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RIGIDITY OF NONNEGATIVELY CURVED
COMPACT QUATERNIONIC-KAHLER MANIFOLDS

BENNETT CHOW k DEANE YANG

0. Introduction

We prove the following (see §1 for definitions).
Theorem 1. Let M be a compact quaternionic-Kάhler manifold with pos-

itive (nonnegative) quaternionic bisectional curvature. Then M is HPn with
the standard metric (a quaternionic symmetric space).

This generalizes a result of M. Berger [3], who obtained the same conclusion
assuming that M has positive sectional curvature. Also, since quaternionic-
Kahler manifolds are Einstein (but not Kahler!), Theorem 1 is analogous
to results of Goldberg-Kobayashi [6] and Mok-Zhong [14] which state that
a compact Kahler-Einstein manifold with positive (nonnegative) bisectional
curvature is isometric to CPn (a hermitian symmetric space).

The idea of the proof is to study the twistor space 3, which is the space of all
almost complex structures on M compatible with the quaternionic structure.
On 3 there are a natural almost complex structure and hermitian metric. S.
Salamon [16] showed that the complex structure on 3 is integrable, and if M
has positive scalar curvature (suitably normalized), then the metric on 3 is
Kahler-Einstein with positive scalar curvature. For example, if M is HP n ,
then 3 is C P 2 n + 1 with the Fubini-Study metric.

Theorem 1 then follows from:
Theorem 2. Let M be a quaternionic-Kάhler manifold with positive scalar

curvature.
(a) M has positive {nonnegative) quaternionic bisectional curvature if and

only if 3 has positive (nonnegative) holomorphic bisectional curvature.
(b) M is a symmetric space if 3 is locally symmetric.
Proof of Theorem 1. By Theorem 2, 3 is a Kahler-Einstein manifold with

nonnegative holomorphic bisectional curvature. By the theorem of Mok-
Zhong [14], 3 must be a symmetric space. Thus, so is M.

When the bisectional curvature of 3 is positive, the theorem of Goldberg-
Kobayashi [6] implies that it is isometric to C P 2 n + 1 with the standard metric.
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By Wolf's classification of quaternionic symmetric spaces [19] and their twistor

spaces, it follows that M is HPn with the standard metric, q.e.d.

In §§1-2 we recall the definition of a quaternionic-Kahler manifold and the

construction of the twistor space 3; in §§3-6 the method of moving frames on a

Riemannian submersion and Alekseevksii's characterizations of the curvature

of a quaternionic-Kahler manifold are used to compute the curvature of 3

Theorem 2 then follows easily. In §7 we apply Theorem 1 to the classification

of Riemannian manifolds with nonnegative curvature operator.

We would like to thank the following people for the help they have given

us: R. L. Bryant, H. D. Cao, R. S. Hamilton, G. Huisken, M. Micallef, P.

M. Wong, and S. T. Yau. We thank the referee for pointing out errors and

omissions in an earlier version of this paper.

1. Preliminaries

The setup here follows that of [16].

Let H be the quaternions and identify R4 n = Hn. Let H act on the right;

this defines an antihomomorphism

λ: {unit quaternions} —• SO(4n),

where SO(4n) acts on the left. Denote the image by Sp(l). Define

Sp(n) = {Ae SO(4n) | AB = BA, B e Sp(l)},

and Sp(n) Sp(l) to be the product of the two groups in SO(4n). Abstractly,

Sp(n)Sp(l) = (Sp(n)xSp(l))/Z a.

We shall use the isomorphism

R4n , Ljn
—• Π ,

[V , U , V , V Jl—• [V -\-IV ~r JV -η-KV J,

where 1 < a < n. Using this, a matrix A in the Lie algebra sp(n) sp(l) is of

the form

AQ —A\ — a\ —A<ι — a2 —As — as

A2 + θ2 ^ 3 ~~ a3 AQ —A\ + a\

where AQ = —ιAQ,Aμ =* Aμ, 1 < μ < 4, are n x n matrices, and 01,02,03

are scalar multiples of the identity matrix.

Definition. Let n > 2. A smooth, oriented 4n-dimensional riemannian

manifold M is quaternionic-Kahler if its holonomy group lies in Sp(n) Sp(l) C

SO(4n).
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Observe that the definition is meaningless when n = 1 because Sp(l) Sp(l)

= SO(4n).

M is quaternionic-Kahler if and only if its bundle 7M of oriented orthonor-

mal frames can be reduced to a principal Sp(n) Sp(l)-bundle P so that the

Levi-Civita connection on FM drops down to P. In other words, given any

section (e^) of P, the associated so(4n)-valued connection 1-form [ujg] is really

sp(n)sp(l)-valued.

Recall that on an almost complex manifold, there is a natural action of

C on the tangent space. A quaternionic (-Kahler) manifold does not have a

canonical H-action. Given a frame (e>i) G Px, x G M, we can identify

(12) r , M = H»,
V ' ; vAeA H-> [va + ivn+a + jυ2n+a + kυSn+a),

and have H act on the right. A 4-plane in TXM is quaternionic if it corresponds

to a quaternionic line in Hn . This does not depend on the frame (e^) chosen.

Recall that the Riemann curvature on a Riemannian manifold M defines a

quadrilinear map

R: TM x T*M x T*M x T*M - R.

Given a 2-plane σ in the tangent space, the sectional curvature of σ is defined

to be R(X,Y,X,Y), where ΛΓ, Y form an orthonormal basis of σ. If M has

an almost complex structure J, then given two complex lines σ and σ' in the

tangent space, the holomorphic bisectional curvature ofσ andσ' is defined to

be

where \X\ = | F | = 1; X and JX span σ; F and JY span σ7.

Now assume M is quaternionic-Kahler. Given x G M, let TΓ and π' be

quaternionic lines in TXM. Fix a unit tangent vector X G π and a frame

(eA) G />, and identify TXM S Hn as in (2.1). Let /, J,K: TXM -> TXM

denote the right actions of i, j, fc G H. The quaternionic bisectional curvature

of π and π' is defined to be

#H(TΓ, π') = inf [R{X, JX, Y, J 7 ) + 2{\X 7F | 2 + \X X y | 2 )] .
X € y € ' | x | | y | i

This definition is, of course, rigged to make Theorem 2 work. On the other
hand, it is clear that positive quaternionic bisectional curvature is a somewhat
weaker assumption than positive sectional curvature.
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2. The twistor space 3

We can also identify

[υ + iυ + jv2n+a

where the action of C corresponds to multiplication on the right by elements
of the form u+jυ G H. Therefore, if we fix a frame (e^) G Px, the isomorphism
(1.2) induces an almost complex structure

corresponding to multiplication on the right by j . Any almost complex struc-
ture on M which can be obtained in this way is said to be compatible with
the quaternionic structure on M. It depends, of course, on the isomorphism
(1.2) and therefore the frame (e^) G P.

Two frames (eA) and (R^eβ) G Px determine the same almost complex
structure if and only if the matrix [R£] e U(2n) ΠSp(n) Sp(l). Therefore, the
space of all possible compatible almost complex structures is

3=/7(U(2n)nSp(n)Sp(l)).

The space 3 is a fiber bundle over M with fiber

3* = />«/(U(2n) Π Sp(n) Sp(l)) = Sp(n) Sp(l)/(U(2n) n Sp(n) Sp(l))

= Sp(l)/U(l) = CF 1 ,

and is called the twistor space of M.
The twistor space 3 has a natural almost complex structure J and com-

patible Riemannian metric (i.e., X Y = JX JY), which will be described
shortly. The following was proved by Salamon [16].

Theorem 3. The natural almost complex structure of a twistor space 3
of a quaternionic-Kάhler manifold M is integrable. Moreover, if the manifold
M has positive scalar curvature, then the metric in 3 is Kάhler-Einstein.

We will use moving frames to prove this theorem and to find the curvature
of 3 in terms of the curvature of M.

3. Moving frames on 3

Recall that on 7M there is a basis of canonical 1-forms ωA, ωAβ = — wBA,
1 < A, B < 4n, defined as follows: ω1, ,ω 4 n at (x,βΛ) G 7M is the dual
coframe of {βA) pulled back to TM. The matrix [ωA

B] is the unique so(4n)-
valued 1-form on 7M which is invariant under the action of SO(4n) and such
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A for any section (e^). The 1-forms satisfy the following

dωΛ ωA

c Λ

that
structure equations:

dωΛ + ωA

B Λ ωB = 0; dωΛ

B

where [Ω^β] is a skew-symmetric matrix of 2-forms giving, at (z, e^) € JM,
the curvature 2-form of M at x with respect to the orthonormal frame
Expanding the curvature forms in terms of the coframe, we have

Aω
D

The symmetries of the curvature tensor imply that (see [11])

\RABCD{UA AωB) o (ωc AωD) G Sym2 ( f\T;M) = Sym2(so(4n)).

If M is quaternionic-Kahler, the canonical 1-forms can be restricted to P so

that [UAB] is an sp(n) sp(l)-valued 1-form, and [ΩAB] is an sp(n) sp(l)-valued

2-form. In particular,

E Sym2(sp(n)sp(l)).

(3.1)

It will be convenient to use the following vector- and matrix-valued no-

tation. (Superscripts will usually denote row indices and subscripts column

indices. Therefore, vectors are to be viewed as column vectors.)

X = [Xμ]', Xμ = [ω μ n + β ] , 0 < / i < 3 , l < α < n ,

Γo — Γ i — « i —Γ2 — Oί2 —Γ3 —

Γi + e*i Γo - Γ 3 + as Γ2 - α

Γ2 + α 2 Γ 3 - α 3 Γo - Γ i +

.Γ3~|-Q;3 —Γ2 + α 2 Γi — αi Γo

where Γo = — *Γ0, Γμ =* Γμ, 1 < μ < 3, and c*i,α:2,α:3 are scalar multiples

of the identity matrix. The structure equations then take the form

(3.2) dX

Ω =
Ω x

0 Ω% Ω x

2 Ω 2

3

Ω 2

0 Ω 2 ! Ω% Ω 2

3

.Ω3o Ω 3 ! Ω 3

2 Ω°o.

Ω°o = -*Ωoo, Wu = ιViμ

u = - Ω % , 0 < μ < v < 3, and, if (μ,v,η) is a

cyclic permutation of (1,2,3), then Ω μ

0 + Ω% is a multiple of the identity

matrix.

The canonical 1-forms on 7M and P define natural Riemannian metrics

such that the 1-forms are orthonormal. These metrics are such that the
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projections 7M —• M and P —• M are Riemannian submersions and such that

the fibers have the standard bi-invariant metrics defined on the corresponding

Lie groups. The twistor space 3 then has a natural metric such that the

projections 3 —• M and P —• 3 are both Riemannian submersions.

An orthonormal coframe on 3 can be obtained by choosing a local section

of P over 3 and pulling back the canonical 1-forms ωA, 1 < A < 4n, <*i, α 3 ,

where α i , α 2 , α 3 are as defined in (3.1).

The almost complex structure on 3 can be specified by designating the

following as a basis of (l,0)-forms:

ς° = <*i + ί α 3 ;

ζn+a = ωn+a + iuJ3n+a. \<a<n.

Our task here is to compute the structure equations on 3, i.e., the exterior

derivatives of £p, 1 < p < 2n. We shall confirm Theorem 3, find the u(2n)-

valued connection (l,0)-form of the Kahler metric on 3, and finally compute

the curvature of 3

Again, it is convenient to introduce vector-valued notation:

Z1 = [ςa] =X° + iX2; Z2 = [<rn+α] = X1 + iX3.

Computing dZ1 and dZ2 is straightforward using (3.2), and we obtain:

dZ1 + Z2 Λ ς° + [To + ί(Γ 2 + α 2)] Λ Z1 + (-Γx + »T3) Λ Z2 = 0;

dZ2 - ~Zl Λ ς° + (Γi + tT 3) Λ Z1 + [Γo + t(Γ 2 - α 2)] Λ Z2 = 0.

Computing dζ° is somewhat harder, because it involves the curvature of M.

Before carrying this out, it is useful to recall some facts about the curvature

of M.

4. The curvature of a quaternionic-Kahler manifold

The following is due to Alekseevskii [1], and a proof is given in [16].

Theorem 4. A quaternionic-Kahler manifold is Einstein, and its Rie-

mann curvature is of the form

R = {S/S)R + R';

where R is the curvature ofHPn, S is the scalar curvature ofHPn, S is the

(constant) scalar curvature of M, and

R' e Sym2(sp(n)) C Sym2 ([\T*M J .
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We shall denote the corresponding splitting of the curvature 2-form on M

by
Ω = (S/S)Ω + Ω'.

Notice that Ω' is an sp(n)-valued 2-form and therefore has the form of (1.1)
with a\ = ύ2 = «3 = 0.

We shall also need the explicit formula of Ω. To compute the curvature of
HLPn, observe that the principal bundle P for HPn is Sp(n + 1),

and the structure equations are given by the Maurer-Cartan equations of
Sp(n + 1). A straightforward calculation shows that the curvature of HP n is
given by the following:

3

Ωμ

μ = ̂ Xu AXU, 0 < μ < 3 .
i/=0

(As always, let (μ, */, η) be any cyclic permutation of (1,2,3).)

Ω°μ =X°A ιXμ - Xμ A tX° + Xv A iXrί - Xη Λ ιXv

+ 2(tX° Λ Xμ - ιXu AXη)\

Ω%=X°Λ fXμ-XμA tX°-^Xι/A tXη-Xη A ιXv

-2{tX°AXμ- ^

5. The connection on 3

The exterior derivatives of αi, #2, and a$ can now be computed. As before,
let (μ, i/, 77) be a cyclic permutation of (1,2,3). The structure equations on
M tell us that

Ω μ

0 = d(Tμ + aμ) + (Γμ + aμ) A Γo + Γo Λ (Γμ + aμ)

+ (Γ,, - ay) A {Tη + aη) - {T^ - <*„) A {Tη + aη);

Ω^^ = d(-Γ μ + aμ) + (-Γμ -f otμ) A Γo + Γo Λ (-Γμ -h otμ)

- {Tη + aη) A {Γv + OLV) + (Γ,, - (*„) A (Γη - aη).

Adding these two equations together, we get

Ωμ

0 + Ω7^ = 2daμ - 4aη A a*.

Now observe that
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Therefore,

(5.1) daμ - 2aη Λa» + 2{S/S){X° Λ *Xμ + Xη Λ %X") = 0.

Using (5.1) we find that ς° satisfies the following equation:

dς° + 2ia2 Λ ζ° + 2(S/S)*Z1 Λ Z 2 = 0.

The structure equations for f°, Z 1 , Z 2 are therefore the following:
.0 η

Z 1

Z 2

-{s/sγz2 {s/sγz1

Z Γ 0+ΐ(Γ 2 + α2) -Γi+tT 3
Λ

o i
f
Z 1

Z 2. - Z 1 Γ1+1T3 Γ 0 - ί ( Γ 2 - α 2 ) .

Since there is no (0,2) term on the right-hand side, the almost complex
structure defined by specifying ς°, ZX,Z2 as a basis of (1,0) form is integrable.
On the other hand, these (l,0)-foπns form a unitary coframe for a Kahler
metric if and only if the connection matrix is skew-hermitian. Since the scalar
curvature S of M is a constant and assumed to be positive, the matrix can
always be made skew-hermitian by scaling either the metric of the fiber of 3
or the metric of M by a constant. It is more convenient for us to rescale the
metric of M so that the scalar curvature of M is equal to S.

6. The curvature of the twistor space 3

The curvature of 3 can now be computed from the connection forms, using
the structure equations of M and the exterior derivatives of αi ,α 2 , and a^.
We omit the details of the straightforward calculation and give the answer.
The curvature of 3 is given by the following skew-hermitian matrix of 2-forms,
which we shall denote Ω:

^ 2

Λ Z ' c ° Λ ^ C°ΛZ2

Observe that

Ric(3) = trΩ = 2[(n + l)?° Aξ° + *Zι ΛZ* + *Z2 Λ Z2] + ί(trΩ 2

0 + Ω3i)

= 2(n + 1)(?° Λ f + ιZι Λ Z 1 -f *Z2 Λ Z 2),

proving that 3 is Kahler-Einstein.
Let εo, εα, εn+α? 1 < α < n, be the holomorphic tangent vectors on 3

which form the dual basis to ς°, Z 1 , Z 2 . Denote E\ = [εα], E2 = [εn+α] Any
holomorphic tangent vector V is of the form

where V1 = [va] and V2 = [wn+β].
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Let σ and σ' be complex lines in Γ,3 which are spanned by unit holomorphic
tangent vectors V and W, respectively. Let TΓ and π' be the quaternionic lines
which contain the projections of σ and σ' in T»Λί. Then the holomorphic
bisectional curvature of σ and σ' is

Kc(σ,σ') = \tWΩ{V,V)W

= Bv°f
+ ϋ

> \{\v°?
> KH(π,

'•\w\2-f \w°\

f \w°\

\ψ\2

2\V\2

+ υ°w°
2W2) +

-2\v°\\

(ty1W1 +* V2W2)

\tV2W1 —* V^VF2!2

Ω{π*V,π,V)πu*W]

w°\\V\\W\} + K»(π

with equality holding if and only if V and W are horizontal, i.e., if and only
if υ° = w° = 0, and V, Wy J chosen so that the infinum is achieved in the
definition of quaternionic bisectional curvature. It follows that the holomor-
phic bisectional curvature of 3 is positive (nonnegative) if and only if the
quaternionic bisectional curvature of M is positive (nonnegative).

Observe that the inequality is somewhat surprising since it goes in the
opposite direction of the O'Neill inequality [5, p. 66] which states that for a
Riemannian submersion the sectional curvature of the base manifold is greater
than or equal to that of the total space. There is no contradiction, however,
because the inequality above applies only to the sectional curvature of a holo-
morphic 2-plane (by setting W = V) and equality holds in that case.

Also, from the explicit description of the connection and curvature of 3, it
is a simple—but tedious—matter to check that if the covariant derivative of
the curvature of 3 vanishes, then so does that of M. Moreover, 3 is a Kahler
manifold with positive Ricci curvature and by a theorem of Kobayashi [10], it
is simply connected. Therefore, if 3 is locally symmetric, both 3 and M are
symmetric spaces.

This completes the proof of Theorem 2.

7. Compact manifolds with nonnegative curvature operator

First, recall that the Riemann curvature tensor of a Riemannian manifold is
a section of Sym2(/\2 T*M) and therefore defines a bilinear form on /\2 Γ*M.
We say that the curvature operator is positive (nonnegative) if the bilinear
form is positive (semi)definite.

Hamilton has conjectured that any compact n-manifold with positive cur-
vature operator is the quotient of the n-sphere by a discrete subgroup of
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SO(n -h i ) . He proved this in dimensions 3 and 4, [8], [9]. More recently,
Micallef-Moore [12] proved that a simply connected compact Riemannian
manifold with positive curvature operator is homeomorphic to a sphere.

Theorem 1, along with Berger's classification of holonomy groups, the Mori-
Siu-Yau solution to the Prankel conjecture, and a theorem of R. S. Hamilton,
can be used to extend these results to classify manifolds with nonnegative
curvature operator. A similar classification for compact Kahler manifolds with
nonnegative curvature operator has been obtained by Cao-Chow [4]. This case
was further generalized by Mok [13], who proved that any compact Kahler
manifold with nonnegative holomorphic bisectional curvature is biholomorphic
to a symmetric space.

We observe the following:
Theorem 5. Let (M, g) be a compact Riemannian manifold with non-

negative curvature operator, and (M, g) its universal cover. Then

[M,g) = (R p , 0 f i a t ) x ( M i , 0 i ) x ••• x (Mk,gk),

where (Mj, &), i = 1, , k, is one of the following:
(1) a compact symmetric space,
(2) a Riemannian manifold with positive curvature operator homeomorphic

to a sphere,
(3) a Kahler manifold biholomorphic to a complex projective space.
Proof. Let H G SO(iV) be the holonomy of M. By a theorem of deRham

[11, p. 1897], if H can be written as a product of smaller subgroups of SO(iV),
then M splits into a corresponding Riemannian product of manifolds, with
each factor having irreducible holonomy. If the holonomy of a factor is trivial,
then it must be Euclidean space with the standard flat metric. Otherwise,
it is a nonflat Riemannian manifold with nonnegative curvature operator. In
particular, its Ricci curvature is bounded from below by a positive constant,
and by Myers' theorem, it must be compact. The theorem then follows from

Theorem 5'. Let M be a simply connected, compact manifold with irre-
ducible holonomy and nonnegative curvature operator. Then one of the fol-
lowing must hold:

(1) M is (isometric to) a symmetric space.
(2) M has positive curvature operator and is homeomorphic to a sphere.
(3) M is a Kahler manifold biholomorphic to complex projective space.
Proof. Recall the following theorem of Hamilton [9]:
Theorem. Let M be a compact Riemannian manifold with nonnegative

curvature operator. Let g(i) be a solution to

dtg(t) = -2R\c(g(t)), g{0) = g0,
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where go is the original metric on M. Then the curvature operator of g(t)
is also nonnegative, and for some t > 0 the image of the curvature operator
in f\ T*M is invariant under parallel translation and, in particular, must be
isomorphic to the Lie algebra of the holonomy of M.

Assume that M is not isometric to a symmetric space. Use the metric
g(t) described in Hamilton's theorem, instead of go. Then M. Berger [2]
has classified all possible irreducible holonomy groups. In particular, if M
is not symmetric and has positive Ricci curvature—as a nonflat manifold
with nonnegative curvature operator must—the holonomy H is either equal
to SO(JV), U(7V/2), or Sp(7V/4) Sp(l). Moreover, by Hamilton's theorem, the
curvature operator must be positive when restricted to the Lie algebra of H
sitting inside /\2T*M = so(N).

If M has holonomy equal to SO (TV), then the curvature operator must be
positive. By the theorem of Micallef-Moore [12], M must be homeomorphic
to a sphere.

If M has holonomy equal to U(7V/2), then M is a Kahler manifold with
positive holomorphic bisectional curvature and, by the Mori-Siu-Yau theorem
[5], [6], is biholomorphic to a complex projective space.

If M has holonomy equal to Sp(iV/4) Sp(l), then it is a quaternionic-Kahler
manifold with positive quaternionic bisectional curvature. By Theorem 1, it
must be symmetric, contradicting our assumption.

Remark. G. Huisken and M. Micallef kindly pointed out to us that The-
orems 5 and 5' could also be proved using a result of Tachibana [18], which
states that an Einstein metric with nonnegative curvature operator is locally
symmetric.
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