map TΓQ is a Riemannian submersion with respect to the L2-induced
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metrics and, over Jf*, π is a Riemannian submersion with respect to both the
L2- and L2-induced metrics. For each s > 1, TΓI is a Riemannian submersion
from (J'\f8) to (Λf 'V) .

Proof, (a) For any 1 < s < sf the inclusions s/s> <-• srfs and « Ŝ9+1 «-> G®+1

induce a smooth inclusion &sι —• 38s which restricts to a map ι\ JK'S, —• Jίf^.
Since every self-dual connection is gauge-equivalent to a smooth one, i is
a bijection and, given [A] € J?s',, we can choose a smooth connection A
representing both [A] and (̂[̂ 4]). The slice theorem obtained in the proof of
Theorem 1.1, together with the regular value theorem (applied to the function
A ι—• FJJ"), gives us smooth maps ΦS ',ΦS from neighborhoods U' of [A] in
&af'a, (respectively, U of t{[A)) in S&'a) to &£ (respectively #%). These
define smooth local charts for Jf£ and JCS around [A] and t([A]). To prove
that the smooth structures on J(fa

r, and J^'s are equivalent, it suffices to show
that the overlap function %?A —> %?A is locally a diίFeomorphism. To do this,
let Φθ/ denote the restriction of Φs/ to the slice A + &/. Then Ψj/fa) =
A -h ?7, so ΦJ,1 is an affine map from the finite-dimensional vector space %?£
to cQ̂ ί C J^ ; . It is therefore bounded, and hence smooth, as a map from
ft £ to ^f. Since Φs: s/J —> %?£ is smooth it follows that the composition
Φ9 o φ " 1 : %?£ —• ^ θ (i.e. the overlap map) is smooth. Since %?/ intersects
the vertical space cUβs+i trivially, the differential of this map at the origin is
invertible. We conclude that the overlap map is locally a diffeomorphism.

(b) The L2

S metric on Jfs (or Jf's *) is simply the restriction of the L2

S metric
on srfs to %?£ (or ^4*). The action of &s+\ on sfs is L^-isometric, so preserves
the distribution %*£ and induces a ^s-isometric action of ^ + i / ^ J + i = G/Z
on Jΐ.

Observe that by (1.10) and the paragraph following (1.5) we have H9

A —
HA (SO %Ί — %?A is independent of s), and HS

A = HA Θ V ,̂ where Vs =
spsn{dA{O^)~sGv

A} and this splitting is L2-orthogonal. Since FA = 0, F j C
ker(d^), so intersecting with ker(d^) gives an L^-orthogonal splitting %?A =
^A®VA = <%AΘVJ[. Furthermore, by the definition of D^ and the L2 metric,
(η,η)3 = {r},η)L2 for η G %?£ = *%A Thus βs\jpA is independent of s. This
means that the s-dependence of p3 is completely determined by the restriction
to the fibers of Jί1 —• Λf1 (in particular, Έ\: (Jf'*,^a) —• (Jtf*,^) is a
Riemannian submersion for any s > 1). These fibers are the orbits of G/Z,
along which ps is invariant. We claim that if we allow s to assume complex
values, Re(s) > 1, then {#s} is an analytic family, i.e. ps € Sym2(TΛit^

/)(8)C
depends analytically on s for each [A] € Jtf. To verify this, recall that
at each irreducible [A] e Jΐ1, the ^s-vertical tangent space is spanned by
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{dA{OPA)~sGv

A\v e (AdP) X o } . This is also true for reducible [A] provided we

restrict D^ and GA to the orthogonal complement of kerD^, as in (1.7). In

either case we have that, for υ,w G (AdP) X o ,

= {(Π°AΓ
sGA,dAdAGA')

depends analytically on s (cf. [14, §8]).

(c) We have already shown that τr0 and π are Riemannian submersions of

the L2 metrics. The map π is an L2-Riemannian submersion by the definition

of the metric on jtf, and we have just verified the statement about π±.

2. Geometry near the reducible connections

In this section we will describe the L2 metric on the moduli space in a

neighborhood of a reducible connection. Our approach is to use the fibration

Jί —• Jί of Theorem 1.2 to reduce the problem to a calculation in finite-

dimensional Riemannian geometry.

We will work on a principal G = SU(2) bundle over a 4-manifold M satis-

fying b\(M) — b^{M) — 0, but will allow any instanton number k > 1. Fix

a Sobolev norm s > 1. By a theorem of Uhlenbeck [8, §3] we have, after per-

turbing the metric on M if necessary, that J?1* = Jί* (i.e. that ker d~A = {0}

for all self-dual A). The moduli spaces Jί and */#* are then smooth, and

*/#—./#* consists of the gauge-equivalence classes of reducible self-dual connec-

tions whose holonomy reduces the bundle P to an S1-bundle. The set of such

reducible connections is in 1-1 correspondence with {u € H2(M', ΐ)\u\Ju = 1},

and hence consists of a finite number of points in ^ # (cf. [10, §4.3]). Our goal

is to describe the geometry of Jί near these points.

The reducible connections can also be characterized in terms of the isomet-

ric action of ^ / ( ^ o χ -2*) — SO(3) on */# described in the previous section.

The stabilizer at an irreducible point is trivial, so Jί* —> Jί is a principal

SO(3)-bundle and dim^# = dim^f + 3 = 8A;. At a reducible point [Ao] e Jt

the stabilizer is a circle S 1 C SO(3) which can be described as follows. Since

AQ is reducible there is a section Φ = ΦA° of A d P satisfying V^°Φ = 0. This

Φ has constant length {d\Φ\2 = 2(Φ, VΦ) = 0) which we normalize to be 1.

For convenience we use, in this section only, the metric on A d P induced by

— I the Killing form of su(2), so the identity [u, [υ, w]] = (u,w)v — (u^υ)w

holds. For each unit vector u G su(2) we then have exp(2πu) = — 1, and

exp(tu) = ± 1 o t is a multiple of 2τr. (Although our metric here is twice that
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used in §§3-5 (where, as is customary, our metric is minus the trace form of

the standard representation on C2), all the results of the present section—in

particular Theorem 2.8 and Corollary 2.9—are completely independent of the

choice of normalization.) For any t G R, exp(ίΦ) is a gauge transformation fix-

ing Ao and exp(ίΦ) G Z o t is a multiple of 2π. Hence exp(ίΦ), 0 < t < 2τr,

projects to a circle in &/(% χ Z) = SO(3) which acts isometrically on JP

fixing the point p = [Ao]. We now make four observations.

(i) Since gt = exp(ίΦ) G & takes V t o ^ o V o ^ 1 = V - *VΦ + O(£2),

the circle action generated by Φ on si is given infinitesimally by the Killing

vector field

(2.1) ζ(A) = -VΛΦ.

The corresponding circle action on the quotient Jf has an infinitesimal gen-

erator the Killing field

(ii) The differential of this S1 action at p = [Ao] is the isotropy represen-

tation of S1 on TVJK'. To compute it, first note that the differential of the S1

action o n j / θ at Ao is given by

B •-> j f t ( V A o + sB)g-1\s=0 = (Ad gt)B for B G TAos/s.
as

This differential preserves the vertical subspace {d,A0X\X G L^+ 1(AdP) sat-

isfies X{x0) = 0} since {Adgt)dAX = dA{{Adgt)X) with {{Adgt)X){x0) = 0.

It must therefore preserve the L\ orthogonal complement (since S1 acts iso-

metrically). Thus if we identify Tp^# with %?A as in (1.13), then the isotropy

representation is

(2.2) A d g * : ^ - ^ .

(iii) Writing Ad^t = exp(£J), where J = adΦ, we see that the infinitesimal

generator of the isotropy representation is

(2.3) J = [Φ, ]:**-*i.

(iv) The infinitesimal isotropy representation can also be described in terms

of the local Riemannian geometry of Jf by linearizing the Killing vector field

ξ at p as follows. Let {Φ5} be the flow of £, choose B G Tpt/#, and extend B

arbitrarily to a neighborhood of p. Then since ζ(p) = 0,

(2.4) l [ ( Φ s ) * β ] p = (*°ULξB)\p = (Ψβ),(VBe -
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when J is defined by J(B) — (Vjf £)(p) (here V ^ is the Levi-Civita connec-

tion on ^ ) . It then follows from the uniqueness theorem for ordinary dif-

ferential equations that (Φθ)*p = exp(sJ). Thus (2.3) is alternatively given

by

(2.5) J = V"ζ G Έnd(TpJ).

(Indeed, one can check directly that (2.3) follows from (2.1) and (2.5).) Note

that since the isotropy representation is orthogonal, J is skew-symmetric.

These observations reduce the original gauge theory problem to the follow-

ing problem in pure Riemannian geometry. We are given an 8fc-dimensional

Riemannian manifold W {Jt in our application) on which SO(3) acts isomet-

rically. We assume that the action is free except along a finite number of

exceptional orbits {^ C W} at each point of which the isotropy subgroup is

S1 (so each <9χ is diffeomorphic to SO(3)/Si = S2). Let π: W -• W denote

the projection onto the orbit space and let Xi = π ( ^ ) . Then there is a Rie-

mannian metric on W* = W - {xi} such that π:W* =W- {^} —• W* is

a Riemannian submersion. We seek a description of the geometry of W near

each Xi.

This geometry problem is solved by Theorem 2.8 below. Our answer will

make use of the following geometric quantities. The infinitesimal SO(3)-action

is a linear map L which associates to each υ G SO(3) a Killing vector field L(v)

on W\ we will often write ξv for L(v). The pointwise adjoint of L is an so (3)-

valued 1-form L* on W. For each x E W, the operator L*L G End(so (3)) is

selfadjoint and nonnegative; it is strictly positive off \J @i and has a (simple)

zero eigenvalue at each point x G (?χ, (In our gauge theory problem L is the

restriction of UA to the Lie algebra g = so (3) = {{^PA)~9GV

A}, and L*L is

the restriction to g of the Laplacian d\ό,A of the fundamental elliptic complex

(0.1).) The fact that the smallest eigenvalue of L*L approaches zero as x

approaches ^ will be central to the discussion below.

Fix a point p G W on an exceptional orbit & = π~1(xo) Let vp G so (3)

be a unit-length generator of its isotropy subgroup S* C SO(3). Then the

infinitesimal action of S* is the Killing vector field ζ = L(vp) and, as above,

the isotropy representation is generated by J = V£. The local topology

around <f is described by the following well-known theorem.

Differentiable Slice Theorem. Let G be a compact Lie group acting

isometrically on a finite-dimensional Riemannian manifold W. Let Gp be the

isotropy subgroup of a point p GW with orbit tfp (so Gp acts on the normal

bundle Np(f by the isotropy representation). Then the exponential map is an

equivariant diffeomorphism from Np(f to a neighborhood of tfp in W.
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This theorem is a simple consequence of the uniqueness theorem for solu-
tions to ordinary differential equations.

To apply this we must first identify the isotropy representation of our SO (3)
action.

Lemma 2.1. J 2 = -Id. Hence dimW is even andTpW = TP(?ΘNP<? =
C Θ C 4 ^" 1 as Sp -representations.

Proof. Since J is skew-symmetric we can choose a basis {e/} of TPW so
that J is given by a matrix of the form

/ 0 αi λ

-αi 0

0 ak

-ak 0
di > 0.

The isotropy subgroup S* acts linearly on TPW by exp(t J); it follows that the
di are integers and that the stabilizer of β2/-i is Ί./a{l C S 1 for I < fc, and
the stabilizer of ej, I > 2fc, is 5^. Applying the Differentiate Slice Theorem
with G = Sp, we see that for small ε > 0 the point z = expp(εej) 6 W has
the same stabilizer as does e\. These points z near p are of two types.

(i) lϊ z φ <fp, then by hypothesis the action of SO (3)—and hence that of
Sp—is free so the stabilizer of z is 1 G S1.

(ii) If z G ̂ p , then 2 = g p for some g G SO(3) (not unique). Hence the
stabilizer of z in SO(3) is gS~ιg~ι and its stabilizer in Sp is S^OgS^'1 = 1.

Thus the stabilizer of z φ p is always trivial. We conclude that J has
no kernel and that each α̂  is 1, so J 2 = —Id. The lemma follows since
Tp@ = {Lp(υ)\v G so (3)} is an Sp-invariant subspace of TPW, and hence so
is Np(f.

Remark. In our gauge theory application, Lemma 2.1 can also be proved
by entirely analytic methods. This is done in the appendix.

We now describe the local structure of the fibration W —• W near &. For
this, we use polar coordinates to identify the normal space Np<f — {p} with
(0,oo) x Σ p , where Σ p = Ssk~3 is the unit sphere. The Differentiate Slice
Theorem then implies that the exponential map

(2.6)
= {exppX|ΛΓ € 0 < |X| < ε} C W*
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is an Sp-equivariant diffeomorphism for ε sufficiently small. Since Nptf —

C 4 ^" 1 by Lemma 2.1, the quotient of Σ p by Sp is diίfeomorphic to P =

CP 4 f c ~ 2 , and F induces a diffeomorphism

(2.7) Fp: {0,ε)xP-^U* CW*,

where U* = πU* is open in W. (Fp gives the analog of a polar normal

coordinate system on W*.) Hence U = U* U {xo} is a neighborhood of zo =

π(p) homeomorphic to a cone on P (diffeomorphic off the vertex).

Specializing to the case W = Jf, we have arrived at the fact, first observed

by Donaldson, that each irreducible connection [Ao] G Jί has a neighborhood

in jtf diffeomorphic to a cone on CP4k~2.

The next step is to write the metric g on W in the coordinate system (2.7),

expressing it in terms of the metric g on W and the operator L. This is

a very natural geometric problem—essentially a Gauss lemma on the orbit

space—which does not seem to be in the literature.

The calculations are best done by introducing appropriate Jacobi fields. We

will first describe a geodesic 7 in W and its projection 7 in W. Then, given

a vector Y tangent to W at a point in 7, we will lift it to the corresponding

point of 7, extend it to a Jacobi field K along 7, and examine the projected

vector field K = π*K along 7. In doing this we will let π denote both the

projection W -+W and the corresponding projection (0, ε) x Σ p —• (0, ε) x P

obtained from (2.6) and (2.7). We will also simply write F for F p , and F for

Fp.

Given (r,τ) G (0,ε) x P choose a vector τ G Σ p C Nv(9 with πr = τ

and consider the geodesic η(t) — expp(ίf) in W. Its tangent vector field,

which we denote by f(t), satisfies T(0) = r. Observe that 7 is everywhere

perpendicular to the Killing vector fields ξ = L(v), v G so (3). (This is a

more stringent condition for t φ 0 than for t = 0, since for t φ 0 the £'s

span a 3-dimensional space, while at t = 0 their span is only 2-dimensional.)

This follows since (a) gp{T, ξ) = 0 because f = r G Np(f at p, and (b)

£tg{f, ζ) = g{f, Vfζ) = 0 using the geodesic equation Vff = 0 and Killing's

equation g(X, Vy£) = —g(Y, Vχ£). Thus 7 is horizontal with respect to the

Riemannian submersion W* —• W*, so projects to an arclength-parametrized

geodesic 7 = πη in W. (The curve 7 is independent of the choice of f.) In

particular, F*-^ = π*f has unit length in TW.

Now given Y G TTP, the horizontal lift Y of f is the unique vector in

Np = Nptf satisfying

(i) **Ϋ = y,
(ii) Ϋ G 7>ΣP, and
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(iii) Y is orthogonal to the infinitesimal action of Sp

x at f.

(In (ii) and (iii) we are identifying 7>Np with Np.) Since the tangent space

to the Sp -orbit through τ € Np is precisely R Jτ C Nv = TfNp, conditions

(i) and (iii) are equivalent to (Ϋ,τ) = (Ϋ, Jτ) = 0.

Lemma 2.2. With the above notation, the differential of F at (r,τ) G

(0, ε) x P is given by

(2.8) F*(r,τ)(α,y) = M « Γ + (exp p )* r f (rr)).

Proof. Let a(t) be a curve in P with α(0) = r and α'(0) = y. It has

a unique lift to a horizontal curve ά(t) in Σ p with πά = a and o (O) = f.

Differentiating the equation F(r, ot{t)) = π o expp(ro;(ί)) at ί = 0 we obtain

Similarly, one checks that F*(ΓjT)(l,0) = π*(expp)(rf)(τ); we write this as

simply τr*T\ Taking a linear combination of these two formulas then yields

(2.8). q.e.d.

To evaluate the last term in (2.8), we consider the family of geodesies

η{s, t) = F{t, τ + 8Ϋ) = expp(ί(f + sΫ)),

which are variations of the geodesic η(t) defined above. Then Kγ(t) =

7*J^| s=o is the Jacobi field along η with initial conditions Kγ(0) = 0 and

(VfKγ)(0) = y . It therefore satisfies the Jacobi equation

(2.9) VfVfKY=R(T,KY)f,

where R is the Riemannian curvature of W (cf. [4, §1.4]). Its value at t = r is

(2.10) ky{r) = {expp)<rf){rΫ).

Proposition 2.3. The metric #ofW satisfies

(2.11) F;β = dr2®gτ,

where gr is the metric on P given at (r, r) G (0, έ) x P by

(2.12) gr(Y,Y) = [g{Kγ,Kγ)-~g{L*Kγ,{L*L)-1L*ky)]\Hrτ).

Proof Since π is a Riemannian submersion, (2.8) and (2.10) imply

(2.13) ( F p » (a^-r +Y,a-^ + γ)= g(hov{af + Kγ),hov(af + Kγ)),

where hor denotes the component perpendicular to the SO(3)-orbits in W.

We have already observed that T is horizontal and of unit length. A basic

fact about Jacobi fields is that the conditions K(0) =0 and (VfK)(0) _L f
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imply that K _L T for all t; hence Ky _L T. Since the vertical compo-
nent of Ky is automatically perpendicular to the horizontal vector T, it
follows that hor(Kγ) _L f. Thus the right-hand side of (2.13) is simply
a2 + g(hor(Kγ),hor(Kγ)). Finally, since the tangent space to the SO(3)-
orbit at η(t) is image(L) C T^W, the horizontal projection (for t φ 0) is
hor = / — L(L*L)~ιL*. The proposition follows.

Now consider the term f(t) = g{Kγ(t),Kγ{t)) = \K{t)\2 in (2.12). Its
Taylor series near t = 0 is easily calculated by successively differentiating,
using (2.9), and evaluating at t = 0 (see [4, §1.4] for details). We obtain
/(0) = /'(0) = 0, /"(0) = 2 |F | 2 , /"'(0) = 0, f " (0) = S(Ϋ,R(T,Ϋ)T), and
hence

(2.14) \K(t)\2 = t2\Ϋ\2 - \tA{R{f,Ϋ)Ϋ,T) +O{tδ\Ϋ\2).

Unfortunately this procedure cannot be directly applied to the second term in
(2.12) because it involves evaluating at t = 0, where [L*L)~X is not defined.
Therefore we next examine L*K as t —• 0.

Definition 2.4. At p e & C W, L£LP G End(so (3)) has a 1-dimensional
kernel. Fix vp G kerL*Lp with \vp\ — 1. For g G ^ near p let \o(q) <
λi(^) < λ2(g) be the eigenvalues of L*Lq and let v(q) G so (3) be the unique
λo-eigenvector with \v(q)\ = 1 and v(p) = υp. (Note that the functions λo{q)
and v(q) are smooth.)

Lemma 2.5. Let v = ^(7(i)), λ^(ί) = λi(η(t)), and Lt = ^ ( t ) Then

(a) A!(0) = A2(0),

(b) vt = Vp -h 2

(c) λ 0(0 =

Proo/. (a) It is straightforward to check that L*LP commutes with the
adjoint action of the isotropy subgroup Sj, of so (3). But Sp acts irreducibly on
the orthogonal complement of {span(vp)} in so (3), so Schur's lemma implies
that LpLp is a multiple of the identity on this subspace.

(b) For each w G so (3) consider the function φ(t) = (w,L^Ltυt) =
λo{t)(w,vt). Since λo(t) is a smooth nonnegative function vanishing at 0
we have λo(0) = λ(0) = 0 and hence 0(0) = λo(w,v) + λo(w,i>)|t=o = 0>
where a dot denotes d/dt. On the other hand, φ(t) = (Ltw,Ltvt) = (ξw, ξυt)i
so

0(0) = {Vfζw, ξVt) + {ζw,Vfζυt) + (Cti;, €*t)|t=0-

But ζv(0) = 0 and V f ξυ(0) = J(f) by (2.5). Hence at t = 0



GEOMETRY OF THE YANG-MILLS MODULI SPACE 519

However, at t = 0, ζw E Tv@\ T G Nv(9 and J preserves Np@ (cf. Lemma
2.1). Thus 0 = (w,L*Lv) Vw, so v E kerL = spanvp. By differentiating
\vt\

2 = 1 we also see that (v, vp) = 0, so v(0) = 0 and (b) follows.
(c) Since \υt\

2 = 1 we have \0(t) = {vt,L^Ltvt) — |fυt|
2 and hence

Differentiating again and evaluating at t = 0 where ζv = 0 and vt = 0 yields

λo(0) = 2|V f eυ(0)|2 = 2|J(f)|2 - 2|f | 2 = 2

(using Lemma 2.1). Then (c) follows by Taylor's theorem.
Lemma 2.6. As t —• 0

(2.15) {L K, (L'L^L'KKηit)) = X^t4\{VfL')(y)\2 + O(t5),

where \χ is the nonzero eigenvalue of L*L at t = 0.
Proof. We first fix w G so(3) and compute the Taylor series of the function

For this we differentiate /„, three times and evaluate at t = 0, noting that

(a) K satisfies K{0) = 0, {VfK){0) = Ϋ and equation (2.9), so V|ΛΓ(0)

Oand V3

fK{0) = R(f,Ϋ)f.
(b) A Killing vector field is a Jacobi field along every geodesic, so V^ξw

R(T, ξw)T and V$ξw = (VTΛ)(T, ξw)T + R{T, Vτξw)T. The result is

(2.16) /„,(*) = t2{Ϋ, Vf ξw) + | ί 3(Λ(T, Ϋ)f, ξw) + O{t4).

For each ί, let {wi(ί)}2=o be an orthonormal basis of so (3) with

(L*L)η(t)Wi(t) = λi(η(t))wi(t)

and wo(t) = «(7(ί)) (see Definition 2.4). Then, writing λi{η{t)) = λi(ί),

(2.17)

2 = 1

According to Lemma 2.5(b) we have wo(t) = vp + O(ί2) E so (3), and hence
ζwo(t) = ίvp -f o(ί2). Substituting this into (2.16) shows that fWo{t){t) =
fvP{t) + O(ί4). But /Vp(ί) is also O(ί4) since (Ϋ,Vfξυp) = (F, j f ) = 0 and
^υp(p) = 0. Hence flo{t){t) = O(ί8), and by Lemma 2.5(c) the first term of
(2.17) is therefore O{t6).
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Similarly, for i = 1,2, (2.16) gives

Furthermore, Lemma 2.5(a) shows that as t —• 0, λi(t) and λ2(£) have the

same nonzero limit, which we call λi . Thus if we set Vi = Wi(0) the last term

in (2.17) is

(2.18) ί 4 λ Γ έ

In fact, since {Ϋ,Vfζυo) = {Ϋ,JT) = 0, we can include i = 0 in the sum

without changing the value.

Now observe that, in general,

% ζυ) - (VVW, ζυ) =

Hence

(2.19)
t=0 2=0

The lemma follows from (2.17), (2.18), and (2.19).

We can now write down an expansion for the metric on W near a singular

point. The leading term in this expansion involves the homogeneous metric

on P, which we normalize as follows.

Definition 2.7. Let g0 be the metric induced on P = CP 4 f c ~ 2 by the

Riemannian submersion (Hopf fibration) Σ —> P, where Σ is the unit sphere

in C 4 * " 1 . The sectional curvatures σo of this metric are given in terms of the

complex structure J of P by

(2.20) σo{X,Y) = l + 3( JX,Y)2

for orthogonal unit vectors I , 7 G ΓP.

Theorem 2.8. Let F: (0,e) x P -»• U* be the diffeomorphism (2.7) onto

a punctured neighborhood of a singular point XQ G W. Let r be the distance in

W to XQ and let go,σo be as above.

(a) The metric gofW satisfies

(2.21) F*g = dr2 Θ r2(g0 + r2Q + O(r3)),

where Q is the quadratic form on TP defined at r G P as the limiting value of

the curvature ofW as we approach XQ along the ray F(r,τ):

(2.22) Q{X,Y) = - I Hm ( (™ ) ( r,τ ) ( £ , * ) Y, | -
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(b) The sectional curvatures σofW satisfy

(2.23) (F*σ)(X,Y) = σo(*,J) 1 + ^ γ) + o ( r ) >

where I is a function homogeneous of degree zero in X, Y and depending lin-
early on Q and its second covariant derivatives.

Proof From Proposition 2.3, equation (2.14), and Lemma 2.6 we have

(F*g)(Y,Y) = r2\Ϋ\2 + r

4Q1(Y,Y)+ O(r5),

where Qi(Y,Y) = - | (Λ(f ,Ϋ)Ϋ,f) -λΐι\{Vf L*){Ϋ)\2. Since Ϋ is horizon-
tal, \Y\2 = go(Y,Y). This identifies the metric gr of Proposition 2.3, so we
have

(2.24) F*g = dr2 θ r2(g0 + r2Qx + O(r3)).

It is a straightforward calculation to compute the curvature of a metric of the
form (2.24). One finds that

| ; , r ) Y,-^j = -3Qι{Y,Y) + O(r).

Thus the limit in (2.22) exists, the bilinear forms Q and Q\ are equal, and
(2.21) follows from (2.24).

To prove (2.23) we write the metric (2.21) as dr2 θ gr, where gr is the
induced metric on the level-set P r = {y|dist(zo?2/) = r}. By the Gauss
equation, σ is related to the sectional curvature σr of gr by

F*σ(X, Y) = σr(X, Y) - r'2 + J0(X, Y) + O(r),

where 1$ is some linear function of Q. By simple rescaling, σr is r~2 times
the sectional curvature of the metric r~2gr. If we then consider r~2gr =
9o 4- r2Q + O(r3) as a 1-parameter family of metrics on P, the standard
formulas for the variation of the curvature with respect to the metric give

σr(X, Y) = r"2[σ0(X, Y) + r2h(X, Y) + O(r%

where l\ is a linear function of VVQ. Equation (2.23) follows from the last
two equations, q.e.d.

At the beginning of this section we cast our original gauge theory problem
in terms of the Riemannian geometry of W. Theorem 2.8 solves this geometry
problem. Returning to the gauge theory, we immediately obtain a proof of
Theorem I of the introduction.

Proof of Theorem I. Given a reducible connection [A] G ̂ fc, simply apply
Theorem 2.8 with XQ = [A], W — ̂  and W = ̂ Jt, noting that σo is given
by (2.20). q.e.d.
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Actually, Theorem 2.8 enables us to compute the O(r2) term in the expan-
sion (0.2) of the metric on Jί'. For this, we use the general formula, derived in
[9], which expresses the curvature of Λf * in terms of the Green operators G°A =
(c^cU)""1 and G\ = ( ^ ( d ^ ) * ) " 1 of the fundamental elliptic complex (0.1).
Specifically, Theorem 2.2 of [9] asserts that if X , F E HA = ker(<f) nker(cT)
represent X,Y E T[A]Jt* then the curvature of Jί* at [A] is

, Y )F, X) = 3(P£F, G° P£F > + (PzZ, 6ft(P

(Here Px: Uk(AdP) —» Ω fc+1(AdP) is the linear map obtained by bracketing
with the AdP factor and wedging with the Ωk(M) factor, P£ is its pointwise
adjoint, and Px = p_ o Px.)

Corollary 2.9. In the notation of Theorem I, we have

F > = dr2 Θ r2(g0 + r2Q + O(r3)),

where Q is the quadratic form on P defined as follows. Fix a reducible con-
nection A in the gauge class [A] and identify P with Σ/S1, where Σ is the
unit sphere in the harmonic subspace HA = C 4 *" 1 o/Ω1(AdP). Let Φ be
a nonzero section of AdP with cUΦ = 0 and with J = [Φ, •] as in (2.2).
Now, given X E T rP, choose a harmonic form f E Σ C HA representing
r, and a harmonic form X E TfΣ C HA which projects to X and satisfies
(X,[Φ,ί])=0. Then

(2.26) Qτ[X'X) = " ^τX^PfX) - mT>&APϊX)

where G°A,G
2

A are the Green operators for the reducible connection A.

Proof. Let η(t) = [At] = [A + tf 4- O{t2)] be the radial geodesic in Jί
given by η(t) = F(t,τ). We will evaluate QT(X,X) by combining equations
(2.22) and (2.25).

Let η(t) be the horizontal lift of 7 to Λί with initial tangent vector repre-
sented by T E TA- Extend X to a horizontal vector field among 7, and write
X{η(t)) = Xu f{η(t)) = ft. Inserting TUXU and At into (2.25), we first
consider the term

(2.27) (PiXuGP^PiXt),

whose limit we must evaluate as t —• 0. Care must be taken because the
smallest eigenvalue λt of d*AtdAt approaches zero as t —> 0. Therefore we
let Φt be the eigensection of d*AtdAt with eigenvalue λt, normalized so that
HΦtlU2 = | |Φ| |L 2> and write

(2.28) P ϊ * t = (I)t + (Π)t,
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where (I)t = ||Φ||-2(P,ί X t,Φ t)Φ t is the L2-orthogonal projection of P | Xt

onto the eigenspace of the smallest eigenvalue. Since (2.28) is an orthogonal
eigenspace decomposition, the expression (2.27) is just the sum ((I)t, G°A (I)tH~

Now ({l)uG°At{l)t) = | |Φ||2λ t-
2(P£Λ: t,Φ t)

2, and we claim that this term
is O(*2). To establish this, consider /(t) = {P^XUΦ) = (Xu[fuΦ]). By
the definition of X, this function vanishes at t = 0, and its first derivative
there is (VfX, [f, Φ]> = -(V^X, JT). On the other hand, X is everywhere
horizontal, so (Xt^ξφ{η{t))) = 0. If we differentiate this equation twice,
use the fact that VfVfξΦ = R(f,ζΦ)f (cf. the proof of Lemm^ 2.6), and
evaluate at t = 0 (where ζΦ = 0), we obtain (VfX,JT) = 0. Therefore
f(t) = O(t2). But, as in Lemma 2.5, we have Φt = Φ+O(£2), so (PϊXu Φt) =
f{t) + O(t2) = 0{t2). Since λt = O{t2) (as in Lemma 2.5) we conclude that
the contribution to (2.27) involving (I)t is indeed O(t2).

Therefore the limiting value of (2.27) is the limit of ((Π) t,G^ t(II) t). Now
(II) t and the restriction of G°At to the orthogonal complement of Φt are both
continuous at t = 0 (all eigenvalues but λt are bounded away from zero).
Hence we obtain the limit of (2.27) simply by substituting A for At and
limt_o(Π)t for P^Xt But limt_>0(Π)t = P£X, since (PϊΛΓ,Φ) = 0. There-
fore the limit of (2.27), multiplied by -1/3 as in (2.22), is in the first term in
(2.26).

Since G2

A is uniformly bounded as t —• 0 {{d~^)*dA is continuously invert-
ible for all [A] E */#, and Jϋ is locally compact), the remaining terms in (2.25)
approach the corresponding ones in (2.26). q.e.d.

We conclude this section by discussing several examples which help to un-
ravel the geometric meaning of the formula (2.21) for the metric. Let g be
the standard metric on the unit sphere Sn.

Example 1. The metric dr2®r2(c2g) on (0,1) x Sn (where c is a constant)
defines a "linear" cone of one of three types.

(a) If c = 1 we get simply the flat metric on the punctured unit ball in
R n + 1 , and the metric extends smoothly over the vertex.

(b) If 0 < c < 1 we have a flat cone embedded in R n + 1 with vertex angle
arcsin(c).

(c) If c > 1 the cone cannot be isometrically embedded in Euclidean space,
and is therefore harder to visualize.

Example 2. Let {X,gι) be any compact Riemannian manifold not ho-
meomorphic to a sphere and consider the metric dr2 Θr2gχ on the punctured
cone C* = (0,1) xX. In this case the cone is not homeomorphic to a manifold,
unlike the cones in Example 1. The geometry of the cone falls into two
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categories, distinguished by the asymptotic behavior of the curvature of C*
near the vertex.

(a) Unless all the sectional curvatures of gι equal 1, then, as in Theorem
2.8(b), one can show that the curvature of the cone blows up as one approaches
the vertex.

(b) If Q\ has constant curvature 1, then X is a quotient of a sphere, and it
is easy to see that the universal cover C* is R n + 1 - {0} with the flat metric.
Consequently, C* is a flat cone on a rational homology sphere.

Example 3. More general cone metrics have an expansion like that in
(2.21). The linearization—which is always one of the above types—determines
the nature of the singularity at the vertex to leading order. For example, on
a Riemannian manifold, a normal coordinate neighborhood of any point is a
cone on a sphere; the linearization is a cone of type l(a) above.

Example 4. For a global example which realizes the hypotheses of our
SO(3)-action on W, take W = S2 x S2 x S2 x S2, the product of four
unit spheres, with SO(3) acting by rotation on each factor. The point p =
(izi, 1*2,1*3,̂ 4) has trivial stabilizer unless all the tZi, considered as vectors in
R3, lie on a line. Thus the exceptional points are all of the form (ιti,±ι*i,
±tzi, i u i ) , and the stabilizer of such a point is SO(2) acting in the plane or-
thogonal to u\. The quotient W therefore has eight singular points, each with
a neighborhood homeomorphic to a cone on CP 2 . Near such a singular point,
the metric behaves, to leading order, like Example 2(a). Had we used three
copies of S2 instead of four, we would have obtained cones on CP 1 , behaving
as in Example l(c) with c = 2 (on CP 1 = S2 the metric 00 of Definition 2.7
equals 4g).

The cones which occur in the moduli space are of the same character as
those in Example 4; in particular, their linearizations are of type 2(a).

PART II. GEOMETRY OF THE COLLAR

3. The approximate tangent space

We now turn our attention to the collar of the moduli space Jί and study
the asymptotic behavior of the metric p there, with the primary goal of
proving Theorem II. Recall that each connection A has a scale λ = λ{[A])
(the radius of the smallest ball containing half the "energy"), and that there
is a constant λo > 0 such that each [A] G Jί with λ < λo is irreducible and
has a well-defined center p = p([A])e M. We then define the collar to be
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(The precise definitions of X(A) and p(A) are given in §4; the details of those
definitions are not important in this section.)

As noted in the introduction, given [A] G ./#* we can choose A G J/ in
the gauge class [A] and identify (isometrically) TJ^ΛΓ with HA = ker(d^) Π
ker(cΓ )̂ C Ω1(AdF). We will make this identification throughout the next
three sections. Accordingly, we will replace the notation HA by TA, this
being more suggestive of a tangent space. In this section we will construct,
for [A] G ̂ λ 0 , an approximation TA to TA and obtain estimates on ||Id — TΓ^H,
where TΓ̂  : TA —• TA is the orthogonal projection. Our estimates will rely on
three basic facts, the first two of which follow from Theorem 16 of [6] and the
third from Theorem 21 (i) of [6].

Fact A. Given ε > 0,iV > 0, there exists λo = λo(ε,iV) such that the
curvature of each [A] G Jίχ0 satisfies

(3.1) sup | | F A | 2 - | F λ | 2 | < ε λ - 4 ,
B(p,NX)

where λ = λ([A]), B(p, NX) is the ball of radius NX about the center p of
[A], and F\ is the curvature of the standard instanton of scale λ on R4, pulled
back to B(p,NX) by any choice of normal coordinates and local gauge about
p. Here one can take | F | 2 to be defined either by the metric on M or by the
Euclidean metric in the normal coordinate system defining F\\ the assertion
is true for either interpretation of the norm.

Fact B. There exists a constant C such that, given δ > 0, there exist
ro > 0 and λo = λo(<$) > 0 such that the curvature of each [A] G Mχ0 satisfies

whenever r = dist(^,p([A])) < r0 (here X = X([A])).

Fact C. Let Ω C M be the complement of the ball B(p, y/roX), where
p = p{[A]) and λ = λ([A]). Then there are constants λo and c such that each
[A] G c^λ0 satisfies

L \FA\
2<cX\

Ω

We will also need the following simple lemma.

Lemma 3.1. Let Z = grad(0) be a gradient vector field and A a self-dual
connection. Then

(b) d-A{izFA) = Σi,k(H°Φ)>'<ΘJ Λ
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Here %z denotes contraction with Z, {βj} is any local orthonormal basis of
TM, {θj} is the dual coframe, and H°φ is the traceless part of the covariant
Hfessian Hφ of φ.

Proof, (a) We have *{izFA) = ±dφ Λ *FA, SO

d\{izFA) = ± * dA{dφ Λ *FA) = ±*{dφΛdA* FA) = 0.

(b) Fixing p E M, it suffices to verify this under the assumption that
(Ve7)p = 0. Let V denote both the Levi-Civita connection on M and its
extension, by tensoring with VΛ, to a connection on Ad P-valued tensors.
Then, at p,

dA{izFA) = θj Λ Vej{izFA) = θ> A {iVjzFA + izVkFA)

= (Hφ)jkθ> Λ (iekFA) - iz(θj Λ VjFA) + VZFA.

The middle term on the right is -iz{dAFA) = 0 by the Bianchi identity.
Using Vz(p-) = 0 we then have

dA(izFA) = (Hφ)jkp_(θ> Λ (iekFA)) + Vz(Fχ),

and the last term vanishes since A is self-dual. Finally, a little algebra shows
that the remaining term is precisely the expression in (b). q.e.d.

Notation. Choose 0 < δ < q and let r0, λ0 = λo(δ) be as in Fact B with
λo < fo ^ one-half the injectivity radius of M. Also, fix a function b £ Co°(R)
with 0 < b(t) < 1, b(t) = lϊorte [0,1], b(t) = 0 for t > 2, and b'{t) < 0 for
alW.

Given [A] G ̂ λ 0 , we will consider the local geometry of M around the
center point p = p([̂ 4]) Thus we let r denotes the distance to p (a function
on M), B = B(p, 2ro) denote the ball of radius ro around p, and Ω denote
the annulus {r0 < r < 2r0}; χ# and χ will denote the corresponding char-

Ω

acteristic functions. Let β be the cutoff function β(r) = b(r/ro); note that β
is supported in B and its gradient is supported in Ω.

In this and subsequent sections we will use the letter c for a universal
positive constant depending on the geometry of M and on ro, but not on
[A] G Λf\0. Thus, for example, we will use the inequalities |χ#dr| < C\B
and |XBΓ*Λ | < CT\B, where Γ*̂  are the Christoffel symbols in any normal
coordinate system centered at p. The value of c will be constantly updated;
for example when c is multiplied by 2 the result is immediately renamed c.
Similarly, the value of λo will be decreased as needed.

Definition 3.2. (a) Given p G M and a G TPM, let / a be the unique
function on B such that

(i) / a is linear in some—and hence any—normal coordinate system cen-
tered at p.
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(ϋ)/a(p) = 0,
(iii) (grad/a)(p) = a.
(b) Given [A] G Jϋ\0 with center p and scale λ, let X, F a denote the vector

fields

(3.2) X = grad(/?(r) ±r 2), F a = grad(/?(r)/a).

These vector fields will appear frequently in the next several sections.
(c) Define

fA = 8pan{txFA,iyafU|a G TPM} C

The assignment A »-+ TΛ is ^-equivariant, so induces a vector bundle
over ^ίλ0; the fiber Tĵ j is isomorphic to TΛ We refer to both fA and
as the approximate tangent space.

More Notation. Given [A] e Λ0λo, we let {x1} denote an arbitrary choice
of normal coordinates centered at p. We use the {x1} for our computations,
the results of which are independent of the choice of {x1}. We use the normal
coordinate system to identify TPM with R4, so a = did/dx1, / a = ΣCLΪX1,

and r2 = Σ ( z 1 ) 2 . Also we adopt the convention of implied summation over
repeated indices.

We will show that, as λ —• 0, ||Id —π^| | —• 0 uniformly in [A], justifying the
term "approximate tangent space". The first step is to prove the following.

Proposition 3.3. Let [A] £ J?\Q and let X and Y = Y& be as in Defini-
tion 3.2. Then

(&)<rA(iχFA)=(rA{iγFA)=0,

(c)\\dA(iYFA)\\l<c\a\*\\
Proof. X and Y have the form Z = grad(/?/), where / is either \r2 or

/ a . Hence Lemma 3.1 (a) immediately gives statement (a). For (b) and (c),
we apply Lemma 3.1(b) to φ = βf. We have

H(βf) = Vd(βf) = (Hβ)f + (dβ ®df + df® dβ) + β{Hf),

so Lemma 3.1(b) gives the pointwise bound

(3.3) \d-A{izFA)\ < {\f\\H°β\ + Άdβ\\df\ + f}\H°f\)\FA\.

Now

Vdβ = TQ V ( r / r 0 ) dr (8) dr + ΓQ Vίr/

Vc/r = r" 1 (x^Vdi' + dx̂  ®dxi -dr®dr).
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Since Vdx1 = — Π f c dxk 0 dxk and r " 1 < c on Ω, we have

(3.4) \dβ\ < cχΩ, |JT°/?| < \Hβ\ < cχΩ

Substituting into (3.3) we find

\dA(iZFA)\ < cχa(\f\ + \df\)\FA\+cχB\H°f\ \FA\,

whence

(3.5) \\d^(izFA)\\2 < c ί (I/I + \df\)2\FA\
2 + c f \H°f\2\FA\

2.
JΩ JB

We apply this in two cases.
Case 1. Taking / = £r2 (i.e. Z = X), we have |/ | < cr2, \df\ < cr,

so x (I/I + \df\) < ex . We also have Hf = xiVdxi + dx* ® dx*, and
Ω Ω

XB|^ - d χ 2 ® rfxΊ < XB * cr2, so χB\H°f\ < χB cr2.

Case 2. Taking / = α^xi (i.e., Z = y a) we have |/ | < |a|r, |d/| < c|a|, so

X (I/I + W\) < XQ ' Φl a n d XB\H°f\ < χB\Vdf\ < XB c|a|r.
In each case we can substitute the appropriate bounds into (3.5) and esti-

mate the integrals using Fact B. First, we have

(3.6) ί \FA\
2<cλ4-26 f

Jn JΩ

[ r\FA\ c\ f \FA\ + c λ (
(3.7) ./B JBλ ./B-.BΛ

< cλp + cλ4-26sgn(p + 2δ - 4)(r

Next, we bound the integrals over B by writing B = B\ U (B — J3λ)? where
B\ = {r < λ}, and using Fact B on the annulus B — B\. Thus for p € Z,

< c\> f
JB

< cλp +

since / B χ | F Λ | 2 < \\FA\\% < 8τr2. In Case 1, (3.5), (3.6) and (3.7) yield

\\dA{iχFA)\\l < cλ4~2δ + c(λ4 + λ4'26),

and statement (b) of the proposition follows. Similarly, in Case 2, (3.5), (3.6)
and (3.7) plus the fact that 4 — 26 > 2, give statement (c). q.e.d.

We wish next to consider the L2 inner products of the %ZFA- For this we
will need two lemmas.

Lemma 3.4. For any two vector fields Z and Z1', and any two self-dual
bundle-valued 2-forms F and F',

(izF,iz>Ff) + (iz>F,izF
f) =

pointwise. In particular,

(3.8)
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Proof. Let ez denote exterior multiplication by the 1-form dual to Z. The
well-known formula tziz1 Λ-iz'^z = (Z, Z7) -Id holds for bundle-valued forms.
Furthermore, ez is the pointwise adjoint of iz, and ez = — *iz*- Thus, since
* is an isometry and F = *F, F' = *F/

)

(izF, iz'F') + (iz>F, izF') = (F, eziz'F') + (**> * F, *ί z * F')

= (F, (e^z' + ίz'CZ)F) = (Z, Z')(F, F'). q.e.d.

In our estimates we will encounter integrals similar in form to / hxιx3JFA|2,
where h is a cutoff function and {x1} are normal coordinates at p{A). The
next lemma shows that as λ —> 0 these integrals approach the corresponding
integrals on R4.

Lemma 3.5. Let h: [0,oo) -» R be piecewise continuous with compact
support. For each multi-index I = (ii, ,in) let %l be the corresponding
monomial on R4 and let S C R4 be the unit sphere. Define constants Ki =
fsx* andean = $™ &h{t)tn-m+*(l+t2)-* dt («/n-m+3 < - 1 we assume
supp(Λ) C (0, oo)). Now let {x1} be normal coordinates on M at p(A). Then
asλ = \{A) - 0

lim
λ->0

uniformly in [A] € Jt. In particular, when n = 1,2 this holds with K{ = 0
and Kij = -^K bij.

Proof. Choose ε > 0 and suppose supp(ft) C [0, N]. Let λo = λo(ε, N)
be the constant supplied by Fact A, so (3.1) holds. In normal coordinates
the metric and the volume form satisfy gij = δij + O(r2) and dvg = dAx{\ +
O(r2)), where dAx is the Euclidean volume form on R4. Hence, writing |F|§ =

Γtj), we have

( r / λ ) x 7 r " m | F Λ | 2 d ^ -

Now \Fx\l = 48λ4(λ2 H-r2)"4; see equation (3.4.6) of [10], for example. If we
change variables to u = a /λ, set t = |ιx|2, integrate in polar coordinates, and
multiply through by λm~n, then we obtain

-nJh(r/λ)xIr <cε.

This proves the lemma.
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Proposition 3.6. For each ε > 0, 3λ0 > 0 such that for all A with

\{A) = λ < λ0,

(b)
(c) \(iχFA,iγΛFΛ)\<ce\\iχFA\\\\iγΛFΛ\\,

where, in (b), we mean \\\iχFA\\l ~ 8τr2λ2| < ελ2.
Proof. Let φ,ψ be functions equal to either ^r 2 or αtX*, so Z = gr&d(βφ)

and Z1 = grad(/?^) are either X oτ Y = Ya. By the product rule and (3.4),

= |(d/3,^d/3 + βφdψ

Ω

Now let p = deg(φψ) (so p = 2,3, or 4) and let m = homogeneity of |a|
in φψ (so m = 0,1, or 2). Then \φψ\ < c |a | m r p and \d(φφ)\ < c\B\mrv~ι.
Multiplying the inequality above by ^I-Fl2 and using (3.8) gives

\(izF,iz'F) - ίβ2(dφ,dψ)\F\2\ < c|F|2|aΓ(rP + r"-x)xn

since r and r 1 are bounded on Ω. Integrating over M and using equation
(3.6) yields

(3.9) (IZFAJZ'FA) = \j β2\FA\
2(dφ,dφ) + O(|a | m λ 4 - 2 ί ) .

We will apply this in each of the three cases.
(a) Taking φ = ψ = Oil', we have p = m = 2, dφ = dip = ciidx1, and hence

(dφ,dψ) = gVdidj = |a | 2 (l + O(r2)). Then (3.9) gives

(iγF,iγF) = I|a|2

where we have used (3.7) and the fact that 4 — 2δ > 2. Now write β2 =
1 - (1 - β2). Note that | |F |β = 8π2, and 1 - β2 has support in M - £(p, r 0).
When A is sufficiently small we can then apply Fact C to obtain

| | K y F | | 2 - 4 π 2 | a | 2 | < c | a | 2 λ 2 .

(b) Next take φ = φ = | r 2 , so p = 4, m = 0, d</> = dφ = x*dx*, and
(dφ,dψ) = gtJxιxJ = r 2 (in normal coordinates, ^ V = a:* = gijX^). Choose
JV > 1 such that Λ^26~2 < ε and let λ0 be small enough that iVλo < r0. Then
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β = 1 on {r < NX) for λ < λ0, so (3.9) gives

H«x*Ίl2 = ϊ ίβ2r2\F\2 + O(λ 4 " 2 6 )
(3.10) * ,

= i / r

2 | F | 2 + § / β2r2\F\2 + O(λ 4" 2*).
Jr<NX Jr>NX

Now apply Lemma 3.5 in the case h = characteristic function of [0, n], n = 0,
m = -2, to find

lim (V 2 / r2 |F|Λ = vol(53) [ 48ί5(l + t2y4dt

(N2 + I) 3

by a direct calculation. But (3ΛΓ4 + 3ΛΓ2 + 1)(ΛΓ2 + 1)~3 < 7ΛΓ~2 < 7ε, so,
by taking λo sufficiently small,

(3.11) \ f r 2 |F| 2-8π 2λ 2

Jr<NX
< 8ελ2.

On the other hand, using Fact B as in (3.7) we obtain

(3.12) / β2r2\F\2 < c\4-2δ(N\)2δ~2 < cελ2.
Jr>NX

The result now follows from (3.10) and (3.11).
(c) Take φ = \r2 and ψ = a{x\ so p = 3, m = 1, and (dφ,dψ) = φ. (3.9)

gives

{iχF,iγF) = ±

Choose TV > 1 such that N2δ~3 < ε, and choose λo small enough that
ro Then, if λ < λo, we have

/ / β2φ\F\2.
r<NX Jr>NX

For the outer integral, we apply the argument used in (3.12), obtaining

β2Φ\F\''
!r>NX

For the inner integral, Lemma 3.5 implies
\L < c|a|λε.

lim (V 1 / x
λ-0 V Jr<NX '

= 0 ,

so, for A sufficiently small, we have | /VΊίΊ 2 | ^ ε\&\\. Putting all this to-
gether,

\(iχF,iγF)\<c\a\Xε
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for λ sufficiently small. By parts (a) and (b), \\iγF\\ and \\iχF\\ are commen-
surate with |a| and λ, respectively. Hence statement (c) follows, q.e.d.

The next proposition shows that the projection π: TA —• TA satisfies TΓΛ =

Proposition 3.7. There exist constants c, λo > 0 such that if Z =
grad(/3(|αor

2 + fa)) and λ < λ0 then

(3.13) ||(1 - irA)izFA\\ < c ( | α o | λ 2 ^ + |a|λ),

(3.14) \\*Λi*FΛ\\ = \\izFΛ\\(l + OiX1-6)).

Proof. For any ω G Ω1(AdP), (1 — TΓA)U; is the projection of ω onto the
L2-orthogonal complement of the harmonic space. This can be expressed
in terms of the Laplacians and Green operators of the fundamental elliptic
complex, namely (1 - π^)ω = dAG°Ad*Aω + (d^)* G2

Ad~^ω. Taking ω = %zF
we have d\ω = 0 by Proposition 3.3(a). Hence

\\(l-7rA)ω\\2

2 = \\(dAyG2

AdAω\\l

= (G2

Ad-Aω,d-A{d-AYG\d-Aω) = (G2

AdAω,dAω).

By Proposition 18(ii) of [6] there exist λo,μ > 0 such that if λ < λo then the
first eigenvalue of dA(dA)* is > μ. Therefore

\\{l-πA)izF\\l<μ-ι\\dAizF\\l

and (3.13) follows by Proposition 3.3. Combining (3.13) and Proposition 3.6,
we have | |TT A 2 Z F| | < | |2 Z F| |+ | | ( l -π Λ )2zi Γ | | < {l + c\ι-δ)\\izF\\', the reverse
inequality is similar and we obtain (3.14).

4. The differential of the collar map

In this section we will derive some estimates on the differential of the collar
map Φ (0.4). We first recall Donaldson's precise definition of this collar map.

Let b e Cg°([0, oo)) be the cut-off function used in §3. For any s > 0 and
any two points x, y in any Riemannian manifold, we define the bump-function

Definition [6, Definition 15]. For a connection A on a given complete
oriented Riemannian manifold with metric g and volume form dυg, define

(4.1) RA(S,X)= I Ίs{x,y)\FA(y)\2dvg{y),
JM

(4.2) X(A) = K'1 mi{s\RA(s,x) = 4π2 for some x}.
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Here K is that constant which makes λ(standard instanton on R4) = 1. (K

depends on 6; were b replaced by the characteristic function of [0,1], K would

be 1.) Because K will occur frequently, it will often be convenient to work

with A = KX instead of λ. As λ (or λ) —• 0 we approach the "boundary" of

Jt (in a sense we will make precise in §5).

By applying the implicit function theorem to (4.1), Donaldson shows that

each sufficiently concentrated self-dual connection A has a unique well-defined

center p = p(A) G M. The quantities λ(A) and p(A) are characterized by the

equations

(4.3)

(4.4) ^

Both λ and p are gauge-invariant, so for λo sufficiently small there is a well-

defined map

(4.5) Φ:ΛΓλo->(0,λo)xM

given by 9{[A]) = (λ{A),p(A)) on the collar JTXo = {[A] e M\X{A) < λo}

Donaldson proves that Φ is a diffeomorphism [6].

We will estimate the differential of Φ by writing Φ* = (λ*,p*) and exam-

ining first λ* and then p*.

Notation. For fixed p and λ, write r — r(y) = dist(p, ?/), and set η(y) =

b(r/X). In a fixed normal coordinate system {x1} centered at p we write

y% = xι(y), ηi = diη, and ηij = didjη. These derivatives are supported in the

annulus {λ < r < 2λ} and are given by

(4.6) Ίi{y) = X~1bf(r/X)dιr = λ~V(r/λ)</7r,

(4.7) Ίi3(y) = r V ( r A W Λ 2 + Xb'ir/X^/r - yWΛ3]}.

Proposition 4.1. Let At = A + tη + O{t2) be a path of self-dual connec-

tions. Then [η] = π*η G T^]-^ satisfies

Furthermore, there exist λo > 0 and c > 0 such that [A] G ̂ #λ0 implies

(4.9) c-^

Remark. Donaldson essentially derives this in the course of proving Corol-

lary 17 of [6], but he makes a slight mistake (his first equality should be an
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inequality) that is of no consequence to his result but is important to us, cor-
responding to the denominator in (4.8). Therefore we give the complete proof
here.

Proof. Differentiating (4.3) with respect to £, and writing λ = λ(A), p =
p{A), λt = λ(At), and pt = p{At), we have

O=jtRAt$uPt)\t=o

π; dpi dRΛ(J λd
( λ p ) + ( λ p )

The middle term vanishes by (4.4), so

Um\ Ί M dJt\ -(d/dt)RAt(X,p)\t=o
at (dRA/ds)(\,p)

Since the curvature of At is Ft = FA + td^r] + O(t2), the numerator on the
right-hand side of (4.10) is, from (4.1),

ftRAt(Xp)\t=o = 2Jη(dAη,FA) = 2 J (V,dA(lFA)),

with

(4.11) d*A(ΊFA) = Ίd*AFA - iVΊFA = -ivΊFA.

Similarly, differentiating (4.1) with respect to s gives

dRA,τ

ds
•(λ,p) = -jrX h'(r/λ)\FA\* = - ±

Multiplying the numerator and the denominator in (4.10) by λ, we obtain
(4.8). Moreover, by Lemma 3.5 and the monotonicity of 6,

approaches a (strictly) negative constant, uniformly in A, as λ —• 0. Hence
(4.9) follows as well, q.e.d.

The next task is to derive formulas for p* analogous to those just obtained
for λ*. Up to this point, we have fixed p € M and used normal coordinates
centered at p; we must now vary the center point p. The next lemma deals
with this geometric complication.

Fix a number r$ with 2ro < injectivity radius of M. Let {x%} be normal
coordinates on the ball Bro (p) centered at p. Given a point y G Bro (p) with
coordinates yι = xι{y) let p( ) = dist(t/, •) be the distance function from y and
set r = p(p). With this notation we have
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Lemma 4.2. There exists a constant C depending only on the geometry
of M such that, for each p G M and y G Bro(p),

(a)

<Cr.

Proof. Let σ(ί) be the geodesic from y = σ(0) to p = σ(l) parametrized
proportionally to arclength; i.e., if T = σf(t) is the tangent vector to σ,
then ||T|| = p(p) = r. Let v,Ui G Γ yM be such that expy(v) = p and
(expy)*v(tit) = (d/dx^ip). For each i we may consider the one-parameter
variation

(4.12) σ (O=expy(ί(v + βu<)).

Since σ is varied through geodesies, the variational vector field Ui = {d/ds)σ%

9

is a Jacobi field along σ, and satisfies t/i(0) = 0 and ϋi(l) = (d/dx^ip). The
formula for first variation of arclength [4, equation 1.3] gives

(4.13) ψr
v

since σ is a geodesic. But T = —y%d/dx% in normal coordinates and g%j{p) =
δij, so we obtain (a).

Let Vi denote the vector field d/dxι on Bro(p). If we replace p in (4.13) by
an arbitrary point q G BrQ(p), we obtain

(4.14)

Applying the vector field f/y to (4.14) gives

When q = p, we obtain Uj = Vj = d/dx3, V^.Vi = Γ^d/dar|p = 0, and

Vc/j.T = Vyi/j since t/j ,Γ are σi of d/ds,d/dt. Therefore, using part (a),

we have

(4.15)

But, from (4.12) it follows that we may write Uj = tW, where W = Wkd/dzk

is some vector field with constant coefficients with respect to the normal coor-
dinates {z1} centered at y; in these coordinates, W = Uj(\). Hence, in these
coordinates, writing T — pιd/dzι, we have
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Now set t = 1. Since ρ(p) = r and |Γj^(p)| < Cr, it follows that

(4.16) \VTUj - Uj{\)\ < Cr*\W\ = Cr2 |t/, (1)| = Cr2,

noting that l^ (l) = (d/dxή(p). Finally, (VJ(p),ϋ;(l)) = (Vi(p)Ύj(P)) = «*>
so statement (b) follows from (4.15) and (4.16).

Corollary 4.3. Let Z be any vector field on M and let At = A +
tπAizFΆ + O{t2) be a path of self-dual connections. Let p and λ denote the
center and scale of A. There exists a constant c, independent of A and Z,
such that if {x1} are normal coordinates centered at p, then

Proof Write F = FA- Using Lemma 4.2 and (4.6), we have

A6 ( r /λ) = - r V(r/λ)ί,7r = -Ίi.

Since Ft = F + tdAπAizF + O(t2) we find

Integrating by parts and using (4.11), the last expression becomes

Writing TΓAΪZF = izF — (1 — πA)izF, Lemma 3.4 shows that the integrand
above equals (Z, V7»)|F|2 - 2((1 - πA)izF,iVΊiF). Hence

<2\\(l-πA)izF\\2\\\ΊVΊiF\\2.

Now 7J has support on {λ < r < 2λ}, where

2

is bounded by a constant, so ||λ iv^-^lb ^ CII^Ίb ^ C? and the result
follows.

We will also need a statement concerning the Hessian of RA
Lemma 4.4. Let Hij denote the Hessian {d2RΛ/dxidx^)(λ,p). For X

sufficiently small, X2Hij is uniformly invertible; i.e., there exist λo,c > 0 such
that [A] G JK\Q implies

(4.17) e-^Kλ^ijCξ'Kc^2 VeeΓpM.
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Moreover,

(4.18) λ2/^ = J\2

Ίij\FA\

where ηij is as in (4.7).

Remark. In fact we will show that λ2//^ —• const δij as λ —• 0.

Proof. Write (4.1) as

RΛ{8,p) = fb (^ψ} \FA\
2(y)dvg(y),

where py(-) = dist(y, •). Letting d{ = d/dxι, and writing p for ρy, we differ-

entiate twice to obtain

1 2

By Lemma 4.2 and (4.7) we can write this integrand as {A 7^ + Xφij

where \φij\ < Cr and supp(<foj) C B2j(p). Hence

[ Xφij\F\2 < c? [\F\2 <cλ2,
J J

and we obtain (4.17).

To prove (4.18) we substitute (4.7) into Lemma 3.5 and find that

lim
λ-o

»f
Jo

4 ( l + ί aΓ 4*

Since 6' < 0 and bf < 0 somewhere, c\ is strictly positive. Hence (4.19) follows

from (4.17). q.e.d.

We finally obtain a statement for p* analogous to the one for λ* given in

Proposition 4.1.

Proposition 4.5. There exist c,λo > 0 such that if [A] G ̂ \0, and

At = A + tτAiz^A + O(t2) is a path of self-dual connections, then for any

vector field Z on M,

(4.19) , VΊi)\FA

2

<c\\(l-πA)izFAl
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where

(4.20) πii^X'

Here λ = λ(Λ), 7* is given by (4.6), (p*)J are the components of the image
of p* in TP(,4)M with respect to normal coordinates {x1} centered at p(A),
and Hij is the Hessian {d2RA/dxidyi)(λ,p).

Proof. Write λt = \(At), Pt = p(At), λ = J(A), and p = p(A). Differen-
tiating (4.4) yields

By Lemma 4.4, i/^ is invertible, so we can solve this to obtain

Differentiating (4.1) and using Lemma 4.2, we have

(4.22) tfβote y

= mi+jb'(ryj)yi\FA\
2.

But this last term vanishes, since by (4.1), (4.4) and Lemma 4.2

(4.23) 0 = I A ( 7 χ ( x ? 2 / ) ) | F | 2 = -T1 jb'{r/\)yi\F\\

Next, we may use Corollary 4.3 and (4.17) to replace ^{dRAjdx*) in (4.21)
by /(Z, Vηi)\FA\2 at the cost of the term c||(l - KA^ZFAW appearing on the
right-hand side of (4.19). Thus substituting (4.22) and (4.23) into (4.21) we
are done.

5. The metric on the collar

We now combine the results of the previous two sections to show that the
metric on the collar is asymptotic, in a C° sense, to a product metric (Theorem
II). This leads to a description of the metric completion ol'Jt (Theorems III
and IV).
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Definition 5.1. Given [A] E s#χ0 with center p and scale λ, and given

(αo,a) G R x TPM, we set

and define aA: R x TPM -> TA by

where /?, r, / a and TA are as defined in §3.

Observe that a A depends on ̂ -equivariantly on A, so defines a bundle map

a taking T(λiP)(R x M) to Ί\A] where [A] = φ-^λjp) . Since the harmonic

projection WA' TA —• TA induces a bundle map π: T ^ —• TJ[\Q, we can

consider the composition

Combining this with the differential of the collar diffeomorphism Φ (cf. (4.5))

gives a diagram

Γ M λ o i ^ - ^ Γ ( ( 0 , λ o ) x M)

(5-1)

We will use the results of §§3 and 4 to show that πoα is an approximate inverse

to Φ* in the sense that (5.1) commutes up to terms which are O(X1~δ).

Proposition 5.2. There exist c, λ0 > 0 such that [A] E JK\Q implies

(a) |λ*[τrΛαΛ(αo,a)] - α o | < c(|αo | + laPA1"6,

(b) |p*[τrAC*A(αo?a)] — a\ < c(|αo| -I" |a|)λ .

In other words, Φ* o π o a = Id (1 4- OiX1"6)).

Proof, (a) Write F = FA and take η = KAOIA{Q>O, a) = -izF+{l-πA)izF

in Proposition 4.1. When λ is sufficiently small, β = 1 on supp(7), so using

Lemma 3.4 we may replace {izF,iVlF) = \(Z, V 7 ) |F | 2 by \ao{Vr2, VΊ)\F\2

-h \di(Vx%,Vη)\F\2. Hence the numerator of (4.8) is

ίfaivif) = - T̂ o /(Vr2,Vη)\F\2 - \(n f{dx\dΊ)\F\2

(5.2) J J 2 J

Now (ώSd'γXy) = λ 1b'{r/X)g^y^/r = λ 1V{r/\)y>/r, so by (4.23), the

middle integral above vanishes. Therefore, multiplying (5.2) by —4λ, dividing

by the denominator of (4.8), and applying (4.9), we see that

- ao\ <

<c\\{l-*A)izF\\2\\XivΊFh.
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But |V7| < cλ" 1 by (4.6), so ||λzVγίΊ|2 < c| |F||2 < c. Part (a) now follows

from Proposition 3.7.

(b) We apply Proposition 4.5. Again take λ small enough that β = 1 on

supp(7). Then, on supp(7),

(Z, V 7 ί )

But g>k - δjk = 0{r2), \ηik\ < cλ~2, and λ < r < 2λ on suppft), so

(Z, VΊi) = (λ-1αoj/
J + ajhij + O(\a0\ + |a|).

Thus, since / |F|2 < c,

J \2(\2(Z,VΊi)\F\2 = « ;/ λ27ϋ|F|2 + ̂  j yiχ2

Ίij\F\2 + O((|α0| + |a|)λ2).

By (4.18), the first term on the right is A Hi3 aj + O(|a|λ2). From (4.7) we

compute A y3η%j = b"(r/X)y%, so the second term on the right is aoKπii,

where mi is as in (4.20), and if is as in (4.2). Therefore

(5.3) I ' + m t * ΈA%Z A

= A Hijdj + Kmi(\+(πAizFA) + α0) + O((|α0 | + |a|)λ2).

Now |mt| is bounded (in fact Lemma 3.5 shows that m» —• 0 as A —• 0), so we
may use part (a) to bound the second term on the right-hand side of (5.3).
We can then combine (4.19), (5.3), (4.17) and Proposition 3.7 to obtain

and (b) then follows from the definition of aA-

Proof of Theorem II. Since Proposition 3.7 shows that πA o aA is an iso-

morphism, it suffices to prove (0.5) for all W of the form πAizF, where

izF = aA(ao,a). But then

by Proposition 5.2, and therefore

2 ) | < cA^^lαol 2 + |a|2) < cλ

On the other hand, Propositions 3.6 and 3.7 imply that for λo sufficiently
small,

\S(W,W) - 4τr2(2α2 + |a|2)| $
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Therefore taking λ0 small enough, we obtain \#{W,W) - (Φ*jί)(W,W)\ <
ε(Φ*/)(W,W) and the result follows.

Proof of Theorems III and IV. Let [̂ 4] € JK be a reducible connection and
let U be the closure of a neighborhood of [A] as in Theorem I. The form (0.2)
of the metric shows that the completion of U* = U - {[A]} is obtained simply
by putting the vertex [A] back in; i.e., the completion of U* is U itself. It
follows that Jf* is identical to the completion Jί of ( ^ , ^ ) .

Now let {[Ai]} be a Cauchy sequence which does not converge in Jί'. By
Uhlenbeck's Compactness Theorem [8, Theorem 8.36] we have λ* = λ([Ai]) —>
0, so the sequence eventually lies in the set J[\Q with λo as in Theorem II.
The inequality (0.5) then implies that for i,j sufficiently large

d i s t a l , [Aj])2 > 2π2(2|λ i - λ,|2 + dist( P i , P j )
2 ),

where p% = p([A«]) G M. Hence {pi} is also Cauchy, converging to some
Po E M. It follows that the set of equivalence classes of Cauchy sequences
not converging in Jί is in 1-1 correspondence with M, and that Jί is ho-
meomorphic to Jί Uψ ([0, λo) x M) (which is compact by Uhlenbeck's theo-
rem). Thus the metric topology on Jί is independent of the choice of collar
map Φ (i.e., independent of the details of the cut-off function b used to define
λ and p), so Jt is a topological manifold-with-boundary in a natural way.
The induced smooth structure on Jί Uψ ([0, λo) x M) is also independent of
the choice of Φ, so Jΐ inherits a natural smooth structure. The function λ
on Jί extends smoothly to Jί and we have dM = Jί — t / # = {λ = 0}. In
particular, Jί is incomplete, since instantons of scale size λ = 0 do not exist
in Jt'.

We can define a Riemannian metric p on Jί by declaring p to be
4π2(2dλ2 Θ g) along dJt and to be the L2-induced metric on the interior.
Theorem II shows that p is continuous. The restriction to p to vectors tan-
gent to dΛί is 47Γ20, independent of the choice of Φ again. The same theorem
also shows that if σ is a curve lying in Jί\Q and Zi(σ), h{^) are the lengths of
σ with respect to ^ , Φ*/ respectively, then 1 -ε < /i(σ)//2(σ) < 1 + e. Since
the distance to dJί with respect to Φ*// is exactly Λ/8TΓ2 λ, we conclude that
the distance with respect to p is asymptotic to \/8π2 λ. q.e.d.

Theorem II shows that the metric p is C°-asymptotic to the product metric
Φ*/ as one approaches dJί. It is natural to ask whether this is true for the
derivatives of ^ i.e., is p C'-asymptotic to a product metric? For I = 1
this would imply that dJΐ is a totally geodesic submanifold of ^#, and for
/ = 2 it would additionally imply that the curvature of Jί is asymptotic to
the curvature of the cylinder [0,1] x M. For the case M = S4 the results of
[9] give a complete answer.
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Proposition 5.3. LetJί\ be the moduli space ofk = l instantons on S4

with its standard metric. Then

(a) dJt\ C J?\ is totally geodesic and is C°°-isometric to the (round)

4-sphere of radius 2π (which has constant curvature \/π2),

(b) along Jt\, the sectional curvature of JK\ in any two-plane spanned by

one vector tangent and one vector normal to dΛ!\ is ffj/π2.

Proof. Part (a) is contained in Corollary C of [9]. For part (b) we use the

fact that Jt\ is radially symmetric and conformally flat; i.e., its metric takes

the form φ2(p) Σ^=1(dx{)2 ([9, equation 6.5]; here p = \x\). From this we

deduce that the scalar curvature of Jί \ at the boundary is the limiting value

Soo of s = —4φ~3[2φ" + 8/9" V + Φ~λ(Φ')2], a n ( l fr°m ^ e formulas for φ in

[9] one calculates SQO = §/π2. Then part (a), together with radial symmetry,

implies (b). (A completely different derivation from that in [9] of the metric

on Mi, as well as a different proof of this proposition, appears in [5].) q.e.d.

Proposition 5.3 essentially shows that for M = S4 the metric on the collar

is asymptotic to a product in the C1 topology, but not in the C2 topology.

At present the authors do not know if this is the situation for other M; in

particular whether it is generally true that dJί is totally geodesic.

Appendix

Our description of the geometry of the cones Jί was obtained in §2 by

reducing the problem to one of finite-dimensional Riemannian geometry. The

results of that section can also be obtained directly (indeed, our original proof

of Theorem 1 was completely analytic). Although the geometric approach is

easier and conceptually clearer, it is important to bear in mind the fact that

each statement about the geometry of Jί is equivalent to a statement about

gauge fields on M. In this appendix we illustrate the analytic approach by

giving a second proof of Lemma 2.1. (This proof generalizes that of Theorem

4.9 in [8].)

Lemma A.I . Let J = [Φ, •] be the infinitesimal isotropy representation

(2.3) and assume Hι(M\ R) = 0. Then for any η e T\Aγi = <%A (defined by

(1.13)) we have

(a) (r /,Φd/)=0V/GCo o(M),

(b) The 1-form ω = (77, Φ) G L2(T*M) vanishes pointwise,

(c) J2 = —Id, and T^Jt decomposes as stated in Lemma 2.1.

Proof, (a) The Laplacian Do = d*d+I on functions is an invertible elliptic

operator, so given / G C°°(M), there is a unique h € C°°(M) with Dgft = / .
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Write h = h + ft(x0), where h G C°°(M) vanishes at x0. Then dDgft =

d(f - h(xo)) = df, and hence

(η,Φdf) = (η,ΦdΏs

Qh) = (η,dA(Π0

A)
s(Φh))

= (η,(Πι

AYdA(Φh)).

Since η G %?A is a solution of the distributional equation (1.6), this becomes

and therefore vanishes since h(xo) — 0.

(b) For any / G C°°{M) and ω = (r/, Φ) we have, by (a),

which implies d*ω = 0. Furthermore, d~cj = ( c Γ ^ Φ ) = 0 because d^ty = 0

(η is tangent to the set of self-dual connections). Hence dω = *dω, so d*dω =

— * ddω = 0. Thus ω is a harmonic 1-form and, since H1 (M; R) = 0, we

conclude that ω = 0.

(c) The fact that J 2 = - I d now follows from (b), and the normalizations

| Φ | 2 = 1 and [α, [6, c]] = (α, c)b — (α, b)c discussed at the beginning of §2. The

decomposition of T\A\J? follows as in the proof of Lemma 2.1.
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