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LINEAR SYSTEMS ON ΛΓ3-SECTIONS

RON DONAGI k DAVID R. MORRISON

1. Introduction

The types of special linear systems which exist on a curve C which is a
hyperplane section of a K3 surface X often do not depend on C but only on
its linear equivalence class in X. For instance, Saint-Donat proved in [14] that
C possesses a g\ or #3 if and only if the same is true for every nonsingular
curve C € |C|, where \C\ denotes the linear system of C on X, and Reid [12]
found some extensions of this result to other g^s. The general question of
whether the presence of a special gr

d on a given hyperplane section C of a K3
surface forces the existence of such a gr

d on every nonsingular C € \C\ arose
out of work of Harris and Mumford [7]. Our purpose is to study this question
and some related conjectures. We use the term KS-section to denote a smooth
curve of genus at least two on a KS surface. (Such a curve, if nonhyperelliptic,
is a hyperplane section of a birational model of the K3 surface X in some
projective embedding.)

We start, in §2, with a counterexample: a KS surface X in P1 0 , some
of whose hyperplane sections (but not all) possess a g\. In §3 we use a
counting argument to show that if C carries a g\ which is scheme-theoretically
isolated in moduli, then this g\ "propagates" to every nonsingular C E |C|,
in the sense that an explicit geometric construction starting from the g\ on
C produces a 5J on C . A sufficient condition for the propagation of g^s is
also obtained, but it is weak for r > 1.

Analysis of our counterexample shows that in the family of all nonsingular
hyperplane sections of X, the subfamily of curves carrying a g\ has codimen-
sion one. On the other hand, all these curves do carry a g%. Combining this
observation with his theory of Koszul cohomology, Mark Green suggested that
the correct conjecture is not propagation of g^s but constancy of the "Clifford
index" v = d — 2r. More precisely, for a line bundle M on a /f3-section C
with Λ°(M) = r + 1, deg(M) = d, and genus(C) = g, define

i/(M) := d - 2r, i/(C) := min{ι/(Λf) | r > 1, d < g - 1}.
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Clifford's theorem says that v(C) > 0, with equality if and only if C is hyper-

elliptic. We also define

v{ffiχ(C)) := ι/{C) for generic C e\C\.

(Notice that the function C »-> v(C) is lower semicontinuous on the family

of nonsingular curves C" G |C|, so that v{@χ{C)) can be characterized as the

smallest integer v such that for every nonsingular C G \C\ there is some line

bundle M' on C" with Λ°(M;) > 2, deg(M') < g-1 and i/(Λf') < i/.) Green's

conjecture is then:

(1.1) Conjecture [3]. IfX is a K3 surface andL is an ample line bundle

on X then v(C) = v(L) for all nonsingular C G \L\.

In §4 we prove this conjecture for g^s. That is, we show that if the Clifford

index of a nonsingular C is achieved by a g\, i.e., if there is a g\ on C with

d - 2 = ι/(C), then i/(C) = v(0χ{C)). Reid [12] had earlier shown this when

g is sufficiently large with respect to d.

Another interesting feature of our counterexample is that the g% linear

systems on all the hyperplane sections C G \C\ are restrictions of one and

the same line bundle on X; the same holds for the ^ ' s a n d 03's studied by

Saint-Donat. In a second counterexample, based on an example of Reid [12],

we exhibit a KS surface X with an ample linear system \C\ such that every

C G \C\ has a g^, but these are not all induced from the same bundle on X.

(For generic C G \C\ , these ^ ' s are scheme-theoretically isolated in moduli

and have negative Brill-Noether number p < 0, but are not unique.) Again,

each of these g\ 's is contained in a g\ (which the reader should notice has the

same Clifford index v — 4), and these g|'s are induced from a bundle on X.

We suggest that this is a general phenomenon:

(1.2) Conjecture. Let X be a K3 surface, C be a smooth curve on X

of genus g > 2, and \Z\ be a complete base point free gr

d on C with r > 1,

d < g — 1, such that

p(Z):=(d-r)(r + l)-rg<0.

Then the linear system \Z\ is contained in the restriction to C of a linear

system \D\ on X with

deg{DΠC) < g - 1, v(DΓ\C)< v(Z).

(We recall that a linear system \Z\ on C is contained in another system

\Z'\ if every divisor Z G \Z\ is contained in some Z' G \Z'\, i.e., Z < Z' as

divisors on C.)

Conjecture (1.2) clearly implies (1.1); this requires an easy computation

which we leave to the reader. In §5 we extend the analysis of §4, proving (1.2)
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for r = 1. Once again, the first results in this direction are due to Reid [12],
who used Ramanujam's theory of numerical connectedness of divisors on a
surface [11]. Our technique in §§4 and 5 is somewhat different: inspired by
work of Lazarsfeld [8] and Reider [13], we construct a rank two vector bundle
on X in order to study the g\ \Z\.

After this work had been completed (but before this paper was finished),
we received a preprint from Green and Lazarsfeld [4], which proves Green's
conjecture (1.1) in full generality, and also a part of (1.2): there is a linear
system \D\ on X such that v{@c{P)) = v{C). From that preprint we also
learned of some work of Tyurin [15] related to our construction in §3.

We would like to thank Harvard University, the Institute for Advanced
Study, Princeton University, and the University of Warwick for providing
hospitality to one or both of us during the five years this work was in progress.

2. Linear systems on K3 surfaces: review and counterexamples

(2.1) We gather here some useful facts about linear systems on a K3
surface X, taken from Mayer [9] and Saint-Donat [14]. To start, we list some
examples of exceptional behavior:

XI. Let F C X be a smooth elliptic curve, and consider L := ̂ (λ F), k >
1. We then have

/ι°(L) = A; + l, h1{L) = k-l,

and the map <£>|L| determined by sections of L sends X to a rational normal
curve in P*. In particular, all divisors in \L\ are of the form Σi=i ^ w ^ h
Fi ~ F .

X2. Let Γ C X be a smooth rational curve, F c X smooth elliptic as
above, and Γ F = 1. Consider L := @(kF + Γ), k>2. We then have

and all divisors in \L\ are of the form Γ + Σ<Li Ή with F% ~ ^> s o ^|L| has
base-component Γ and maps X to a rational normal curve in Pk.

XS. Let D C X be a smooth hyperelliptic curve of genus g > 2, and let
L := <f(D). Then <p\L\ is two-to-one, and every divisor in \L\ is hyperelliptic.
If (n — l)(g — 1) > 1, then the map <p\nL\ is birational.

In a sense, these are the only cases of exceptional behavior. More precisely,
let L be an effective line bundle on X. The properties of |L| can be read off
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the following flow chart:

L is effective

yes

yes

3 smooth, rational
Γ C X such that
L Γ < 0

χ{

\L\ free of base
components?

yes

\L\ has no
base points

I

is birational?

yes

X3

| contracts only finitely many (rational)
curves. An irreducible Γ C X is contracted iff
Γ2 = -2, Γ L = 0.
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(2.2) A counterexample: nonpropagating <^'s. Let π : X —• P 2

be a KZ surface of genus 2, i.e. a double cover of P 2 branched along a nonsingu-
lar plane sextic curve B c P 2 . The line bundle of degree 2 given by π*^p2 (1)
is then just a special case of example X3. Instead we take L := τr*^P2(3).
We claim:

(i) φ\L\:X —• P 1 0 is an embedding,
(ii) There is a commutative diagram

Γ
p2 υ , p9

where v is the Veronese embedding of P 2 in P 9 via the complete linear system
|<^P2(3)|, and pr is a linear projection.

(iii) Any hyperplane section of X which comes from P 9 (i.e., factors through
π) carries a 1-parameter family of g\ 's.

(iv) The generic hyperplane section of X carries no g\ 's, but does have a
unique g\.

The proofs are quite straightforward: let C be a nonsingular section of \L\.
The sequence

0 —• (9χ —• &χ(L) —• &c{L) —• 0

gives rise to

. τjθf/ffi> \ . τjOίγ τ\ ijOf/^i . . \ . n.

—• rl \yχ) —> ii (^A, L) —• ri (̂ O, OJc) —y ^5

hence

h°{X,L) = 1 + h°(C,ωc) = 1 + g(C) = 11,

where the last step follows from

deg(α c) = deg(L|c) = deg(L) = deg(π) deg(^(3))

= 2 32 = 18 => g{C) = 10.

We thus have a decomposition

where R is the 1-dimensional subspace of H°(X, L) consisting of sections
vanishing on the ramification locus π - 1 ( β ) C X. This proves claims (i) and
(ii). If C C X comes from P 9 it is thus a double cover of a plane cubic
π(C) C P 2 ; the 1-parameter family of g\'s is just π* of the 1-parameter
family of g^s on τr(C). For any other hyperplane section C, π(C) is a plane
sextic, whence the g%; when C G P(i2) is the ramification curve, τr(C) = J5 is
nonsingular by assumption, hence carries no g\.
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(2.3) A counterexample: ^ ' s which propagate but are not in-
duced. Consider X as in (2.2), but now take L := π*^fP2(4). A computa-
tion as above shows that for generic C G |L|, g(C) = 17 and π: X -> P 2 maps
C (birationally) to aplane curve π(C) of degree 8, hence with (7 6)/2 —17 = 4
nodes. We see that the generic C has a g\ as well as four 0g's; the 0g is induced
from a line bundle on X, but not the ^ ' s .

Let Pi, P 2, P3, P4 be the nodes of τr(C), and let \Z\ be the g\ on C induced
by the node Pi. If we fix a divisor ZQG\Z\ consisting of distinct points, then
there is some line I in P 2 such that I Π π(C) = 2Pi 4- ττ(Zo); by choosing ZQ
appropriately we may assume that / does not contain Pi for i ^ 1, and that
π(Zo) does not contain Pi. It is easily seen that the Brill-Noether number of
\Z\ is p = - 7 < 0 .

Let us check that h°((fc(2Z)) = 3; as we shall see in the next section, this
is equivalent to the g\ \Z\ being scheme-theoretically isolated in moduli. By
duality, it suffices to check that h°((fc{^c — 2Z)) = 7.

Let W G \ωc - 2Z0\, so that W + 21 G \ωc\> Then there is a plane curve D
of degree 5 passing through Pi, P 2, P3, and P4 such that

4

D Π π(C) = 2 ] Γ Pi + W + 2Z0.

Now D Π / D ZQ SO that if I is not a component of D we have 5 = D I >
degZo = 6, a contradiction. Thus, D = D\ U / with degDi = 4. Since

/?! n τr(C) = 2P2 + 2P3 -f 2P4 + W + Zo,

a similar argument shows that D\ = D2 U / with deg D 2 = 3; moreover,
2Pi C W. Thus,

D2 Π τr(C) = 2P2 + 2P3 + 2P4 -f (W - 2Pλ).

Moreover, D — D2 U 21 passes through P i , P 2 , P 3 and P 4 so that D2 must
pass through P2,P$ and P4.

We conclude that divisors in \ωc — 2ZQ\ are in one-to-one correspondence
with plane cubics passing through P2,P$ and P 4 . Since 3 points impose
independent conditions on cubics (cf. Griffiths and Harris [5, p. 715]) we see
that

h°{ωc-2Z) = 10-3 = 7,

as desired.

3. Linear systems on /f3-sections propagate

(3.1) Theorem. Let X C P9 be a K3 surface, and C := X Π H C
P ^ " 1 a nonsingular hyperplane section of X. (C is canonically embedded in



LINEAR SYSTEMS ON K3-SECTIONS 55

P9'1 « H.) If C has a g\ which is scheme-theoretically isolated on C, then
every nonsingular hyperplane section C of X has a g\.

Let <fd denote the space of pairs consisting of a curve C and a g\ on it, let
C J£g be the space of d-gonal curves, and for fixed C G Jΐd let W\ denote

the fiber of ^ over C. We recall that the g\ \Z\ on C is scheme-theoretically
isolated if

T\z\WJ = (0).

Equivalently, ^ must be transversal to the Jacobian of C. We have:
• H°(ω — 2Z) injects into H°(ω2), and the image can be naturally identified

with the conormal space at C to the local component of Jί]- corresponding
to(C,|Z|),

• d i m ^ 1 = 2g + 2d - 5.

Putting these together, we see that the transversality is equivalent to

h°{ω - 2Z) + (20 + 2d - 5) = 3^ - 3,

or
h°{ω-2Z) = g-2d + 2,

and by Serre duality, to
h°{2Z) = 3.

Our theorem thus follows from the following more general statement:
(3.2) Theorem. Let X C Pg be a K3 surface, Co := X Π Ho a non-

singular hyperplane section, and \Z\ a gr

d on Co which is scheme-theoretically
isolated on Co, and satisfies

Then every nonsingular hyperplane section C of X has a gr

d.

(3.3) Iterative construction. We construct a series of subvarieties
%[ C (P') , SPi C Sd{X), and correspondences J ^ , ^ C (Pg)* x Sd{X),
as follows. Let &$ := {Zo} for some fixed divisor Zo G \Z\ consisting of
distinct points. Define inductively, for i > 1:

J? := {(Z, H) G ̂ 5_χ x (P^)* I H D span(Z)},

^ :=unique irreducible component of ^ which dominates e9?_i,

H(ΞJ%,ZeSdC where C:=XΠH \

3Z' € 5dC such that (Z',F) G J? and Z ~ c ^ ' J '

where "~c" means linear equivalence on C,
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We note that for all (Z, H)

This is an easy induction, based on the observation that the left-hand side
depends, by the geometric version of Riemann-Roch, only on the position of
the d-tuple Z in P^ and not on the choice of canonical curve through these
points. Hence ^ is dominated by a Pr-bundle over J^, so another easy
induction shows that ^ is irreducible. (Actually, the same argument shows
that J J ' = J ^ is already irreducible.)

Consider the following diagrams:

g-d+r

What we know about them can be summarized as follows:

(1) All four maps are surjective.

(2) All fibers of prx: J^ —• J5^_i are (g — d + r)-dimensional.

(3) All fibers of p r 2 : ^ —> %?% are at least r-dimensional; the fiber over
Ho has an irreducible component which is precisely r-dimensional, by our
assumption that ZQ is isolated.

The sequences ^ , ^ , ^ , , 5 ^ stabilize for large z, and we let *y = ^ , %?
and S? denote the respective limits. From the diagrams we have:

dim(^) + g-d + r = d i m ^ ) = dim(^) = dim^T) + r,

where the last step follows from (3) above together with the irreducibility of
f . Our theorem that dim(^) = g, is thus equivalent to d i m ^ ) = d. In
fact, we claim that already

dim( 51) = d.

Indeed, span(Z0) is a P^"7""1,, i.e. contained in a (g - d + r)-dimensional
family of hyperplanes, i.e. dim(J^) = g - d + r. Therefore,

By the geometric version of Riemann-Roch, our assumption h°(Co,(f(2Z)) =
2r + 1 is equivalent to saying that for Z\ φ Zo, span(Z0,Zi) is a
Hence the fibers of p r ^ ^ -^ S?\ have dimension g — 2d + 2r, so

= (g - d + 2r) - {g - 2d -f 2r) = d
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as claimed. This proves Theorems (3.1) and (3.2).

4. Constancy of the Clifford index

Our main result in this section is a proof of Green's conjecture (1.1) for

(4.1) Theorem. Let C be a nonsingular curve of genus g > 2 on a KS

surface X, and suppose there is a g\ \Z\ on C achieving the Clifford index,

ι/(C) = d - 2. Then v(C) = v{@x{C)).

In view of the semicontinuity of the Clifford index, it will suffice to prove a

particular case of conjecture (1.2): that there is a linear system on X whose

restriction to C contains \Z\ and whose restriction to any C G \C\ has the

same Clifford index as \Z\.

(4.2) Theorem. Under the assumptions of (4.1), there is a divisor D C

X such that

> 2, h°(&χ(C - D)) > 1,

• There is some ZQ < \Z\, consisting of distinct points, such that ZQ C

Dnc.
• For nonsingular C G \C\, v{&c{D)) = i/(#c(D)), h°(^C'{D)) > 2 and

There are two easy reduction steps in the proof of this theorem. First, we

may assume that C is nonhyperelliptic (since the hyperelliptic case is covered

by [14]), and hence that <p\c\ is birational, and its restriction to C embeds C as

a canonical curve. Second, notice that \Z\ is base-point-free and complete (else

there would be a g'd, or gr

d with Clifford index d' — 2 < d — 2 o r d — 2r < d — 2).

In §5, we will extend (4.2) to ̂ ' s which do not necessarily achieve the Clif-

ford index. We therefore state our hypotheses explicitly, so that our lemmas

can be reused in §5. We assume only:

• C is a nonsingular nonhyperelliptic curve of genus g > 2.

• \Z\ is a complete base-point free g\ on C, and a divisor Zo G \Z\ has

been chosen, consisting of distinct points none of which lies on any (of the

count ably many) rational curves on X.

• The Brill-Noether number p(Z) = 2d — 2 — g is negative.

Our first lemma was inspired by work of Lazarsfeld and Reider.

(4.3) Lemma. Under our hypotheses, there is a rank-2, nonsimple vector

bundle & —• X with Ci(^") = [C] and c^i^) = d, and a section s of'/ with

Proof We use a construction of Griffiths and Harris, Proposition (1.33) in

[6]. This provides 9~ and s with the required invariants; the condition needed
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is that any divisor in \C\ which passes through all-but-one points of ZQ must

pass through the remaining point. By surjectivity of

we are reduced to the same condition for ZQ and the canonical system, \ωc\>

By Riemann-Roch, this is equivalent to our assumptions that dim \Z\ > 1 and

that \Z\ is base-point-free.

We still need to check that & is nonsimple, i.e. that h°(^ ® SF*) > 1.

But this is a straightforward computation (cf. Lazarsfeld [8] and Mukai [10]):

= 2g-2-4d + 8 = -2p(Z) + 2 > 2,

but since & <S> ^* is self dual,

= 2h° {

so we conclude ho{&~ ®3r*) > 1.

Remarks, (i) The bundle & in (4.3) is the dual of the one constructed

by Lazarsfeld [8].

(ii) Reider's method [13] is as follows: the computation above shows that

c\{^) > 4 c 2 ^ ) exactly when p(Z) < —3. In that case, a theorem of Bogo-

molov [2] yields the conclusion in case (a) of Lemma (4.4) below.

(4.4) Lemma. Let^ be a nonsimple, rank-2 vector bundle onX. There

exist line bundles L, M and a zero-dimensional subscheme A C X such that

&~ fits in an exact sequence

and either

(a) L>M, or

(b) A is empty and the sequence splits, ^ w L 0 M.

Proof. Since & is nonsimple, a standard argument shows the existence of

an endomorphism φ\ £F —• & which drops rank everywhere.1 Let L, N be the

kernel and image of φ respectively, and M := TV**, the double dual. Clearly,

L and M are line bundles and TV = J ^ ®M for some zero-dimensional A C X.

The two cases arise as follows: if φ1 — 0, then N = im(̂ >) C ker(<p) = L,

so L 0 M~x « L ® N* has a section, and we are in case (a). Otherwise, φ

~ is decomposable, take φ to be projection onto a summand. If &~ is indecomposable,
let <£>o be any automorphism of &~ which is not a multiple of the identity l^r, and let λ be
an eigenvalue of φo at any point. Then φ := <po — Wγ is not an automorphism, so by a
theorem of Atiyah [1], it must be nilpotent; since φ / 0, it must drop rank everywhere.
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must induce an isomorphism from N to its image in ̂ ", thus splitting the
sequence

0-+L-+3Γ-+N-+0.

Since & is locally free, TV must be a line bundle, i.e., A = 0 and we are in
case (b).

(4.5) Corollary. Under our hypotheses, there exist effective divisors
D,Δ onX such thatC ~ D + A, Z0C DnA, DA = d-deg{A), and either

(Case (a)) Δ — D is effective, or
(Case (b)) D meets A transversally and Zo = D Γ\ A.
Proof. We apply (4.4) to (4.3). The section s e H°(^) vanishes on the

O-dimensional locus 2Ό, hence is not contained in the line-subbundle L. The
projection π(s) is therefore a nonzero section of M® J2^; let D be its 0-locus,
so

Mπ&x(D), ZocD.

In case (a) we take Δ = D+E, where E is an effective divisor in \L®M~ι |,
so that L «έfχ(Δ), and we have

and
d - deg(A) = c2(^) - deg(A) = D Δ.

In case (b) we have a decomposition s = s L 0 s M , s o w e define

D := (sM), Δ := (sL).

Then ZQ equals the intersection, which must be transversal since ZQ consists
of distinct points.

(4.6) Lemma. Under our hypotheses, v(&c(D)) < v(Z).
Proof.

v(@c(D)) =C-D- 2h°{0c{D)) + 2

<C-D-2h°(0χ(D)) + 2

<CD-(DD + 4) + 2 = AD-2

= d- deg(A) -2<d-2 = v(Z).

The first inequality follows from the exact sequence

0 -> ̂ χ ( - Δ ) ^ 0x{ΰ) - ffc[p) - 0,

and the second from Riemann-Roch for the line bundle <fχ(D). q.e.d.
The proofs of Theorems (4.1) and (4.2) can now be completed: the extra

hypothesis is that v(Z) is minimal, so the inequality in (4.6) must be an
equality. In particular, we must have:
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(1) H°{tfx(D)) ^ H°((?c{D)) is an isomorphism;
(2)H1(0X{D)) = O
(3) A = 0.
Combining (1) and (2) we get Hι{D-C) = 0. But then also H^D-C) =

0 for C" € |C|, so we get an isomorphism:

H°(d?x(D)) ^ H°((fc(D))

for nonsingular C G |C|, so finally

as required.

5. Linear systems on ίΓ3-sections are contained in induced ones

(5.1) Theorem. Let X be a KS surface, C C X a nonsingular, nonhy-
perelliptic curve, and\Z\ a complete, base-point-freeg\ onC withρ((fc{{%)) <
0. Then there is a line bundle L —> X such that

• h°{X,L) > 2, h°(X,@x{C)®L-1) > 2,

• v{&c ®L) = v{&c ® L) for nonsingular C G \C\.
• There are divisors Zo G \Z\ {consisting of distinct points) and D G \L\

such that Z0C DΠC.
For the proof we use the techniques of §4, with one new idea. The problem

is that even after we have manufactured the splitting C ~ D + Δ, we are not
done: the inequalities in (4.6) may not be equalities, so H°{&c(D)) may be
bigger than H°(<fχ(D)), and no conclusion can be made about v(@c'(D)).

We thus introduce a definition: a line bundle L — @χ{D) is adapted to \C\
if

(1) h°(0χ{D)) > 2, h°(d?x(C - D)) > 2, and
(2) h?{@c'(D)) is independent of the nonsingular C G \C\.
The theorem can thus be rephrased:
(5.17) Theorem. Let X be a K3 surface, C C X a nonsingular, nonhy-

perelliptic curve, and \Z\ a complete, base-point-free g\ on C with
0. Then there is a line bundle L —• X adapted to \C\ such that

• For some divisors Zo G \Z\ (distinct points) and D G \L\, Zo C DπC.
(5.2) Lemma. L = <fχ(D) is adapted to \C\ if
(1) h°(0χ(D)) > 2, h°(d?χ(C - D)) > 2, and
{21) Either hι(@x(D)) = 0 or h\0χ{C - D)) = 0.
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Proof. The sheaf sequence

0 - (9X[Ό - C)

gives

0 -» H°{<?X,D - C) -

-

We note that

is independent of C". Hence h°(<fcf{D)) is determined by rank(α); the alter-
natives in (2') assure rank(α) = 0. (Note that hx{ffχ{C - D)) =

(5.3) Proposition. Let D be a divisor on X such that h°(<fx(D)) > 2
and h°(<fχ(C - 2D)) > 1. Then there is a divisor D on X such that

(i) <9χφ) is adapted to \C\.

(iii) b{C-D)<D(C-D).
(iv) For some Γo which is either empty or a smooth rational curve, D — ί) +

Γo is an effective divisor whose support is a union of smooth rational curves.
Proof. Let E be an effective divisor in the linear system \C — 2D\. We

apply (2.1) to 0X(D).
Suppose first that D is nef. If D2 > 0 then hλ((9χ{p)) = 0 and <9χ{Ό) is

adapted to \C\ by Lemma (5.2); set D := D. Otherwise, D2 - 0 and <9χ{p)
has the type of example XI, that is, D ~ A F for some smooth elliptic curve
F. If k = 1, then h>{@x{Ό)) = 0 so ^χ(D) is still adapted to |C| and we
may set D = D.

Thus, we may assume D ~ kF with k > 2. We now apply (2.1) to
<fχ(D + E). lϊ D + E is not nef, let Γo be a smooth rational curve such
that {D + E) Γo < 0, and let D := £> + Γo - fcF + Γo. We claim that JD
is nef: the only curve which could possibly have negative intersection number
with D is Γo, but

F Γo = ^D Γo = i ( C Γo - (D + E) o Γo) > -^(Z? + £?) Γo > 0,

so that
D Γo = kF Γo - 2 > jfc - 2 > 0.

Thus D is nef: moreover, D 2 = {kF + Γ 0) 2 = 2fcF Γo - 2 > 2fc - 2 > 2, so
that hι{@x{b)) = 0 by (2.1). Hence ̂ χ(D) is adapted to |C|.

We must check the other properties claimed for Ό in this case. Since

E Γo = {D + £) Γo - kF Γo < {D + E) Γo - * < -ifc < -2,
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we have E - Γ o effective. Furthermore,

{E - To) ' Γ o = E Γ o + 2 < 0,

so that 2? — 2Γ0 is effective as well. Thus,

h°(0χ(C - 2D)) = h°(&χ(E - 2ΓO)) > 1,

verifying property (ii). Property (iv) is clear from the definition of 23; to check

property (iii), we compute

D (C - D) = D (C - 23) + Γ o (C - 22?) - Γ*

= 23 (C - 23) + Γ o Έ + 2 < D - {C - 23).

To complete the proof in the case that D is nef, we may thus assume

D~kF with k > 2 and D + JE is nef. If (23 + £ ) 2 > 0, then by (2.1),

h\ffx[p - D)) = Λ 1 ^ ^ + E))=0

so that (?χ(D) is once again adapted to |C | by (5.2), and we may set D := 23.

Otherwise, 23 + 2? ~ /G for some smooth elliptic curve G, and every divisor in

|2?+22| has the form GiH VGi for certain d G |G|. Since A:F+^ G |23H-f?|,

we must in fact have | F | = \G\. But then C ~ (A; + /)F so that C2 = 0, a

contradiction.

To prove the proposition in general, we use induction on the number of base

components of |23|, counted with multiplicity. If |23| has no base components

then 23 is nef and we are finished. If |23| has m base components, we may

assume that 23 is not nef (else we are finished as above) and let Γ be a smooth

rational curve with 23 Γ < 0. Then Γ is a base component of |23|, and |23 — Γ|

has m — 1 base components. By inductive hypothesis, there is a 23 adapted to

\C\ with h°{^χ{C - 223)) > 1 such that Ό (C - 23) < (23 - Γ) (C - D + Γ)

and (23 — Γ) — 23 + ΓQ is effective and supported on rational curves for some

Γo. Since 23 - Ό + Γ o = ((23 - Γ) - Ό + Γo) + Γ, it suffices to show that

(23 - Γ) (C - 23 + Γ) < 23 (C - 23),

i.e., since (23 - Γ) (C - 23 + Γ) = 23 (C - 23) - Γ E + 2 it suffices to show

that Γ E > 2. But Γ 23 < - 1 so that

Γ £ = Γ C - 2 Γ 23> -2Γ 23 > 2. q.e.d.

We can now complete the proof of (5.1). We choose ZQ € \Z\ as in §4,
consisting of distinct points not on any nonsingular rational curve in X. We
apply (4.5) to obtain 23, Δ, with 23 Π Δ D ZQ.

In case (a) of (4.5), we use Proposition (5.3) to replace 23 by Ό which is

adapted to |C | , with

b - (C - D) < D (C - 23) = 23 Δ.
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Since D — D + Γo is supported on rational curves, it does not meet Zo, so
ZQ C D => Zo C D. We now apply Lemma (4.6) to D, concluding that
v{&cΦ)) < v(Z) We may thus take L := ffxφ).

In case (b) of (4.5), we simply take L := <fχ{D). We claim:

h°(0χ(D)) > 2, ΛVχ(Δ)) > 2.

By symmetry, it suffices to check this for D. We use the results of (2.1):
If D is not nef: there is a smooth, rational Γ such that D Γ < 0, so

Do := D — Γ is effective. We have

SOZO = D Π Δ D Γ Π Δ must contain a point of Γ, a contradiction.
If D2 > 0 then hι{@x(D)) = 0, h°{0x{D)) > 2 and we are done. By (2.1),

the only remaining case is XI:

D ~ fcF, F nonsingular elliptic, k > 1,

and then
Λ°(L) = ife + l, Λ1(L) = Jk-l.

We claim that k — 1. Indeed,

J D . C - D ( C - D ) = JD Δ = d,

so Zo = D Π C, hence

2 = h°(<?c{Z)) = h°(<?c(D)) > h°(d?x(D)) > 2

so

as required.
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