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ON THE AVERAGE INDICES
OF CLOSED GEODESICS

HANS-BERT RADEMACHER

Introduction

A nonconstant closed curve c: S1 = R/Z —• M on a compact Riemannian
manifold M with metric g is a closed geodesic on M iff it is a critical point
of the energy functional E: AM —> R, E(c) == ̂  fSi g{c,c) on the Hubert
manifold AM of closed curves (cf. [11, Chapter 1]). Due to a theorem of Lus-
ternik and Fet there always exists a closed geodesic on a compact Riemannian
manifold.

AM carries a canonical O(2)-action leaving E invariant. With a closed
geodesic c all iterates c m , m E N, with cm(t) = c(mt) are closed geodesies too.
Two closed geodesies ci, c<ι: S1 —• M are geometrically distinct if their images
cι(Sx) and c2(51) are distinct. D. Gromoll and W. Meyer prove in [6] that
on a compact Riemannian manifold there are infinitely many geometrically
distinct closed geodesies if the sequence bi(AM F) of Betti numbers of AM
w.r.t. a field F is unbounded. In [21] M. Vigue-Poirrier and D. Sullivan prove
that for a compact simply-connected manifold the sequence 6 (̂AM; Q) of ra-
tional Betti numbers of AM is bounded iff the cohomology algebra H*(M; Q)
of M is a truncated polynomial algebra Td)fl+i(a:) with the generator x of
degree d and height n + 1.

If M is a compact rank-one symmetric space ("CROSS") then the sequence
bi(AM F) is bounded for any field F. In this case one can use the follow-
ing result of W. Klingenberg and F. Takens (cf. [13], [11, 3.3]): For a C4-
generic metric on a compact manifold either there exists a nonhyperbolic
closed geodesic of twist type (then a version of the Birkhoff-Lewis fixed point
theorem due to J. Moser [18] implies the existence of infinitely many geo-
metrically distinct closed geodesies) or all closed geodesies are hyperbolic. So
far there is no example of a simply-connected compact Riemannian manifold
with only hyperbolic closed geodesies. If M is a compact simply-connected
manifold rational homotopy equivalent to a CROSS with a metric all of whose
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closed geodesies are hyperbolic then N. Hingston shows in [9] that

0,

where n(l) is the number of geometrically distinct closed geodesies of length

< /. Due to D. Sullivan [19] there are infinitely many rational homotopy

types of simply-connected compact manifolds M with ϋf*(M; Q) = Td,n+i{x)

besides the rational homotopy types of CROSS'S.

1. Theorem. // M is a compact simply-connected manifold with

H*(M;Q) = Xd>n+i(z)7 where d is even endowed with a Riemannian met-

ric all of whose closed geodesies are hyperbolic, then there are infinitely many

geometrically distinct ones.

Together with the above quoted theorems we get

2. Corollary. For a C4 -generic metric on a compact Riemannian man-

ifold with finite fundamental group there are infinitely many geometrically

distinct closed geodesies.

We say a Riemannian metric is admissible, if the set of closed geodesies as

a subset of AM is the disjoint union of nondegenerate critical submanifolds

Bψ, m G N, k G {1, , r}, with Bψ = {cm\c G Bk}, and the quotient spaces

Bk/Sι are simply connected. The CROSS'S provide examples of admissible

metrics; bumpy metrics with only finitely many geometrically distinct closed

geodesies are other examples if they exist. The sequence ind(cm), m G N, of

the indices of the iterates cm of a closed geodesic is described by a theorem

of R. Bott (cf. [4] or Theorem 1.1) from which the existence of the average

index
ind(cm)

ac = hm — -
m—•oo γγι

follows. For an admissible metric we get for any k = 1, * , r the positive

average index ak = ac, c G Bk, the invariant ηk = ηc G {±1/2, ±1}, c G Bk,

defined by 2Ίc = ind(c2) - ind(c) ( mod 2), 7 c ( - l ) i n d ( c ) > 0 and the Euler

characteristic χk of Bk/Sι. Then we prove in 3.1 (a) using Morse inequalities

the following relation between the average indices ak:

3. Theorem. // M is a compact simply-connected manifold endowed

with an admissible metric, then H*(M;Q) = Td ) n + i(z) and

^ m r

> Q) = >_—Xfc,

where the rational number B(d, n) is an invariant of the rational homotopy

type of M.

In 2.5 and 2.6, we compute B(d,ή) = -n(n + l)d/(2d(n + 1 ) - 4) for

even d and B{d, 1) = (d + l)/(2d - 2) for odd d respectively. Hence for an
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admissible metric the set { l , l /αi , , l / α r } is linearly dependent over Q.

As an application we can estimate the number of geometrically distinct closed

geodesies under certain pinching assumptions for the sectional curvature.

4. Corollary. For a bumpy Riemannian metric on the n-dimensional

complex protective space PnG with sectional curvature K satisfying

4/(n + l ) 2 < K < 1 (n > 5) and with only finitely many geometrically distinct

closed geodesies, there are at least 2n geometrically distinct ones of which at

least n(n + l)/(n + 7) are nonhyperbolic.

In §4 we show that Theorems 1 and 3 remain valid for admissible Finsler

metrics. While there is no example of a bumpy Riemannian metric with only

finitely many geometrically distinct closed geodesies, there are such examples

of bumpy nonsymmetric Finsler metrics due to A. Katok [10]; the geometry

of those metrics is studied by W. Ziller in [23]. We consider these examples

on the 2-sphere.

The author is grateful to Wolfgang Ziller for many helpful discussions, and

would like to thank the University of Pennsylvania for its hospitality.

1. Invariants of closed geodesies

The general references for this chapter are [11, Chapters 1, 2.4 and 3.2]

and [2, Chapters 1 and 2]. Let M be a compact Riemannian manifold with

metric g. Then

AM = < c: S1 = R/Z —• M\c absolutely continuous, / g{c,c) < oo \

is the Hilbert manifold of closed curves on M. AM carries a metric gλ induced

by g and an O(2)-action

0(2) x AM -» AM, {z,c)-> z-c

of isometries since 0(2) acts on S 1 . We identify S1 = SO(2) C 0(2) and we

will use only the S1-action in the following. Let I(c) = {z G Sλ\z c = c] be

the isotropy group of c G AM with respect to the Sx-action. If c G AM is not

a fixed point, its multiplicity mul(c) is the order of its finite isotropy group

I(c). A curve c with mul(c) = 1 is called prime. The differentiate energy

functional

E:kM-+R, E{c) = \ t g(c,c)
* Js1

is 0(2)-invariant and satisfies the condition C of Palais-Smale. The fixed

points of the S^-action are the point curves A°M = E~x(0). The criti-

cal points of E are the point curves and the closed geodesies on M (closed

geodesies are always assumed to be nonconstant). For a closed geodesic c the
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index ind(c) is defined to be the index of the Hessian D2E(c) of the energy
functional E at c. Considering the presence of the S1-action we always have
that the nullity of D2E(c) at a closed geodesic c is at least 1. Therefore the
nullity null(c) of a closed geodesic c is defined to be the nullity of D2E(c)
minus 1. The index and the nullity are constant along an O(2)-orbit 0(2) c
of a closed geodesic c. A closed geodesic c is nondegenerate if null(c) = 0. For
any m G N we define

m: AM -> AM, cm {t) = c{mt).

If c is a closed geodesic, then cm is also with mul(cm) = m mul(c).

Now we will derive estimates for the sequence ind(cm), m € N. Since the
tangent vector field c of a closed geodesic on M can be viewed as a periodic
orbit of the geodesic flow on the tangent bundle TM, we can associate to c the
linearized Poincare map Pc. Pc is a linear endomorphism of EΘE where E is

the (n — l)-dimensional orthogonal complement of c(0) in the tangent space

Tc(o)M at c(0), and Pc is symplectic with respect to the standard symplectic

structure on E Θ E. Let Pc be the complexification of P c, E the complexifi-

cation of E and S1 = {z G C\zz = 1} the unit circle in C. Then we have the

following index theorem of R. Bott.

1.1. Theorem [4, Theorems A, B]. Let c be a closed geodesic on a

Riemannian manifold M with linearized Poincare map Pc and let N(z) =

dimker(Pc - 2id) for zeS1. Then null(cm) = Σ * m = 1 N(z), and the conju-

gacy class of Pc in the group of linear symplectic maps in E Θ E determines

a function I: S1 —* NQ up to a constant with the following properties:

(Ά)I(z) = I(z).

(b) If N(z) = 0 (i.e., z is not an eigenvalue of Pc), then I is constant

nearby z.

(c) The splitting numbers S±(z) = limo-+±ol{eιθz) — I(z) are nonnegative

and bounded by N(z).

(d)ind(C-) = E ^ = i Φ ) .
1.2. Now let (zj.Zj) = (e2πia>,e~2iria>) with 1 < j < I - 1, / < n be the

eigenvalues of Pc of modulus 1 with 0 = αo < αi < < αj-i < Q>ι ~ \- Set

Ij = I(e2πιa) for a € ( α ^ - i , ^ ) , and suppose that if a\ = 0 then I\ = 0, and

that if aι-ι = \ then I\ — 0. From the definition of the Riemann integral one

gets immediately the

1.3. Corollary [4, Corollary 1]. The average index

y ind(c™)
OLC = l im

m—κx> m
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is well defined and satisfies

69

If ac = 0, then ind(cm) = 0 for all m G N. Now we estimate the difference

(ind(cm) -mac).

1.4. Theorem. Let c be a closed geodesic on a Riemannian manifold

of dimension n, S±(z) the splitting numbers defined in 1.1, and L(z) =

dimker(P c — zid)71'1 the dimension of the generalized eigenspace of the eigen-

value z. Then

and for all m G N we have

I i n d ( c m ) - mac\ <S<L<n-l,

with

Im(z)>0

Proof Let f(x) = I(e2πix), and z;, 1 < i < m, be defined by xλ = 0,

^2t == ^2z+i — i / m a n ( ^ ^^n = §• If ^ is even, and yi = ^ for 1 < i < m,

then

-1/2

| ind(cm)-mαc | =
"* ri

£/(*.')-2m/

From [2, 2.13 and the remark at the end of §1] it follows that S+ (z) = S~ (z) <

L{z)/2 G No if z = ± 1 , and S+{z) + S"(z) < L{z) \izφ ±1.

1.5. Remarks, (a) Let c be a closed geodesic on M, and p = c(0).

Then the loop space ΩPM = {c G ΛM|c(0) = p} with fixed initial point p

is a submanifold of AM. Let £ ' = E\ΏPM be the restriction of the energy

functional, such that its critical points are the geodesic loops with initial point

p. So for a closed geodesic the Ω-index indn(c) is defined as the index of the

Hessian D2E'{c). The Ω-index is constant along the orbit 0(2) c. From

the index theorem of M. Morse (cf. [12, 2.5.9]) we get that indn(c) equals

the number of conjugate points c(ίo), 0 < to < 1, of c(0) along c|[0,1) where

we count with multiplicities. Since the concavity con(c) satisfies con(c) =

ind(c) - indn(c) and 0 < con(c) < n - 1 (cf. [2, Chapter 1]), we also have for
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the average index ac = limm^oo((indΩ(cm))/m). From [2, 2.7, remark b] it

follows that
0<I{z)-mdΩ{c) <n-l.

Hence 0 < ac — indn(c) < n — 1, and also, in consequence of acm = mac

0 < mac - indΩ(cm) < n - 1,

which implies that

- con(cm) < mac - ind(cm) < n - 1 - con(cm).

(b) If c is a closed geodesic on M and dim M = n with Pc = id (e.g. a
closed geodesic on a CROSS) then indn(cm) = ind(cm) = mac — (n — 1) and
ac E N since S+(l) = 5"(1) = n - 1 (cf. [2, 2.13]). If the symplectic normal
form of Pc (using the convention of [2, Chapter 1]) is given by

/Jβ(,l,l) 0 \ w l t h j R { z Λ Λ ) = ( ™ s φ -sin0\

V 0 JR(z,l,l)J Ry } V s m ^ cosφj'

z = eiφ and φ = 2πα, a E (0, \) Π R\Q, then

sup (ind(cm) — mac) = sup (mac — ind(cm)) = n — 1,

since ind(cm) — mac = (l-f[2αm] —2αm)(n —1) where [x] is the largest integer
< x. Hence (n — 1) is the optimal universal bound for | ind(cm) — mα c | , and
mac — indn(cm), on an n-dimensional Riemannian manifold.

(c) Since S < 2 ^ = 1 Ij we also get | ind(cm) - mac\ < 2 ^ = 1 Ij which
was shown in [22]. The bound S < n — 1 depends only on the symplectic
normal form of Pc whereas 2 £ ^ = 1 Ij > 2ind(c).

l.β. Definition. For a closed geodesic c with average index ac we define
the invariants βc >Ίc by

βc = sup |ind(cm) -mad Ίc e {±^,±1},

with 7 c ( - l ) i n d ( c ) > 0 and 2ηc = / (-I) = ind(c2) - ind(c) ( mod 2). Then

ind(O = I Λ - g Λ + 2\Ίc\m (mod2),

and βc < dim M—1. A closed geodesic c is hyperbolic if none of the eigenvalues
of its linearized Poincare map has modulus 1. Then by 1.1 all iterates cm,
m E N, are nondegenerate and ind(cm) = mind(c). So the average index
ac = ind(c) of a hyperbolic closed geodesic c is a nonnegative integer, βc = 0,
and 7c = 1 if ind(c) is even and ηc = — | if ind(c) is odd. A closed geodesic
c is said to be elliptic if all eigenvalues of its linearized Poincare map have
modulus 1.
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Now we consider closed geodesies on a surface (i.e., dimM = 2). c is

orientable iff the normal bundle of the immersion c: S1 —• M is orientable.

Define λc G {±1} to be -hi iff c is orientable; then λcm = A™. If M is

orientable then all closed geodesies are orientable. From [12, 3.4], for an

elliptic closed geodesic c on a surface with null(c) φ 1, it follows that ind(c) =

(Ac + l)/2 ( mod 2). Therefore from 1.4 we get

1.7. Corollary. Let c be an elliptic closed geodesic on a surface. The

average index ac is irrational iff null(cm) = 0 for all m G N. //null(c) φ 1

and null(c2) φ 1, then the average index ac and Xc G {±1} determine the

sequence ind(cm), m G N, completely. If2mac £ N we get

l + λ»

and indn(cm) = [mαc] ([x] is the largest integer < x).

Proof. Using the convention of [2] we get as possible symplectic normal

forms for Pc with eigenvalues z\ = e2πιa, a\ € [0, ̂ ] ,

zi=±l, Γ 1 ^ J , σ€{0,±l},

y , „ / cos2τrαi — σ s i n 2 τ r α i \ r i , .
2Γi 7̂  ± 1 , I I , σ G { ± 1 } .

If *i = ± 1 , then

, σ = -l.

Since null(c), null(c2) ^ 1, we have σ = 0 and therefore

ind(cm) = 7(1) + (m - l )/ 2 = mα c - 1,

for z\ = 1, and

ind(c2 m) = 2mac - 1, ind(c 2 m + 1 ) = (2m + l)α c ,

for 2i = - 1 . Now assume ^i = e

2πia\ ax G (0, | ) . Then

+ σ, ac = I2 - 2axσ.

From 1.1 we get that nullcm = 0 for all m G N iff αx G R\Q. If 2mαi G

N, then the symplectic normal form of Pcm is ±id, and therefore ind(cm)

is determined by acm = mac as shown above. If 2ma\ £ N, from 1.4 it

follows that ind(cm) is determined by the conditions |ind(cm) — mac\ < 1

and ind(cm) = (λ^1 + l)/2 (mod 2) since mac £ N. From 1.5 we also get

indn(cm) = [mac] in this case.
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1.8. Remark. G. A. Hedlund [8] proved this result for the case null(cm) =
0 for all m G N. Then mac φ N, so ind(cm) is uniquely determined by
1 ind(cm) - mac\ < 1 and ind(cm) = (λ™ + l)/2 ( mod 2).

2. The Morse inequalities and the space AM/S1

2.1. In the following we want to apply Morse theory to the quotient space
AM/S1 using the Sx-invariant energy functional E: AM —• R which is defined
on the S1 -Hubert manifold of closed curves introduced in §1. Therefore we
need some generic assumptions on the metric g on M:

A connected submanifold B (without boundary) of AM is a nondegenerate
critical submanifold of constant multiplicity if all points of B are critical points
of E, E(B) = a G R, the index, nullity and multiplicity are constant along B
and null(c) = dimB — 1 (so we can write ind(£?), null(B) and mul(B)). Since
null(β) = null(βm) the linearized Poincare map Pc of c G B can only have
1 or e 2 π t α, a G R\Q, as an eigenvalue of modulus 1. If c is a nondegenerate
closed geodesic (i.e., null(c) = 0), then the orbit 0(2) c consists of two
critical circles of the same index and multiplicity. A metric g is bumpy if all
closed geodesies are nondegenerate. As a generalization of the case of a bumpy
metric with only finitely many geometric distinct closed geodesies (which may
not exist), which includes the CROSS'S, we introduce the following notion.
We say a Riemannian metric g is admissible if the set of closed geodesies as
a subset of AM is the union of disjoint nondegenerate critical submanifolds
Bψ, k = 1, ,r; m G N, of constant multiplicity with Bψ = {cm\c G Bk},
B\ = Bk, where the quotient spaces B^/S1 are simply-connected. Then for
each fc = 1, ,r the invariants ctk = αc, βk — βc, Ίk — Ίc are defined for
any c G #*;. Since the Palais-Smale condition holds, the submanifolds B™ are
compact. If M is a simply-connected manifold with an admissible metric, then
it follows as in the proof of the theorem of Gromoll-Meyer that α^ > 0 for all
k = 1, , r and that the sequence bi(AM; F) of Betti numbers is bounded
for any field F. Hence the rational cohomology algebra H*(M', Q) has exactly
one generator, i.e., is isomorphic to a truncated polynomial algebra Td?n+i(x)
with a generator x of degree d and height (n + 1), i.e., dimM = nd (Td,n+i{x)
is the quotient of the polynomial algebra Q[x] by the ideal (xn + 1)) as shown
in [21].

For a Sx -space X we denote by X the quotient space X/S1. For each a G R
let ΛαM = {ce AM\E{c) < a). Let (X, Y) be a space pair and F be a field,
such that the Betti numbers b{ = bi{X, Y;F)= dim jffj(X, Y; F) are finite for
all i G N o . We call the (formal power) series P(X,Y;F)(t) = ΣΐίoW t h e
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Poincare series of (X, Y) with respect to F. We call the set

V = {B%ι\k = 1, ,r, m e N , m = I(mod2)or |7*| = 1}

(i.e., BJ1 € V iff 'md(B^) = md(Bk) (mod2)) the set of homologically visible
critical submanifolds since the following holds.

2.2. Proposition. Let a\ < a<2 be two regular values of the energy func-
tional and let a be the only critical value in (αi,<22). Then

P(Λα 2M,Λα iM;Q)(ί)= ^ tϊnά(<B)P(B;Q){t).

Bev
E(B)=a

Proof. Let B = B™, k = 1, , r, be any critical submanifold with E(B) =
α, and N(B) the negative normal bundle of B which is a 51-Riemannian
vector bundle of dimension 'md(B). On each fiber the 51-action induces an
orthogonal Zm-action. Let DN(B) (resp. SN(B)) be the associated disc
(resp. sphere) bundle. Then

P(Aα?M,ΛαiM;Q)(*)= £ P(DN(B),SN(B);Q)(t),
E(B)=a

(cf. [11, Chapter 2.4]). ~DN(B) (resp. ΈN(B)) is a bundle over Έ with fiber
D /Zm (resp. S^/Zm), where IP = {x € R*|||z|| < 1}, 5*"1 = {x G
R*|||x|| = 1}, t = Ίnd(B). Let T be a generator of Z m . Then Z m acts on a
fiber D{ of the 51-disc bundle DN(B) over B. The dimension of the subspace
of Dι on which T acts as —identity is odd, iff m is even and \ηk\ = \ since
this dimension is given by /(-I) = ind(B|) - ind(£fc) (cf. [20], [11, 4.1]).
Therefore

t\ Ίΐm = l (mod2) or h f c | = 1,

0, otherwise,

and hence

PPCB QMt), if m = 1 (mod 2) or \ηk\ = 1,

0, otherwise,

using the Thorn isomorphism in the first case (B is simply-connected by def-
inition), q.e.d.

Let M be a compact simply-connected Riemannian manifold with an ad-
missible metric. From 1.4 and 2.1 it follows that for any N G N there are only
finitely many m with \nd(Bψ) < N for each k. Let (Q)/> 0 be the sequence of
positive critical values of the energy functional with cι < cj+i, and let (aι)ι>o
be a sequence with αo = 0, a\ < c\ < α/+i for all / > 0. Then the Morse series
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W = M(t) of the energy functional E of the space AM for rational
coefficients is defined by

oo

M{t) =

Using 2.2 we get

Then there is a series Q(t) = Σ°l0 q^ with nonnegative integer coefficients
qi such that

M{t) = P(ΛM, Λ°M; Q)(<) + (1 + ί)O(0

This is a version of the "Morse inequalities" (cf. 2.3(a)) which follows from
the exactness of long homology sequences of the filtration (Aα/M)/>o.

2.3. Remarks, (a) If R(t) = Σ°l0 rtf is a (formal power) series and m G
N, then we define the polynomial Rm(t) = Σ ™ o r ^ I f M M = ΣZo^i
and P(t) = P(ΛM,A°M;Q)(ί) = ΣiίoWi t h e n w e c a n w r i t e t h e M o r s e

equality also in the form:

Wi = bi+qi+ g<-i, i € No,

or

which is equivalent to the usual form of the Morse inequalities:
m m

i=0 i=0

(b) A series R(t) = Σ^o r *^* ^s s a ^ t o ^ e 'ac«^^«r2/ if either r2t = 0 for
all i e No or r2ι+i = 0 for all i e N o . Let for |7*| = 1

M'k(t)=
m = l

and for |7fc| = \

m = l

i.e., Mĵ (ί) = Σ B - e v * i n d ( B Γ ) ' a n d h e n c e MJb(O i s lacaunary. Set Mk(t) =

P(Bk;Q)(t)M'k(t). Then the Morse series M(t) is given by M(t) =

The energy functional E is perfect if M ^ Q ^ ) = P(t), i.e., if Q(<) = 0. If
the Morse series is lacaunary, then E is perfect.
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(c) Let Mk{t) = Σ ~ o wk4t\ Then from the estimate | ind(B^) - mak\ <
βk < dimM - 1 (cf. 1.6) we get

-rK .dimBfc
fc,t < h 1.

Since Σfc=i Wfc,* = &t + φ + <7ί-i a n d δή<ft > 0> the sequence, (^»)t>o is
bounded.

(d) In our main theorem 3.1 we use 2.3(a) (*), hence we need estimates for
Mjp(-l). Since | md(B^) - mak\ < βk and

M'k
m{-1) = (-l) i n d ( β f c )#{/ | ind(4) < m, / is odd or | 7 f c | - 1},

we get

otk

where χk = P{Bk; Q)(—1) is the Euler characteristic of Bk.
For the study of admissible metrics we need the homology of AM:
2.4. Theorem. // M is a compact simply-connected manifold with

ίΓ*(M;Q) = Td,n+i(x), andd is even, then the Poincare series of(AM,λ°M)
(for homology with rational coefficients) is given by

P(AM, Λ°M;Q)(ί) = •''-1 ' x " ' \ 1 ~ tdn

Proof At first we remark that #*(ΛM,Λ°M;Q) S ^^(AM, A°M;Q)
where i/51 is the S1-equivariant cohomology (cf. [9]), since KaM for any
a > 0 is 51-homotopy equivalent to a 5x-space X where the multiplicities of
the points which are not fixed points are bounded.

Let E(xχ, - , xι) denote the free algebra over Q generated by the elements
£1, , xι, i.e., E(x\, , xι) is the tensor product of the polynomial algebra
generated by the elements xk, 1 < k < I, of even degree and the exterior
algebra generated by the elements xk, 1 < k < Z, of odd degree. The minimal
model for M is given by £"(x, y) with deg x = d, deg y = d(n 4-1) — 1 and the
differential d0 with dox = 0, doy = xn+ι (cf. [21, add.]). Using [7, Example
2, Chapter 5] we get (E,d\) as the model for the homotopy quotient AM51:
E = E(e, x, x, 2/, y) with deg e = 2, deg x = deg x + 1 = d; deg 2/ = deg y + 1 =
rf(n 4-1) — 1 and the differential d\: d\e = 0; c?ix = —ex; d\y = x n + 1 — ey\
d\x = 0; d\y = — (n+l)xnx. Let F be the ideal of E generated by the exterior
generators x and y. Then the image of d\y in E/F is nonzero, and therefore
H*{E,dx) = H*{E',dx) with £ ' = E/(y,dy)E (see Proposition 2 of [21]).
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So we can set E1 = E(e,x,x,y)/(xn+ι = ey) with the differential die = 0;
dλx = -ex; dxx = 0; dxy = -{n + l)xnx. Hence {er\r > 0} U {xpzj/«|0 <
p < n - 1, g > 0} is a set of additive generators of #*(£", di) s i ^ (AM; Q)
with Poincare series

Ps.(ΛM;Q)(ί) =
_ j-dn

Since A°M is the fixed point set of the 51-action on AM, we have
H*sι(k°M\Q) = Q[e] (8> Td j n +i(x) with dege = 2, and the homomorphism
i/|ί(ΛM;Q) —• i/|ί(Λ°M;Q) induced by the inclusion is injective for all
A: > 0. Therefore the claim follows from the exact long cohomology sequence
of (AM,Λ°M).

2.5. Remarks, (a) Let M be a simply-connected compact manifold. The
Poincare series of H*(AM,λ°M; Q) are computed for M rational homotopy
equivalent to a sphere or a product of odd-dimensional sphere in [20, p. 32]
and by using equivariant Morse theory for the standard metrics for M rational
homotopy equivalent to a sphere or a projective space in [9, p. 104]. For
#*(M; Q) £ H*(Sd; Q) S Td | 2(z) with d odd one gets

P(AM,Λ°M;Q)(ί) = ^

(b) For each d',n £ N with d'n = 1 (mod 2) there is a simply connected
compact manifold M with /P(M Q) = T2d/,n+i(z) (cf. [19, Theorem 13.2]),
so there are infinitely many rational homotopy types of compact simply-
connected manifolds with only one generator for //*(M;Q) besides the ra-
tional homotopy types of a sphere or a projective space. Therefore for these
homotopy types there is a prime field Zp such that H*{M\ Zp) has more than
one generator. So far there is no analogue for prime fields of the theorem of
Vigue-Poirrier and Sullivan [21]. Hence we cannot conclude that the sequence
of Betti numbers 6 (̂ΛM; Zp) is unbounded. This would be necessary to apply
the theorem of Gromoll-Meyer [6] on the existence of infinitely many geo-
metrically distinct closed geodesies for any metric on M. The Betti numbers
bi(ΏM; Zp) of the loop space ΩM are in this case unbounded as shown by
McCleary [15].

2.6. Corollary. Let M be a simply-connected compact manifold with

(a) For

B(d,n)= lim -P m (ΛM,A°M;Q)(-1
m—>oo m

= lim — V ( - l
m->oo m *-^

i-0
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we get

d odd (then n = l).

(b) // d is even we get, for j £ N,

bj

P6'(AM,Λ°M;Q)(-1) =

) + -n(n + l)d,

with b = d(n + 1) - 2.

2.7. Let M be a simply-connected Riemannian manifold with a bumpy

metric and H*(M; Q) = Td,n+i(z). Since the metric is bumpy, all coefficients

of the Morse series are even. Since 6^-1 (AM, A°M;Q) = 1, it follows from

the Morse inequalities that there are two prime closed geodesies c\, c<ι with

ind(ci) = ind(c2) — 1 < d — 1; this is a special case of a theorem of Fet [5].

Hence the energy functional in this case is not perfect.

3. Admissible metrics

For an admissible metric as defined in 2.1 the set of prime closed geodesies is

the union of finitely many disjoint compact manifolds Bk, k = 1, , r. Since

the invariants ac,βc, ηc are the same for any c G βjk, we can assign to each A;

the positive average index otk and the invariants βk > 0 and ηk £ { ± ^ ± 1 } -

Let Xk be the Euler characteristic of Bk = Bk/S1.

Theorems 1 and 3 in the introduction are then included in the following

main theorem.

3.1. Theorem. If M is a simply-connected compact Riemannian mani-

fold with an admissible metric, then H*(M; Q) = T d > n +i(z) and the following

hold.

(a) Let B(d,n) be the topological invariant introduced in 2.6 ( depending

only on d, n). Then

ΊkXk

(b) If d is even, then

+ f ° g f c - l) +2
βk>0

or dimBfc>0

in particular there is a nonhyperbolic closed geodesic.
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Proof, (a) Assume that Bk U Bk+S = 0(2) ck for k = 1, , s with
Cfc a prime closed geodesic with /?* = 0. Then we have ind(c™) = mak

for k = 1, , s, and M ^ ( - l ) = ηkjN/ak for the number Af^(- l ) with
TV = 2Πfc=i <**, where Mfc(ί) is the series introduced in 2.3(b) (giving the
contribution of Bk and its iterates B™, m > 1, to the Morse series M(t) =
ΣJb=i Λffc(ί)). For jfc = 2s + 1, , r, from 2.3(d) for all j > 1 with

it follows that

Let P(t) = P{AM,A°M] Q)(ί). Then from 2.3(a) (*) we get

and hence

s Σ •
Since (ty)j>o is bounded (cf. 2.3(c)), and B(d,n) = limJ_o o(P : 7 '(-l)/y), we
get (a) for j" —• oo.

(b) If d is even with 6 = d(n + 1) — 2, we have

from 2.6, and

)
\k=l k J h=2s+l

from (a). Hence q^N > 0 yields

3.2. Remarks, (a) In 3.1(b) we need the additional assumption that d is
even, (i.e., that M is not rational homotopy equivalent to an odd-dimensional
sphere, since for d odd - P ^ - ^ ^ J - i ) > £(d, l)2(d-l)JV, and we do not get
an estimate for the number n(l) of geometric distinct closed geodesies with
length < I as N. Hingston gives in [9, 6.2].

(b) One can generalize 3.1(a) as follows: If M is a compact simply-connected
Riemannian manifold with a bumpy metric where Uλ eN 0(2)' ck is the set of
prime closed geodesies such that

a(N) = #{fc|ind(cfc) < TV}
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is finite for all N. Hence for k G N, ak = aCk > 0 which is satisfied for metrics

of positive sectional curvature. Moreover, if ηk = ηCk, then

N
i V^ Ίk 1 '

2 ^ ~a~ ~ T
Ίnά(ck)<N a k ' i=0

N '

with c = 4(dim(M) - l)/min(αfc) + 6.

3.3. Example. If M is a simply-connected CROSS with i/*(M;Q) =

^d,n+i(z)5 i e., a sphere or a projective space with the standard metric, then

the metric is admissible, and the set of prime closed geodesies can be identified

with the unit tangent bundle (i.e., r — 1). The Morse series is lacaunary, hence

it equals the Poincare series (cf. 2.3(b)). We get a\ — d(n+l) — 2, β\ = nd—1,

7i = ( — l ) d - 1 , χ i = n(n + l)d/2 for even d and χ i = d+ 1 for odd d (cf. e.g.

[9, p. 104]); hence we can compute B(d,n) using 3.1(a).

Given a lower bound for the average index we can use 3.1 to estimate the

number of geometric distinct closed geodesies:

3.4. Corollary. Let M be a simply-connected compact manifold with

H*{M\ Q) = Td i n+i(z) endowed with a bumpy metric with sectional curvature

K satisfying 0 < δ2 < K < 1 for δ € Q and δ > \ if d is odd. Then we get

ac > 2δ(nd — 1) for the average index ac of any closed geodesic c, and the

following hold.

(a) There are at least [\B(d,ή)\δ(nd— 1)]' geometric distinct prime closed

geodesies, which have index congruent to (d — 1) modulo 2, and one prime

closed geodesic c with d > ind(c) = d (mod 2) ([x]f is the smallest integer

(b) // d is even, and there are only finitely many closed geodesies, then

there are at least

1 n(n + l)dV

3 + δ-1

nonhyperbolic geometric distinct closed geodesies.

Proof. From [12, 2.6.9 and 2.6.10] we get L(c) > 2π for the length L(c)

of a closed geodesic c on M. Therefore if δ = p/q, then L(cqi) > 2πqj =

π2jp/δ, and hence the comparison theorem of Morse-Schoenberg [12, 2.6.2]

gives ind(c^) > 2jp(nd — 1) which implies ac > 2δ(nd — 1).
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(a) Let Bk U Bk+r = 0(2) c^, k = 1, , r, be the prime critical subman-
ifolds. Then from 3.1 (a) we get

r

0 < (-l)d+1B{d,n) = 2(-l)rf+1 V] ~
k=iak

r Λ

< v — ^ - = - ^ —
iti δ{nd-ί) δ(nd-ί)'

indcfc=d—1 (mod 2)

The existence of a prime closed geodesic c with ind(c) = d (mod 2) and
ind(c) < d follows from 2.7.

(b) From 3.1(b) we get that if O(2) C&, k = 1, , s, are the prime critical
submanifolds with βk > 0, then

> 3 s + 2 ^
ξ^tk - 2δ(nd-l)

4

Corollary 4 in the introduction is a special case of 3.4. Using Lusternik-
Schnirelmann theory in [3] there are estimates for the number of closed
geodesies and their length under certain curvature assumptions without ge-
neric assumptions on the metric.

4. Finsler metrics

Let M be a compact (differentiate) manifold, and TM its tangent bundle.
A function F: TM —> R which is differentiate outside the zero section such
that the second derivative of F2 in the direction of the fiber is positive definite
and F(λx) = XF(x) for all λ > 0, and x € TM is called a Finsler metric
on M. A Finsler metric is symmetric if F(x) = F(-x) also holds for all
x E TM. If g is a Riemannian metric on M, then F(x) = \Jg(x, x) defines
a symmetric Finsler metric. Conversely if F is a Finsler metric which is C2

at the zero section, then there is such a Riemannian metric. For a piecewise
differentiate curve c: [α,6] —• M the length L(c) = f*F(c(t))dt is defined,
and ί : M x M - > R , δ{p,q) — Ίnϊ{L(c)\c(a) = p, c(b) = q} defines a pseudo-
distance on M, which is a distance if F is symmetric (for a nonsymmetric
Finsler metric the length of a curve depends on the orientation). Let g be any
Riemannian metric on M, and AM the Hubert manifold of closed curves on
M introduced in §1 with the metric g\ induced by g. On AM we have the
canonical O(2)-action by isometries, but for a nonsymmetric Finsler metric F
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only the Sx -action leaves the energy functional

= \ f F2(c(t))dt
2 Js1

invariant. E is a (^-function with locally Lipschitzian differential (cf. [16]),
and the critical points of E are the point curves Λ°M and the closed geodesies
of the Finsler metric F on M. As in the Riemannian case there is an ε > 0
such that for points p, q with δ(p,q) < ε, there is a unique minimal geodesic
c: [0,1] —• M with c(0) = p, c(l) = q. Since the energy functional is twice
differentiable at its critical points, the index and nullity of a closed geodesic
are defined as in the Riemannian case. The index theorem of Bott (1.1)
applies, the invariants ac,βc,Ίc are also defined, and the results of §1 remain
valid for Finsler metrics. Since E is C2 at its critical points, we can use Morse
theory as shown in [17], and so 2.1-2.3 as well as 3.1 remain valid for Finsler
metrics.

Two closed geodesies cχ,c2: S1 —• M of a Finsler metric F on M are
geometrically distinct if c\{Sι) Φ c2(Sx) or if F is not symmetric, and
c1(S1) = c2(S2), but the orientations of c\ and c2 are different. There are
examples of bumpy nonsymmetric Finsler metrics with only finitely many ge-
ometrically distinct closed geodesic on spheres and projective spaces; these
examples are due to A. Katok [10] and are studied in detail in [23]:

4.1. Example (Metrics on the two-sphere S2). Let A G (0,1) ΠR\Q.
Then there is on S2 a bumpy nonsymmetric Finsler metric F\ with only two
closed geodesies c\ and c2 (which differ only by orientation) with lengths
L{c\) — 2π/(l -I- A) and L(c2) = 2τr/(l — A), and the conjugate points of
Ci(0) and c2(0) respectively along c\,c2: R —> M occur at t = fcπ, k G N.
Therefore we get indΩ(cί) = [2fc/(l + A)] and indΩ(c§) = [2fc/(l - A)], and
hence the average indices (cf. 1.5)

2 _ 2

Since aua2 G R\Q, c\ and c2 are elliptic, and ind(cψ) and ind(c^) are odd
for all m (cf. 1.7). Hence from 3.1 we get, in consequence of 71 = 72 = —1,

- 1 - 1
£(2,1) = — + — = - 1 .

OL\ a2

Since the Morse polynomial in this case is lacaunary, the energy functional is
perfect. From 1.7 and 3.1 it follows that a bumpy Finsler metric on S2 with
only finitely many closed geodesies has at least two elliptic closed geodesies.
By 3.1(b) we see that there is one elliptic closed geodesic, and since its average
index is irrational (cf. 1.7) it follows from 3.1 (a) that there is another elliptic
closed geodesic. Since 2.7 remains valid for symmetric Finsler metrics, a
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bumpy symmetric Finsler metric on S2 has at least three closed geodesies.

For the nonsymmetric Finsler metrics F\ on S2 we get ind(c2) —> oo for

λ —• 1. Therefore the method of the proof of the theorem of Lusternik and

Schnirelmann (cf. [14], [1]) cannot be used to prove the existence of two closed

geodesies for a nonsymmetric Finsler metric since one does not know a priori

which homology class remains hanging at c<ι. For a bumpy nonsymmetric

(resp., symmetric) Finsler metric on S2 with only two (resp., three) prime

closed geodesies ci,C2 (resp., ci,C2,C3 and indc3 = 2), the average index

a i = aCl e (1,2) Π R\Q determines α 2 = aC2 = α i / ( α i - 1) E (2,oo)

and hence the sequences md(cψ) and ind^™) (cf. 1.7). If there is a bumpy

Riemannian metric on S 2 with only three prime closed geodesies ci,C2,C3,

where c% is hyperbolic with ind(cs) = 2, and c\,C2 are elliptic, then ind(ci) = 1

and ind(c2) = 3, due to the theorem of Lusternik-Schnirelmann. Thus, as in

the Finsler case, l/a1-\-l/a2 = 1, but α 2 € (2,4)(ΊR\Q and ot\ G ( | ,2) ίΊR\Q

since ind(c2) = 3.
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