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EINSTEIN MANIFOLDS OF DIMENSION FIVE
WITH SMALL FIRST EIGENVALUE

OF THE DIRAC OPERATOR

TH. FRIEDRICH & I. KATH

1. Introduction

Let Mn be a compact Einstein spin manifold with positive scalar curvature
R > 0 and denote by D: T(S) —• Γ(5) the Dirac operator acting on sections
of the spinor bundle. If λi is the first eigenvalue of this operator we have

a ln R

(see e.g. [4]). Thus, there arises the interesting problem to classify all those

Einstein spaces where the lower bound ±§\/ ferπ actually is an eigenvalue

of the Dirac operator. The corresponding eigenspinor φ satisfies the stronger

equation

n(n-lΓ Ψ

(see e.g. [4]) and these spinors are sometimes called Killing spinors (see e.g.
[9], [16]). In case n = 4 the only possible manifold is M 4 = S 4 (see e.g. [5]).

In dimension six each solution of the equation Dψ = \ y/(6 R)/ϊ>ψ defines
a (nonintegrable) almost complex structure (see e.g. [8]). Furthermore, the
assumption that ±\y/(n R)/(n — 1) is an eigenvalue of the Dirac operator
imposes algebraic conditions on the Weyl tensor of the space (see e.g. [5])
as well as on the covariant derivative of the curvature tensor and the har-
monic forms on Mn (see e.g. [9]). On the other hand, in the dimensions
5,6,7 examples of Einstein spaces different from the sphere are known for
which ±^y/(n R)/{n — 1) is an eigenvalue of the Dirac operator (see e.g.
[4], [7], [17]). Moreover, if Mn is a Kahler manifold, K.D. Kirchberg proved
the stronger inequality \\ > \{n + 2)R/n (see e.g. [12]) and solved in the
complex dimension n/2 = 3 the corresponding classification problem (see e.g.
[13]); the only possible Einstein-Kahler spaces of complex dimension three

realizing J\R as an eigenvalue of the Dirac operator are P 3(C) and F(l, 2)
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with their canonical metrics. The aim of this paper is to study the above men-

tioned classification problem in the case of 5-dimensional real Einstein spaces.

First of all we prove that any solution of the equation Dψ = ±^y/5Rψ defines

an Einstein-Sasaki structure on M 5 . Conversely, if M 5 is a simply-connected

Einstein-Sasaki space then the equation under consideration has a nontrivial

solution. In the next step we classify all regular contact metric structures aris-

ing from a nontrivial solution of the equation Dφ = \\fbRψ. The regularity

assumption implies that M 5 is a fiber bundle over a four-dimensional Einstein-

Kahler manifold X4 with positive scalar curvature. Therefore, we know the

possible X4 {= S2 x S 2 , P 2 ( C ) or the del Pezzo surfaces Pfc/ 3 < k < 8)

as well as the topological type of the fibration π: M 5 —• X4. In particular,

if M 5 is a simply-connected, compact 5-dimensional Einstein spin manifold

such that Dψ — j\ZbRφ admits a nontrivial solution and the corresponding

Sasaki structure is regular, then M 5 is isometric to the sphere S 5, or to the

Stiefel manifold V^2 with the Einstein metric considered in [11], [4], or M 5 is

the simply-connected S1-bundle with Chern class c\ = cχ(Pk) over one of the

del Pezzo surfaces Pk (3 < fc < 8). In the last case M 5 is diffeomorphic to the

connected sum M 5 ^ (S 2 x S 3 ) # # ( S 2 x S 3 ) and there is a one-to-one

correspondence between Killing spinors on M 5 and Einstein-Kahler metrics

on the del Pezzo surface P^. The existence of Einstein-Kahler structures on

Pk has been recently proved by Tian and Yau (see [21], [22]).

2. Einstein-Sasaki manifolds in dimension 5

We introduce some notation concerning contact structures. A general ref-

erence is [3]. A contact metric structure on a manifold M 5 consists of a 1-form

77, a vector field £, a (l,l)-tensor φ and a Riemannian metric g such that the

following conditions are satisfied:

(b) η(ξ) = 1, <p(ζ) = 0.

(c) <p2 = -Id + η®ξ.

(d) g{φ(X)MY)) = g{X,Y)-η{X)η{Y).

(e) dη{X,Y) = 2g{XMY)) with dη(X,Y) = X(η(Y)) - Y{η(X)) -

X,Y]
Formal consequences of conditions (b) and (d) are the equations η (X) =

In case ξ is a Killing vector field we call the given structure on M 5 a

f-contact structure. This is equivalent to

(f)
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A Sasaki manifold is a /Γ-contact structure satisfying the integrability con-
dition

[<p,φ]+dηζ = 0

or, equivalently,
(g) {Vχ<p){Y) = g(X, Y)ξ - η(Y)X.
The curvature tensor of a Sasaki manifold commutes with φ and has the

following special property:

R(X,Y)ξ = η(Y)X-η(X)Y.

In particular, if M 5 is a 5-dimensional Einstein-Sasaki manifold we obtain
for the scalar curvature the value R = 20, and the Weyl tensor W satisfies
W{X, Y)ξ = 0. Denote by Th C T(M5) the bundle of all vectors orthogonal
to ξ. According to W(X, Y)ζ = 0 we can consider the Weyl tensor of M 5 as
a linear transformation

W:

Th is an oriented 4-dimensional bundle and, consequently, we have the al-
gebraic Hodge operator *: /\2(Th) —• /\2(Th), obviously different from the
Hodge operator of M 5 .

Proposition 1. Let (M5;<£>, £, η,g) be a 5-dimensional Einstein-Sasaki
manifold. Denote by W: /\2(Th) -• /\2{Th) the Weyl tensor on the hori-
zontal bundle. Then W is anti-selfdual with respect to the algebraic Hodge
operator of the bundle Th, i.e. *W = —W.

Proof. We fix an orthonormal basis βi,β2 = ̂ ( ei)j e3?

e4 = ̂ (^3) m Th.
By the rule <p{XΛY) = φ(X)Λ<p(Y), φ acts on /\2{Th) = f\l{Th)θ/\2_{Th)
and we see immediately that in the basis {e\ Λ β2 4- e% Λ e±, e\ Λ es — e2 Λ e±, e\ A
β4 -h β2 Λ 63} of Λ+(^1'1) t n e matrix representation of φ is given by

/ I 0
<p= 0 - 1 0

Vo 0 - 1 ,
Since the curvature tensor commutes with the transformation <£> in a Sasaki
manifold, the Weyl tensor W: Λ 2 ( ^ ) -* Λ 2 ( τ / ι ) a l s o commutes with φ.
Consequently, we obtain for W+ : /\?+{Th) —• Λ+(^Λ) t n e matrix representa-
tion

A
0
0

0
B
D

0
D
C

with

A = W1212 + 2W1234 + W3434, B = W1313 - 2Wχs24 •

C = W1414 + 2W1423 + W2323, D = -2{W24u + W2423)
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We prove A = B = C = D = 0, In fact, since M 5 is an Einstein space with

scalar curvature R = 20, we have

W1212 = #1212 + 1? W3434 = #3434 + I? W1234 = #12345

and taking into account #1551 = 1 (es = ξ) we obtain

A = #1212 + #3434 + 2.R1234 H- 2

= ( — #1221 — #1331 — #1441 — #155l)

+ (—#4114 — #4224 — #4334 ~ #4554)

+ #1331 + #1441 + #4114 + #4224 + 2#1234 + 4

= — #11 — #44 + 2(#i33i + #1441 + #1234) + 4

= - 8 + 2(#i331 + #1441 + #1234) + 4.

The Muskal-Okumara lemma (see e.g. [3, p. 93]) now yields

#1234 + #1331 +#1441 = ~dη{e3, e4)g(eu βi) = -2g(es,(p(e4)) = 2

and we finally have A = 0. In the same way we prove B = C = 0. Finally, we

calculate D—using once again the Einstein equation and the Muskal-Okumara

formula—

D = -2(^2414 + W2423) = -2(#2414 + #2423) = 0.

3. The SU(2)-reduction defined by a nonvanishing spinor

Consider the group Spin(5) and its complex spinor representation K : Spin(5)

—• GL(Δ5). Spin(5) acts transitively on the 7-dimensional sphere S(Δ 5) =

{φ G Δ 5 : |̂ >| = 1}. The isotropy group H{φ) of a fixed spinor ψ φ 0

is a subgroup H(ψ) C Spin(5) which projects one-to-one onto a subgroup

H(ψ) C SO(5) which is conjugate to SU(2) C SO(5). We fix an orthonormal

basis ei, ,β5 in # 5 and identify Δ5 with C 2 Θ C 2 . Let us introduce the

basis tι(εi,ε2) in Δ 5 (see e.g. [4]):

t*(εi,ε2) = u(εi) Θ (ε2), with tι(l) = ( M , tι(-l) = r \

Denote by gι, g2 and T the matrices

i Oλ /0 i\ - /0 -1

θ - J ' 92={i θ j ' Γ = Λ Λ = V i θ
The Clifford multiplication of a vector by a spinor is then defined by

J®0i , e2 =

e4 = %Q2 ® Γ, e5 = - t T 0 Γ.
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The Lie algebra ϊ) of the isotropy group of the spinor ψ0 = tι(l, 1) is given by

f) = {a E spin(5): a tι(l, 1) = 0}

ί V^ ^12 + ^34 = 0 1Ui4 + 1̂ 23 = 0 I

Ki<j<5 ^13 - ™24 = 0 Wlδ= W25 = W35 = W4ξ> = 0 I

Using this concrete realization of the spin-representation one immediately
proves

Lemma 1. (a) Let ψi,φ2 € S(A^) be two orthogonal spinors of length
one and suppose that for the corresponding Lie algebras ϊ)(ψi) Π 6(^2) Φ {0}.
Then for each vector X G R5 it holds that

where X ψz denotes the Clifford multiplication of the vector X by the spinor

V>2
(b) For each spinor ψ φ 0 there exists a unique vector ξ G Rb of length

one such that ζ -ψ = iψ.
Denote by π: Q —• M 5 the frame bundle of the oriented Riemannian man-

ifold (M5, g) and let π: P —• M 5 be a spin-structure, lϊψ G T(S) is a section
of length one in the spinor-bundle 5 = P xκ Δ5, then we consider

Since Spin(5) acts transitively on 5(Δδ) with isotropy group H(φo) = SU(2),
P° is a SU(2)-principal fiber bundle over M 5 . Denote by λ: P —• Q the two-
fold covering of the spin structure over the frame bundle. Then λ | po : P° —*
X(P°) = Q° is bijective and, consequently, we obtain an SU(2)-reduction
Q° C Q of the frame bundle Q. We now investigate the topological type of this
reduction in the case that M5 is simply-connected. The classifying space of
the group SU(2) = Sp(l) is P°°{H), a CW-complex of the type e°Ue4Ue8U .
Since M5 is a 5-dimensional CW-complex we see that the isomorphy classes
of SU(2)-bundles over M 5 correspond to the set [M5,P°°(iί)] = [M5,S4].
Using the classification theorem of Steenrod (see e.g. [18]) we obtain

where //*: H3(M5;Z) -• H3(M*;Z2) is the ^-reduction and Sq2 denotes
the second Steenrod square. Since M5 is a spin-manifold its second Stiefel-
Whitney class vanishes and, consequently, (look, for example, into the Wu-
formula!) Sq2 = 0. Therefore, on a 5-dimensional, compact, simply-connected
spin-manifold M 5 there are precisely two SU(2)-principal fiber bundles:
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Theorem 1. Let Mδ be a 5-dimensional, compact simply-connected spin-
manifold with a nowhere vanishing spinor field ψ E Γ(5). Then the following
conditions are equivalent:

(1) Q° is the trivial S\J(2)-principal fiber bundle.
(2) The subbundle Th = Q° xSu(2) R4 C TM5 is trivial.
(3) M 5 is parallelizable.
(4) dimH2{Mδ;Z2) = 1 mod2.
On the other hand Q° is a nontrivial SU(2)-principal fiber bundle if and

only if dim H2{M5;Z2) = 0 m o d 2 .
Proof. The implications (1)=»(2)=»(3) are trivial, (3) => (4) follows from

classical results concerning vector fields on spin-manifolds (see [20]). Sup-
pose now that dim H2(Mb; Z2) = 1 mod 2 and fix a point mo E M 5 . The
space M5\{rao} has the homotopy type of a 4-dimensional CW-complex and
τri(M5) = 0 implies H4(M6\{m0};Z) = 0. Using the Hopf Classification
Theorem we obtain

[M5\{mo};P°°(/O] = [M5\{m0};54] = H4(M5\{m0hZ) = 0.
This means that the bundle Q° is trivial over M5\{mo}. Consider a section
X* = (Xi, ,X5) in Q° over M5\{ra0}. The index Ind(X*) is an element
of π4(SU(2)) = Z2. Furthermore, if Ind(X*) = 0 then Q° is a trivial bundle
over M 5 . We calculate the index of X* in the following way: Look at the pair
(Xι,X2) of vector fields on M5\{ra0} and its index Ind(Xi,X2) € ^4(^5,2) =
Z2. An easy homotopy argument shows that the map / : SU(2) —• SO(4) —•
SO(5) -•. V5,2 = SO(5)/SO(2) induces an isomorphism / # : π4(SU(2)) ->
^4(^5,2)- Consequently, Ind(X*) vanishes in π4(SU(2)) if and only if
Ind(Xi,X2) vanishes in TT^V^^). NOW the index of a pair of vector fields
with isolated singularities is well known (see e.g. [20]):

2

= Σ dim Hi{Mδ;Z2)
i=0

M 5 ;Z 2 ) mod2.

This proves the implication (4) => (1).
Remark. Using similar techniques one can show that in case the SU(2)-

reduction Q° c Q is nontrivial it does not admit a reduction to the subgroup
C SU(2).

4. The Einstein-Sasaki structure defined by a Killing spinor

Let ψ G Γ(S) be an eigenspinor of the Dirac operator corresponding to the
eigenvalue ±^V/5Λ on a compact, 5-dimensional Einstein spin-manifold M 5
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with positive scalar curvature R,

Dφ = ±\y/bRφ.
4

Then φ satisfies a stronger equation, namely

where X φ denotes the Clifford multiplication of the vector X by the spinor
φ (see e.g. [4]). Such spinor fields are sometimes called Killing spinors (see
e.g. [9]). It is well known that the length \φ\ of φ is constant.

Denote by E± C L2(S) the eigenspace of the Dirac operator corresponding
to the eigenvalues ±\\f§R, respectively.

Proposition 2. If M5 is not conformally flat then dimE± < 1.
Proof. Suppose we have two solutions φ\, φ2 satisfying

^ φi (i = 1,2).

Without loss of generality we can assume that {φi^φ^) = 0 since X{ψ\, Φ2) =
(Vxφuφ2) + (ΦuVxΦz) = 0.

Fix a point mo G M 5 such that the Weyl tensor does not vanish at ΪΠQ.
Then we have for any 2-form η2 G A2

where W: f\2(TMδ) -• /\2(TM6) is the Weyl tensor (see e.g. [5]). Since
W ψ 0 at mo we apply Lemma 1 and conclude (φi,X Φ2) — 0 for any
vector X G Tmo(M5). Consider a local frame s = (si, , 55) in the SU(2)-
bundle Q° C Q corresponding to ψι as well as the section s* in the reduction
P° of the spin-structure P. Then we have (locally) φ\ = [s*,u(l,l)] and
(φi,X Φ2) = 0 for each vector X implies φ<ι = [s*,z u(—1,— 1)] with a
complex valued function z. Consequently, we obtain

= dz{X) - tι(-l, -1) + \

where Wi3 are the connection forms of the Riemannian manifold M 5 with
respect to the frame s. Using the formulas for the Clifford multiplication
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given above we conclude in particular (X = si)

( ) + i ( ) i

i

thus a contradiction.
Remark. Consider a Killing spinor φ with

Vxφ = λX-φ I λ = ±

and the corresponding SU(2)-reduction Q° of the frame bundle Q. If s is a
local section in Q° we have

2
Kj

Denote by σ1, ,σ5 the dual frame to $i, ,55. Then an algebraic calcu-
lation yields the following formulas:

-I- W34 = 2λσ 5 , Wiz — W24 = 0, Wχ4 + W<23 = 0,

2λσ2, iί;25 = 2λσ1, w35 = -2λ<τ4, ^ 4 5 = 2λσ3.

We consider now an Einstein space (M5,^) such that R = 20 as well as a
Killing spinor ψ satisfying Vxψ = —\X ψ According to Lemma 1 there
exists a unique vector field ζ of length one such that ξ ψ = iψ. Furthermore,
we define a 1-form η by η(X) = (X ψ,ψ)/i and a (l,l)-tensor φ := -Vf.

Theorem 2. Let (M5, g) be an Einstein space with scalar curvature R =
20 and Killing spinor ψ. Then (M5; <p)ζ,η, g) is an Einstein-Sasaki manifold.

Proof. We must check the conditions (a)-(g) defining a Sasaki structure
in our situation. For the local calculations we choose a frame s in the SU(2)-
reduction. We have

dη(X,Y) = j

- (xvγ ψ, tβ) -

I

and, consequently,
dη = 2{σι Λσ2+σ3Λσ4).

This implies immediately
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The equation η(ξ) = 1 follows directly from the definition of ζ and η. We
differentiate the equation ζ - φ = iφ and obtain

In particular we have (p(X)ψ = iX -φ for each X orthogonal to ζ. Replacing
X by φ{X) we have

*{X) φ \-φ*{X) • φ - \ξφ{X)ψ = -\φ{X) V

Combining the last two equations we obtain

lίX is parallel to ξ it follows that (p2(X)-φ = 0 and, consequently, <p2(X) = 0.
If X is orthogonal to ζ we have ±(X+iζX)il> = ±(X-iXζ)<φ = ±(X-i2X)ψ =
X φ and

The last formula implies φ2{X) = —X in case X is orthogonal to ξ. Summing
up we proved <p2 = —Id + η (8) f.

We prove now that f is a Killing vector field, i.e. <p is antisymmetric. We
already know

tl> + ξXil> X

We multiply by Y -φ from the right and left side:

, γ.φ) + ±(ζXφ, Yφ) = I

{

Taking into account Y p(ΛΓ) + <p(X) y = -2p(y, ^(X)) we obtain

2 , Yφ)) = -ImW, Yφ).

Finally we remark that the real part of (ζXφ, Yφ) and the imaginary part of
(Xφ.Yφ) are antisymmetric in X and Y. It follows that

i.e. ξ is a Killing vector field.
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The equation g(φ(X),<p(Y)) = g{X,Y) - η{X)η{Y) is now a formal con-
sequence of some formulas we already proved:

= -g(-X + η{X)ζ, Y) = g(X, Y) - η{X)g{ξ, Y)

= g(X,Y)-η(X)η(Y).

We prove the property dη(X,Y) = 2g(X,φ(Y))—using the fact that ξ is a
Killing field—as follows:

dη(X, Y) = Xη(Y) - Yη(X) - η[X, Y]

= Xg(ξ,Y) - Yg(ξ,X) - g(ξ, [X,Y]) = g(Vxξ,Y) - g(Vγξ,X)

= -g(f(X), Y) + g(X, φ{Y)) = 2g(X, φ{Y)).

It remains to prove the integrability condition (Vγ(p)(X) = g(X,Y)ξ —
η(X)Y. We again start with φ(X) φ = \{iX - ζX) φ and differentiate
this equation:

\ \ φ

On the other hand we have

<p{VγX)φ = \{iVYX - ξVγX)φ.

This implies

(Vγ<p)(X) -Φ = \ {p(X)Y + φ{Y)X + ZXY-%XY J φ.

First of all we consider the case that X and Y are orthogonal to ξ. Then
{ξXY - iXY)ψ = 0 and ιp(X) • ψ = \{iX - ξX)ψ = iXψ. In this situation
we have

= \{-Yφ{X) - 2g(Y, φ(X)) - Xφ(Y) - 2g(X, φ{Y))}φ

= \{-iYX - iXY}Ψ = g(X,Y)ξ • Φ

and finally (Vγ<p){X) = g{X,Y)ξ.

The second case we want to consider is X = ξ. Then

(Vγφ){X) = Vy (φ(ξ)) - φ(Vγξ) = <p2(Y) = -Y + η(Y)ξ

= g{ξ, Y)ζ - g(ζ, X)Y = g(x, Y)ζ- v(X)Y.
If Y = ξ we have

{ξXY - iXY}ψ = {-Xξξ - iXξ}φ = {X + X}φ = 2X-ψ,
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(X orthogonal to ζ) and it follows that

(Vγ(p)(X) ψ = \{φ{X)ζ + X}φ = \{iφ{X) + X}Φ = \{i2X + X}Φ = 0.

The last equation implies

for each X orthogonal to ξ. Last but not least we consider the case X = Y = ξ.
Then we have

and the integrability condition is proved.
Remark 1. The existence of a Killing spinor φ imposes algebraic condi-

tions on the Weyl tensor W, namely W(η2) ψ = 0 for any 2-forms η2. In the
case of dimension five this implies

Wijeieju{l,l)=0.

Taking into account the structure of the Lie algebra h described in §3 we
conclude

=O, Wiδ = 0,

and this is precisely the anti-selfduality condition for the Weyl tensor

W:

which is satisfied automatically in any Einstein-Sasaki space (Proposition 1).
Remark 2. Using the properties of the Sasaki structure we have in par-

ticular for the Lie-derivative:

Remark 3. Obviously, if we start with a spinor satisfying
we obtain in the same way an Einstein-Sasaki structure.

5. A simply-connected Einstein-Sasaki manifold
admits a Killing spinor

Theorem 3. Let (M5;<p, ξ,η,g) be a simply-connected Einstein-Sasaki
manifold, with spin-structure. Then the equations Vxψ = ±\X ψ have
nontrivial solutions.
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Proof. Consider the subbundle E of the spinor bundle S defined by

E={φeS:ξφ = iφ, {2φ{X) + ζX - iX}φ = 0

for each vector X e TM5}.

Using the algebraic description of Δ 5 given above it is easy to see that E is a
1-dimensional complex subbundle of S. We introduce a covariant derivative
V: T(E) -• Γ(Γ* <g> E) in E by the formula

Vxφ = Vxφ + \X' Φ-

First of all we must prove that Vxφ is a section in E if φ belongs to T(E).

Suppose that ξφ = iφ and {2φ{X) + ξX - iX}Φ = 0. Then

φ -I- ξVyφ =

Since we have a Sasaki structure it holds that Vyf = —(p(Y). φ is a section
in £ . This implies

ξ(Vytf) = ί(Vy^).

In the same way we prove the second algebraic condition for Vy^. We dif-
ferentiate the equation

{2φ(X) + ξX- iX}φ = 0

with respect to Y and we use the Sasaki conditions φ — -Vξ, (Vγip)(X) =
g(X, Y)ξ — η(X)Y. After some obvious calculations we obtain

, Y)ξ - 2η(X)Y - <p(Y)X - <p{X)Y - ξ X Y ^%XY } φ

+ {2<p{X) + ξX- iX}Vγφ = 0.

The first term vanishes. Consider for example the case that X and Y are
orthogonal to ξ. Then we have {ξXY - iXY}φ = 0 with respect to ξφ = iφ
and, consequently, the first term reduces to

{2g(X,Y)ξ-<p(Y)X-<p(X)Y}l>

= {2g(X, Y)i + (2g(φ(Y),X) + Xφ(Y)) + (2g(φ(X), Y)

= {2g(X, Y)i + Xφ(Y) + Yφ(X)}φ.

Since ψ is a section in E, we have
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If X is orthogonal to ξ we obtain

tp{X) "φ = iX"φ.

The first term mentioned above thus eventually reduces to

{2g{X, Y)i + iXY + iYX}φ = 2i{g(X, Y) - g{X, Y)}φ = 0.

We handle the cases where X or Y is parallel to ξ in the same way. Then we
obtain

i.e. Vyφ is a section in E.
The calculation of the curvature tensor R of the connection V in the bundle

E yields the formula

R(X,Y)φ = (VXVy - VyVX - V[X,Y])φ + \{XY -

V id

with the Weyl tensor W. Here we use the formula

ijke = Rijke + {δikδje — δieδj

valid in a 5-dimensional Einstein space with scalar curvature R = 20. Since
M 5 is an Einstein-Sasaki manifold, we have W(ξ, X) = 0 and we obtain

where {ei,e2,β3,e4} is a frame in Th orthogonal to ξ. A simple algebraic
calculation—using Proposition 1, i.e. *W = — W in /\2(Th)—now shows

Consequently, (E, V) is a flat 1-dimensional bundle over a simply-connected
manifold M 5 . Thus there exists a V-parallel section φ in E, i.e. a spinor field
satisfying the equation Vxφ = -\X φ.

Remark. The same procedure allows us to construct a solution of the
equation Vxφ = +^X φ.

Corollary. In case M 5 is simply-connected we have dim £7+ = dimiϊL,
where E± C L2(S) is the eigenspace of the Dirac operator corresponding to
the eigenvalue ±\\/hR.
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6. The classification of compact Einstein spin-manifolds
admitting a Killing spinor with regular contact structure

A Sasaki manifold (M5; ̂ ?, £, 77, g) is called regular if all integral curves of ζ
are closed and have the same length L (see e.g. [3]). In this situation we have
an S1-action on M 5 and the orbit space is a 4-dimensional manifold X4. The
projection TΓ: M 5 —• X4 is a principal 51-bundle and 2πiη/L: TM5 —• Ri =
6 1 is a connection in this bundle. Since *2ξg = 0 and 2f^φ — 0, X4 admits a
Riemannian metric and an almost complex structure which is integrable (see
e.g. [3]). Denote by Ω the Kahler form of X4. Then

and we conclude dΩ — 0, i.e. X4 is a Kahler manifold. Suppose now in
addition that M 5 is an Einstein-Sasaki space. The O'Neill formulas yield
that X4 is an Einstein-Kahler manifold with scalar curvature UH = | i ? = 24.
Consequently, X4 is analytically isomorphic to S 2 x S2, P 2 (C) or to one of
the del Pezzo surfaces Pk (3 < k < 8; Pk is the surface obtained by blowing
up k points in general position in P 2(C), see e.g. [2]). Next we study the
topological type of the Sι -fiber bundle π: M 5 —• X4. The curvature form
of the connection 2πiη/L is Ω* = (2πi/L)dη. Consequently, the Chern class
c\ G H2(X4] R) is given by c\ = Ω*/2τri = dη/L. On the other hand, since
X4 is an Einstein-Kahler manifold its Chern class is given by the Ricci form

o 1 Λ o 3 O 3 , 3L ,
C l = Ω R i c = 2^ 4 Ω = ϊ Ω = S F d l ϊ = 2 Ϊ c ;

and we obtain the relation
ZL .

C l = 2^ C l

between the Chern class c\ of X4 and the Chern class c\ of the S 1 -bundle
TΓ: M 5 —• X4. X4 is simply connected. We now apply the Thom-Gysin
sequence of the fibration π: M 5 —• X4 and conclude:

(a) H^M5; Z) = 0 (since cj # 0).
(b) H 4 (M 5 ; Z) = H 4(X 4; Z)/cϊ U tf 2(X 4; Z).
(c) 0 = w2{M5) = π*w2{X4). If ^ 2 (X 4 ) φ 0 then c ; = w2{X4)

= ci mod 2.
In case w2(X4) φ 0 the spin structure of M 5 implies an additional condi-

tion, namely

(d) The Killing spinor φ on M 5 defines an SU(2)-reduction Q° of the frame
bundle. Consequently, we have an isomorphism

π TcX
4 = Th = Q° x s u ( 2 ) C2
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of 2-dimensional complex vector bundles. This isomorphism yields π*cχ (X4) =
0 because the first Chern class of any SU(2)-bundle vanishes. The Thom-
Gysin sequence imposes a further restriction: c\/c\ G Z.

We now classify all possible Einstein spaces M 5 .
First case: X4 = P 2 (C). If X4 is analytically isomorphic to P 2(C) and

admits an Einstein-Kahler metric then X4 is analytically isometric to P 2(C)
(see e.g. [15]). The cohomology algebra H*(P2(C)) is isomorphic to Z[a]/(as)
and the first Chern class is given by the c\ — 3α, a G H2(P2(C)). Using
the restrictions (c) and (d) stated above we have two possibilities for the
Chern class c\ = α,3α with τn(M5) = H4{M5) = 0, Z3 and L = 2τr,2τr/3.
Since we know the curvature tensor of P 2(C) as well as the curvature form
Ω* = (2πi/L)dη = 4πiΩ/L of the Riemannian submersion TΓ: M 5 —• X4 we
can apply the O'Neill formulas again and conclude that M 5 is conformally
flat. Consequently, M 5 is isometric to S5 in case c* = a and isometric to
S5/Zs in case c\ = 3a. P2(C) is a homogeneous Einstein-Kahler manifold.
A simple geometric argument shows that we can lift the isometries of P 2(C)
to isometries of M 5, i.e. M5 — S5/Z3 is the homogeneous space of constant
curvature one and fundamental group τri(M5) = Z3.

Second case: X4 = S2 x S2. Suppose that X4 is analytically isomorphic
to S2 x S2 = G4,2 = Qi = the Klein quadric in P 3 (C). Moreover, X4

has an Einstein-Kahler metric with positive scalar curvature. Then the Lie
algebra f) of all holomorphic vector fields on X4 is the complexification of
the Lie algebra i of all Killing vector fields (see [14]) and we conclude that
dim/? i = dime ί) = 6, i.e. X4 admits a 6-dimensional group of isometries. We
now apply a result of L. Berard Bergery (see e.g. [1]) stating in our situation
that X4 is a symmetric Einstein-Kahler structure on S2 x S2. Consequently,
X4 is analytically isometric to S2 xS2. The cohomology algebra of S2 x S2 is
H*{S2 x S2) = A(α, β) and its first Chern class is given by cx = 2(α + /3). We
again have two possibilities c\ = {a+β), 2(α+/?) with τri(M5) = H4(Mb) = 0,
Z2 and L = 4τr/3,2π/3.

Now we study the geometry of the Riemannian submersion π: M 5 —• X4

and conclude that M 5 is isometric to the Stiefel manifold V ^ or to V ^ | Z<ι
with the Einstein metric considered in [11]. The calculation in [4] shows that
this space admits a nontrivial Killing spinor.

Third case: X4 — P&. If X4 is analytically isomorphic to a del Pezzo
surface Pjt (3 < fc < 8) there is only one possibility for M 5 , namely the
simply-connected Sι -fiber bundle over P^. Indeed, the cohomology algebra
of Pfc is generated by elements α,£Ί, ,Ek G H2(Pk) and the first Chern
class is given by
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(see e.g. [2]). Using the restriction for c\ given above we see that there remains
only one possibility,

c* = 3a + Eι + + Ek

with τri(M5) = H4{Mδ) = H4(Pk)/clUH2{Pk) = 0.
Slimming up we proved the following
Theorem 4. Let (M5, g) be an Einstein space with Killing spinor φ and

scalar curvature R = 20. Suppose in addition that the associated contact
structure is regular. Then there are three possibilities:

(1) M5 is isometric to S 5 or S^/Z^ with the homogeneous metric of con-
stant curvature.

(2) M 5 is isometric to the Stiefel manifoldV^^ orV±$lZ<i with the Einstein
metric considered in [11],[4].

(3) M 5 is diffeomorphic to the simply-connected S1-fiber bundle with Chern
class c\ = ci(Pfc) over a del Pezzo surface Pk (3 < k < 8).

Remark. S. Sulanke (see [19]) classified all spaces S5/Γ of constant cur-
vature with a Killing spinor. It turned out that except for the case Sδ/Zs all
other examples defined a nonregular contact structure. The integral curves
of ξ are all closed but have different length. It seems to be interesting, us-
ing higher-dimensional Seifert-fibrations, to classify all Einstein spaces with
Killing spinors such that the integral curves are closed, but with different
length. The orbit space X4 in this case is smooth except for a finite number
of points.
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