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THE LORENTZIAN SPLITTING THEOREM
WITHOUT THE COMPLETENESS ASSUMPTION

GREGORY J. GALLOWAY

1. Introduction

A number of papers ([6], [3], [4], [2]) have been published which address
the problem posed by Yau [10] of establishing a Lorentzian analogue of the
Cheeger-Gromoll splitting theorem of Riemannian geometry. A very satisfac-
tory Lorentzian analogue has recently been obtained by Eschenburg. In [4], he
proves that a globally hyperbolic, timelike geodesically complete space-time
satisfying the "strong energy condition", Ric(X,X) > 0, X timelike, which
contains a (complete) timelike line, "splits" in a sense made precise below.
Prior to Eschenburg's work, Beem et al. [3] proved a Lorentzian splitting
theorem assuming a more stringent sectional curvature condition (analogous
to nonnegative sectional curvature in the Riemannian case). One interesting
feature of their result is that the full assumption of timelike geodesic complete-
ness is not needed; it is only required that the given timelike line be complete.
Timelike geodesic completeness is then derived as a consequence of the as-
sumption of global hyperbolicity, the sectional curvature condition, and the
completeness of the line. This suggests that there may be some redundancy
in the hypotheses of Eschenburg's theorem.

The purpose of this paper is to prove the Lorentzian splitting theorem for
globally hyperbolic space-times obeying the strong energy condition, without
the assumption of timelike geodesic completeness; i.e. our aim is to prove the
following

Theorem. Let (M, g) be a connected globally hyperbolic space-time which
satisfies Ric(X, X) > 0 for all timelike vectors X. If (M,g) contains a com-
plete timelike line η then it is isometric to (R x S, -dt2Θh), where (5, h) is a
complete Riemannian manifold, and the factor (R, -dt2) is represented by η.

Eschenburg uses the assumption of timelike completeness in a number of
crucial ways. Consequently, the proof of the above theorem requires some new
observations and techniques. At the same time, in devising a method of proof,
we were strongly influenced by Eschenburg's work. In particular, our proof
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relies on several results obtained in [4] which do not require the completeness
assumption.

As in [3] and [4], our proof involves an analysis of the Lorentzian Busemann
functions b*- associated to the given line 7. The key step in the proof of the
Cheeger-Gromoll splitting theorem of Riemannian geometry is to establish the
subharmonicity of the Busemann function associated to a ray. The proof of
this makes use of the theory of elliptic operators as applied to the Riemannian
Laplacian. This approach does not carry over to the Lorentzian case because
the Lorentzian Laplacian is hyperbolic, not elliptic. The papers listed in the
first paragraph overcome this difficulty in different ways. (The methods of
[6] and [2] do not involve Busemann functions at all.) The approach taken
here is to consider b^ restricted to a maximal spacelike hypersurface Σ having
edge(Σ) contained in the level set {&+ = 0}. Since the induced Laplacian along
Σ is elliptic, maximum principle techniques apply. Using such techniques, we
establish a basic convexity result (Lemma 2.4) which enables us to show that
the level sets {6± = 0} are smooth spacelike hypersurfaces which agree near
7(0). From this fact and a second (related) convexity result (Lemma 2.1)
we are able to establish the splitting of a tubular neighborhood of 7. To
obtain a global splitting, one can then proceed as in [4] with only minor
modifications. The existence of the maximal hypersurface Σ is guaranteed by
new results of Bartnik [1] concerning the existence and regularity of solutions
to the Dirichlet problem for the prescribed mean curvature equation with
rough boundary data.

In the next section we summarize some known, and establish some new,
properties of the Lorentzian Busemann function. The proof of the splitting
theorem is presented in §3. We refer the reader to Hawking and Ellis [8] for
causal theoretic notions used but not defined below.

2. The Lorentzian Busemann function

Throughout this section let (M,g) be a globally hyperbolic space-time.
The Lorentzian distance function d: M x M —• R is continuous and obeys the
reverse triangle inequality ("RTF): for all p,q,r € M with p<q<r,

(2.1) d(p,r)>d(p,ς) + dfa,r).

A future directed timelike ray is a future directed, future inextendible unit
speed timelike geodesic 7: [α, /) —• M which realizes the distance between any
two of its points. If / = 00, we say 7 is future complete. Although the results
of this section are stated for future directed rays, obvious analogues of these
results hold for past directed rays, as well.
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Let 7: [α, 00) —• M be a future complete timelike ray, and set 7(7) =

7+(7(0)) Π I ~ { Ί ) . The Busemann function b:I(η) —• M associated to 7 is

defined as follows. For each r > α, define the function br: M —• IR by,

br(x) = r-d(x,Ί(r)).

For x G 7+(7(α)) Π 7~(7(r)), 6r(x) is decreasing in r and bounded below by

d(η(a),x) + α. Thus, limr_+oo 6 r(z) exists and, by definition, is b(x). From

the RTI one easily derives

(2.2) br{q)>br{p) + d(p,q) V7(α) < p < q < 7(r),

which in the limit r —• 00 gives

(2.3) b(q) > b(p) + d{p, q) Vp, <? € 7(7), p < <?.

An asymptote to 7 from p G 7(7) is a future inextendible causal geodesic
ray a: [0, /) —• M, with α(0) = p, which arises as a limit as rn —• 00 of maximal

timelike geodesic segments from p to 7(r n ) . In general, an asymptote may

be null, and need not be future complete, even though the segments defining

it become arbitrarily long. Assume a: [0, /) —• M is a (unit speed) timelike

asymptote to 7. Using the RTI, one can derive the inequality

(2.4) b(x) < s - φ , a(s)) + 6(α(0)), 0 < s < /,

for all x G 7(α). Setting x = a(t) in (2.4), t < s, the resulting inequality, used

in conjunction with (2.3), gives

(2.5) b{a(t)) = t + 6(α(0)) W G [0, /).

Moreover, it can be shown (see [4]) that b is differentiate at a(t) if t > 0, and

Vb(a(t)) = —af(t). It follows that timelike asymptotes to 7 emanating from

different points cannot intersect (unless one is contained in the other).

In the proof of some of the lemmas to follow, and in the next section we will

have occasion to use the notion of local support functions. Given a continuous

real valued function /, g is said to be an upper (respectively, lower) support

function of / if g is continuous in a neighborhood of p, g > f (respectively,

g < / ) , and g(p) = /(p).

Although not used explicitly here, we note that br is a continuous time

function on 7~(7(r)) and, for c < r, the level set {br = c} is a partial Cauchy

surface (i.e. is acausal and edgeless) in 7~(7(r)). We will need to make use of

some causal properties of the Busemann function b. Observe from (2.3) that

the level sets {b = c] are achronal in 7(7). Later we will show that near 7

the level sets of the Busemann function are acausal and edgeless, and hence,

in a weak sense, spacelike. Our first lemma establishes one of the two basic
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convexity results alluded to in the Introduction. For this lemma we assume b

is smooth and has spacelike level sets.

Lemma 2.1. Assume M obeys the strong energy condition, Ric(X,X) >

0, X timelike. Let b be the Busemann function associated with the future

complete ray 7. Assume b is smooth on an open set U C /(7) with unit

timelike gradient. Then Δ6 < 0 on U.

This lemma is a Lorentzian analogue of the well-known result of Rieman-

nian geometry that in a complete Riemannian manifold with nonnegative

Ricci curvature, the Busemann function associated to a ray is subharmonic

(in the sense of continuous functions). We give a geometric proof based on

the relationship between the Laplacian of a function and the mean curvature

of its level sets.

Before proceeding to the proof, we recall a basic fact concerning the Lapla-

cian of the Lorentzian distance function (see [4]). Define dq:I~(q) —• R by

dq{x) =d{x,q).

Lemma 2.2. dq is smooth on I~{q) outside the cut locus of q and,

provided M obeys the strong energy condition, Adq > — (n — l)/dq, where

n = d imM.

We remark that along each level set {dq = c} (and away from the cut

locus of q), Adq is the negative of the mean curvature of the level set with

respect to the future directed normal. (We use the sign convention in which

positive mean curvature corresponds to mean contraction of the spacelike

hypersurface.)

Proof of Lemma 2.1. Suppose Δ6(p) = H > 0 for some p € U. For some
r o > 0 , p G I " (7(7*0)). Set Uo = t/nJ-(7(7-0)). Let c = b(p) and consider the
smooth spacelike hypersurface Σ = {b = c} ΓϊUo Since br [ 6, Σ C {br > c}

for all r > r0. Let H^, denote the mean curvature of Σ with respect to the

future pointing normal. Since V6 has unit length and (as follows from (2.3))

is past directed, we have Δ6 = H^ along Σ.

Choose a point q G / + (p) Π Uo sufficiently close to p so that Hχ(x) > H/2

for all x G Σ Π I~{q) Deform Σ in a small neighborhood of p to obtain a

smooth spacelike hypersurface Σ' with the following properties:

1. A = Σ'\Σd-{q).

2. AΠl-{p)^0.

3. JT Σ /(z)>#/3fora l l z€A
Since br(p) [ c one easily shows using (2.2) that A meets {br < c} for all

sufficiently large r. Thus, for such r, br\γ,ι achieves an interior minimum c' < c

at some point z E A, and hence Σ' C {br > c'}.

Note that d(z,η(r)) —r-c1. Let ηr: [ 0 , r - c ' ] ^ M b e a maximal geodesic

segment from z to 7(7-). Set yr = ηr((r - c')/2), and define the function
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βr(x)=r-[(r-c')/2 + d(x,yr)].

βr is smooth near z, and βr(z) = c'. Furthermore, the RTI implies that
βr > br. Thus, near z, Σ r = {βr — c'} is a smooth spacelike hypersurface
which meets Σ' tangentially at z, and lies to the past of Σ'. The maximum
principle then requires

On the other hand, by Lemma 2.2,

z) < 2(n - l)/(r - c') < 2(n - l)/(r - c).

Noting that this last inequality is valid for all large r, we obtain the desired
contradiction. Thus, Δ6 < 0 on U.

We now consider some properties of b which are valid near the ray 7. An
open set U C I{η) is said to be nice (with respect to 7) if there exist constants
K > 0 and T > 0 such that for each q G U and r > T, any maximal unit
speed geodesic segment σ from g to η(r) satisfies

where 00 is some fixed Riemannian metric on M. We summarize some facts
concerning nice neighborhoods:

1. For each t > α, η(t) is contained in a nice neighborhood.
2. Asymptotes to 7 from points in nice neighborhoods are timelike.
3. {br} converges locally uniformly to b on nice neighborhoods, and hence

b is continuous on nice neighborhoods.
Properties 1 and 3 are proved in [4], and property 2 is a simple consequence

of property 1. The next lemma establishes some causal properties of the
Busemann function in nice neighborhoods which will be needed in the proof
of the splitting theorem.

Lemma 2.3. Let U be a nice neighborhood. Then the level set {b = c},
if it meets U, is a partial Cauchy surface in U, i.e., is closed, acausal and
edgeless in U.

Proof. Let Σ c = {6 = c} Π U. Since b is continuous in {/, Σ c is closed in U.
Equation (2.3) implies that Σ c is at least achronal. Indeed, (2.3) shows that b
is strictly increasing along future directed timelike curves. This fact and the
continuity of 6 in U easily implies that Σ c is edgeless in U. It remains to show
that Σ c is actually acausal.

If Σ c is not acausal then there exists a pair of points p,q eΣc and a null
geodesic η joining p to q. Since q is in a nice neighborhood, there exists a
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sequence of maximal segments an from q to η(rn) (rn | oo) which converges

to a timelike geodesic ray a to q. By cutting the corner of the broken geodesic

η U an (and comparing with the corner of η U a) we see there exists an ε > 0

such that for all n sufficiently large,

M ? ) ~ brn{p) = d{p,η(rn)) - d{q,η{rn)) > ε.

This contradicts b(p) = b(q).

The next lemma is the key convexity result used in the proof of the splitting

theorem.

Lemma 2.4. Assume M obeys the strong energy condition, Ric(X,X) >

0 for all X timelike. Let Σ be a connected smooth spacelike hypersurface

contained in a "sufficiently smalΓ nice neighborhood of η{t), t > a. Assume

the mean curvature of Σ is nonnegative, H^ > 0. If b achieves a minimum

along Σ then b is constant along Σ.

What is meant by "sufficiently small" will be explained in a moment. Our

proof of Lemma 2.4 makes use of a technical lemma, whose proof we relegate

to an appendix. For the purpose of stating the technical lemma we introduce

the following notation. Suppose q G I~(η(r)). Let ηqy> [0,/ς>r] —• M be any

unit speed maximal geodesic segment from q to 7(7*). Define the function

d°y.I-(Vq,r(s))^U by

The Technical L e m m a . For r 0 > t > a, there exists a nice neighbor-

hood U C /~(7(7*0)) of η(t)a with the following property: For any compact

spacelike hypersurface with boundary S contained in U, there exist constants

C > 0, r > 0, and r\ > 7*0, such that for each q G S and r > r\, there exists

a maximal geodesic segment ηq,r from q to η(r) such that

(2.6) Hessd; t r ( t i ; , t i ; )>-C

for all w € TqS with g(w, w) < 1, and for all s, r < s < lq,r.
It is well known (see e.g. [4]) that s —• Hessc^ r(w, w) is an increasing func-

tion of s. The significance of the lemma is that the quantity Hessd* r(w, w)
can be bounded from below uniformly in q and r.

Proof of Lemma 2.4. The proof is a maximum principle type argument. Let
U C /-(7(7*0)) be the nice neighborhood of η(t) guaranteed by the technical

lemma. Take "sufficiently small" to mean that Σ c U. Assume b achieves a

minimum b(q) = a at q G Σ. We claim that b — a in a neighborhood of q in

Σ. Suppose not. Then there exists an open coordinate ball B C Σ centered

at q such that dB φ d°B, where

d°B = {xedB:b{x)=a}.
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The technical lemma applied to S = B ensures the existence of a constant
C = C(B) such that (2.6) holds for all xeB, for all r large, for all w e TqB,
g(w, w) < 1, and for all relevant s.

Note that b > a on dB\d°B. Choosing B sufficiently small, we can con-
struct a smooth function h on Σ such that

(i) h(q) = 0,
(ii) |VΣΛ| < 1 on ΰ , where VΣ is the gradient operator on Σ,

(iii) ΔΣ/ι < — D on B, where D is a positive constant and Δ Σ is the induced
Laplacian on Σ, and

(iv) h > 0 on d°B.
For details of this construction, see [5].

Consider the function fε = b + εh. Observe that fε(q) = α, and for ε
sufficiently small, fε>aon dB. Now consider for r large the function fε,r =
br + εh. Since fε,r > fε and /ε,r(^) I α, /e,r(^) < fε,r\dB for all large r. Thus,
for such r, /ε>r achieves a minimum on JB, at p, say.

Let ηr: [0,1} —• M be the maximal geodesic segment from p to 7(r) guaran-
teed by the technical lemma. We get from the RTI that / > r — ro, and hence
for r sufficiently large, 1/2 > r. Set yr — ηr(l/2). From the RTI we see that
the function βpy. I~(yr) —• R defined by

is an upper support function of br at p. The function φε^r = βp,r -f ε/i is thus
an upper support function of / ε ? r at p. Hence, in some neighborhood of p,
<£>ε}r is smooth and achieves a minimum at p. We obtain a contradiction by
computing As^, r (p) and showing it is negative for ε sufficiently small and r
sufficiently large. To begin, we have,

(2.7) Δ Σ ^ ε , r (p) = ΔΣ/?p,r(p) + εΔEΛ(p).

The formula relating Δ Σ to the space-time Laplacian Δ gives

(2.8) ΔΣ/?p,r = Δ/?p>r - tfΣ(V/?p,r,7V) +Hess/?p,r(7V, TV),

where iV is the future directed normal to Σ. From Lemma 2.2 we have

Δ/?p,r(p) < (n - l)/d(p, yr) = 2(n - 1)//
( ' } < 2 ( n - l ) / ( r - r 0 ) ,

since Z > r - r0. The equations VΣ<pε,r(p) = 0 and V/?p,r(p) = r/J.(O) imply
that N = (Niη'riO))'1 [-»?r(0) + £^ΣΛ] at p. A computation, using this
expression for N, shows

Hess/?p,r(7V,ΛΓ)|P = ε2(N,η'MT2 ' Hess/?p,r(VΣΛ, VΣΛ)|P
1 1 0 J < Cε2,



380 GREGORY J. GALLOWAY

where the inequality follows from the technical lemma, property (ii) of Λ, and
the reverse Schwarz inequality (which implies \(N,η'r(0))\ > 1). By substi-
tuting (2.9) and (2.10) in (2.8) and using the mean curvature assumption we
obtain

Δ Σ / ? p , r ( p ) < 2 ( n - l ) / ( r - r 0 ) + Cε2.

Substituting this inequality into (2.7) and using property (iii) of h gives

ΔΣ^ ε, r(p) < 2(n - l)/(r - r0) + Cε2 - Dε.

For ε sufficiently small and r sufficiently large, the right-hand side of the above
inequality is negative, and hence ΔΣ^e, r(p) < 0, which contradicts the fact
that φεj has a minimum at p. Thus, we have shown b = a in a neighborhood
of q in Σ, and hence, by connectivity, b = a along Σ.

In the next section we also make use of the following immediate consequence
of Lemma 2.4.

Corollary 2.5. Let Σ be a smooth maximal spacelike hypersurface whose
closure is contained in a sufficiently small nice neighborhood U ofη(t), t > a.
Assume Σ is achronal in U and Σ is compact. //edge(Σ) C {b > c}, then
Σc{b>c}.

This corollary is a Lorentzified rigid generalization of a result of Schoen
and Yau [9, Lemma 4],

3. Proof of the Splitting Theorem

A timelike line 7: (c, d) -+ M is an inextendible timelike geodesic which
realizes the distance between each pair of its points. If c = —00 and d = 00,
we say 7 is complete. Let 7: R —• M be the given complete timelike line.
Without loss of generality we may assume that 7 is future directed. Let —7
denote 7 with the opposite orientation, —η{t) = η{—t) for all ί e R . For each
r, define the functions 6̂ ", b~ by

b+(x) = r - d(x,7(r)), b~{x) = r - d(-Ί(r),x).

On 7(7) = /+(7) Π /~(7), we define the Busemann functions 6+ and b~
associated to 7 and —7, respectively, by b± = limr_>oo6^:. (As follows from
the discussion in §2, these limits exist.) Since 7|[α,oo) a n ( i ~7|[α,oo) are rays
for any α, it is clear that the results of §2 concerning the Busemann function
b apply in an obvious way to 6+ and b~. The RTI can be used to show

(3.1) & + + & - > 0 on 7(7),

with equality holding along 7.
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Let U be a sufficiently small nice neighborhood of 7(0) (in the sense of §2)
with respect to both 7 and - 7 . Consider the level sets S± = {ft* = 0} Π U.
By Lemma 2.3, 5 + is a partial Cauchy surface in U. In particular, S+ is
an imbedded topological submanifold of codimension one. Let W be a small
coordinate ball in S+ centered at 7(0), whose closure is contained in S+.
We now invoke Bartnik's fundamental existence result [1, Theorem 4.1]. This
result implies that there exists a smooth maximal spacelike hypersurface Σ
such that Σ is achronal in [/, Σ is compact, edge(Σ) = edge(W), and Σ meets
7. (The acausality of S+ ensures that the singularity set of Σ as defined in
[1], where Σ can fail to be smooth, is empty.)

We have edge(Σ) c {b~ > 0}. Applying Corollary 2.5 to both 6+ and ίΓ",
we conclude Σ C {&+ > 0} Π {b~ > 0}. This forces Σ to meet 7 at 7(0). Since
6+(7(0)) = b~ (7(0)) = 0, Lemma 2.4 then implies that

(3.2) 6+ = b~ = 0 along Σ.

Let B C Σ be a geodesic ball of radius R in Σ centered at 7(0). We
presently establish a series of claims which leads to the conclusion that a
neighborhood of 7 is isometric to (R x B, —dt2 Θ 9\B)- From each point of
B there exist timelike asymptotes α + : [0, d) —• M and oΓ: [0, c) —• M to 7
and —7, respectively. Let a: (—c,d) —• M be the (possibly) broken geodesic
defined by

r ( - ί ) , -c<t<0,

t+{t)i 0<t<d.

Claim 1. b+{a{ή) = ί, 6"(α(0) = -*, and a is a line.
Proof. This is essentially proved in [4]. For the sake of completeness (and

because it is not too hard!) we briefly sketch the proof here. Using (2.3) and
(3.2) we obtain b+{a~(t)) < -t. From (2.5) and (3.2) we get 6"(α"(ί)) =
t. Adding this equation to the previous inequality and using (3.1) gives
(6+ + b~){a-(t)) = 0. If t > 0, (2.5) and (3.2) imply 6+(α(ί)) = t. If
t < 0, then

b+(a(t)) = b+(a-(-t)) = -b-(a-(-t)) = t.

Thus, b+{a(t)) = t and, similarly, 6"(<*(*)) = ~t for all t G (-c,d). For
t\ < 0 < £2, the length of

(by (2.3)), which shows that a is a line.
C/αzra 2. α is a normal geodesic to B.
Proof. As follows from (2.3), the functions bfr defined by
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are upper and lower support functions, respectively, of 6+ at q = α(0) for
r > 0 sufficiently small. It follows that 6+ is differentiable at q, and Vb+(q) =
-α/(0). The claim follows by noting that Vb+(q) is perpendicular to B.

Consider the normal exponential map E: U —• M of B defined by

E(t,q) = exptNq,

where N is the future directed unit normal field along B. Here it is understood
that U is the largest possible subset of R x B on which E can be defined. U
is of the form

U = {(£, q) e R x B: -cq < t < dq},

where aq: (—cq,dq) —» M is the future directed normal geodesic to B such
that α9(0) = q. U is necessarily open.

C/αim 3. t/' = i?(f7) is open and E: U —• t/7 is a diffeomorphism.
Proo/. We need to show E is injective and nonsingular. E is injective

iff the normal geodesies to B do not intersect. The future directed normal
half-geodesies issuing from B are asymptotes to 7 (by Claim 2) and hence,
as observed in §2, do not intersect. Similarly, the past directed normal half-
geodesies to B do not intersect. Also, future and past directed normal half-
geodesies cannot intersect without violating the achronality of {6+ = 0}.
Hence, E is injective.

E is nonsingular iff there are no focal points to B along its normal geodesies.
Let a: [0, d) —• M be the future directed normal geodesic to B issuing from
p € B. Suppose there is a focal point to B along a. Let a(ά) be the first
focal point to B along a. Then there exists a neighborhood V C R x B of
[0,α) x {p} such that E:V -• V, V1 = E(V), is a diffeomorphism. By Claim
1, b+\γ satisfies b+(exptNq) = ί, i.e., 6+ is just the time coordinate associated
with the normal exponential map. In particular, b+ is smooth on V, and Δ6+

along Σt = {6+ = t} Π V is the mean curvature //χ;t of Σt Hence, by Lemma
2.1, ίf^t 5ί 0 along α|[o,α) But since a(a) is a focal point to B along α, we
must have limsup t_α Hχt = 00. Thus, there are no focal points to JB, and E
is nonsingular.

Claim 4 (Local Splitting). U = Rx B and E:U —• f/' is an isometry.
Proo/. We have shown that E: U —» U' is a diffeomorphism. By Claim 1,

6+: {/ —> R, 6~: [/ —• R are given by

b±{exptNq) = ±t

In particular, 6+ and b~ are smooth. Hence Lemma 2.1 implies that Δ6+ < 0
and Ab~ < 0 on U. But since 6+ = -6~, we conclude that Δ6+ = 0 on
ί7. Since V6+ is the (past directed) unit tangent vector field to the normal
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geodesies of B, b+ obeys the well-known formula

-V6+(Δ&+) = Ric(V6+, V6+) + |Hessδ+|2.

This equation, together with the strong energy condition and the vanishing

of Δ6+, implies that Hess 6+ = 0 on U. Thus, V6+ is parallel on U, and it

follows that E: U —• Uf is an isometry.

We now show that U = R x J5, i.e., that the normal geodesies to B are

complete. Introduce the coordinates (£, x) on [/, where the coordinates x =

(x1, ,xn~1) come from normal coordinates in B in the obvious manner,

and t is the time coordinate associated with the normal exponential map (i.e.,

t = 6+). In what follows we will freely confuse a point in U with its (£, x)

coordinates.

Fix r > R, where, recall, i? is the radius of B. Let σ: [0, i?) —• B be any

radial geodesic in B. Let α s : [0, /s) —• M be the unit speed future inextendible

normal geodesic starting at σ(s); hence as(0) = σ(s) and the length of α 5 is ls.

a9 has the trivial coordinate representation as(u) = (u,σ(s)), u G [0, ls). To

show that the normal geodesies are future complete, it is enough to establish

the inequality

(*) la > r - s

for all s G [0, R). Indeed, since r can be taken arbitrarily large, it must be

that ls = oo, i.e. αs must be future complete.

To establish (*) for all s G [0,i2), introduce the set

A = {t G [0, R): (*) holds Vs G [0, t]}.

Since αo = 7|[o,oo)> 0 G A, and hence A is nonempty. Let α = sup A. The

aim is to show that α = R. Suppose to the contrary α < R. We show that

α € A. In showing this we may assume α > 0, since we have already observed

that 0 G A. By the definition of α, l3 > r - s for all s G [0, o). Thus the curve

??: [0, α) —• M, given in coordinates by η(u) = (r — u,σ(u)), is defined. Using

the local product structure of U' one easily verifies that η is a past directed

null geodesic starting at η(0) = η(r).

We claim that αα: [0,/α) -• M has length lα > r - α. If not, then for

5 G [0, α),ls>lα. Hence, for all 5 G [0, α) and for all t G [0, /α), αβ(ί) is defined,

and by the continuity of the normal exponential map, αα(t) = limθ—α αs(t).

Now, for all s G [0, α),

α β (0 < αθ(r " *) = (r ~ s,σ(s)) = ry(s) < 7(r).

Since J~(7(r)) is closed, we conclude that αα(t) G J~(l(r)) for all ί G [0, Zα).

This implies that αα is imprisoned in the compact set J+(σ(α)) Π «/~(7(r))?

a contradiction to strong causality.
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Hence, we must have la > r - a, and so a G A. But then, by continuity
properties of the normal exponential map, there exists a δ > 0 such that for
all s G \a,a + <5], ls > r — a > r — s, which contradicts the definition of α. Thus,
we must have a = R, and (*) holds for all s G [0, i2). As discussed above,
this implies that the normal geodesies to B are future complete. A similar
argument shows that the normal geodesies are also past complete, and hence
Claim 4 is established.

To achieve a global splitting from the local splitting result, one can proceed
as in §7 in [4] with only minor modifications. In fact, all the results of that
section remain valid without the timelike completeness assumption, and only
the proof of Proposition 7.1 is affected.

Given two (complete future directed timelike) lines 71 and 72, Eschenburg
defines what it means for 71 and 72 to be parallel, and then shows that
every point of M lies on a unique line parallel to the given line 7. The
global splitting is then easily obtained. Eschenburg's notion of parallel lines
is defined in terms of flat strips. A flat strip is defined to be a totally geodesic
isometric immersion / of (R x /, — dt2 + ds2) into M, for some interval /, such
that / |R X { S } is a complete timelike line for each s G /.

Eschenburg's Proposition 7.1 asserts that if 7 is a complete timelike line
in a globally hyperbolic space-time M and σ: [0,1] —• M is any geodesic with
σ(0) = 7(0), then there exists a flat strip containing 7 and σ. His proof
works without the assumption of timelike geodesic completeness provided one
makes the following additional observation: Suppose there is a flat strip /: R x
[0, a) —• M containing 7 and σ\[o,υ) s u c n that for all ί, η(t) = /(£, 0), and for all
u G [0,v), σ(u) = /(b,m«), where fc,ra G R and a = mv. Parallel translate
7;(0) along σ to σ(υ), and call the resulting vector X. Let 7^: (α, b) —• M
be the inextendible geodesic satisfying 7(,(0) = X. Then ηυ is complete, i.e.,
α = —oc, b = 00. Indeed, suppose b < 00. Then for each t G (α,6), 7υ(ί) can
be reached in the limit by a sequence of points of the form f{tn,sn), where
tn < kv + b. Using the geometry of (R x [0, α), —dt2+ds2), we see there exists
a number τ > kv + b such that ηυ C J~{Ί{T)), which contradicts the global
hyperbolicity of M: either J+(ηv(Q)) Π J~{Ί{T)) is noncompact or there is a
strong causality violation. Hence, b = 00, and similarly a = —00, i.e., 7^ is
complete. With this observation, Eschenburg's proof of Proposition 7.1 goes
through unaltered. Thus, having established the local splitting result (Claim
4), we obtain, via §7 in [4], the desired global splitting.

We make some concluding remarks. In [7] a splitting theorem is obtained
for space-times which contain a maximal hypersurface S and an S-ray, i.e., a
ray which realizes the distance to S from each of its points. The techniques
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of the present paper can be used there, as well, to eliminate the assumption
of future timelike completeness.

We wish to point out that the Lorentzian splitting problem in the form
posed by Yau [10] is still open. The reason for this is that Yau does not
make the assumption of global hyperbolicity, but instead assumes that space-
time is geodesically complete. Although the assumption of global hyperbol-
icity in Lorentzian geometry is perfectly natural (and, in some sense, more
natural than the assumption of geodesic completeness), Yau's statement of
the Lorentzian splitting problem parallels more closely the statement of the
Riemannian splitting theorem. We believe Yau's statement of the Lorentzian
splitting problem to be true. Some evidence for this is provided in [7]. Finally,
the physical motivation for establishing a Lorentzian splitting theorem was to
study rigidity phenomena within the singularity theory of general relativity.
More specifically, the aim is to prove some of the singularity theorems with-
out having to invoke conditions like the so-called "generic condition". The
papers [6], [2] address this issue more directly. Some of the questions relating
to singularity theory in this context are still open (see e.g. Conjecture 2 in
[2]). To apply the Lorentzian splitting theorem to these questions, one needs
to establish the existence of a timelike line in space-time under sufficiently
general circumstances.

Appendix

Here we present the proof of the technical lemma stated in §2. The proof
makes use of the following proposition.

Proposition. Let η: [α, oo) —> M be a timelike ray in a globally hyperbolic

space-time M. For each positive integer n, let βn be a maximal geodesic

segment from pn G I-(η(rn)) to 7 ( r n ) . If pn -+ η(0) and rn -> oo, then

The proposition follows from the RTI: assuming the conclusion is false, one
can use the RTI to establish the existence of a cut point to 7(0) along 7|[o,oo)
We omit the details.

Proof of the technical lemma. Fix a Riemannian metric 00 on M. Let f/o
be a nice neighborhood of η(t) contained in / " (7(7*0)). Let p = η{t), and for
some r > 0, let p1 = η{t + r). We have p1 = expX, where X = τη'{t). Let
V C TUo be a neighborhood of X such that exp is defined o n F . By choosing
r, [To, and V sufficiently small, we can ensure that the map D: C/o x V —> R
defined by

D(x,υ) = d(x,expv)
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is smooth and positive. For v G F , let pυ:Uo —• R be defined by pυ(x) =

D(:r,expι;). Then the map V x TC7 —• R defined by (v,tι;) —• Hess/)v(w, w)

is smooth. Thus, there exist C > 0, a neighborhood Vi C V of X and a

neighborhood U\ C Uo of p such that,

(Al) Resspv{w,w) > -C

Vv G Vi and Vw G Tf/i with g o ( ^ w) < l

Consider the function F: [r0, oo] x U\ —• Γi7i defined as
wβ) r<0O

, r = oo,

where ryg>r: [0, ίg,r] —> M is any maximal geodesic segment from q to η{r).

The proposition implies that F is continuous at (oo,p). Thus, there exist a

neighborhood U C U\ of p and ri > TQ such that F([ri,oo} x U) C Vi. In

other words, we have shown that Vr > ri and V^ G C/, 3 a maximal segment

77g)Γ from ρ to η(r) such that (Al) holds for v = τn'qr(0) and Vw G Tf/ with

go{w, w) < 1. But for this value of v, ρv(x) = d(x,ryQ>r(r)). Thus, we have

Vr > r\ and Vg G ί7, Ξ a maximal segment r/g>r from ^ to η(r) such that (2.6)

holds for s = r and Vw G Tί7 with go(w, w) < 1. Since, for fixed w G T g M,

s —> Έίessd*r(w,w) is increasing on [r, / ς > r ) , we conclude that Vr > r\ and

Vς G ί/, 3 a maximal segment ηq,r from q to ^(r) such that (2.6) holds

\/w G TqM with go{w,w) < 1 and Vs G [r, ZqίΓ). The technical lemma now

follows by restricting to S and observing that the Riemannian norms induced

by <7oIs and g\s are uniformly equivalent on S.
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