EINSTEIN MANIFOLDS OF DIMENSION FIVE WITH SMALL FIRST EIGENVALUE OF THE DIRAC OPERATOR

TH. FRIEDRICH \& I. KATH

1. Introduction

Let M^{n} be a compact Einstein spin manifold with positive scalar curvature $R>0$ and denote by $D: \Gamma(S) \rightarrow \Gamma(S)$ the Dirac operator acting on sections of the spinor bundle. If λ_{1} is the first eigenvalue of this operator we have

$$
\lambda_{1}^{2} \geq \frac{1}{4} \frac{n \cdot R}{n-1}
$$

(see e.g. [4]). Thus, there arises the interesting problem to classify all those Einstein spaces where the lower bound $\pm \frac{1}{2} \sqrt{\frac{(n \cdot R)}{(n-1)}}$ actually is an eigenvalue of the Dirac operator. The corresponding eigenspinor ψ satisfies the stronger equation

$$
\nabla_{X} \psi=\mp \frac{1}{2} \sqrt{\frac{R}{n(n-1)}} X \cdot \psi
$$

(see e.g. [4]) and these spinors are sometimes called Killing spinors (see e.g. [9], [16]). In case $n=4$ the only possible manifold is $M^{4}=S^{4}$ (see e.g. [5]).

In dimension six each solution of the equation $D \psi=\frac{1}{2} \sqrt{(6 \cdot R) / 5} \psi$ defines a (nonintegrable) almost complex structure (see e.g. [8]). Furthermore, the assumption that $\pm \frac{1}{2} \sqrt{(n \cdot R) /(n-1)}$ is an eigenvalue of the Dirac operator imposes algebraic conditions on the Weyl tensor of the space (see e.g. [5]) as well as on the covariant derivative of the curvature tensor and the harmonic forms on M^{n} (see e.g. [9]). On the other hand, in the dimensions 5,6,7 examples of Einstein spaces different from the sphere are known for which $\pm \frac{1}{2} \sqrt{(n \cdot R) /(n-1)}$ is an eigenvalue of the Dirac operator (see e.g. [4], [7], [17]). Moreover, if M^{n} is a Kähler manifold, K.D. Kirchberg proved the stronger inequality $\lambda_{1}^{2} \geq \frac{1}{4}(n+2) R / n$ (see e.g. [12]) and solved in the complex dimension $n / 2=3$ the corresponding classification problem (see e.g. [13]); the only possible Einstein-Kähler spaces of complex dimension three realizing $\sqrt{\frac{2}{3} R}$ as an eigenvalue of the Dirac operator are $P^{3}(\mathbf{C})$ and $F(1,2)$

[^0]with their canonical metrics. The aim of this paper is to study the above mentioned classification problem in the case of 5-dimensional real Einstein spaces. First of all we prove that any solution of the equation $D \psi= \pm \frac{1}{4} \sqrt{5 R \psi}$ defines an Einstein-Sasaki structure on M^{5}. Conversely, if M^{5} is a simply-connected Einstein-Sasaki space then the equation under consideration has a nontrivial solution. In the next step we classify all regular contact metric structures arising from a nontrivial solution of the equation $D \psi=\frac{1}{4} \sqrt{5 R} \psi$. The regularity assumption implies that M^{5} is a fiber bundle over a four-dimensional EinsteinKähler manifold X^{4} with positive scalar curvature. Therefore, we know the possible $X^{4}\left(=S^{2} \times S^{2}, P^{2}(\mathbf{C})\right.$ or the del Pezzo surfaces $\left.P_{k^{\prime}} 3 \leq k \leq 8\right)$ as well as the topological type of the fibration $\pi: M^{5} \rightarrow X^{4}$. In particular, if M^{5} is a simply-connected, compact 5 -dimensional Einstein spin manifold such that $D \psi-\frac{1}{4} \sqrt{5 R} \psi$ admits a nontrivial solution and the corresponding Sasaki structure is regular, then M^{5} is isometric to the sphere S^{5}, or to the Stiefel manifold $V_{4,2}$ with the Einstein metric considered in [11], [4], or M^{5} is the simply-connected S^{1}-bundle with Chern class $c_{1}^{*}=c_{1}\left(P_{k}\right)$ over one of the del Pezzo surfaces $P_{k}(3 \leq k \leq 8)$. In the last case M^{5} is diffeomorphic to the connected sum $M^{5} \approx\left(S^{2} \times S^{3}\right) \# \cdots \#\left(S^{2} \times S^{3}\right)$ and there is a one-to-one correspondence between Killing spinors on M^{5} and Einstein-Kähler metrics on the del Pezzo surface P_{k}. The existence of Einstein-Kähler structures on P_{k} has been recently proved by Tian and Yau (see [21], [22]).

2. Einstein-Sasaki manifolds in dimension 5

We introduce some notation concerning contact structures. A general reference is [3]. A contact metric structure on a manifold M^{5} consists of a 1 -form η, a vector field ξ, a (1,1)-tensor φ and a Riemannian metric g such that the following conditions are satisfied:
(a) $\eta \wedge(d \eta)^{2} \neq 0$.
(b) $\eta(\xi)=1, \varphi(\xi)=0$.
(c) $\varphi^{2}=-I d+\eta \otimes \xi$.
(d) $g(\varphi(X), \varphi(Y))=g(X, Y)-\eta(X) \eta(Y)$.
(e) $d \eta(X, Y)=2 g(X, \varphi(Y))$ with $d \eta(X, Y)=X(\eta(Y))-Y(\eta(X))-$ $\eta[X, Y]$.

Formal consequences of conditions (b) and (d) are the equations $\eta(X)=$ $g(X, \xi), \varphi(\xi)=0$.

In case ξ is a Killing vector field we call the given structure on M^{5} a K-contact structure. This is equivalent to
(f) $\nabla_{X} \xi=-\varphi(X)$.

A Sasaki manifold is a K-contact structure satisfying the integrability condition

$$
[\varphi, \varphi]+d \eta \xi=0
$$

or, equivalently,
(g) $\left(\nabla_{X} \varphi\right)(Y)=g(X, Y) \xi-\eta(Y) X$.

The curvature tensor of a Sasaki manifold commutes with φ and has the following special property:

$$
R(X, Y) \xi=\eta(Y) X-\eta(X) Y
$$

In particular, if M^{5} is a 5 -dimensional Einstein-Sasaki manifold we obtain for the scalar curvature the value $R=20$, and the Weyl tensor W satisfies $W(X, Y) \xi=0$. Denote by $T^{h} \subset T\left(M^{5}\right)$ the bundle of all vectors orthogonal to ξ. According to $W(X, Y) \xi=0$ we can consider the Weyl tensor of M^{5} as a linear transformation

$$
W: \bigwedge^{2}\left(T^{h}\right) \rightarrow \bigwedge^{2}\left(T^{h}\right)
$$

T^{h} is an oriented 4-dimensional bundle and, consequently, we have the algebraic Hodge operator $*: \Lambda^{2}\left(T^{h}\right) \rightarrow \Lambda^{2}\left(T^{h}\right)$, obviously different from the Hodge operator of M^{5}.

Proposition 1. Let $\left(M^{5} ; \varphi, \xi, \eta, g\right)$ be a 5-dimensional Einstein-Sasaki manifold. Denote by $W: \bigwedge^{2}\left(T^{h}\right) \rightarrow \bigwedge^{2}\left(T^{h}\right)$ the Weyl tensor on the horizontal bundle. Then W is anti-selfdual with respect to the algebraic Hodge operator of the bundle T^{h}, i.e. $* W=-W$.

Proof. We fix an orthonormal basis $e_{1}, e_{2}=\varphi\left(e_{1}\right), e_{3}, e_{4}=\varphi\left(e_{3}\right)$ in T^{h}. By the rule $\varphi(X \wedge Y)=\varphi(X) \wedge \varphi(Y), \varphi$ acts on $\Lambda^{2}\left(T^{h}\right)=\Lambda_{+}^{2}\left(T^{h}\right) \oplus \Lambda_{-}^{2}\left(T^{h}\right)$ and we see immediately that in the basis $\left\{e_{1} \wedge e_{2}+e_{3} \wedge e_{4}, e_{1} \wedge e_{3}-e_{2} \wedge e_{4}, e_{1} \wedge\right.$ $\left.e_{4}+e_{2} \wedge e_{3}\right\}$ of $\Lambda_{+}^{2}\left(T^{h}\right)$ the matrix representation of φ is given by

$$
\varphi=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Since the curvature tensor commutes with the transformation φ in a Sasaki manifold, the Weyl tensor $W: \Lambda^{2}\left(T^{h}\right) \rightarrow \Lambda^{2}\left(T^{h}\right)$ also commutes with φ. Consequently, we obtain for $W_{+}: \Lambda_{+}^{2}\left(T^{h}\right) \rightarrow \Lambda_{+}^{2}\left(T^{h}\right)$ the matrix representation

$$
W_{+}=\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & B & D \\
0 & D & C
\end{array}\right)
$$

with

$$
\begin{array}{ll}
A=W_{1212}+2 W_{1234}+W_{3434}, & B=W_{1313}-2 W_{1324}+W_{2424} \\
C=W_{1414}+2 W_{1423}+W_{2323}, & D=-2\left(W_{2414}+W_{2423}\right) .
\end{array}
$$

We prove $A=B=C=D=0$, In fact, since M^{5} is an Einstein space with scalar curvature $R=20$, we have

$$
W_{1212}=R_{1212}+1, \quad W_{3434}=R_{3434}+1, \quad W_{1234}=R_{1234}
$$

and taking into account $R_{1551}=1\left(e_{5}=\xi\right)$ we obtain

$$
\begin{aligned}
A= & R_{1212}+R_{3434}+2 R_{1234}+2 \\
= & \left(-R_{1221}-R_{1331}-R_{1441}-R_{1551}\right) \\
& +\left(-R_{4114}-R_{4224}-R_{4334}-R_{4554}\right) \\
& +R_{1331}+R_{1441}+R_{4114}+R_{4224}+2 R_{1234}+4 \\
= & -R_{11}-R_{44}+2\left(R_{1331}+R_{1441}+R_{1234}\right)+4 \\
= & -8+2\left(R_{1331}+R_{1441}+R_{1234}\right)+4 .
\end{aligned}
$$

The Muskal-Okumara lemma (see e.g. [3, p. 93]) now yields

$$
R_{1234}+R_{1331}+R_{1441}=-d \eta\left(e_{3}, e_{4}\right) g\left(e_{1}, e_{1}\right)=-2 g\left(e_{3}, \varphi\left(e_{4}\right)\right)=2
$$

and we finally have $A=0$. In the same way we prove $B=C=0$. Finally, we calculate D-using once again the Einstein equation and the Muskal-Okumara formula-

$$
D=-2\left(W_{2414}+W_{2423}\right)=-2\left(R_{2414}+R_{2423}\right)=0
$$

3. The $S U(2)$-reduction defined by a nonvanishing spinor

Consider the group $\operatorname{Spin}(5)$ and its complex spinor representation κ : Spin(5) $\rightarrow \mathrm{GL}\left(\Delta_{5}\right) . \operatorname{Spin}(5)$ acts transitively on the 7 -dimensional sphere $S\left(\Delta_{5}\right)=$ $\left\{\psi \in \Delta_{5}:|\psi|=1\right\}$. The isotropy group $\hat{H}(\psi)$ of a fixed spinor $\psi \neq 0$ is a subgroup $\hat{H}(\psi) \subset \operatorname{Spin}(5)$ which projects one-to-one onto a subgroup $H(\psi) \subset \mathrm{SO}(5)$ which is conjugate to $\mathrm{SU}(2) \subset \mathrm{SO}(5)$. We fix an orthonormal basis e_{1}, \cdots, e_{5} in R^{5} and identify Δ_{5} with $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$. Let us introduce the basis $u\left(\varepsilon_{1}, \varepsilon_{2}\right)$ in Δ_{5} (see e.g. [4]):

$$
u\left(\varepsilon_{1}, \varepsilon_{2}\right)=u\left(\varepsilon_{1}\right) \otimes\left(\varepsilon_{2}\right), \quad \text { with } u(1)=\binom{1}{-i}, u(-1)=\binom{1}{i} .
$$

Denote by g_{1}, g_{2} and T the matrices

$$
g_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad T=g_{1} g_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

The Clifford multiplication of a vector by a spinor is then defined by

$$
\begin{gathered}
e_{1}=I \otimes g_{1}, \quad e_{2}=I \otimes g_{2}, \quad e_{3}=i g_{1} \otimes T \\
e_{4}=i g_{2} \otimes T, \quad e_{5}=-i T \otimes T
\end{gathered}
$$

The Lie algebra $\hat{\mathfrak{h}}$ of the isotropy group of the spinor $\psi_{0}=u(1,1)$ is given by

$$
\begin{aligned}
\hat{\mathfrak{h}} & =\{\alpha \in \operatorname{spin}(5): \alpha \cdot u(1,1)=0\} \\
& =\left\{\sum_{1 \leq i<j \leq 5} w_{i j} e_{i} e_{j}: \begin{array}{ll}
w_{12}+w_{34}=0 & w_{14}+w_{23}=0 \\
w_{13}-w_{24}=0 & w_{15}=w_{25}=w_{35}=w_{45}=0
\end{array}\right\}
\end{aligned}
$$

Using this concrete realization of the spin-representation one immediately proves

Lemma 1. (a) Let $\psi_{1}, \psi_{2} \in S\left(\Delta_{5}\right)$ be two orthogonal spinors of length one and suppose that for the corresponding Lie algebras $\hat{\mathfrak{h}}\left(\psi_{1}\right) \cap \hat{\mathfrak{h}}\left(\psi_{2}\right) \neq\{0\}$. Then for each vector $X \in R^{5}$ it holds that

$$
\left(\psi_{1}, X \cdot \psi_{2}\right)=0
$$

where $X \cdot \psi_{2}$ denotes the Clifford multiplication of the vector X by the spinor ψ_{2}.
(b) For each spinor $\psi \neq 0$ there exists a unique vector $\xi \in R^{5}$ of length one such that $\xi \cdot \psi=i \psi$.

Denote by $\pi: Q \rightarrow M^{5}$ the frame bundle of the oriented Riemannian manifold (M^{5}, g) and let $\pi: P \rightarrow M^{5}$ be a spin-structure. If $\psi \in \Gamma(S)$ is a section of length one in the spinor-bundle $S=P \times_{\kappa} \Delta_{5}$, then we consider

$$
P^{0}=\{p \in P: \psi(\pi(p))=[p, u(1,1)]\}
$$

Since $\operatorname{Spin}(5)$ acts transitively on $S\left(\Delta_{5}\right)$ with isotropy group $\hat{H}\left(\psi_{0}\right)=\mathrm{SU}(2)$, P^{0} is a SU(2)-principal fiber bundle over M^{5}. Denote by $\lambda: P \rightarrow Q$ the twofold covering of the spin structure over the frame bundle. Then $\left.\lambda\right|_{P^{0}}: P^{0} \rightarrow$ $\lambda\left(P^{0}\right)=Q^{0}$ is bijective and, consequently, we obtain an $\operatorname{SU}(2)$-reduction $Q^{0} \subset Q$ of the frame bundle Q. We now investigate the topological type of this reduction in the case that M^{5} is simply-connected. The classifying space of the group $\mathrm{SU}(2)=\mathrm{Sp}(1)$ is $P^{\infty}(H)$, a CW-complex of the type $e^{0} \cup e^{4} \cup e^{8} \cup \cdots$. Since M^{5} is a 5 -dimensional CW-complex we see that the isomorphy classes of $\mathrm{SU}(2)$-bundles over M^{5} correspond to the set $\left[M^{5}, P^{\infty}(H)\right]=\left[M^{5}, S^{4}\right]$. Using the classification theorem of Steenrod (see e.g. [18]) we obtain

$$
\left[M^{5} ; S^{4}\right]=\frac{H^{5}\left(M^{5} ; Z_{2}\right)}{\mathrm{Sq}^{2} \mu_{*} H^{3}\left(M^{5} ; Z\right)}
$$

where $\mu_{*}: H^{3}\left(M^{5} ; Z\right) \rightarrow H^{3}\left(M^{5} ; Z_{2}\right)$ is the Z_{2}-reduction and Sq^{2} denotes the second Steenrod square. Since M^{5} is a spin-manifold its second StiefelWhitney class vanishes and, consequently, (look, for example, into the Wuformula!) $\mathrm{Sq}^{2}=0$. Therefore, on a 5 -dimensional, compact, simply-connected spin-manifold M^{5} there are precisely two $\mathrm{SU}(2)$-principal fiber bundles:

$$
\left[M^{5}, S^{4}\right]=H^{5}\left(M^{5} ; Z_{2}\right)=Z_{2}
$$

Theorem 1. Let M^{5} be a 5-dimensional, compact simply-connected spinmanifold with a nowhere vanishing spinor field $\psi \in \Gamma(S)$. Then the following conditions are equivalent:
(1) Q^{0} is the trivial $\mathrm{SU}(2)$-principal fiber bundle.
(2) The subbundle $T^{h}=Q^{0} \times_{\mathrm{SU}(2)} R^{4} \subset T M^{5}$ is trivial.
(3) M^{5} is parallelizable.
(4) $\operatorname{dim} H_{2}\left(M^{5} ; Z_{2}\right) \equiv 1 \bmod 2$.

On the other hand Q^{0} is a nontrivial $\mathrm{SU}(2)$-principal fiber bundle if and only if $\operatorname{dim} H_{2}\left(M^{5} ; Z_{2}\right) \equiv 0 \bmod 2$.

Proof. The implications $(1) \Rightarrow(2) \Rightarrow(3)$ are trivial, (3) \Rightarrow (4) follows from classical results concerning vector fields on spin-manifolds (see [20]). Suppose now that $\operatorname{dim} H_{2}\left(M^{5} ; Z_{2}\right) \equiv 1 \bmod 2$ and fix a point $m_{0} \in M^{5}$. The space $M^{5} \backslash\left\{m_{0}\right\}$ has the homotopy type of a 4-dimensional CW-complex and $\pi_{1}\left(M^{5}\right)=0$ implies $H^{4}\left(M^{5} \backslash\left\{m_{0}\right\} ; Z\right)=0$. Using the Hopf Classification Theorem we obtain

$$
\left[M^{5} \backslash\left\{m_{0}\right\} ; P^{\infty}(H)\right]=\left[M^{5} \backslash\left\{m_{0}\right\} ; S^{4}\right]=H^{4}\left(M^{5} \backslash\left\{m_{0}\right\} ; Z\right)=0
$$

This means that the bundle Q^{0} is trivial over $M^{5} \backslash\left\{m_{0}\right\}$. Consider a section $X^{*}=\left(X_{1}, \cdots, X_{5}\right)$ in Q^{0} over $M^{5} \backslash\left\{m_{0}\right\}$. The index $\operatorname{Ind}\left(X^{*}\right)$ is an element of $\pi_{4}(\mathrm{SU}(2))=Z_{2}$. Furthermore, if $\operatorname{Ind}\left(X^{*}\right)=0$ then Q^{0} is a trivial bundle over M^{5}. We calculate the index of X^{*} in the following way: Look at the pair $\left(X_{1}, X_{2}\right)$ of vector fields on $M^{5} \backslash\left\{m_{0}\right\}$ and its index $\operatorname{Ind}\left(X_{1}, X_{2}\right) \in \pi_{4}\left(V_{5,2}\right)=$ Z_{2}. An easy homotopy argument shows that the map $f: \mathrm{SU}(2) \rightarrow \mathrm{SO}(4) \rightarrow$ $\mathrm{SO}(5) \rightarrow V_{5,2}=\mathrm{SO}(5) / \mathrm{SO}(2)$ induces an isomorphism $f_{\#}: \pi_{4}(\mathrm{SU}(2)) \rightarrow$ $\pi_{4}\left(V_{5,2}\right)$. Consequently, $\operatorname{Ind}\left(X^{*}\right)$ vanishes in $\pi_{4}(\operatorname{SU}(2))$ if and only if $\operatorname{Ind}\left(X_{1}, X_{2}\right)$ vanishes in $\pi_{4}\left(V_{5,2}\right)$. Now the index of a pair of vector fields with isolated singularities is well known (see e.g. [20]):

$$
\begin{aligned}
\operatorname{Ind}\left(X_{1}, X_{2}\right) & =\sum_{i=0}^{2} \operatorname{dim} H_{i}\left(M^{5} ; Z_{2}\right) \\
& =1+\operatorname{dim} H_{2}\left(M^{5} ; Z_{2}\right) \bmod 2 .
\end{aligned}
$$

This proves the implication (4) $\Rightarrow(1)$.
Remark. Using similar techniques one can show that in case the $\mathrm{SU}(2)$ reduction $Q^{0} \subset Q$ is nontrivial it does not admit a reduction to the subgroup $\mathrm{U}(1) \subset \mathrm{SU}(2)$.

4. The Einstein-Sasaki structure defined by a Killing spinor

Let $\psi \in \Gamma(S)$ be an eigenspinor of the Dirac operator corresponding to the eigenvalue $\pm \frac{1}{4} \sqrt{5 R}$ on a compact, 5 -dimensional Einstein spin-manifold M^{5}
with positive scalar curvature R,

$$
D \psi= \pm \frac{1}{4} \sqrt{5 R} \psi
$$

Then ψ satisfies a stronger equation, namely

$$
\nabla_{X} \psi=\mp \frac{\sqrt{R}}{4 \sqrt{5}} X \cdot \psi
$$

where $X \cdot \psi$ denotes the Clifford multiplication of the vector X by the spinor ψ (see e.g. [4]). Such spinor fields are sometimes called Killing spinors (see e.g. [9]). It is well known that the length $|\psi|$ of ψ is constant.

Denote by $E_{ \pm} \subset L^{2}(S)$ the eigenspace of the Dirac operator corresponding to the eigenvalues $\pm \frac{1}{4} \sqrt{5 R}$, respectively.

Proposition 2. If M^{5} is not conformally flat then $\operatorname{dim} E_{ \pm} \leq 1$.
Proof. Suppose we have two solutions ψ_{1}, ψ_{2} satisfying

$$
\nabla_{X} \psi_{i}=-\frac{1}{4 \sqrt{5}} \sqrt{R} X \cdot \psi_{i} \quad(i=1,2)
$$

Without loss of generality we can assume that $\left(\psi_{1}, \psi_{2}\right) \equiv 0$ since $X\left(\psi_{1}, \psi_{2}\right)=$ $\left(\nabla_{X} \psi_{1}, \psi_{2}\right)+\left(\psi_{1}, \nabla_{X} \psi_{2}\right)=0$.

Fix a point $m_{0} \in M^{5}$ such that the Weyl tensor does not vanish at m_{0}. Then we have for any 2 -form $\eta^{2} \in \Lambda^{2}$

$$
W\left(\eta^{2}\right) \cdot \psi_{1}=0=W\left(\eta^{2}\right) \cdot \psi_{2}
$$

where $W: \Lambda^{2}\left(T M^{5}\right) \rightarrow \bigwedge^{2}\left(T M^{5}\right)$ is the Weyl tensor (see e.g. [5]). Since $W \neq 0$ at m_{0} we apply Lemma 1 and conclude $\left(\psi_{1}, X \cdot \psi_{2}\right)=0$ for any vector $X \in T_{m_{0}}\left(M^{5}\right)$. Consider a local frame $s=\left(s_{1}, \cdots, s_{5}\right)$ in the $\mathrm{SU}(2)$ bundle $Q^{0} \subset Q$ corresponding to ψ_{1} as well as the section s^{*} in the reduction P^{0} of the spin-structure P. Then we have (locally) $\psi_{1}=\left[s^{*}, u(1,1)\right]$ and $\left(\psi_{1}, X \cdot \psi_{2}\right)=0$ for each vector X implies $\psi_{2}=\left[s^{*}, z \cdot u(-1,-1)\right]$ with a complex valued function z. Consequently, we obtain

$$
\begin{aligned}
\nabla_{X} \psi_{1} & =\frac{1}{2} \sum_{i<j} w_{i j}(X) e_{i} e_{j} u(1,1)=-\frac{1}{4 \sqrt{5}} \sqrt{R} X \cdot u(1,1) \\
\nabla_{X} \psi_{2} & =d z(X) \cdot u(-1,-1)+\frac{1}{2} \sum_{i<j} w_{i j}(X) e_{i} e_{j} u(-1,-1) \\
& =-\frac{1}{4 \sqrt{5}} \sqrt{R} X \cdot u(-1,-1)
\end{aligned}
$$

where $w_{i j}$ are the connection forms of the Riemannian manifold M^{5} with respect to the frame s. Using the formulas for the Clifford multiplication
given above we conclude in particular ($X=s_{1}$)

$$
\begin{aligned}
& -w_{15}\left(s_{1}\right)+i w_{25}\left(s_{1}\right)=i \frac{1}{2 \sqrt{5}} \sqrt{R} \\
& -w_{15}\left(s_{1}\right)-i w_{25}\left(s_{1}\right)=i \frac{1}{2 \sqrt{5}} \sqrt{R}
\end{aligned}
$$

thus a contradiction.
Remark. Consider a Killing spinor ψ with

$$
\nabla_{X} \psi=\lambda X \cdot \psi \quad\left(\lambda= \pm \frac{\sqrt{R}}{4 \sqrt{5}}\right)
$$

and the corresponding $\operatorname{SU}(2)$-reduction Q^{0} of the frame bundle Q. If s is a local section in Q^{0} we have

$$
\frac{1}{2} \sum_{i<j} w_{i j}(X) e_{i} e_{j} u(1,1)=\lambda X \cdot u(1,1)
$$

Denote by $\sigma^{1}, \cdots, \sigma^{5}$ the dual frame to s_{1}, \cdots, s_{5}. Then an algebraic calculation yields the following formulas:

$$
\begin{gathered}
w_{12}+w_{34}=2 \lambda \sigma^{5}, \quad w_{13}-w_{24}=0, \quad w_{14}+w_{23}=0 \\
w_{15}=-2 \lambda \sigma^{2}, \quad w_{25}=2 \lambda \sigma^{1}, \quad w_{35}=-2 \lambda \sigma^{4}, \quad w_{45}=2 \lambda \sigma^{3} .
\end{gathered}
$$

We consider now an Einstein space (M^{5}, g) such that $R=20$ as well as a Killing spinor ψ satisfying $\nabla_{X} \psi=-\frac{1}{2} X \cdot \psi$. According to Lemma 1 there exists a unique vector field ξ of length one such that $\xi \cdot \psi=i \psi$. Furthermore, we define a 1 -form η by $\eta(X)=(X \cdot \psi, \psi) / i$ and a (1,1)-tensor $\varphi:=-\nabla \xi$.

Theorem 2. Let $\left(M^{5}, g\right)$ be an Einstein space with scalar curvature $R=$ 20 and Killing spinor ψ. Then $\left(M^{5} ; \varphi, \xi, \eta, g\right)$ is an Einstein-Sasaki manifold.

Proof. We must check the conditions (a)-(g) defining a Sasaki structure in our situation. For the local calculations we choose a frame s in the $\operatorname{SU}(2)-$ reduction. We have

$$
\begin{aligned}
d \eta(X, Y) & =\frac{1}{i}\{X(Y \psi, \psi)-Y(X \psi, \psi)-([X, Y] \psi, \psi)\} \\
& =\frac{1}{i}\left\{\left(Y \nabla_{X} \psi, \psi\right)+\left(Y \psi, \nabla_{X} \psi\right)-\left(X \nabla_{Y} \psi, \psi\right)-\left(X \psi, \nabla_{Y} \psi\right)\right\} \\
& =-\frac{1}{i}((Y X-X Y) \psi, \psi)
\end{aligned}
$$

and, consequently,

$$
d \eta=2\left(\sigma^{1} \wedge \sigma^{2}+\sigma^{3} \wedge \sigma^{4}\right)
$$

This implies immediately

$$
\eta \wedge d \eta \wedge d \eta=8 d M^{5}
$$

The equation $\eta(\xi)=1$ follows directly from the definition of ξ and η. We differentiate the equation $\xi \cdot \psi=i \psi$ and obtain

$$
\begin{gathered}
\left(\nabla_{X} \xi\right) \cdot \psi+\xi \nabla_{X} \psi=i \nabla_{X} \psi \\
-\varphi(X) \cdot \psi-\frac{1}{2} \xi X \psi=-\frac{i}{2} X \cdot \psi
\end{gathered}
$$

In particular we have $\varphi(X) \psi=i X \cdot \psi$ for each X orthogonal to ξ. Replacing X by $\varphi(X)$ we have

$$
-\varphi^{2}(X) \cdot \psi-\frac{1}{2} \xi \varphi(X) \psi=-\frac{i}{2} \varphi(X) \cdot \psi
$$

Combining the last two equations we obtain

$$
-\varphi^{2}(X) \cdot \psi-\frac{1}{2}(X+i \xi X) \psi=0
$$

If X is parallel to ξ it follows that $\varphi^{2}(X) \cdot \psi=0$ and, consequently, $\varphi^{2}(X)=0$. If X is orthogonal to ξ we have $\frac{1}{2}(X+i \xi X) \psi=\frac{1}{2}(X-i X \xi) \psi=\frac{1}{2}\left(X-i^{2} X\right) \psi=$ $X \cdot \psi$ and

$$
\left\{\varphi^{2}(X)+X\right\} \cdot \psi=0
$$

The last formula implies $\varphi^{2}(X)=-X$ in case X is orthogonal to ξ. Summing up we proved $\varphi^{2}=-\mathrm{Id}+\eta \otimes \xi$.

We prove now that ξ is a Killing vector field, i.e. φ is antisymmetric. We already know

$$
\varphi(X) \cdot \psi+\frac{1}{2} \xi X \psi=\frac{i}{2} X \cdot \psi
$$

We multiply by $Y \cdot \psi$ from the right and left side:

$$
\begin{aligned}
& (\varphi(X) \psi, Y \cdot \psi)+\frac{1}{2}(\xi X \psi, Y \psi)=\frac{i}{2}(X \psi, Y \psi) \\
& (Y \psi, \varphi(X) \psi)+\frac{1}{2}(Y \psi, \xi X \psi)=-\frac{i}{2}(Y \psi, X \psi)
\end{aligned}
$$

Taking into account $Y \cdot \varphi(X)+\varphi(X) \cdot Y=-2 g(Y, \varphi(X))$ we obtain

$$
2 g(Y, \varphi(X))|\psi|^{2}+\operatorname{Re}((\xi X \psi, Y \psi))=-\operatorname{Im}(X \psi, Y \psi)
$$

Finally we remark that the real part of $(\xi X \psi, Y \psi)$ and the imaginary part of $(X \psi, Y \psi)$ are antisymmetric in X and Y. It follows that

$$
g(Y, \varphi(X))=-g(X, \varphi(Y))
$$

i.e. $\boldsymbol{\xi}$ is a Killing vector field.

The equation $g(\varphi(X), \varphi(Y))=g(X, Y)-\eta(X) \eta(Y)$ is now a formal consequence of some formulas we already proved:

$$
\begin{aligned}
g(\varphi(X), \varphi(Y)) & =-g\left(\varphi^{2}(X), Y\right) \\
& =-g(-X+\eta(X) \xi, Y)=g(X, Y)-\eta(X) g(\xi, Y) \\
& =g(X, Y)-\eta(X) \eta(Y)
\end{aligned}
$$

We prove the property $d \eta(X, Y)=2 g(X, \varphi(Y))$-using the fact that ξ is a Killing field-as follows:

$$
\begin{aligned}
d \eta(X, Y) & =X \eta(Y)-Y \eta(X)-\eta[X, Y] \\
& =X g(\xi, Y)-Y g(\xi, X)-g(\xi,[X, Y])=g\left(\nabla_{X} \xi, Y\right)-g\left(\nabla_{Y} \xi, X\right) \\
& =-g(\varphi(X), Y)+g(X, \varphi(Y))=2 g(X, \varphi(Y))
\end{aligned}
$$

It remains to prove the integrability condition $\left(\nabla_{Y} \varphi\right)(X)=g(X, Y) \xi-$ $\eta(X) Y$. We again start with $\varphi(X) \cdot \psi=\frac{1}{2}(i X-\xi X) \cdot \psi$ and differentiate this equation:

$$
\begin{aligned}
\nabla_{Y}(\varphi(X)) \cdot \psi-\frac{1}{2} \varphi(X) Y \psi= & \frac{1}{2}\left(i \nabla_{Y} X-\nabla_{Y} \xi \cdot X-\xi \nabla_{Y} X\right) \cdot \psi \\
& +\frac{1}{2}(i X-\xi X)\left(-\frac{1}{2} Y \psi\right)
\end{aligned}
$$

On the other hand we have

$$
\varphi\left(\nabla_{Y} X\right) \psi=\frac{1}{2}\left(i \nabla_{Y} X-\xi \nabla_{Y} X\right) \psi
$$

This implies

$$
\left(\nabla_{Y} \varphi\right)(X) \cdot \psi=\frac{1}{2}\left\{\varphi(X) Y+\varphi(Y) X+\frac{\xi X Y-i X Y}{2}\right\} \psi
$$

First of all we consider the case that X and Y are orthogonal to ξ. Then $(\xi X Y-i X Y) \psi=0$ and $\varphi(X) \cdot \psi=\frac{1}{2}(i X-\xi X) \psi=i X \psi$. In this situation we have

$$
\begin{aligned}
\left(\nabla_{Y} \varphi\right)(X) \psi & =\frac{1}{2}\{\varphi(X) Y+\varphi(Y) X\} \psi \\
& =\frac{1}{2}\{-Y \varphi(X)-2 g(Y, \varphi(X))-X \varphi(Y)-2 g(X, \varphi(Y))\} \psi \\
& =\frac{1}{2}\{-i Y X-i X Y\} \psi=g(X, Y) \xi \cdot \psi
\end{aligned}
$$

and finally $\left(\nabla_{Y} \varphi\right)(X)=g(X, Y) \xi$.
The second case we want to consider is $X=\xi$. Then

$$
\begin{aligned}
\left(\nabla_{Y} \varphi\right)(X) & =\nabla_{Y}(\varphi(\xi))-\varphi\left(\nabla_{Y} \xi\right)=\varphi^{2}(Y)=-Y+\eta(Y) \xi \\
& =g(\xi, Y) \xi-g(\xi, X) Y=g(X, Y) \xi-\eta(X) Y
\end{aligned}
$$

If $Y=\xi$ we have

$$
\{\xi X Y-i X Y\} \psi=\{-X \xi \xi-i X \xi\} \psi=\{X+X\} \psi=2 X \cdot \psi
$$

(X orthogonal to ξ) and it follows that

$$
\left(\nabla_{Y} \varphi\right)(X) \cdot \psi=\frac{1}{2}\{\varphi(X) \xi+X\} \psi=\frac{1}{2}\{i \varphi(X)+X\} \psi=\frac{1}{2}\left\{i^{2} X+X\right\} \psi=0 .
$$

The last equation implies

$$
\left(\nabla_{\xi \varphi} \varphi\right)(X)=0=g(\xi, X) \xi-\eta(X) \xi
$$

for each X orthogonal to ξ. Last but not least we consider the case $X=Y=\xi$. Then we have

$$
\begin{aligned}
\left(\nabla_{\xi} \varphi\right)(\xi) & =\nabla_{\xi}(\varphi(\xi))-\varphi\left(\nabla_{\xi} \xi\right) \\
& =0-\varphi^{2}(\xi)=0=g(\xi, \xi) \xi-\eta(\xi) \xi
\end{aligned}
$$

and the integrability condition is proved.
Remark 1. The existence of a Killing spinor ψ imposes algebraic conditions on the Weyl tensor W, namely $W\left(\eta^{2}\right) \cdot \psi=0$ for any 2 -forms η^{2}. In the case of dimension five this implies

$$
\sum_{1 \leq i<j \leq 5} W_{i j} e_{i} e_{j} u(1,1)=0
$$

Taking into account the structure of the Lie algebra \hat{h} described in $\S 3$ we conclude

$$
W_{12}+W_{34}=0, \quad W_{13}-W_{24}=0, \quad W_{14}+W_{23}=0, \quad W_{i 5}=0
$$

and this is precisely the anti-selfduality condition for the Weyl tensor

$$
W: \bigwedge^{2}\left(T^{h}\right) \rightarrow \bigwedge^{2}\left(T^{h}\right)
$$

which is satisfied automatically in any Einstein-Sasaki space (Proposition 1).
Remark 2. Using the properties of the Sasaki structure we have in particular for the Lie-derivative:

$$
\mathscr{L}_{\xi} \eta=0, \quad \mathscr{L}_{\xi}(d \eta)=0, \quad \mathscr{L}_{\xi} \varphi=0
$$

Remark 3. Obviously, if we start with a spinor satisfying $\nabla_{X} \psi=\frac{1}{2} X \cdot \psi$ we obtain in the same way an Einstein-Sasaki structure.

5. A simply-connected Einstein-Sasaki manifold admits a Killing spinor

Theorem 3. Let $\left(M^{5} ; \varphi, \xi, \eta, g\right)$ be a simply-connected Einstein-Sasaki manifold, with spin-structure. Then the equations $\nabla_{X} \psi= \pm \frac{1}{2} X \cdot \psi$ have nontrivial solutions.

Proof. Consider the subbundle E of the spinor bundle S defined by

$$
\begin{array}{r}
E=\{\psi \in S: \xi \psi=i \psi,\{2 \varphi(X)+\xi X-i X\} \psi=0 \\
\text { for each vector } \left.X \in T M^{5}\right\} .
\end{array}
$$

Using the algebraic description of Δ_{5} given above it is easy to see that E is a 1-dimensional complex subbundle of S. We introduce a covariant derivative $\tilde{\nabla}: \Gamma(E) \rightarrow \Gamma\left(T^{*} \otimes E\right)$ in E by the formula

$$
\tilde{\nabla}_{X} \psi=\nabla_{X} \psi+\frac{1}{2} X \cdot \psi
$$

First of all we must prove that $\tilde{\nabla}_{X} \psi$ is a section in E if ψ belongs to $\Gamma(E)$.
Suppose that $\xi \psi=i \psi$ and $\{2 \varphi(X)+\xi X-i X\} \psi=0$. Then

$$
\begin{aligned}
& \nabla_{Y} \xi \cdot \psi+\xi \nabla_{Y} \psi=i \nabla_{Y} \psi \\
& \nabla_{Y} \xi \psi+\xi\left(\nabla_{Y} \psi+\frac{1}{2} Y \psi\right)-\frac{1}{2} \xi Y \psi=i\left(\nabla_{Y} \psi+\frac{1}{2} Y \psi\right)-\frac{1}{2} i Y \psi \\
& \frac{1}{2}\left(2 \nabla_{Y} \xi-\xi Y+i Y\right) \psi+\xi\left(\tilde{\nabla}_{Y} \psi\right)=i\left(\tilde{\nabla}_{Y} \psi\right) .
\end{aligned}
$$

Since we have a Sasaki structure it holds that $\nabla_{Y} \xi=-\varphi(Y) . \psi$ is a section in E. This implies

$$
\xi\left(\tilde{\nabla}_{Y} \psi\right)=i\left(\tilde{\nabla}_{Y} \psi\right)
$$

In the same way we prove the second algebraic condition for $\tilde{\nabla}_{Y} \psi$. We differentiate the equation

$$
\{2 \varphi(X)+\xi X-i X\} \psi=0
$$

with respect to Y and we use the Sasaki conditions $\varphi=-\nabla \xi,\left(\nabla_{Y} \varphi\right)(X)=$ $g(X, Y) \xi-\eta(X) Y$. After some obvious calculations we obtain

$$
\begin{gathered}
\left\{2 g(X, Y) \xi-2 \eta(X) Y-\varphi(Y) X-\varphi(X) Y-\frac{\xi X Y-i X Y}{2}\right\} \psi \\
+\{2 \varphi(X)+\xi X-i X\} \tilde{\nabla}_{Y} \psi=0
\end{gathered}
$$

The first term vanishes. Consider for example the case that X and Y are orthogonal to ξ. Then we have $\{\xi X Y-i X Y\} \psi=0$ with respect to $\xi \psi=i \psi$ and, consequently, the first term reduces to

$$
\begin{aligned}
& \{2 g(X, Y) \xi-\varphi(Y) X-\varphi(X) Y\} \psi \\
& \quad=\{2 g(X, Y) i+(2 g(\varphi(Y), X)+X \varphi(Y))+(2 g(\varphi(X), Y)+Y \varphi(X))\} \psi \\
& \quad=\{2 g(X, Y) i+X \varphi(Y)+Y \varphi(X)\} \psi
\end{aligned}
$$

Since ψ is a section in E, we have

$$
\{2 \varphi(X)+\xi X-i X\} \psi=0
$$

If X is orthogonal to ξ we obtain

$$
\varphi(X) \cdot \psi=i X \cdot \psi
$$

The first term mentioned above thus eventually reduces to

$$
\{2 g(X, Y) i+i X Y+i Y X\} \psi=2 i\{g(X, Y)-g(X, Y)\} \psi=0
$$

We handle the cases where X or Y is parallel to ξ in the same way. Then we obtain

$$
\{2 \varphi(X)+\xi X-i X\} \tilde{\nabla}_{Y} \psi=0
$$

i.e. $\tilde{\nabla}_{Y} \psi$ is a section in E.

The calculation of the curvature tensor \tilde{R} of the connection $\tilde{\nabla}$ in the bundle E yields the formula

$$
\begin{aligned}
\tilde{R}(X, Y) \psi & =\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) \psi+\frac{1}{4}(X Y-Y X) \psi \\
& =\frac{1}{4}\left(\sum_{i, j} R_{X Y i j} e_{i} e_{j}+X Y-Y X\right) \psi=\frac{1}{4} \sum_{i, j} W_{X Y{ }_{i j}} e_{i} e_{j} \cdot \psi
\end{aligned}
$$

with the Weyl tensor W. Here we use the formula

$$
W_{i j k e}=R_{i j k e}+\left(\delta_{i k} \delta_{j e}-\delta_{i e} \delta_{j k}\right)
$$

valid in a 5 -dimensional Einstein space with scalar curvature $R=20$. Since M^{5} is an Einstein-Sasaki manifold, we have $W(\xi, X)=0$ and we obtain

$$
\widetilde{R}(X, Y) \psi=\frac{1}{4} \sum_{i=1}^{4} e_{i} \cdot W(X, Y) e_{i} \cdot \psi
$$

where $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is a frame in T^{h} orthogonal to ξ. A simple algebraic calculation-using Proposition 1, i.e. $* W=-W$ in $\Lambda^{2}\left(T^{h}\right)$-now shows

$$
\tilde{R}(X, Y) \psi=0, \quad \psi \in \Gamma(E)
$$

Consequently, $(E, \tilde{\nabla})$ is a flat 1-dimensional bundle over a simply-connected manifold M^{5}. Thus there exists a $\tilde{\nabla}$-parallel section ψ in E, i.e. a spinor field satisfying the equation $\nabla_{X} \psi=-\frac{1}{2} X \cdot \psi$.

Remark. The same procedure allows us to construct a solution of the equation $\nabla_{X} \psi=+\frac{1}{2} X \cdot \psi$.

Corollary. In case M^{5} is simply-connected we have $\operatorname{dim} E_{+}=\operatorname{dim} E_{-}$, where $E_{ \pm} \subset L^{2}(S)$ is the eigenspace of the Dirac operator corresponding to the eigenvalue $\pm \frac{1}{4} \sqrt{5 R}$.

6. The classification of compact Einstein spin-manifolds admitting a Killing spinor with regular contact structure

A Sasaki manifold ($M^{5} ; \varphi, \xi, \eta, g$) is called regular if all integral curves of ξ are closed and have the same length L (see e.g. [3]). In this situation we have an S^{1}-action on M^{5} and the orbit space is a 4-dimensional manifold X^{4}. The projection $\pi: M^{5} \rightarrow X^{4}$ is a principal S^{1}-bundle and $2 \pi i \eta / L: T M^{5} \rightarrow R \cdot i=$ \mathfrak{S}^{1} is a connection in this bundle. Since $\mathscr{L}_{\xi} g=0$ and $\mathscr{L}_{\xi} \varphi=0, X^{4}$ admits a Riemannian metric and an almost complex structure which is integrable (see e.g. [3]). Denote by Ω the Kähler form of X^{4}. Then

$$
\pi^{*} \Omega(X, Y)=g(X, \varphi(Y))=\frac{1}{2} d \eta(X, Y)
$$

and we conclude $d \Omega=0$, i.e. X^{4} is a Kähler manifold. Suppose now in addition that M^{5} is an Einstein-Sasaki space. The O'Neill formulas yield that X^{4} is an Einstein-Kähler manifold with scalar curvature $\mathfrak{R}=\frac{6}{5} R=24$. Consequently, X^{4} is analytically isomorphic to $S^{2} \times S^{2}, P^{2}(\mathbf{C})$ or to one of the del Pezzo surfaces $P_{k}\left(3 \leq k \leq 8 ; P_{k}\right.$ is the surface obtained by blowing up k points in general position in $P^{2}(\mathbf{C})$, see e.g. [2]). Next we study the topological type of the S^{1}-fiber bundle $\pi: M^{5} \rightarrow X^{4}$. The curvature form of the connection $2 \pi i \eta / L$ is $\Omega^{*}=(2 \pi i / L) d \eta$. Consequently, the Chern class $c_{1}^{*} \in H^{2}\left(X^{4} ; R\right)$ is given by $c_{1}^{*}=\Omega^{*} / 2 \pi i=d \eta / L$. On the other hand, since X^{4} is an Einstein-Kähler manifold its Chern class is given by the Ricci form

$$
c_{1}=\Omega_{\mathrm{Ric}}=\frac{1}{2 \pi} \quad \frac{R}{4} \Omega=\frac{3}{\pi} \Omega=\frac{3}{2 \pi} d \eta=\frac{3 L}{2 \pi} c_{1}^{*}
$$

and we obtain the relation

$$
c_{1}=\frac{3 L}{2 \pi} c_{1}^{*}
$$

between the Chern class c_{1} of X^{4} and the Chern class c_{1}^{*} of the S^{1}-bundle $\pi: M^{5} \rightarrow X^{4}$. X^{4} is simply connected. We now apply the Thom-Gysin sequence of the fibration $\pi: M^{5} \rightarrow X^{4}$ and conclude:
(a) $H^{1}\left(M^{5} ; Z\right)=0\left(\right.$ since $\left.c_{1}^{*} \neq 0\right)$.
(b) $H^{4}\left(M^{5} ; Z\right)=H^{4}\left(X^{4} ; Z\right) / c_{1}^{*} \cup H^{2}\left(X^{4} ; Z\right)$.
(c) $0=w_{2}\left(M^{5}\right)=\pi^{*} w_{2}\left(X^{4}\right)$. If $w_{2}\left(X^{4}\right) \neq 0$ then $c_{1}^{*} \equiv w_{2}\left(X^{4}\right)$ $\equiv c_{1} \bmod 2$.

In case $w_{2}\left(X^{4}\right) \neq 0$ the spin structure of M^{5} implies an additional condition, namely

$$
\frac{1}{2}\left(1-\frac{2 \pi}{3 L}\right) c_{1}\left(X^{4}\right) \in H^{2}(X ; Z)
$$

(d) The Killing spinor ψ on M^{5} defines an $\operatorname{SU}(2)$-reduction Q^{0} of the frame bundle. Consequently, we have an isomorphism

$$
\pi^{*} T_{\mathbf{C}} X^{4}=T^{h}=Q^{0} \times_{\mathrm{SU}(2)} \mathbf{C}^{2}
$$

of 2-dimensional complex vector bundles. This isomorphism yields $\pi^{*} c_{1}\left(X^{4}\right)=$ 0 because the first Chern class of any $\operatorname{SU}(2)$-bundle vanishes. The ThomGysin sequence imposes a further restriction: $c_{1} / c_{1}^{*} \in Z$.

We now classify all possible Einstein spaces M^{5}.
First case: $X^{4}=P^{2}(\mathbf{C})$. If X^{4} is analytically isomorphic to $P^{2}(\mathbf{C})$ and admits an Einstein-Kähler metric then X^{4} is analytically isometric to $P^{2}(\mathbf{C})$ (see e.g. [15]). The cohomology algebra $H^{*}\left(P^{2}(\mathbf{C})\right.$) is isomorphic to $Z[\alpha] /\left(\alpha^{3}\right)$ and the first Chern class is given by the $c_{1}=3 \alpha, \alpha \in H^{2}\left(P^{2}(\mathbf{C})\right)$. Using the restrictions (c) and (d) stated above we have two possibilities for the Chern class $c_{1}^{*}=\alpha, 3 \alpha$ with $\pi_{1}\left(M^{5}\right)=H^{4}\left(M^{5}\right)=0, Z_{3}$ and $L=2 \pi, 2 \pi / 3$. Since we know the curvature tensor of $P^{2}(\mathbf{C})$ as well as the curvature form $\Omega^{*}=(2 \pi i / L) d \eta=4 \pi i \Omega / L$ of the Riemannian submersion $\pi: M^{5} \rightarrow X^{4}$ we can apply the O'Neill formulas again and conclude that M^{5} is conformally flat. Consequently, M^{5} is isometric to S^{5} in case $c_{1}^{*}=\alpha$ and isometric to S^{5} / Z_{3} in case $c_{1}^{*}=3 \alpha . P^{2}(\mathbf{C})$ is a homogeneous Einstein-Kähler manifold. A simple geometric argument shows that we can lift the isometries of $P^{2}(\mathbf{C})$ to isometries of M^{5}, i.e. $M^{5}=S^{5} / Z_{3}$ is the homogeneous space of constant curvature one and fundamental group $\pi_{1}\left(M^{5}\right)=Z_{3}$.

Second case: $X^{4}=S^{2} \times S^{2}$. Suppose that X^{4} is analytically isomorphic to $S^{2} \times S^{2}=\dot{G}_{4,2}=Q_{2}=$ the Klein quadric in $P^{3}(\mathbf{C})$. Moreover, X^{4} has an Einstein-Kähler metric with positive scalar curvature. Then the Lie algebra \mathfrak{h} of all holomorphic vector fields on X^{4} is the complexification of the Lie algebra \mathfrak{i} of all Killing vector fields (see [14]) and we conclude that $\operatorname{dim}_{R} \mathfrak{i}=\operatorname{dim}_{\mathbf{C}} \mathfrak{h}=6$, i.e. X^{4} admits a 6 -dimensional group of isometries. We now apply a result of L. Berard Bergery (see e.g. [1]) stating in our situation that X^{4} is a symmetric Einstein-Kähler structure on $S^{2} \times S^{2}$. Consequently, X^{4} is analytically isometric to $S^{2} \times S^{2}$. The cohomology algebra of $S^{2} \times S^{2}$ is $H^{*}\left(S^{2} \times S^{2}\right)=\Lambda(\alpha, \beta)$ and its first Chern class is given by $c_{1}=2(\alpha+\beta)$. We again have two possibilities $c_{1}^{*}=(\alpha+\beta), 2(\alpha+\beta)$ with $\pi_{1}\left(M^{5}\right)=H^{4}\left(M^{5}\right)=0$, Z_{2} and $L=4 \pi / 3,2 \pi / 3$.

Now we study the geometry of the Riemannian submersion π : $M^{5} \rightarrow X^{4}$ and conclude that M^{5} is isometric to the Stiefel manifold $V_{4,2}$ or to $V_{4,2} \mid Z_{2}$ with the Einstein metric considered in [11]. The calculation in [4] shows that this space admits a nontrivial Killing spinor.

Third case: $X^{4}=P_{k}$. If X^{4} is analytically isomorphic to a del Pezzo surface $P_{k}(3 \leq k \leq 8)$ there is only one possibility for M^{5}, namely the simply-connected S^{1}-fiber bundle over P_{k}. Indeed, the cohomology algebra of P_{k} is generated by elements $\alpha, E_{1}, \cdots, E_{k} \in H^{2}\left(P_{k}\right)$ and the first Chern class is given by

$$
c_{1}\left(P_{k}\right)=3 \alpha+E_{1}+\cdots+E_{k}
$$

(see e.g. [2]). Using the restriction for c_{1}^{*} given above we see that there remains only one possibility,

$$
c_{1}^{*}=3 \alpha+E_{1}+\cdots+E_{k}
$$

with $\pi_{1}\left(M^{5}\right)=H^{4}\left(M^{5}\right)=H^{4}\left(P_{k}\right) / c_{1}^{*} \cup H^{2}\left(P_{k}\right)=0$.
Summing up we proved the following
Theorem 4. Let $\left(M^{5}, g\right)$ be an Einstein space with Killing spinor ψ and scalar curvature $R=20$. Suppose in addition that the associated contact structure is regular. Then there are three possibilities:
(1) M^{5} is isometric to S^{5} or S^{5} / Z_{3} with the homogeneous metric of constant curvature.
(2) M^{5} is isometric to the Stiefel manifold $V_{4,2}$ or $V_{4,2} / Z_{2}$ with the Einstein metric considered in [11],[4].
(3) M^{5} is diffeomorphic to the simply-connected S^{1}-fiber bundle with Chern class $c_{1}^{*}=c_{1}\left(P_{k}\right)$ over a del Pezzo surface $P_{k}(3 \leq k \leq 8)$.

Remark. S. Sulanke (see [19]) classified all spaces S^{5} / Γ of constant curvature with a Killing spinor. It turned out that except for the case S^{5} / Z_{3} all other examples defined a nonregular contact structure. The integral curves of ξ are all closed but have different length. It seems to be interesting, using higher-dimensional Seifert-fibrations, to classify all Einstein spaces with Killing spinors such that the integral curves are closed, but with different length. The orbit space X^{4} in this case is smooth except for a finite number of points.

References

[1] L. Berard Bergery, Sur de nouvelles variétés riemanniennes d'Einstein (preprint, no. 839), Inst. Élie Cartan, 1981.
[2] A. Besse, Geometric riemannienne en dimension 4, Cedic, Paris, 1981.
[3] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., Vol. 509, Springer, Berlin, 1976.
[4] Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980) 117-146.
[5] ___ A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds, Math. Nachr. 102 (1981) 53-56.
[6] Th. Friedrich \& R. Grunewald, On Einstein metrics on the twistor space of a fourdimensional Riemannian manifold, Math. Nachr. 123 (1985) 55-60.
[7] __, On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Global Anal. Geom. 3 (1985) 265-273.
[8] R. Grunewald, Untersuchungen über Einstein-Metriken auf 6-dimensionalen Mannigfaltigkeiten, Diss. A, Humboldt Universität, Berlin, 1987.
[9] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104 (1986) 151-162.
[10] ___, Caracterisation de la sphere par les premieres valeurs propres de l'operateur de Dirac en dimension 3,4,7 et 8, C.R. Acad. Sci. Paris Sér. I Math. 303 (1986) 417-419.
[11] G. R. Jensen, Imbeddings of Stiefel manifolds into Grassmannians, Duke Math. J. 42 (1975) 397-407.
[12] K. D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds with positive scalar curvature, Ann. Global Anal. Geom. 4 (1986) 291-326.
[13] _ Compact six-dimensional Kähler spin manifolds of positive scalar curvature with the smallest possible first eigenvalue of the Dirac operator, Math. Ann., to appear.
[14] S. Kobayashi, Transformation groups in differential geometry, Springer, Berlin, 1972.
[15] A. Lascoux \& M. Berger, Variétés Kähleriennes Compactes, Lecture Notes in Math., Vol. 154, Springer, Berlin, 1970.
[16] A. Lichnerowicz, Variétés spinorielles et universalite de l'inegalite de Hijazi, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987) 227-231.
[17] B. E. Nilsson \& C. N. Pope, Scalar and Dirac eigenfunctions on the squashed seven-sphere, Phys. Lett. B 133 (1983) 67-71.
[18] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
[19] S. Sulanke, Der Erste Eigenwert des Dirac-Operators auf S^{5} / Γ, Math. Nachr. 99 (1980) 259-271.
[20] E. Thomas, The index of a tangent 2-field, Comment. Math. Helv. 42 (1967) 86-110.
[21] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$, Invent. Math. 89 (1987) 225-246.
[22] G. Tian \& S. T. Yau, Kähler-Einstein metrics on complex surfaces with $C_{1}>0$, Comm. Math. Phys. 112 (1987) 175-203.

Humboldt-Universität zu Berlin

[^0]: Received August 7, 1987.

