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A HARNACK TYPE INEQUALITY FOR CERTAIN
COMPLEX MONGE-AMPERE EQUATIONS

GANG TIAN

0. Introduction

In finding a Kahler-Einstein metric on a compact Kahter manifold (M, g)
with C\{M) > 0, one needs to solve the following complex Monge-Amperέ
equations:

ωg + ddφ > 0, on M,

where ωg is the Kahler form associated with the metric g, ωg = ωg Λ Aωg is
the volume form, 0 < t < 1, ddf = R i φ ) - ^ , JM efω% = fM ω% = Volg(M),
and n = dimM.

While the prior estimates of higher derivatives have been obtained by Yau
[8] for the solutions of (*)t more than ten years ago, little is known about
the supreme norms of the solutions of (*)*. In [7], the author proved that
— infjvr φ is bounded from above by nsup M Φ -f C for any solution φ of (*)*,
where C is a constant independent of φ. Actually, it is implied in the proof
there that C depends only on t. By a completely different method, Siu also
proved a slightly weaker version of the above inequality [6], i.e., for any ε > 0,
there is a constant Ce, depending on the metric g, t and ε, such that for any
solution φ of (*)t — infM φ < (n + ε) supM φ + Cε. In this note, we develop
the idea in the proof of the above Harnack type inequality in [7] and prove
the following theorem.

Theorem 1. Let {M,g) be a compact Kahler manifold with C\{M) >
0, n = dimM. Then for any ψ G C2{M,R) with ωg + ddψ > 0 and

fMef~ti)(jj1g = V o l ^ ( ^ ) ^ the solution φ of (*)t satisfies the Harnack type
inequality

W L{φ •φ){ωβ+dBΦ)n -
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Furthermore, there is a constant C(t) depending only on t such that for t > 0,
the solution φ of (*)t satisfies

(0.2) - inf(φ -φ)< nsup{φ - φ) + C{t).
M M

An interesting and surprising corollary of Theorem 1 is the following.
Corollary 1. There is a universal constant C such that for any Kahler -

Einstein manifold {M,g) with Cχ(M) > 0, i.e., Ric(g) = ωg, and for any C2

function φ with ωg + ddφ > 0, fM e~^ω^ = Vo\g(M), the following inequality
holds:

(0.3) sup φ < -n inf φ + C.

Note that the constant C is computable and the inequality (0.3) is sharp;
for example, one can consider the case (M, g) = (CP n , Fubini-Study metric)
to see the sharpness of (0.3).

1. The proof of Theorem 1

First, we assume that φ € C°°(M, R),ωg + ddφ > 0. Then we can define
a new Kahler metric g such that the associated Kahler form is ωg + ddφ. Put
f = f + log{ωϊ/ω*)-tψ. Then

(1.1) / Λ/J = / e '-*α£ = Volg(M).
JM JM

Rewrite (*)t in terms of ωg and / as follows:

K + d d ( φ - φψ=<*-«+-»«>$,
(ωg -μ dd(φ - φ)) > 0, on M.

In [8], in order to show the uniqueness of Kahler-Einstein metrics on a compact
Kahler manifold with positive first Chern class, Bando and Mabuchi first prove
the solvability of (*)t> for tf < t < 1 under the assumption that (*)t has a
solution. We will apply this idea to the following equations in the first part
of our proof. Precisely, we will first prove that the following equations are
always solvable for 0 < s < t:

(1.3), (ωg

(ωg+ ddθ) > 0, on M.

As usual, we use the continuity method. Define S = {s € [0,£]|(1.3)5> is
solvable for s1 € [s, t]}. Since (1.2) has a solution φ,t G S and S is nonempty.
It is sufficient to show that S is both open and closed. For the openness,
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we should estimate the first eigenvalue of the metric gβ associated with the

Kahler form ωg + ddθ for the solution θ of (1.3)5.

Lemma 1.1. The first nonzero eigenvalue Xi(ge) is greater than s.

Proof. By the well-known Bochner identity (see [1]), it suffices to show

that Kic(g$) is strictly bounded from below by s. From (1.3)s, we have

= R i φ ) - ddf+sddθ

= R i φ ) - ddf - dd log [ ^- I + tddψ + sddθ

= Ric(g) - ddf + tddψ + sddθ

= (1 - i)ωg + [t - s)ωg* -h s(ωg -f ddθ) > sω9θ.

The first variation of (1.3)θ at θ is A9u — —su, where A3 is the Laplacian of

the metric go. Lemma 1.1 implies that the linearized operator Δ s — s of (1.3)s

is invertible; then the openness follows from Implicit Function Theorem.

For the closedness of 5, by the standard theory of elliptic equations [4] and

Yau's estimates of higher derivatives for solutions of complex Monge-Ampere

equations of type (1.3)β, it suffices to estimate C°-norms of the solutions of

Suppose that (1.3)5 is solvable for s E [so,t] and θs is the solution. From

the proof of the openness of 5, one can actually conclude that {θs}3£(So,t] is

a smooth family in C°°(M,β), i.e., θs varies smoothly with s.

Define, as in [1],

L Jiθs)=ί ^ dx

Lemma 1.2 ([1], [2], [7]). (i) (n + l)J(θβ)/n < I(θs) < (n + 1) J{θ9),

(ii) d(I(0β) - J(θs))/ds = -(Volg(M))-1 fMθs{A3θ8)ω%,

where θs = dθ8>/ds'\s>=s, gs is the Kahler metric associated with ωg + ddθ3

and As is its Laplacian.

As a corollary, we have the following lemma which was observed by Bando

and Mabuchi [2] and the author [7].

Lemma 1.3. I{θs) — J ( 7 ί 5 ) is monotonically increasing.

Proof. Differentiate (1.3)5 with respect to s:

(1.4)β Asθs = -sθs - θs.

Substituting (1.4)a into the right-hand side of the formula in Lemma 1.2(ii),

we obtain

<L5» έ
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Write θ9 in the eigenfunction expansion, i.e.,
oo

(1.6) θa = Σ
i=0

where — ΔSU{ = XiUi, 0 = λo < λi < λ2
By Lemma 1.1., λi > s. Hence,

- vόm L

and the lemma is proved.
In the following, we always denote by C the constant independent of s.
Lemma 1.4. There is a constant C > 0 such that for any solution θ3 of

(1.3)5, 0 < s < t, we have supM \θs\ < C.
Proof In [7], we define a holomorphic invariant a(M) on the compact

Kahler manifold M with C\(M) > 0. For any λ < α(M), there is a constant
Cλ, which may depend on the metric g, such that

(1.7) / e-λ(u-supM u) jy- < Cχ for u € C 2(M,β), ω9 + ddu > 0.
JM

In case s e (0, a{M)/{n + 2)], fM e-(n+i)S(08-supM θ9) dy.^c for a con-

stant C. For p > 0,

/ e~p^8~supΛfθ*Uef~
sθa — l)dV~

JM

J M

= /
J M M

> ί f |V(e-p(0β-supM fl
P JM

> (

- — f e~p(θa~8Vίϊ>Mθa) dVg,
V JM
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where c is the Sobolev constant, depending only on (M, g). Using Holder
inequality on the left-handed side of the above, we have

0 ° UV9e-np(θs-supMθs)/(n-l)

e ° ) / n
(1.8) <Cp(ί

Now supM θs > 0, since

Then

Substituting (1.9) into (1.8), we have

(1.10) |e-(β -u^••)]„„/(„_!) <

Put po = ns and p m +i = p m ^ 2 / ( ^ 2 — 1) Then

I
Pm

2 - l \ T O

J

and it follows that

-M(θ, - supθs) = log Qim

i.e., for s e (0, a{M)/(n + 2)], supM |fls| < C.

= / ω%= ί ωn

g = ί ef~~sθ° dV~g > e - θ 8 U p ^ ' / ef~dV~g
JM JM S JM JM

( I e-<n + 1^ dvX* < ( ί e-
\JM ) \JM
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In the case s > α(M)/(n + 2), Ric(^s) > s > a{M)/{n + 2). Then by

Bochner's identity and results of Croke [3] and P. Li [5], we have both the

Sobolev inequality and the Poincare inequality with their constants uniformly

bounded on (M, g3). Since — A3Θ9 > —n, the standard Moser iteration implies

that

(1.11) -mϊθs<C

(also see [7] for details).

On the other hand, by Green's formula on (M, g), it follows that

(1.12) sup(9β< /
M JM

By Lemmas 1.3 and 1.2(i),

(1.13) I(θs) < (n + 1)(I(Θ9) - J(θ9)) <(n + l)(I(θt) - J(θt)) < C.

Since fμβ>0\ θse
f~3θa dVg and f{θs<0\{-θ3)dVg are obviously bounded by a

constant C independent of s, the Lemma follows from (1.11)—(1.13) and the

definition of I(θ3).

Now the closeness of S follows from the above lemma. Hence, (1.3)s is

solvable for 0 < s < t. Then there is a smooth family of {Θ3}o<3 such that

θt = φ — ψ By Lemma 1.2(ii) and (1.4)a, we have

ίI Λ V / M
 S "J Volδ(M)

Differentiating Volj(M) = fMef~3θ' dVs gives

(1.14) / (sθs - θa)ef~-aθ> dV-g = 0.
JM

Hence,

i.e.,

±(s(I(θa)-J(θa)))-(I(θa)-J(θa))
(1.15) dS

- ± ( s ί -θ gϊ—.
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Note that

-n + V*' (n + l)Vol§(M)

= , , i , (Mλ f dθah5θa(n + l)Volg(M) JM

Then it follows from (1.15) and Lemma 1.2(i) that

i.e.,

k J*'J
< ns\xp(φ — ψ),

M

which is just (0.1). The inequality (0.2) follows from Moser's iteration and
the fact that Ric(gt) > t > 0. Hence Theorem 1 is proved. (We refer the
reader to the proof of Lemma 1.4 for details.)

2. The proof of Corollary 1

From (0.2) in Theorem 1, for any φ e C2(M,R) with ωg + ddψ > 0 and

/ M e~Φωg = V o l 0 ( M ) > w e h a v e

(2.1) iφψ) p
M M

where φ is the solution of (*)i and C(l) is a universal constant. Note that
here / Ξ O , since g has been a Kahler-Einstein metric. This implies that φ = 0
is a solution of (*)χ. For φ = 0, (2.1) becomes

inf
M M

Because infΛf(—Ψ) = —supM(^) and supM(—ψ) = — infjvf ψ, Corollary 1 is
proved.
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