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INTRINSIC CR NORMAL COORDINATES
AND THE CR YAMABE PROBLEM

DAVID JERISON k JOHN M. LEE

1. Introduction

There is a deep analogy between the geometry of strictly pseudoconvex CR
manifolds and that of conformal Riemannian manifolds. A CR manifold car-
ries a natural hermitian metric on its holomorphic tangent bundle — the Levi
form — which, like the metric on a conformal manifold, is determined only
up to multiplication by a smooth function. The multiple is fixed by choos-
ing a contact form — a real one-form annihilating the holomorphic tangent
bundle. A CR manifold together with a choice of contact form is called a
pseudohermitian manifold.

The simplest scalar invariant of a pseudohermitian manifold is the pseu-
dohermitian scalar curvature, which we denote J?, defined independently by
S. Webster [15] and N. Tanaka [14]. The CR Yamabe problem is: Given a
compact, strictly pseudoconvex CR manifold, find a choice of contact form for
which the pseudohermitian scalar curvature is constant In [6]-[8] we posed
this problem and gave a sufficient condition for its solvability. The purpose
of this paper is to show that "most" compact strictly pseudoconvex CR man-
ifolds satisfy the sufficient condition, so that the CR Yamabe problem can
almost always be solved. The precise statement of our result is Theorem A
below.

Solutions to the CR Yamabe problem on a 2n+ 1-dimensional CR manifold
M are critical points of the functional

over the set of contact forms θ associated to the CR structure of M. In [7]
we defined an invariant

λ(M) = inf
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and showed that if M is compact and strictly pseudoconvex, the CR Yamabe
problem has a solution provided λ(M) < A = λ(S 2 n + 1 ) , where S2n+ι is the
sphere in C n + 1 with its standard CR structure. Then in [8] we showed that the
critical constant A is realized by the "standard" contact form θ = %(d-d)\z\2

on S 2 n + 1 , and thus A = ^ 2 n + i (θ) = pn2π = 2πn{n + 1).

The main result of this paper is

Theorem A. Suppose M is a compact, strictly pseudoconvex, 2n + 1-
dimensional CR manifold. If n > 2 and M is not locally CR equivalent to
S 2 n + 1 , then λ(M) < A, and thus the CR Yamabe problem can be solved on
M.

This is analogous to the result of T. Aubin [1] for the Riemannian version of
the Yamabe problem: Every compact Riemannian manifold of dimension > 6
which is not locally conformally flat possesses a conformal metric of constant
scalar curvature. Aubin's result is limited to dimension > 6 because these are
the dimensions in which the local conformal geometry contains enough infor-
mation to solve the problem. In the remaining cases the problem becomes a
global one, which was solved by R. Schoen in [13] (see also [11]). Our Theo-
rem A likewise covers the cases in which only local information is required. In
fact, in terms of the parabolic dilations described below, a 2n + 1-dimensional
CR manifold has "homogeneous dimension" 2n + 2, and the limitation n > 2
is the same as 2n -f 2 > 6. Thus the analogy is closer than might appear at
first glance.

To illustrate our method of proof, let us recall the much simpler proof of the
fact that λ(M) < A for every compact strictly pseudoconvex M. The key idea
is that the sphere possesses a one-parameter family of extremal contact forms
that concentrate near a point. To see this, it is easiest to use as a model
not the sphere but the Heisenberg group HP = Cn x R, with coordinates
{z,i) and holomorphic tangent bundle spanned by the vector fields Za =
d/dza -f iz^d/dt. The Cayley transform gives a CR equivalence between
Hn and the sphere minus a point, which allows us to think of the standard
spherical contact form θ as a contact form on Hn.

The Heisenberg group carries a natural family of parabolic dilations: for
s > 0, the map δs(z,t) — (sz,s2t) is a CR automorphism of Hn. These
dilations give rise to a family of extremal contact forms θε = <5*/ε0 on HP
which become more and more concentrated near the origin as ε —• 0. Since
an arbitrary CR structure can be closely approximated near a point by the
Heisenberg group via suitable "normal coordinates", one expects that the
Yamabe functional pM should be closely approximated by pUn for contact
forms supported very near the base point. This is indeed the case: in [7] we
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showed that for suitably transplanted contact forms θε on M, pM (θε) —• Λ
as ε —• 0, thus proving that λ(M) < A.

In order to prove the strict inequality λ(M) < A, we need a much more
precise asymptotic expression for p^ί{θε) as ε —• 0. For this it is necessary
to refine our notion of normal coordinates considerably. In solving the Rie-
mannian version of the problem, Aubin [1] used geodesic normal coordinates.
In [11] it was shown that his argument can be simplified by using "conformal
normal coordinates" instead, in which the conformal factor has been strate-
gically chosen to simplify the Yamabe functional near a point. In the CR
case, we find that such a normalization is needed just to make the calculation
tractable. The main technical contribution of this paper is a new intrinsic
construction of CR normal coordinates for an abstract CR manifold, in terms
of which the asymptotic expansion of ^ M ( # £ ) can be calculated explicitly in
terms of CR invariants of M at the base point. (H.-S. Luk [12] has given
another intrinsic construction of CR normal coordinates; we have chosen a
different approach because we need coordinates more closely related to pseu-
dohermitian invariants.)

Our construction of normal coordinates proceeds in two stages. The first is
to choose an arbitrary contact form 0 on M and construct, for any base point q
and any holomorphic frame at </, canonical coordinates in a neighborhood of q.
Our construction is reminiscent of geodesic normal coordinates, in which each
line through the origin in the tangent space TqM is mapped to the geodesic
in M tangent to that line. Since the pseudohermitian connection constructed
by S. Webster [15] and N. Tanaka [14] determines pseudohermitian-invariant
geodesies, we could in fact follow the same procedure on M. This was first
observed by C. Stanton, who showed in an unpublished note how to calculate
the Taylor series of the pseudohermitian structure in exponential coordinates,
using a method of Cartan. However, this approach is not practical for our
purposes: radial lines are the orbits of the standard dilations in TqM (i.e.
multiplication by positive reals), while the natural homogeneity of our problem
is that of the parabolic dilations of the Heisenberg group mentioned above. It
is these dilations we wish to use as the basis for a coordinate system.

In §2 we show how to map the orbits of the parabolic dilations into M in a
canonical way, as the solutions to a modified geodesic equation (see Theorem
2.1). The resulting curves are called parabolic geodesies', they induce a natural
map from TqM into M called the parabolic exponential map. By means of this
map we define a family of natural charts near q called pseudohermitian normal
coordinates.

The second step in our construction of CR normal coordinates is to analyze
the effect of a change in contact form. The asymptotic expansion of <pr(θε)
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will ultimately be expressed in terms of pseudohermitian curvature and torsion
invariants, so in order to make the calculation as easy as possible we attempt
to simplify these invariants at q as much as possible. In §3 we show that
θ can be chosen in a neighborhood of q so that the pseudohermitian Ricci
and torsion tensors and certain combinations of their covariant derivatives
vanish at q. Once the one-jet of θ is fixed, its Taylor series at q is completely
determined by this condition.

Our construction is inspired by a similar construction of normal coordi-
nates for a conformal Riemannian manifold due to C. R. Graham [5]. Gra-
ham showed that any metric can be changed conformally so that the Ricci
tensor and all its symmetrized covariant derivatives vanish at a given point.
In the CR case, we must replace the Ricci tensor by a more complicated ten-
sor constructed from the pseudohermitian Ricci and torsion. (The alternate
normalization used in [11], in which the volume element of the metric is ap-
proximated to arbitrarily high order by the Euclidean volume, does not seem
to have a useful analogue in the CR case.)

By choosing pseudohermitian normal coordinates for such a normalized
contact form, we obtain an intrinsically defined "CR normal coordinate chart"
near q G M. The set of all such charts is parametrized by the same finite-
dimensional Lie group that parametrizes the extrinsic normal coordinates de-
fined by Chern and Moser [3].

Having completed these preliminary constructions, we proceed in §§4 and
5 to define the "test forms" θε and to compute an asymptotic formula for
pΊu{θε) as ε —• 0. In §4 we use simple invariant theory to show that, if θε is
defined in terms of the CR normal coordinates of §§2 and 3, the asymptotic
expression takes a particularly nice form:

Γ Λ(l — c{n)\S{q)\2ε4) + 0 ( ε 5 ) for n > 3,

) - i " - ^ ' " ' N 1":4logi) + O(e4) forn = 2.

Here S(q) is the Chern curvature tensor of M evaluated at q [3]. Since this
formula shows that a priori |S(<?)|2 is the only invariant that will appear in
the final expression, it allows us to ignore most of the terms that arise in the
computation of the asymptotic expansion.

Finally, in §5 we make use of this simplification to compute the exact value
of the constant c(n) and show that it is strictly positive. Since, when n > 2, S
is identically zero precisely when M is locally CR equivalent to the sphere [3],
under the hypotheses of Theorem A there is a point q G M where S(q) ψ 0.
This implies that for ε small enough we can achieve ^Λ/(0ε) < A, thus proving
the theorem.
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We will use the notation and terminology of [8], which we review briefly

here. For our purposes a CR manifold (always assumed to be of hypersurface

type and nondegenerate) is a real 2n + 1-dimensional manifold M together

with a distinguished n-dimensional subbundle %" C CTM, the holomorphic

tangent bundle, satisfying ^ Π ~W = 0 and [^ ,X] C •F. We write H =

Re^ Θ 3? C TM. If θ is a nonvanishing real one-form annihilating H,

we assume θ A dθn φ 0 (θ is a contact form). The Levi form of θ is the

nondegenerate hermitian form defined on %? by L$(X, Y) = — 2idθ(X AY)

for X, Y €Ξ ^ it is determined up to a conformal multiple by θ. If LQ is

positive definite, M is strictly pseudoconvex.

A contact form θ determines a characteristic vector field T, defined by

0(Γ) = 1 and T J cW = 0. If {Wa} is any local frame for ^ , the admis-

sible coframe dual to {Wa} is the collection of (l,0)-forms {Θ^} defined by

θβ(Wa) = tf£ and ^(Wα) = ^ ( Γ ) = 0. (Unless otherwise noted, we will

always let Greek indices run from 1 to n and assume summation over re-

peated indices.) Thus, writing W-z = Wβ, {T^W^^W-p} forms a frame for

, with dual coframe {0, θa,θ^}. In terms of such a frame, we can write

dθ = ihapθa A θP and Lθ{XaWa,Y^W-^) = ha^XaY^ for some hermitian

matrix of functions ΛQ^. We will use ha-β and its inverse ha/3 to lower and

raise indices.

According to [15] or [14], a pseudohermitian structure induces a natural

linear connection on M, which we denote by V and call the pseudohermi-

tian connection. Using Webster's notation (see also [9]), the connection is

expressed in terms of a holomorphic frame by VWa = ωa^ (8) Wβ, VT = 0,

where the one-forms ωa^ satisfy

(1.2) dθβ = θaΛωa

β + AβάθΛθ*, A*β = Aβa, ωaβ+Vβa=dhaj.

The tensor with components Aaβ is called the pseudohermitian torsion. The

connection forms also satisfy

dωj - ωa

Ί A ωΊ

β = Ra

β

p7?θp Λ f + AaΊfθ
Ί A θ - A*f ,JP A θ

(1.3) + iAηfθa A θϊ - iAaΊθ
Ί A θβ,

(cf. [10, (2.2), (2.4)]), where the pseudohermitian curvature Ra

β

Pσ has the

symmetries
Raβpσ = Rpβaσ = Rβ*σp

Contractions of the curvature yield the pseudohermitian Ricci RPσ = Ra

a

Pσ

and the pseudohermitian scalar curvature R = Rp

p.

We will denote the components of pseudohermitian covariant derivatives

of a tensor by indices preceded by a comma, as in Aaβ^p; a zero index indi-

cates covariant differentiation with respect to T. The sublaplacian is the real
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differential operator defined on functions by

We would like to thank Victor Guillemin for showing us a quick proof of
Proposition 5.3.

2. Pseudohermitian normal coordinates

A pseudohermitian structure on a manifold M induces natural parabolic
dilations on any tangent space TqM analogous to those on the Heisenberg
group. In this section we will show how to map the orbits of these dilations
to pseudohermitian-invariant curves in M, called parabolic geodesies. The
resulting parabolic exponential map is a local diffeomorphism from TqM into
M, naturally induced by the pseudohermitian structure. Then any choice of
orthonormal frame for %?q gives an identification of TqM with Hn; composing
this identification with the parabolic exponential map yields pseudohermitian
normal coordinates near q. We will show how to use these coordinates to
compute the Taylor series of the pseudohermitian structure explicitly in terms
of pseudohermitian curvature and torsion invariants.

To see how to incorporate the parabolic dilations into our exponential map,
let us first examine the model case of the Heisenberg group Hn = C n x R,
with coordinates (z,t). We consider Hn to be a pseudohermitian manifold
with holomorphic tangent bundle %? spanned by the vector fields

and standard contact form

θ = dt + izadza-izadza.

This pseudohermitian structure is left-invariant under the group law on Hn (cf.
[7]). (We will have no occasion to use the group structure here.) With these
choices, the characteristic vector field of θ is d/dt, the admissible coframe
dual to {Za} is {dza}, and the Levi form is given by h^ = 2<5 •£. The natural
parabolic dilations on Hn are the CR automorphisms δs: H

n —• Hn defined
by δs(z,t) = (sz, s2t) for s > 0. The infinitesimal generator of this Reaction
on Hn is the vector field

A function or tensor ω on Hn is homogeneous of degree m with respect to the
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dilations if and only if its Lie derivative with respect to P satisfies Lpω =
mω. For example, the natural distance function p(z, t) = (\z\4 + t2)1/4 is
homogeneous of degree 1.

The orbits of the dilations (except for the degenerate orbits where z = 0 or
t = 0) lie on parabolas through 0. For fixed (W, c) G Hn, consider the curve
7: R —• Hn given by η(s) = (sW, s2c). Its image is the (possibly degenerate)
parabola containing the orbits of (W, c) and (—W, c). Its tangent vector at 0
is (W,0), and for s φ 0,

ή{s) = s-1PΊ{s).

Using the fact that the pseudohermitian connection on Hn satisfies VZa =
VT = 0, one can compute that 7 satisfies the ordinary differential equation

(2.1) V^7 = 2cT.

On a manifold M, a pseudohermitian structure yields a natural splitting
TM = H(&RT. This splitting in turn determines a natural family of parabolic
dilations on any tangent space ΎqM analogous to those on the Heisenberg
group, by setting δs(W + cT) = sW + s2cT ϊorWeH.ce R. The curves
in TqM given by σ^iC(s) = sW + s2cT are parabolas analogous to the curves
7 described above. The key to the construction of our parabolic exponential
map is to use equation (2.1), which makes sense on any pseudohermitian
manifold, to map these parabolas into M, in the same way that the classical
exponential map sends radial lines to geodesies. This is carried out in the
following theorem.

Theorem 2.1. Let M be a nondegenerate pseudohermitian manifold and
q E M. For any W £ Hq and c € R, let 7 = ηw,c denote the solution to the
ordinary differential equation (2.1) on M with initial conditions 7(0) = q and
7(0) =W. We call 7 the parabolic geodesic determined by W and c. Define
the parabolic exponential map Φ: TqM —• M by

(2.2) Φ ( ^ + cT) = 7vy,c(l),

where defined. Then Φ maps a neighborhood ofO in TqM diffeomorphically
to a neighborhood of q in M, and sends σw,c to 7w,c

Proof. For any (W^c), 7ιy,c(s) is uniquely defined for s small enough. We
begin by showing that the curves ηw,c satisfy the following rescaling law:

(2.3)

whenever either side is defined. Fix r G R, and set η(s) = Ίw,c{rs). Then

7(s) = rηw,c{rs), and so 7 satisfies

V ^ = 2r2cT.
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Since 7(0) = rW, this shows that 7 = ηrw,r2c, which is (2.3). It follows

immediately that Φ maps σ\y,c to ηw,c wherever it is defined.

Now choose a coordinate neighborhood N C M, with coordinates {x1} cen-

tered at q. Let {£*} be the fiber coordinates on TN given by ξ*(V) = dz*(y)

for V E X7V, and let Tk = ξk(T) denote the component functions of the

vector field T. Let Γ^ denote the Christoffel symbols of the pseudohermitian

connection in these coordinates, and define a vector field l o n R x TN by

Let Φ: R x (R x TN) -> R x TN be the local flow determined by X, which by

standard ODE theory is defined and smooth in a neighborhood of the origin.

Fix c E R and W e Hq C TqN. If π: R x TN -• N denotes the projection on

the second factor followed by the natural projection TN —» ΛΓ, then the curve

η(s) = π o φ(s, c, (0, VF)) in N satisfies

ηk(s) = -r&frOOftWW + 2cΓfc(7(S)),

which is equivalent to (2.1). Since 7(0) = q and 7(0) = W, by uniqueness we

must have 7 = 7 . Therefore

(2.4) Ίwc(s)=πoΦ(s,c,(0,W)),

where either side is defined.

The theory of ordinary differential equations implies that there exists ε > 0

such that Φ(ε, c, (0, W)) is defined for all (W,c) in a neighborhood of (0,0).

Therefore, by (2.3) and (2.4),

*(W + cT) = Ίwc(l) = Ίwlεφ2{e) = π o Φ(ε,c/ε2, {0,W/ε))

is defined and smooth for (W, c) in some smaller neighborhood of the origin.

To show that Φ is a diffeomorphism near 0, we will show that its differential

Φ* at 0 is the identity mapping on TqM. If W G Hq, (2.3) implies

0 as 0

To compute Φ*(T), let s h-» τ(s) be the integral curve of T beginning at q.

Fix c e R, and set β(r) = τ(r2c). Then β(r) = 2rcT/?(r) and β(0) = 0. Since

VT = 0, we have

and thus by uniqueness /?(r) = 7Q c (r). Setting r = 1, we get 7Q c ( l) = τ(c),

and therefore

* < τ » = I 0
φ)=T.

0
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Since TM = H φ RΓ, this shows that Φ* is the identity, q.e.d.
For computational purposes, it will be convenient to have a holomorphic

frame in a neighborhood of q which is parallel along each curve 7 . Choose
any holomorphic frame {Wα|g} at q, and extend it to a neighborhood of
q by parallel translation along the curves 7 . Since every point in some
punctured neighborhood of q is on a unique curve 7 , this defines a frame
{Wa} uniquely near q. The following lemma shows that the resulting frame
is smooth.

Lemma 2.2. Suppose X is a vector field defined in a neighborhood of q
in M which is parallel along each curve 7 . Then X is smooth near q.

w,c
Proof. Choose any coordinates {x1} centered at q and write X =

Writing ξj(s,W,c) = Xj(ηWc(s)) for W G Hq and c G R, the differential
equation V^X = 0 becomes

with the initial condition ξj(0,W,c) = Xj(0). Since solutions to ODE's de-
pend smoothly on parameters, ξJ is a smooth function of (s, W, c) where it is
defined. Therefore X' o 9(W + cT) = X'(ηWc(l)) = £* (1, W, c) is smooth in
a neighborhood of 0 G T^M, and hence X7 itself is smooth, q.e.d.

Since the pseudohermitian connection is compatible with the complex struc-
ture, if Wa\q G ̂ , then the parallel extension Wa is a section of %?. Let {θa}
denote the dual admissible coframe to {M α̂} Since VT = 0 it follows that
θa is parallel along each 7 . We can then write dθ = iha βθa Λ θ& for some
matrix of functions hQ g. Because V(dθ) = 0, h^ is a constant matrix for
this coframe.

Suppose M is strictly pseudoconvex. We define a special frame to be a
holomorphic frame {Wa} which is parallel along each curve ηWc, and for
which ha-β = 2δa-β (as on the Heisenberg group); we call the dual admissible
coframe a special coframe. We summarize the preceding results as follows:

Proposition 2.3. Any holomorphic frame at q G M for which h^ =
2δa g can be extended smoothly to a special frame {Wa} in a neighborhood
of q. The dual special coframe {θa} is parallel along each curve 7 , and
satisfies dθ = 2iθa Λ θa. Any two such extensions agree on their common
domain.

Now choose a special frame {Wa} near g, and let {θa} be the dual special
coframe. The coframe determines an isomorphism λ: TqM —• Hn by (^α, t) =
\{y) = (θa(V), Θ(V)). This in turn determines a coordinate chart λ o φ " 1 in a
neighborhood of q. We call such a chart pseudohermitian normal coordinates
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determined by {iyα}. It is clear from the definition that the set of all special

frames, and hence also the set of all such charts, is parametrized by the group

U(n). In the remainder of this section, we will show how to compute the Taylor

series of θ and a special coframe {θa} in pseudohermitian normal coordinates.

Identifying a neighborhood of q G M with an open set in Hn by means

of a pseudohermitian normal coordinate chart, we can consider θ and θa as

one-forms on (a subset of) HΓ. If φ is any tensor field on HP, let us denote

by <P(m) the part of its Taylor series that is homogeneous of degree m in

terms of the parabolic dilations. Thus (p(m) is a tensor field with polynomial

coefficients, and φ — Σ <p(m) can be made to vanish to arbitrarily high order

at 0. As mentioned above, each term φ(m) satisfies Lp<p(m) = m<p(m), and

therefore if φ is a differential form,

(2.5) φ{m) = -{Lpφ){m) = -{P \dφ + d{P J p ) ) ( m ) .

In order to use this relation to compute the homogeneous parts of θ and

0α, we will need the following lemma. The simple relationship between the

vector field P and the forms {0, θa, ωpa} expressed in this lemma is the reason

why pseudohermitian normal coordinates are valuable for the computations

we plan to do in §§4 and 5.

Lemma 2.4. Let {Wa} be a special frame near q G M with dual special

coframe {θa}; let ωa^ denote the associated Webster connection forms and

(z, t) the associated pseudohermitian normal coordinates. Let P be the vector

field defined in these coordinates by

Then

(B)θ(P) = 2t; (b)θ«(P) = z«; {c)ωβ"(P) = 0.

In particular, P = zQWa + zΈWΈ + 2tT.

Proof. It suffices to show that (a)-(c) hold along each curve 7 . Fix

W e Hq and c € R, and write W = waWa\q. In these coordinates, the curve

7 = ηw c is given explicitly by

Thus by explicit computation η(s) = s~1PΊ(s) for s Φ 0. Along 7, since
Vθ = 0, we have

^ ) = θ{V*,ή{a)) = θ(2cT) = 2c.
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Since 0(7(0)) = 0, this implies 0(7(3)) = 2cs. Therefore Θ(P) = 0(37(3)) =
2s2 c = 2ί, which proves (a). Similarly, using V^0α — 0,

^0«(7(*)) = θ«(V^(s)) = θ«(2cT) = 0.

At the origin we have 0α(7(O)) = θa{W) = wa, and so θa(η{s)) = wa all
along 7. This implies θa(P) = θa(sη(s)) = swa = za, which is (b). To
prove (c), just note that Vp0α = sV^6a = 0 along 7, which is equivalent to
ωβct{P)θβ = 0. Since the forms 0^ are independent, (c) follows, q.e.d.

The following proposition will enable us to compute the homogeneous parts
of 0 and θa inductively in terms of the pseudohermitian curvature and torsion
and their covariant derivatives at q.

Proposition 2.5. Let {WQ} be a special frame and {θa} the dual special
coframe. Then in pseudohermitian normal coordinates

(a) 0 ( 2 ) = θ ; 0(3) = 0 ; θ(m) = ^{izaθΈ - iz*θa){m), m > 4;

(b) Θf1}=dza; 0fa)=O; θfm) = ̂ ωβ

a + tA^-^A^Θ){m),

m>3;

(c) ωfw = 0; ωβ

a

(m) = £ \

), m>2.

Proof. Using h^s = 2ία g, the structure equation (1.3) for the pseudoher-
mitian connection can be written

dωf - ω0

Ί ΛωΊ

a = R0%θp Λθw+ \AβΊtΈθΊ Aθ- \A^^Λθ

+ iAcrjfl A θ^ - iAβΊθ
Ί A θa.

Inserting this into (2.5) and using Lemma 2.4 yield (c).
Similarly, using (1.2), equation (2.5) for θa becomes

< + \A-βθAθϊ) +d(Plθ<*))im)

Comparing homogeneous terms of order 1,2, and m > 3 gives (b). Finally,

0(m) = ±(PM2iθaΛθ«)+d(Pjθ)){m)

= ±{2izaθπ - 2izΈθa + 2Λ)(m),

from which (a) follows, q.e.d.
Observe that the map which sends a pair of points (<ji, φ) n e a r the diagonal

in M x M to Φ ς i (#2) is smooth in both arguments, since solutions to ordinary
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differential equations vary smoothly with parameters. Therefore Proposition
2.5 implies, in particular, that these pseudohermitian normal coordinates are
also normal coordinates in the sense of Folland and Stein [4]. Of course, the
coordinates defined here approximate M by Hn in a much more precise way
than required for Folland-Stein coordinates.

3. CR normal coordinates

To compute the asymptotic expansion of the CR Yamabe functional, we will
need to calculate the Taylor series of a contact form θ and a special coframe
{θa} to high order at a point q G M in terms of the pseudohermitian curvature
and torsion. Since the problem is CR-invariant, we lose no generality by first
judiciously choosing the contact form θ so as to simplify the curvature and
torsion, at q as much as possible. In this section we determine exactly how
far these can be simplified by a choice of contact form. In particular, we
show that a certain tensor Q constructed from the pseudohermitian Ricci and
torsion tensors can be made to vanish at g, together with its symmetrized
covariant derivatives of all orders.

Let θ be any contact form for M, and let (z, t) be pseudohermitian nor-
mal coordinates for θ centered at q. Write Za = d/dza + izad/dt in these
coordinates, and <5o = —^(ZaZa + Z-aZa).

The Heisenberg dilations in pseudohermitian normal coordinates give us a
notion of homogeneity of tensor (or vector) fields on M. For example, dza is
homogeneous of degree 1, and Za of degree —1. If φ is a smooth tensor field
defined in a neighborhood of g, we say φ G (9m if all the terms in the Taylor
series of φ in normal coordinates are homogeneous tensors of degree > m. If
<p G @M is a differential form, then dφ G (9m as well. Thus if it is a function
in (9m and V a vector field in (9^, then Vu = du(V) G ̂ m+Λ:

Although (9m is defined in terms of a specific choice of coordinates, it is
easy to check that any other pseudohermitian normal coordinates (£, t) satisfy
za G @\ and t G ̂ 5 and multiplication maps @m x (9^ to ^m+fc? so the set
(9m is actually CR-invariant.

We let ZPm denote the vector space of polynomials in (z, t) (considered
either as polynomials on Hn or as functions on a neighborhood of q in M)
that are homogeneous of degree m in terms of parabolic dilations.

Let {Wa} be a special frame near q and {θa} the dual special coframe. It
follows from Proposition 2.5 that in pseudohermitian normal coordinates

ot
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We will have to deal with a number of complicated expressions involving
many derivatives. In order to bring some sense of order to the forest of indices,
we begin with a brief catalog of notation conventions.

Notation. We adopt the following index conventions:

a,β,η,δ,e,ρ,σe{l,- ,n},

α,6,ce{l, ,2n}, j\ k,l € {0, •• ,2n}.

We write x = (*, *, *), with z° = ί, xa = ^α, z" = F5", and α = α + n. Denote
00 = 0, Wo = r , and Zo = 0/0f. The order of j is defined to be o(j) = 2 if
j> = 0, and o(j) = 1 otherwise. For a multi-index J — (jΊ, , j s ) , we denote
# J = β, o(J) = O(JI) + + O(J;), xJ = x j l - xja, Zj = Zja- Zh, and

j /

The symmetrization of an r-tensor with components Bj = Bj1...jr is the
symmetric tensor with components

σesr

where Sr denotes the symmetric group on r elements and σJ = (jσι, ,jσr).
(The coefficient is chosen so that B^j) = Bj if B is symmetric.)

Definition. On a pseudohermitian manifold (M, θ), let Q = Qjk& * θk

denote the (real) symmetric tensor whose components with respect to any
admissible coframe are

Qαβ =

The main result of this section is the following theorem.
Theorem 3.1. Let M be α strictly pseudoconvex CR manifold. For any

integer N > 2, there exists a choice of contact form θ such that all symmetrized
covariant derivatives of Q with total order < N vanish at q; that is,

(3.1) Q(jk%L)=0 ifo{jkL)<N.

Writing θ = e2uθ for some fixed contact form θ, the one-jet ofu can be chosen
arbitrarily, once it is fixed, the Taylor series of u at q is uniquely determined
by this condition.

We begin with a sequence of lemmas examining the way in which Q trans-
forms under a change of contact form.
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L e m m a 3.2. // φ is a tensor in <fm, the components of its covariant

derivatives with respect to a special frame satisfy φ = ^ ^ j + ^ m - o ( ; κ ) + 2

Proof. Covariant derivatives of an r-tensor φ = φjθJ are related to ordi-

nary derivatives by

r

(3.2) φJ>k = WkΨj - ΣuAWk)<Pή...ji-ιlii+1...ir,
i=l

where we understand ω/ = 0 unless 1 < j \ I < n or n + 1 < j , I < 2n. Observe

that Wk = Zk + &2-o{k) and Proposition 2.5 implies ω/ G &2. Moreover

ip, E &m-o(j), and this remains true when j \ is replaced by I Φ 0; when I = 0

the summand vanishes. For first derivatives therefore,

The general case follows easily by induction.

Lemma 3.3. With respect to a special frame, ifuE

A2

bu = Re Z-ZaZΈ

Proof. These follow from Lemma 3.2 and the commutation relations for

{Z3}. q.e.d.

Next we wish to examine how covariant derivatives of a tensor transform

when we change the background pseudohermitian structure. Suppose we are

given a contact form 0, a holomorphic frame {W α̂}, and its dual admissible

coframe {θa}. If θ = e2uθ is another contact form, one can check easily that

the characteristic field transforms by

f = e~2u{T - 2waWa + 2 %

and therefore the coframe {θa — θa + 2iwaθ} is admissible for θ and dual to

the original frame {VKQ}.

Lemma 3.4. Suppose θ = e2uθ and let θa, θa be as above. The pseudo-

hermitian connection forms ώga determined by θ and θa are

In particular, if u E &m, then ώβ

a = ωβ

a + <
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Proof. Consider the coframe {θa = eu(θa + 2iwaθ)}, which is also admis-
sible for θ. In [9], it was shown that the pseudohermitian connection forms
ϊoτ{θja} are

ώβ° = ωβ

a + 2{utβθ
a - waθβ) + δg(unθ" - u^θΊ)

+ i(u*a

β + uβ

a + 4tiι/9trα + 4ί | t i | 7 t ι ηfl.

The transformation law for connection forms under a change of coframe shows
that ώβ

a = ώβ

a + 6$ du. Using the facts that du = u ηθ
Ί + u-ηθ^ + tz O0 and

u f/3

α = ti'α£ + ί t i ϊ O ί | (cf. [10]), the lemma follows.

Lemma 3.5. Suppose θ = e2uθ with u G &m, φ is an s-tensor field, and
let Vr<p and Vrφ denote the rth pseudohermitian covariant derivatives of φ,
computed with respect to θ and θ, respectively. Let J and K be multi-indices
with # J = s and φK = r, and let φT and <p denote the corresponding

components ofVr(p and Vrφ in terms of the coframes {θ,θa} and {θ,θa}
defined above. Then

If J is a multi-index with no zero entries, then

Proof Consider first the case r = 0, and write φ = φ ΘJ = <f>jθJ. Since
we are not changing Wa, it is clear that φ. = φ = φiW^, , WJs) if J has
no zero entries. On the other hand, since f = T + &mT + ^ m _i(^ β ,Wj),
the components of φ containing zero entries satisfy φ — φ -\- &m-.ι.

For r = 1, Lemma 3.4 shows that replacing ω£ by ώ£ in formula (3.2)
can make an error of order at most &m-o(k)' Similarly, replacing Wk by Wk

and φ by (p results in an overall error of at most <fm_0^_1 (or @m_oi^ if
J has no zero entries). The lemma now follows by induction.

Lemma 3.6. With θ = e2uθ, uE &m, m>2, the pseudohermitian Ricci
and torsion tensors satisfy the following approximate transformation laws,
computed with respect to a fixed special frame {Wa} for θ :

R = R + 2(n + l)Abu

Ra = Ra + 2(n + l)(Δ6ti) ι α

AbR = AbR + 2(n + l)A2

bu
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Proof. The first two formulas follow immediately from the transformation
laws for Aa0 and Ra-g given in Lemma 2.4 of [10], and the third follows

from the second since h°^ = e~2uh°^ + @m. Now Lemma 3.5 shows that up
to errors of the order indicated, it makes no difference whether we compute
covariant derivatives with respect to θ or θ. Therefore the remaining formulas
follow from differentiating the first and third.

Lemma 3.7. Suppose θ = e2uθ with u G &m, m > 2. The components
of the tensor Q, with respect to the fixed special frame {Wa}, transform as
follows:

QoΓβ = QoΓβ ~ (" V

Qaβ = Qaβ ~ 2(n + 2)ZaZβu

Qoo = Qoo - 8(n + 2)ZoZou

Proof From the definition of Q and Lemma 3.6,

Qaβ -Qoφ = -(n + 2)(U,aβ + Uβa) ~ (*fi *

Qaβ - Qaβ = -2(n + 2)ιi|β/9

Qua - Qoα = 8 t U | β / + 4t(Δ6tl) f β

Qoo - Q o o = ^ |β/ ^ 6 + m_2

The result then follows from Lemma 3.3.

Lemma 3.8. Suppose θ = e2uθ, with u G 0m, m > 2. Lei Φ and Φ
denote the parabolic exponential maps at q G M associated with θ and θ,
respectively. Then Φ — Φ G ̂ m + i (considered as functions on TqM with its
induced CR structure).

Proof Let x = (t, z, ~z) denote 0-pseudohermitian normal coordinates near q
in M. Using the parabolic exponential map of θ to identify a neighborhood of
0 G TqM with a neighborhood of q G M, we can use the same coordinates on
TqM, so that ΦJ(x) = xK We can write ΦJ(x) = x3 4- /J(x) for some smooth
functions /°, , f2n. Then p G ̂ m + 1 if and only if, for any (W, c) G C n x R,
P(s2c, sW, sW) = O(s m + 1 ) as s -> 0.

Fix such a (IV, c), and let 7(5) and 7(5) denote the solutions to V^7 =

2cT and V~7 = 2cf respectively, both with initial tangent vector Wada +

W"dΈ at q. Note that η(s) = (s2c,sW,sW) in x-coordinates, and ^(s ) =

Φ'(s2, c, sŴ , sPF). It suffices therefore to show that ηj{s) - 7^(5) = O(5 m + 1 ) .
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Let Tljk and Γ f̂c denote the coefficients of the connections V and V with
respect to z-coordinates. Then the curve σ(s) = η(s) - η(s) satisfies

+ 2cfι(η(s))-2cTι(η(s))>

with initial conditions σ(0) = σ(0) = 0. Therefore

\(tl

jk(Ί(s))-fι

jk(η(s))W(s)ήk(s)\

) - 2cfι(η(s))\ + \2c(Tι - fι)(η(s))\.

To estimate these terms, let us write

Bι

jk = tι

jk - Tι

jk = dx\Vd.dk - Vd.dk).

From Lemma 3.4 (and the fact that the difference between two connections
transforms as a tensor) it follows that for each fc, /, the 1-foπn Bι

k = Bljk dx3

is in &m. Therefore

Bι

jk(Ί{8))γ(s) = Bι

k(ή(s)) = O ί ^ - 1 ) .

It is easy to verify that T - f € <^m_2, and so Tι -fι e @m~χ and

(Tι-fι)(Ί(s))=O{8m-1).

Let φ denote the nonnegative function

Using the above relations and Lipschitz estimates for Tljk and T', for small
s > 0 we have

\<rj(s)\

Applying this to the smooth function <p,
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One can check directly that the ordinary differential equation y =

C(y + y1/2sm~1) has a unique solution with initial value y(0) = 0, and this so-

lution satisfies y = O(s2m). Therefore, by a standard comparison theorem for

ordinary differential equations, we conclude that φ = O(s2m). In particular,

this means that σ3 = O(sm), and therefore σ3 = O ( s m + 1 ) . q.e.d.

We remark that the above estimates can be refined somewhat to show that

t = t + <^m+2 We will not need this additional information, so we do not

prove it here.

Now let P = Zada + zΈdΈ + 2tdt be the infinitesimal generator of the

parabolic dilations in pseudohermitian normal coordinates. To prove Theorem

3.1, we introduce the auxiliary scalar function S, defined near q by

S = Q{P-tT,P-tT).

It is easy to see that S is determined by the pseudohermitian structure and

the point <?, independently of choice of frame. With respect to a special frame

and pseudohermitian normal coordinates, P — tT — x3Wj by Lemma 2.4, and

so this can be written

We will compute the transformation law for S under a change in contact form

θ = e2uθ, where u G <^m, m > 2.

By Lemma 3.8, the pseudohermitian normal coordinates x associated with

0, considered as functions of the original pseudohermitian normal coordinates,

satisfy x(x) = x + <?m + 1, and thus P = P + ̂ m - 1 and tf = tT + ̂ m _ i

Therefore, since Q € ^

S = Q{P - tf,P- if) = Q(P -tT,P- tT

From Lemma 3.7, therefore, it follows that S(mj satisfies

S(m) = S{m)+4\z\2&ou-2(n + 2)(xaxbZaZbu + 4x°xaZoZau + 4xox0^

Since u G <^m, Pu = mu and

m2u = P2u = {xaZa + 2x°Z0)
2u

= xaxbZaZbu -f 4x°xaZ0Zau + Ax°x°ZoZou + 2x°Zou + Pu.

Thus, writing Lm = 4\z\2£?0 + 4(n + 2)x°Z0 - 2(n 4- 2)m(m - 1), we have

(3.3) S{m)=S{m)+Lmu.

The following lemma shows when the operator Lm is solvable.
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Lemma 3.9. Let Lm = φ l 2 ^ + 4(n + 2)x°Z0 - 2(n + 2)m(m - 1).

//ra > 3, L m ώ invertible on £Pm. On ίP2, L2 has one-dimensional kernel

spanned by the function u(z, t) = t, and is invertible on the subspace consisting

of polynomials independent oft.

Proof. Let 3ϊm c ^ m denote the subspace consisting of polynomials inde-

pendent of t. ^ m decomposes as follows:

^m = *̂m ® ̂ m - 2 θ ' " θ ί «^m-2fcJ

where fc = [ra/2]. Let τrβ: c^m - » £ θ ^ m _ 2 θ denote the projection onto the sth

term. If u G «^m, then 4&ou\z,t) = -AdadΈu{z) = Δou(z), where Δ o is the

Euclidean Laplacian on C n . It is easy to verify (see Lemma 5.4 of [11]) that

|J2Γ|2Δ0 has no positive eigenvalues on J%m.

On ^ 2 , L2 = | ^ | 2 Δ 0 - 4(n + 2) is invertible. On the other hand, direct

calculation shows that L2t = 0. Since &*2

 = «̂ 2 ® "*? t n ^ s P^ves the lemma

in the case m = 2.

For m > 3, suppose Lmιx = 0 for some nontrivial u G ̂ m . Let s be the

largest integer such that πsu φ 0, and write πsu(z,t) = tsv(z)1 v £ ^ m _ 2 s .

Then a straightforward computation shows that

0 = πsLmu(z, t) = \z\2t*Δoυ(z) + 4(n + 2)stsv(z) - 2(n + 2)m(m - l)t9υ(z)

= ts{\z\2A0 + (n + 2)(4β - 2m(m - l)))v(2?).

Since s < m/2, this implies that υ = 0, which is a contradiction. Thus Lm is

invertible on «^m. q.e.d.

Next we will relate the function 5 to the symmetrized covariant derivatives

of Q. In order to do so, we will need the following version of Taylor's theorem

for pseudohermitian normal coordinates.

Lemma 3.10. Let F be a smooth function defined near q. Then in pseu-

dohermitian normal coordinates, for any m,

(3.4) F(m)(x)= £ 1—χKZκFiq).

Proof. By the classical version of Taylor's theorem,

*(m)M= Σ ^

Consider the operator Zκ. Since Zo = d0 commutes with Zj for all j\ we

can factor out the O-derivatives and write Zκ = ZQZA = dι

0ZA, where A is a

multi-index with no zero entries. Therefore it suffices to prove that

] Γ xΛZAF(q)= Σ xAdAF(q)
#A=m φA=m

for all m. This is proved by induction on m.



322 DAVID JERISON iε JOHN M. LEE

For m = 1, we just compute:

Σ

Suppose m > 1. By direct computation [djf,Za] = —[daiZjj\ = iδa-βd0, and
[<9Q, Z^] = [3 f f , ̂ ] = 0. It follows that

α,b α,6

Using the inductive hypothesis and this relation, we have

#Λ=m α #B=m-l

= Σ a ; α Σ ̂ ^ (
α #B=m-l

= Σ ̂ Σ ^ ^ ^
#B=m-l α

= Σ * f lΣ *"*•(*
#B=m-l a

= Σ xΛaΛF((z). q.e.d.
#Λ=m

Now applying this lemma to Qjk, we can write the mth order homogeneous
part of 5 as

If β = e2utf with u € «^m, then by Lemma 3.5 the covariant derivative QjkyL{q)
for o(jkL) = m can be computed with respect to the connection determined
by θ instead of θ, since the error is at worst of order ^ m _ o (L)-i and therefore
vanishes at q. By Lemma 3.2, since Q — Q € ^ m ,

and so using (3.3) we have

(3.5) Lmu = 5 ( m ) - S ( m ) =
o(jkL)=m

The main ingredient in the proof of Theorem 3.1 is the following lemma.
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Lemma 3.11. Let q £ M, let θ be any contact form on M, and let (2, t)

be pseudohermitian normal coordinates for θ at q. For any m > 2, there is a

polynomial u € <^m in (z, t) such that θ = e2uθ satisfies

(3.6) Q(j W>(«) = ° ifo(jkL) = m.

Ifm>3,u is unique. If m = 2, there is a unique choice ofuE &2

Proof By Lemma 3.9, if ra > 3 there exists a unique u G &m such that

o(jkL)=m

If m = 2, note that the right-hand side above is independent of t; thus there
is a unique such u G ̂ 2 Therefore if we put θ = e 2 u0, from (3.5) it follows
that

Σ ^
o(jkL)=m

For any fixed multi-index jkL of order m, the coefficient of χiχkxL in this

polynomial is a multiple of Q(jk,L)(Q)i s o this choice of u satisfies the conclu-

sion of the lemma, q.e.d.

Proof of Theorem 3.1. Simply apply the preceding Lemma repeatedly,

noting that when θ = e2uθ with u E «^m, the same argument shows that

Q(jk,L)(Q) = Q(jk,L)(Q) ιs unchanged when o(jkL) < m. If the one-jet of u

is chosen arbitrarily, this construction then inductively determines the higher

terms in the Taylor series of u uniquely, q.e.d.

For our application of Theorem 3.1 in the next section, we will need to

know what the normalization (3.1) means explicitly up to order 4.

Proposition 3.12. Suppose θ is a contact form satisfying (3.1) for N =

4. Then the following relations hold at q :

(a) Λ = 0; Raβ = 0; Aaβ = 0;

(c) Ra = Aaβ,β = Ra/ = ° >

( d ) Kit*1 = A«β°β = Δ * β = β ,o = 0.

Proof First we note the following Bianchi identities satisfied by the pseu-

dohermitian Ricci and torsion [10]:

(3.7) AaβiΊ = Aaη β,

(3.8) R a - R a ^ = ( n ^

(3-9) R0 = Aaβf
a +
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Differentiating (3.8), contracting, and adding to its conjugate, we obtain

(3.10) -AbR -2ReRa^
a = -2(n - l)ΊmAaβf

a.

Writing out the symmetrized derivatives of Q at </, we have for m = 2:

which is (a). For m = 3,

(3.H) 0 = QOa = 4 Λ α /

(3.12) 0 = Qa0<η + Q^a + Qηat0 = (n

(3.13) 0 = Qaβn + QβΊ,a + QΊa<0 = (n + 2)*(i4β/,Λ + ̂ , α + A~,a,β)

Together with (3.7), this proves (b). Contracting (3.12) on the indices β,η
yields

(3.14) 0 = (n + 2)iAaβf + Ra + Ra^ *.

Combining (3.8), (3.11), and (3.14), we obtain (c).
Finally, for m = 4,

(3.15) O = goo =

(3-16) 0 =

Contracting (3.16), we get

0
f i j ;

Combining this with (3.9), we obtain β 0 = ReΛα / 3/^ = 0.
Finally, contracting (3.17) on the indices α,p and again on /?,σ, we get

8 ) _
0 = 2 Q α / α + 2 Q ^ ^ + 2 Q α " / + 2Q Q

α ^^ + 2 Q ^ , ^ + 2 Q ^ β

= (n + 2)t(Ae /, i"
e - ^ , ^ ) + 2 ( Λ / + Rη *)

= -2(n + 2)Im>lα / 3^
Q - 2Δ6/?
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Combining (3.10), (3.15), and (3.18) yields ΔbR = ReRaη^
a = ΊmAaβt

βa =
0. The proof is completed by applying the commutation relation for second
covariant derivatives of Raη (cf. [10]):

fih^
Now let G denote the group of CR automorphisms of the sphere S 2 n + X

that fix a point (see [3] or [2]). By means of the Cayley transform, we can
think of G as a group of local CR automorphisms of Hn that fix the origin.
The group G decomposes as a semidirect product G = U(n) K R+ K i/°°,
where U(n) is the unitary group acting in the z variables, R+ is the group of
parabolic dilations, and H°° is isomorphic to the Heisenberg group, acting as
"translations at infinity". The group G acts simply transitively on the set of
CR normal coordinate charts at q G M in the following way. If we choose a
normal coordinate chart and use it to identify a neighborhood of q G M with
a neighborhood of 0 G Hn, then each element of G induces a local diffeomor-
phism of M fixing q. These are not in general CR automorphisms; however, it
is easy to check that the action by an element of G is a CR automorphism of
M to first order. The subgroup U(n) changes the orthonormal frame for ^ ,
and R+ multiplies the contact form θ at q by a scale factor. The subgroup
R+ IX jfiΓ°° acts transitively on the set of one-jets of contact forms θ for M at
q. Since a CR normal coordinate chart is determined uniquely by fixing the
one-jet of a contact form θ and then choosing a 0-orthonormal frame for <^,
each element of G in this way uniquely determines a new normal coordinate
chart. Thus the set of intrinsic CR normal coordinate charts defined here is
parametrized by G, just as are the extrinsic normal coordinates defined by
Chern and Moser [3].

4. The asymptotic expansion of the Yamabe functional

Let J ^ , given by (1.1), denote the Yamabe functional on a (2n + 1)-
dimensional strictly pseudoconvex CR manifold M. As shown in [7], if we fix
a background contact form 0, the Yamabe invariant λ(M) can be expressed
as the infimum of

over nonnegative functions / G C°°(M), where \df\2

θ = /,/?/)/? + f'βf^ =

2/ βf*P'. In this section we will construct a family of test functions fε for
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^ , by transplanting extremal functions from the Heisenberg group to M by
means of the normal coordinates developed in §§2 and 3.

It was shown in [8] that the function Φ(z, t) = |w+i|~n (where w = £+z|2|2)
is an extremal for the Yamabe functional % on the Heisenberg group. For
each ε > 0, Φε = ε~nδ^eΦ = εn\w + zε2|~~n is also an extremal, normalized
so that /H n | Φ e | p θ Λ dθn is a constant independent of ε. This mass of | Φ ε | p

is concentrated closer and closer to the origin as ε tends to 0.

Suppose that (z, t) are pseudohermitian normal coordinates for some con-
tact form θ near q G M, defined for \w\ < 2κ for some K > 0. Define a test
function

where ψ G CQ°(C) is supported in the set {\w\ < 2/c}, and ψ(w) = 1 for
\w\ < /c. Our goal is the following theorem, from which Theorem A follows as
in the introduction.

Theorem 4.1. Let θ be a contact form near q G M which satisfies the
normalization of Proposition 3.12. As ε —• 0, p^{fε) satisfies the asymptotic
formula

pn2π(l - c{n)\S{q)\2ε4) + O(ε5) for n > 3,

pn2π(l - c(2)|S(<?)|2ε4log J) + O(ε4) for n = 2,

with c{n) > 0. 77ms if the Chern tensor S does not vanish at q, there exists
ε > 0 such that $fθ{fε) < A = pπ2π, and the CR Yamabe problem can be
solved on M.

The first step is to prove
Proposition 4.2. With the notations of Theorem 4.1, there are dimen-

sional constants ak(n), bk(n) such that for n > 3,

(4.1) / \dfε\2

θθ Λ dθn = ao(n) + a4(n)\S(q)\2ε4 + 0{ε5),
JM

(4.2) / R\fε\2θAdθn = O{ε%
JM

(4.3) f | / ψ 0 Λ dθn = bo(n) + b4(n)\S(q)\2ε4 + O(e5).

For n = 2, we have instead

(4.4) / \dfε\2

βθ A dθ2 = αo(2) + α4(2)|5((?)|2e4 log - + O{ε%

(4.5) / R\fe\2θΛdθ2 = O{ε4),
JM

/
JM

(4.6) /
JM
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Once we have shown that the expansions take the form shown in (4.1)

through (4.6), we will see that we can ignore many terms when we make the

explicit calculations of the constants. These calculations will be carried out

in §5. (The constant c(n) is of course readily expressed in terms of ak{ri) and

M») )
All of the Taylor expansions we will need are expressed in terms of the ones

given in Proposition 2.5. Thus let {Wa} be a special frame and {θa} the dual

special coframe. In addition to θ and 0α, we will need to examine the Taylor

series of W-, which we write as

(4.7) Wj = s)Zk = ήZβ + ήZj + s°Z0.

(Here as in §3 we write Wo = T, Zo = d/dt, a = a + n, and sum k =

0,1, •• ,2n.) Taking terms of homogeneous degree < — o(j) in (4.7) and

recalling that Wa(__x\ = Za and WQ(-2) = ô> w e ̂ n c^

14 °̂  5α(0) "" °α' S0(0) — -1'

V * / Λ ( 0 ) ^(0) α(l) '

If we apply θι to (4.7) and consider terms of homogeneity m + o(l) — o(j)

for m > 0, we obtain

(4.10)

(Note that the sum begins with i = 2, because #L(n+1\ = 0.)

Terms in these expansions can be assigned a weight as follows. Suppose

that F is a homogeneous polynomial in x = (t,z,~z) whose coefficients are

polynomial expressions of curvature, torsion, and their covariant derivatives

at g, and of the Levi form at q. We define the weight w(F) recursively as

follows:

(a) w(AaβJ(q)) = w{Ra-βΊ-j{q)) = 2 + o(J),

(c) w(ha]S{q)) = w(h"*(q)) = u (c) = 0,

(d) if ^ ( F 7 ) = m for all J, then w(]Γ F^x J) = m.

Here c denotes a constant independent of the choice of pseudohermitian struc-

ture. For consistency in part (d) we need to use the convention that the con-

stant 0 has weight m for every m. Note that we have not defined and will

never need to consider the weight of a sum of two terms of different weights.

In particular, Rpη{q) = h°^(q)Raβpη(q) and R(q) =
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have weight 2, whereas Aaβo(q)zazβ and Raβpη{q)R°^pη{q) have weight 4.
This last expression will concern us the most.

According to Webster's formula [15, (3.8)] the Chern tensor Sβp

a-(q) equals
Rβ

a

pη(q) provided Ra^{q) = 0. Thus if θ is normalized as in Proposition 3.12,
the square of the Chern tensor at q is given by

(4-11) a ^

By classical invariant theory for the unitary group, the only pseudo-
hermitian-invariant scalars of weight < 4 must be complete contractions of
tensor products of the pseudohermitian curvature and torsion and their co-
variant derivatives at q. Since all the indices must be contracted in pairs,
there are no such invariants of odd weight. It is easy to verify that the only
invariants of weight 0 and 2 are dimensional constants and multiples of the
scalar curvature R{q), respectively. When the weight is 4, the pseudohermi-
tian curvature or torsion can be differentiated at most by order 2; thus the
curvature tensor can only appear squared, as in Roφ/Γ{q)ROί(3p^{q) = |S'(^)|2,

or with at least one pair of indices contracted, as in Ra^ ^a{q) or R0{q). If θ
satisfies the normalization of Proposition 3.12, however, the torsion and Ricci
tensors vanish at q, as do all scalars formed by complete contraction of their
second derivatives; thus |5(ς)| 2 is the only nontrivial invariant of weight < 4.

We can extend the notion of weight to tensors by saying that a tensor is of
weight m if its components relative to the bases {θ,dza,dza}, {Z0,Za,ZΈ}
are polynomials of weight m.

Lemma 4.3. 0,m) anddθ,} have weight ra —2; Wa,m^ has weight ra + 1;
R(m) has weight m + 2.

Proof. We will prove by induction on k that the following all have weight
*:

Z)-o(»)> A*/?,J(/k-2-o(J))> Roφpσ,J(k-2-o(J))'

The induction hypothesis follows immediately from Proposition 2.5, (4.8), and
(4.9) for k < 0. Suppose that it is true for all k < m. Proposition 2.5 and
formula (4.10) show that when k = m + 1 it is valid for θ, θa, ω£, and sι .
Since dθ = 2iθa Λ θ« and Wj is given by (4.7), we also find that dθ{k+2)

and ^j(k-o)U)) have weight k for k < m + 1. It remains only to check the
induction step for curvature and torsion.

We begin with Aaβ. We need to show that Aaβ,m_1\ has weight m + 1;
using Lemma 3.10, it suffices to show ZjAaβ(q) has weight m + 1 for all
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multi-indices J such that o{J) = ra - 1. Denote

for J = {j11'" ,jr). For any subset A = ( ί j , --- , i θ ) C {1, ,**}, denote

J[A] = (jiχ, - ,jia). Formula (3.2) implies

(4-13) Aα0Jj = W.A^j - Pα0>Jij.

By induction on # J , we can then deduce that

( 4 1 4 ) Aαβ,J = WJAαβ~ Σ αA,B,CWJ[A]Pαβ,J{BlJlC}i
A,B,C

where the sum runs over all disjoint partitions A, J3, C of {1, , # J } with

ΦC = 1. The coefficients αA B c are constants of weight 0.

For any k < m + 1, consider

(4.15) [ ^

Notice that the summand is zero unless kx > 0. Thus k2 < k — o(Jj) — 2 <

m — o(J) — 2. Therefore, by the induction hypothesis, AΊ(3 j , k ^ has weight

fc2 + o(J) + 2. Similarly, fc2 > 0 implies kx < k - o(Jj) - 2 < m - 1 - o{Jj).

Now

k m i a Σ «Λι.)(*W.
and Zj > 1 implies Z 2 < f c 1 — l < m — 2 — o(J) — o(y), so by the induction

hypothesis W ^ j has weight /2 + o(y). Since /2 > -o( j ) , /χ < A;x + o(j) <

m — 1 — o(J); hence ^ ^ ( i ! ) has weight l v Thus [^^(W^)]^^ has weight

/x-f/2-f o(j) = fcj+oίj) and (4.15) has weight (fc2 + o(J) + 2) + (* 1+o(y)) = A:.

Almost identical reasoning on the other terms (with the extra observation that

ω •' = 0 for Z = 0) shows that Pαβ jj(k-o(jj)-2) n a s weight k for all k < ra+1.

If we evaluate (4.14) at q with o(J) = m — 1, we see that W^jAα/3(g) =

Aαβ j(q) plus a sum of terms of weight ra + 1. (This is because the expansions

of W • and PQg j in homogeneous terms have appropriate weight fc for A; <

ra+ 1.) Moreover, AQ i 9 j(<?) has weight ra + 1 by definition, so WjAαβ(q) has

weight ra + 1. Next,

WjAα0(q) = ZjAα0(q) + £ WMkr) • ••WMkι)Aαfi(ko).

ko<m-l

(The term ZjAα(3(q) would appear in the sum if we allowed k0 = ra - 1, fc^ =

- o Q ' J , i = 1, ,r.) The limitations k{ > - o ( ^ )» * = 1»"' ' >r» a n d ^ 0 > 0
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imply ki < m — 1 — o ^ ) , so that the induction hypothesis applies to each
summand. It follows that ZjAQβ(q) has weight ra + 1 whenever o(J) = m — 1.
Therefore we have proved the induction step for Aaβ. The induction step for
Aaβ j now follows by a routine induction on o(J) using (4.13). The proof
of the induction step for i? -̂  _ j is similar, and this concludes the proof of
Lemma 4.3.

Proof of Proposition 4.2. Lemma 4.3 implies that

\fε\pθΛdθn= ί

where v^ is a homogeneous polynomial of degree j and weight j . By changing
to polar coordinates in the z variable, it is easy to check that if \<p\ < CF(p)
then

/ <pθΛdθn =θl I F(p)p2n+ι dp J .
Ja<p<b \Ja J

Thus if we replace (z,t) by δε(z, t) = (εz,ε2t) and note that δ*Φε = ε~nΦ,
δ*θ Λ dβn = ε 2 n + 2 θ Λ d θ n , and Φ < C(l + p)~2n, we find

\fε\pθΛdθn= ί
Jp<M Jp<κ/ε

Ml
\Jκ/ε<ρ<2κ/ε= ί

Its j

+ O I / (1 + p)- 4 n -V n + 1 dp )

\J*/ε J
= ί |Φ|p(l + ε ^ + + ε 4 ί ; 4 )θΛdθ n + O(ε5)

for all n > 2.

The coefficient of ε3, f |Φ|pι» -θΛdθn, is a pseudohermitian-invariant scalar
of weight j . However, as mentioned above, l S^ς)!2 is the only nontrivial scalar
of weight < 4. This proves (4.3) and (4.6).
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For (4.1) and (4.4), observe that \dfε\2

θ = 2(/ε) ι0(fε)>0 = Wβf
εW0f

ε =

s> s^Zjf
εZkf

ε. Thus Lemma 4.3 implies

\df%θAdθn = ί (4k + ---+vik + O{pz+o^))Z^εZkΦ
εQΛdθn

Jp<κ

[ ^ ^ ^
κ<p<2κ

where
υjk = S^ <sj s*-

™ Δ^ β{mλ+o{j)-l) β(m2+o(k)-l)

is a homogeneous polynomial of degree m+o(jk) — 2 and weight m. Now note
that 6*{Z^e) = ε-n-°^ZjΦ and \Zp\ < C(l+p)-2n-°^,j = 0,1, ,2n.
Changing variables, we have

ε\2

θθΛdθn= ff \dfε\2

θθΛdθn= f J2
M Jp<κ/ε m = 0

O ( ΓX)ε5p3+i(l + p)-4n-V2n+1 dp( Γ'εX

0 r2κ/ε 4

+ o

When n > 3, the last two integrals are O(e5). Hence

\dfε\jθΛdθn =

2 Σ εmpm+i-2(l
/« m=0 t=2

+ O(ε5)
4

1^ Λ rfθn

and (4.1) now follows in the same way as (4.2).
When n = 2, we have instead

3

/ \dfε\jθΛdθn= ί Σεmv^ZiΦZkΦθAdθ2

JM JH" £ί0

+ f e4«J*Z ΦZ/fcΦΘ Λ dθ2 + O(ε4).
Jρ<κ/e



332 DAVID JERISON & JOHN M. LEE

Note that x?*ZJbZk*b — F + O(p~7) as p —• oo, where F is a homogeneous
function of degree —6. Let ς be coordinates on the set S = {{z,t) : p = 1}.
Lebesgue measure can be written in "polar coordinates" as pδdpdσ(ς) for
some measure dσ on 5, and hence

f υ^ZjΦZ^β Λ dθ 2 = ί Fdσ ί p'1 dp + 0(1)
J p<κε Js Jl

= ί Fdσlog- + O{l).

We can then deduce (4.4) in a way similar to (4.1) and (4.3).
Finally,

R\fε\2θΛdθn

M

= J (Λ(o) + RW + R(2) + O(PZ))(1 + v1+v2 + O(p3))\fε\2θ Λ d θ n ,

where v̂ . is as above and R,Q is a homogeneous polynomial of degree k and
weight k + 2. The same reasoning as above implies that for n > 3,

/ # | / ε | 2 0 Λ d0n = c2ε
2 + c3ε

3 + c4ε
4 + 0(ε 5),

with

c4 = ^ ( R { 2 ) + β ( 1 ) V l + β ( 0 ) V 2 ) | Φ | 2 θ Λ d θ n .

The only coefficient that can be nonzero is the term c4 of weight 4. Our
normalization implies i?/0) = Rm = 0 by Proposition 3.12. Note that R,2^ =
\xaxbZaZhR{q) by Lemma 3.10, and ZaZbR{q) = R ab{q) by Lemma 3.3. But
the only scalars that can be formed from R ab(q) by contraction are R0{q)
and AbR(q), which are also zero. In all, c2 = c3 = c4 = 0 and we have
proved (4.2). Similarly, when n = 2 the coefficients in the expansion on ε2,
ε3, ε4 log j vanish, proving (4.5) and completing the proof of Proposition 4.2.

We close this section by remarking that Lemma 4.3 also permits us to give
a geometric characterization of the pseudohermitian scalar curvature in terms
of the volumes of balls. We define the ball B(q, s) of radius s centered at q as
the image under the parabolic exponential map Φ: T M —» M of a natural
ball {p < s} on TqM.

Proposition 4.4. There are positive dimensional constants an and bn

such that as s tends to 0,

ϋΛdθn= α n 5 2 n + 2 - bnR{q)s2n+A + O(s 2 n+ 5).



INTRINSIC CR NORMAL COORDINATES 333

Proof. In pseudohermitian normal coordinates (#,£), B(q,s) = {\z\4 + t2 <
s4}. With Vj as above,

/ θ Λ dθn = / (1 + ^ + v2 + O{p3))θ Λ d θ n

J\z\4+t2<s4 J\z\4+t2<s*
= c o s 2 n + 2 + c l S

2 n + 3 + c 2 s 2 n + 4 + O(s 2 n + 5 ),

where Cj is a scalar of weight j . Since there are no scalars of weight 1, and
constant multiples of R(q) are the only scalars of weight 2, we have cx = 0
and c2 = bnR(q). It is a routine matter to calculate these constants. Denote

By Corollary 5.4 applied to the characteristic function of B(q, s), we have

»Λdθn = (4τr)n/?(n)s2n+2.

The calculation in §5 (see (5.2) and Lemma 5.1) implies

υ2θ Λ dθn = (θ Λ d0n)(2n+4) = -^RηpiQ)*1^® Λ dθn + torsion terms.

Because there are no scalar invariants of weight 2 involving torsion, the torsion
terms must have mean value zero. Thus using Proposition 5.3 for m = 1 and
(5.3), we obtain

n = -\ f
ό J\z\4 + t2<S4

υ2θ Λ dθn = -\ f R-β(q)z*iz*θ A dθn

\z\4+t2<84

3(n + 1)

Thus an = (4π)n/?(n) and bn = 2{4π)nβ{n + l)/3(n + 1).

5. Explicit evaluation of constants

Because the asymptotic expansion involves only the square of the curva-
ture tensor, we know that no terms involving Aaβ, i?α^, R or any of their
derivatives, and no terms involving derivatives of Ra-βp^ contribute to the
computation of the constants in (4.1)-(4.6). We will use the notation A = B
to signify equality of A and B modulo terms of this kind and modulo terms
of weight > 4. We will also use the notations
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We begin with an algebraic lemma.
Lemma 5.1. Letω = mOίβdzOί Λ dzβ + 2ima^dza A dz? + rn-

be a real two-form. Denote Trα; = δ^m^-g. Then if n > 2,

nθΛα Λ dθn-χ = (Trα )θ Λ d θ n ,

n{n - l)θ Λ ω2 Λ dθ n " 2 = [{δ^δ^ - δ^δ^m^m^

+ \{δ°^δ^ - δ^δ^m^rr^]θ Λ dθn.

Proo/. The first formula is left to the reader. For the second observe that

dθ2 = -4dz" Λ dzΈ Λ dzβ Λ at?

has n(n — 1) nonzero terms — the ones for which a φ β. Now fix a and β,
aφ β. Since the n(n — 1) terms in the sum above are similar to each other,

-4n(n - l ) θ Λ dza Λ dz" Λ d ^ Λ d? Λ dθ n "" 2 = θ Λ d θ n ,

zs ίme only we are noί using the summatio

-4n(n - l ) θ Λ ca^dza Λ d / Λ d^p Λ dz

where m ίΛzs ίme only we are noί using the summation convention. It follows
that

-4n(n - l ) θ Λ ca^dz Λ d / Λ d^p Λ dzw

Finally, the only terms of ω2 that can contribute to θ Λ ω2 Λ cίθn~2 are ones
with an equal number of barred and unbarred indices, so

θ Λ ω 2 Λ d θ n " 2 = ΘΛ (-4mQ^mp-d^α Λ dz? Λ dzp Λ dzw

aβpσ Λ d ^ Λ

If we now use (5.1) we obtain the second formula in the lemma.
Lemma 5.2. // fε is the test function of §4 and δε denotes a parabolic

dilation in the normal coordinates of §3, then

(a) ίβ (|/ψ0Λd0») s ( £ e » >
(b)

δ;(\dfε\2

θθ A dθn) = n2

+ ^ε4Et2\w + i\-2n-4]θ Λ dθn.

Proof. Let Eβ, Eβ, Ej denote any tensors satisfying E0z
β = EβZπz0 =

gazazβ _ β j ^ t e n s o r βa m o n e occurrence may be different from that

in another. We also denote

U0 = R

Note that U0U-$ = E.
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Let us continue with the calculations begun in Proposition 2.5. Recall that

θ(i)=dza, 0 ( 2 ) = θ ; < V ( 1 ) = 0 , flfa)=0, ί ( 3 ) = 0 .

We have

,_iJ? TO > 2,

Thus,

θ{4) = ί(Uσdz°

Also, since dί = 2iθa A θ", we have

d0(2) = <iί, d^(3j = 0,

d» ( 4 ) = 2ιd^Q Λ θf3) f3)

= ma0dza A dzβ + 2ima0-dza A dz? + m-^dz" A dz?,

with maβ = iR^τβ{q)zτz^, and maβ- = -\Rη

β

at{q)z^zτ. Finally,

dθw = 0, dθ{6) = 2idza A θf5) + 2iθf5) A dzΈ + 2iθf3) A θf3).

Clearly (θAdθn),in+2) = θΛoίθ". Only even-degree terms in θ are nonzero;
therefore the terms in θ A dθn of degree 2n + 3 and 2n + 5 are equivalent to
zero. Moreover

in-l
(* Λ ^n)(2n+4) = *(4) Λ d θ n + n θ Λ ^(4) Λ d 0 t 1

Now 0/4x Λ d θ n = 0 because fl/4x contains no dt term. Lemma 5.1 and

(5.2) Tr(dθ{4)) = -lδa0Rη

β

aτ(q)zTz* = - i j ^ f o ) ^ = 0

imply n θ Λ dθ{4) A d θ " " 1 = 0. Thus {θ A dθn){2n+4) = 0.
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Now we must examine

(0 Λ d 0 n ) ( 2 n + 6 ) ΞΞ 0 ( 6 ) Λ dθn + n0 ( 4 ) Λ d0 (4) Λ d θ * - 1 + n θ Λ d0 (6)

+ ^n(n - l ) θ Λ (d0 ( 4 ))
2 Λ dθn~2.

Because θ,Ay dθrAy dθ, and θ,^ have no dί term, the first two terms in the
sum are equivalent to 0. It is easy to check that

Ύr2idza A θf5) = Tr2iθf5) Adz° = ̂ {Dί + D2).

Hence, Ύΐdθ^ = j^Dχ — ̂ D2. Lemma 5.1 then gives

n θ Λ dθ{

 1 ^ ^

n{n - l ) θ Λ (dθ{4))
2 Λ dθn~2 = -^Dλθ Λ dθn.

θ{6)

(dθ{4))

In all, (0 Λ d0) ( 2 n + 6 ) = -^{Dλ + Z>2)θ Λ d θ n . Therefore

όε*(0 Λ dB) = ε 2 n + 2 ( l - ^ ε 4 ^ + D2))θ Λ d θ n .

Also, ίe

φ|Φε|P = ε-2n~2\w + i\-2n~2. This proves Lemma 5.2(a).
From (4.8)-(4.10) we have

s/?(0) = δβ' «£(o) = s3(o) = s^(i) = sβ(i) = s^(i) = sβ(2) = 0;

^(3) » ^(3) Ξ °

It is easy to check that

θ(δ)(Zβ) Ξ ^ ^ ί S2

Hence

Similarly, β | ( 4 ) = -jfe£f. Finally,

5/?(3) = ~θ(4)(Zβ) = ~ϊUβ'i

β«5) Ξ "

Recalling that Φ = \w + i\~n and Φe = εn\w + ί'e2|~n, we have

6*εZaΦ
ε = -inε-n-ι\w + i\-n~2{w - i)zΈ,

ίε Z0Φ e = -ntε-n-2\w + i\-"-2.
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Thus

(in)\w + i\-n~2{w + i)za

w + il-n-2

+ i\-n~\w - i)z*

- e-n+3^Ej (in)\w + i\~n-2{w + i)za

-ε-"+*$LEβ(-nt)\w + i\-n-2}

= -in{δ*eφ)\w + i l " " - ^ - " - 1 ^ - 1 ) / + \ε2tUβ + ^ε4tEβ}

Hence,

\ϊ)=δ;(wβrwβn
= n2{δ*φ)2ε-2n-2[\z\2\w + i\-2n~2 + \ε2t2zβUβ\w + i\-2n~4

Multiplying this by the earlier formula for δ*(θΛdθn) we find the formula in
Lemma 5.2(b). The term z^Uβ does not contribute to the final result because
its integral only gives rise to the scalar R(q) of weight 2, which is zero. (We
have already implicitly ruled out this term on more general grounds since it
contributes to the coefficient on ε2 in (4.1).) q.e.d.

Let dμ denote Lebesgue measure on C n . Let dv be the uniform measure
on S 2 "- 1 = {z e Cn: \z\ = 1}, normalized so that if z = rς, ς G S2"1"1,
represent polar coordinates for z G Cn, then dμ(z) = r2n~1drdv(ζ). Since

θ Λ dθn = dt A (2idza Λ dzΈ)n = 2nn\dt Λ {idz1 Λ dzτ) Λ Λ {idzn Λ dz1*)

= 4nn\dt Λ dx1 Λ dy1 Λ Λ dxn Λ dyn,

we have

(5.3) f <p(z,t)θΛdθn=4nn\ f f <p(z,t)dtdμ(z),
JHn JCn J-oo

whenever φ is integrable.



338 DAVID JERISON & JOHN M. LEE

Proposition 5.3. Let A = (α1 ? , α m ) , B = (βv-- ,βm) be multi-
indices with 1 < a{ < n, 1 < βi < n. Let δ{A,B) = 1 if A = B and 0
otherwise. Then

^ 6 { A , σ B ) .

Proo/. Denote c2 A ; + 1 = /0°° r2k+1e r dr. It is easy to check by integration
by parts that c2k+1 = k\/2. Let p(z) be a homogeneous polynomial on C n of
even degree 2d. Then

dμ(z ) = Γ ί p(rς)e-'2 di/^r2""1 dr
^0 JS2*1-1

= C2d+2n-l

Moreover,

f[2π Π r2 dr

Hence

ί \z1(ς)fmi- -\zn(ς)\2m"dv(ς) = -
JS2n~ι

m n !
C 2 d + 2 n - l

_ 2πnm 1 ! m n !

"~ (n + m1 + + m n - l ) ! '

Observe that if m = mχ -f + mn and the entries of A and B both have
exactly m^ entries equal to j \ then

and the proposition is proved.
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Corollary 5.4. Suppose that φ is a function of \z\ and t. Then the

following formulas hold whenever either side is integrable:

ί φ Λ dβn = (4τr)w2n Γ Γ φ, t)r2n~ι dr Λ,
JHn J-ooJo

ί φD1QΛdθ» = (4*r$?ΆΓ Γφ,ty
n+3drdt,

Jπn n + 1 ŷ Qo Jo

[ (pD2θΛdθn = 2 ί φD^Λdβ71,

f <pEθΛdθ» = (4πr f ^ l Γ Γφ,t

Proof These follow from (5.3) and Proposition 5.3 in the cases m = 0,2,2,

and 3, respectively, along with the observation that

^ ^ ) . q e d.

Denote

\ | § (α - 7 - 1))
^ l ( α ' A Ί ί j " 2Γ(α-7-l)Γ(o/2) '

(We will only consider this function in the range where all the arguments of

the gamma function are positive.) Let δ = 2α - 2η - β - 3 > 0. Because

z) = zT(z),

(llim <5Γ (£) = lim 2Γ (l + ζ] = 2.
6-+0+ \2j 6-^0+ \ 2/

It follows t h a t if a —• α 0 , β —• /30, 7 —+ 7 0 in such a way t h a t <5 —• 0 + , then

N2(ao,βo,ηo)= \ϊm SN^a.β.η)

0—•O"'"

exists and

?o + l)/2)Γ((7 o + l)/2)Γ((α0 - 7 0 -»a{°θ,βθ>%)- Γ(α0 - 7o " DΓ(αo/2)

Lemma 5.5. Suppose that α, 7 -f 1, /? + 1 , α^d α - 7 - 1 are positive real

numbers.

(a) J/2α-27-/?>3, ίftβn

(b) If2a-2η-β = 3, then as ε -+ 0+,
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Consequently, ifψ is the cut-off function in the definition of fε, then

Γ ΓV(e9(t + »ra))|ί + t(l + r3)|-V>|tP'drdt = N2(a,β,Ί)log-+O(l).
J-ooJO ε

Proof Euler's formula [16, p. 254] implies

/ xm'1{l-x)k'1dx = Γ{k)T{m)/T{m + k)
Jo

for all positive real numbers k and m. We deduce that

(5.4) Γ 6 V + *»)-/» db = Γ((7 + l )/2)Γ((α- 7 -l )/2) α , . α + 1

Jo 21 (Q / 2 )

In fact, let 6 = as and x = (1 + s 2 )" 1 . Then s = α:"1/2(l - x)1'2 and

Γ V{a2 + 62)-α/2 <#> = α^"Q +

Jo

Jo
and Euler's formula gives (5.4). Next substituting a = r2 -f 1 and 6 = |£| in
(5.4) gives

rOO Γ
-ooJO

_Γ((7 + l)/2)Γ((α-7-l)/2) Γ

JoΓ(α/2)

and a second application of (5.4) with a = 1, b = r yields Lemma 5.5(a).

For part (b) consider polar coordinates p = (r4 + £ 2 ) 1 / 4 and s a parameter
on the curve 5 = {(r, t): r4+t2 = 1}. Let dv(s) be the measure on 5 such that
drdt = p2dv(s)dp. Suppose that Fδ(p, s) is a family of functions satisfying

( F0(s)p"3~6 + O(p"4) for p > 1,

- I o ^ for 0 < p < 1,

uniformly for 0 < <5 < 1. Then as δ -• 0 + ,

/ / Fδ(ρ,s)dυ(s)pzdp= / / F0(s)dv(s)p" d

Jo Js Ji Js

= (5"1 / F0(s)dt;(s) + O(l).
Js

Also as £ —• 0 + ,

/ / F 0 ( Λ S) dυ(s)p2 dp= Γ [ F0(s) dv{s)p'ιdp
Jo Js J\ Js
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Let δ = 2α — 2η — β — 3. It is easy to see that the integrand in (a) satisfies

the hypothesis on Fδ (p, s) and part (b) follows, q.e.d.

Prom Lemma 5.2, Corollary 5.4, and Lemma 5.5, it follows that

f \fε\vθ Λdθn= ί \w + i\-2n-2 (l - ^{D, + £>2Λ θ Λ dθn + O(ε5)

= (4π)n Un ί°° Γ l ί + itl + r 2 ) ! - 2 " - 2 ^ - 1 * *
L J-ooJo

+ O(ε5)

(4π)n(2n)ΛΓ1 (2n + 2,2n - 1,0)

Note that Nx(2n + 2,2n + 3,0)/^ (2n + 2,2n - 1,0) = (n + l)/(n - 1). It is

also easy to check by induction that

JVα (2n + 2,2n - 1,0) = 4"nπ/(2n).

Thus

We also have

(5.5)

f\dfε\2

θθ/\dθn

= n2(4τr)n \2n f°° f°° ψ(ε2w)\t + t(l + r

2 ) | - 2 n - 2 r 2 n + 1 drdί
L J-oo JO

j_8|S(q) | 2

30 n + 1

J O(ε5) when n > 3,

I O ( 4 ) when n = 2.

J O(ε5

I O(ε4
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When n > 3, we can replace the factor ψ(ε2w) by 1 with an error of magnitude
0(ε 5), so

J\\dfε\2

θθΛdθn

15n(n + l ) ?

34 \S(g)\2 iV1(2n + 4,2n + 5,2) 4

"45n(n + l)(n + 2)iV1(2n + 2,2n + l ) 0 ) ε

O(ε5)

= n 2 τr n + 1

= n 2 π " + 1

1 — -, T-, ε ~h Γε H~ Oίε

1 5 n ( n - l ) ( n - 2 ) 45(n + l)n(n - l)(n - 2) J v

_
45(n + l ) n ( n - l ) ( n - 2 )

Therefore, for all n > 3,

with c(n) = (30n - 5)/[45(ra + l)n(n - l)(n - 2)].
In the case n = 2, we conclude from (5.5) and Lemma 5.5 that we can

evaluate the constant in the asymptotic expansion as ε —• 0 by taking the
limit as n —• 2+ and treating n as a continuous variable. In fact, if δ = 2n-4,
the coefficients arising from (5.5) are

n
lim (5iV1(2n + 2,2n + 5,0) =iV2(6,9,0),

>2+

lim δN, (2n + 4,2n + 5,2) = 7Vo(8,9,2).
n->2+

It follows that

n-+2+ 2 7 '

^ , ( / ε ) = 12π (l - c(2)|S(<7)|2ε4log^ +O(ε 4 )

when n = 2. Thus Theorem A is proved.
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