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COMPACTIFICATION OF COMPLETE KAHLER
MANIFOLDS OF NEGATIVE RICCI CURVATURE

ALAN NADEL k HAJIME TSUJI

0. Introduction

The compactification of quotients of bounded symmetric domains with fi-
nite volume was obtained by Satake [19], Baily-Borel [5], Andreotti-Grauert
[2] and Ash-Mumford-Rapoport-Tai [4]. Siu-Yau [21] obtained a compactifica-
tion of complete Kahler manifolds with finite volume and sectional curvature
pinched between two negative constants; their result may be regarded as a
generalization of the compactification result for quotients with finite volume
of bounded symmetric domains in the case of rank 1. In this paper, we investi-
gate the problem of compactification of complete Kahler manifolds of negative
Ricci curvature. Our main result is the following theorem.

Theorem 0.1. Let M be a complete Kahler manifold of dimension m
and let ω be the Kahler form. Assume the following.

1. Ric(ω) < 0.
2. M is very strongly (m — 2)-pseudoconcave (cf. Definition 2.1).
3. The universal cover of M is Stein.

Then M is biholomorphic to a quasiprojective manifold.
This theorem may be regarded as a generalization of the compactification

results for quotients with finite volume of bounded symmetric domains of any
rank (cf. §3).

Our proof depends on the weak Riemann-Roch theorem for L2-plurigeneral
(cf. §1) and the existence of Kahler-Einstein metrics (cf. §2). In §3, we shall
give a purely differential geometric criterion for noncompact complete Kahler
manifolds of finite volume to be quaisprojective.

The authoίs would like to express their sincere thanks to Professor Y. T.
£>iu, who proposed the problem. Without his encouragement this work may
not have been completed. In addition, the first author would like to thank
Mr. Tom Mrowka for helpful discussion. This work was done while the second
author was at Harvard University supported by JSPS; the second author
would like to express his hearty thanks to JSPS for financial support.
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1. An L2-Riemann-Roch inequality

1.1. Throughout this section we let (Mm,ω) denote a complete Kahler

manifold with Ric(α ) < -ω. We denote by i/(°2) (M,Kff) the vector space

of L2 (relative to ώ) holomorphic sections of the ι/th tensor power K^ of the

canonical bundle KM
Theorem 1.1. We have the following estimate:

liminf i/"mdimH?2)(M,Kff) >—χ I a{KM)m,
I^—*ΌO v ' ml JM

where C\(KM) = ~(v^-ϊ/2π)Ric(α;) is the Chern- Weil form of the canonical
bundle KM equipped with the metric induced from ω.

Remark 1.1. Theorem 1.1 remains valid even if the term on the right-
hand side is infinite.

The rest of this section will be devoted to the proof of Theorem 1.1.
1.2. Definitions and notations. We will use the following definitions

and notations.
1. If Ω C M is an open subset then 3J™ will denote the space of smooth

(p,ς)-forms with values in Kff and compact support in Ω. S^QQ is a pre-
Hilbert space in the usual way; we let <2Q'Q denote the Hubert space comple-
tion of ^ ' 9 .

2. We define the Dirichlet form QQQ to be the densely defined quadratic
form on o2£fiQ obtained by taking the form closure (cf. [17]) of the form

where ϋ is the formal adjoint of 8. In the case that Ω is a smoothly bounded
relatively compact domain, the Rellich lemma implies that QQQ has discrete
spectrum.

3. For the case that Ω = M, there is a second way of defining QVM >> namely
as the <9-Neumann form; this second way turns out to be equivalent to the
first way due to the completeness of M (roughly speaking, the 3-Neumann
boundary conditions get pushed to infinity). More precisely, we replace

by its graph closure to get a closed densely defined operator 8: -2j£f* —> *$?M*

(which acts in the sense of distributions). We let 8*: Sf^* -> «£^'* be the
Hubert space adjoint of 8. 8* is also closed and densely defined. Then we
define Q™ as follows:

Dom Q™ = Dom 8 Π Dom 8*

QpMQ(f) = \\df\\2 + ||<r/
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For the equivalence of this definition with the one given in 2 above, please see
[10, Density Lemma, p. 89]; the basic idea is to use partitions of unity and
Friedrich's mollifers to show that 2™ is dense in D o m Q ^ relative to the
graph norm / ^ | |/ | | 2 + ||<9/||2 + ||d*/H2 Associated to the form Q™ is the
selfadjoint densely defined operator D, the d-Neumann Laplacian, defined by

DomD = {f E Domd* ΠΌomd\\df e Domd* and d*f e Domd},

(compare [8, Proposition 1.3.8, p. 17]).

1.3. Denote by NQQ(X) the number of eigenvalues of Q™, counted with
multiplicity, that are < vX (note the factor v). If Ω is not relatively compact,
then Q^q need not have discrete spectrum; in that case NQQ(X) can be defined
as the dimension of a certain spectral projection. However due to Proposition
1.2 below, we need not be concerned with this extended definition.

1.4. Demailly's generalization of WeyPs formulas for the asymp-
totic spectrum. In the case that Ω is a smoothly bounded relatively com-
pact domain in M, Demailly [6] has already computed NQQ(X) asymptotically
as v —• oo for λ G (0, oo)\(a countable set). We shall not need the full state-
ment of his result. Rather, we shall be content with the following special
case:

Proposition 1.1. For X > 0, we have

^ ^ l > J_ [ Cl(KMΓ.

1.5. Absence of spectrum.
Proposition 1.2. Q0^ has no spectrum in the interval (0, v/2) (for v >

2). Hence

dimHf2){M,K*") = Λft°(0) = N™ ( |)

for all v>2.

Proof First we look at (0, l)-forms. We claim that

(l) Q^(/)>(^-i)ll/ll2>^ll/ll2 for i'> 2

for all / € D o m Q ^ / ) . It suffices to verify inequality (1) for smooth com-
pactly supported / , in which case the result is an immediate consequence of
the following V-Bochner-Kodaira formula (cf. [20, Formula 1.3.3, p. 631]):

(D/, / ) = ||V/ll2 + {y - 1)(- Ricd(/), / ) ,
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where Ricci(/) = R^ f-β. Next, if / G D o m D n ^ ' 0 we have

(D/, Ώf) = (9V, # » where t/> = <9/

(2) = « S f 1 W > ^ W 2 by(l)

= £(•/,/)•
The proposition now follows.

l.β. Completion of the proof of Theorem 1.1. Let Ω C M be a

smoothly bounded relatively compact domain. Then

dimtf°2)(M, K%v) = O ) = Λ&° (I) by Proposition 1.2.

— ̂ Ω'° (I) by th e min-max principle

>—r ci(AΆf)m + o ( 0 by Proposition 1.1.

(For the min-max principle, see [17, Theorem XIII.2, p. 78, or Proposition 4,

p. 270].) Therefore

(3) liminfι/-mdim/ί(

0

2)(M,Λ:^) >— f d{KM)m.

Now let Ω expand toward all of M to get the desired result. The proof of

Theorem 1.1 is now complete.

2. Compactification

In this section we shall prove Theorem 0.1.

2.1. Pseudoconcavity.

Definition 2.1. Let M be a complex manifold of dimension m. M is said

to be very strongly (m—<?)-pseudoconcave if there exists an infinite continuous

exhaustion υ whose complex Hessian \/—l ddv is seminegative and has at

least q negative eigenvalues outside of a compact subset of M in the sense

of distributions. We say that υ is a very strongly (m — #)-pseudoconcave

exhaustion of M.

Let (M,ω) be the complete Kahler manifold in Theorem 0.1.

Lemma 2.1. There exists a positive integer v$ such that the linear system

\VQKM\ embeds M as an open subset of a protective variety M*.

Proof (compare [3]). Using L2 -estimates on a complete Kahler manifold as

in [21], we see that 0 1 / > o H°(M, Kff) separates points on M and forms local

coordinates. Let v be a very strongly (m — 2)-pseudoconcave exhaustion of M

as in Definition 2.1. Take a sufficiently large positive number c and let Mc —

{p G M I v < c}. Then we may assume that \/^Λddv has at least two negative

eigenvalues on M — Mc. In particular there exists no divisor in M contained in
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M — Mc. There exists a positive integer v\ such that the meromorphic map
Φ: M —• P ^ associated with I ^ I ^ M I embeds Mc into a projective space.
Then since transdegc ®i/>0H°{M, Kff) < dimM by the pseudoconcavity of
M (cf. [1]) there exists a projective compactification Mv of Φ(MC) in P ^ . We
may assume that Mp is normal. Then the morphism Φ: M — BsΦ —• Mp

is a biholomorphism onto its image. Let Φ: M —• Mp be a resolution of the
base locus and let Mv be the image of Φ. By Noetherian induction, taking
a positive multiple of v\ instead of v\ if necessary, we may assume that Mp

is nonsingular. Let us consider the meromorphic map Φ " 1 : Mp —• M (this
map is meromorphic because (Φ \M-BSΦ)*V extends to a pluri-superharmonic
exhaustion of Mp because υ is locally constant on BsΦ). Since there exists
no rational curve contained in M, Φ " 1 is a morphism (cf. [9, Proposition 1, p.
113]). We note that Mp—Mp contains only a finite number of divisors because
Φ is a biholomorphism onto its image on Mc and Mc is pseudoconcave. This
implies that BsΦ consists of only finitely many irreducible components. By
Noetherian induction, we obtain the lemma, q.e.d.

We may assume that M* is irreducible. Let us take a resolution μ: M —*
M* such that the maximal divisor contained in the complement of the image
of M in M has normal crossings. D exists because M is very strongly (m — 2)-
pseudoconcave. We shall identify M with its image in M.

We shall fix a Hermitian metric on M.
Lemma 2.2. M — M has measure 0.
Proof. We note that M — M is a pluripolar set by the assumption. In

particular M — M has measure 0.
2.2. Construction of Kahler-Einstein metrics. Let H be an ample

divisor on M such that
(a) H + D is a divisor with normal crossings,
(b) KΉ + D + H is ample,

(c) the universal covering M# of M^ = M — D — H is biholomorphic to a
bounded domain in C m .

The third condition is satisfied if we choose H properly, thanks to a the-
orem of P. A. Griffiths [12]. After performing an embedded resolution of
singularities and then adding on a sufficiently ample divisor in general posi-
tion, we may assume that (a) and (b) hold. By [14, Theorem 1], there exists
a complete Kahler-Einstein metric ω*E on M# such that

ω*E = -—R\c{ω*E).

Let MH be the inverse image of M by the covering map π: M# —• M#.

Lemma 2.3. MH is a bounded pseudoconvex domain in C m .
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Proof. Clearly MH is a bounded domain in C m , since it is contained in

Mff. We must show that MH is a domain of holomorphy. We note that the

universal cover of MH is Stein because the universal cover of M is Stein (by

assumption) and H is ample. Then the lemma follows from the following

basic fact: If a domain in C m has Stein universal cover then it is a domain of

holomorphy.

This fact follows easily from the characterization of domains of holomorphy

(among all domains) in terms of extensions of mappings of Hartogs figures (cf.

[15, p. 254, exercise 10]). q.e.d.

By [16, Main Theorem] and Lemma 2.3, we have the following lemma

immediately.

L e m m a 2.4. There exists a complete Kάhler-Einstein metric ωE on

such that

ωE = -— Έtic{ωE).

2.3. Comparison of the growth of L2-plurigenera.
Lemma 2.5. {MH,UE) has finite volume.
Proof. Take a polydisk

Δ m = { ( * V . , * m ) < E C m I 1**1 < l , l < ί < m }

in M such that

Δ m Π H = {z1, , zm) \zι zk = 0}.

We consider the complete Kahler metric

J ^ dzi Λ άύ A r— dz{ N dz{

on (Δ*) f c x Δ m ~ f c C Δ m . Since ωE is a Kahler-Einstein metric of negative

Ricci curvature, applying Yau's Schwarz lemma [22] to the inclusion

we see that there exists a positive constant C such that ωg < Cωψ. Then

the Poincare growth of ωp gives that

Since M is pseudoconcave, there exists a constant CH such that

dim#°(M, K%υ 0 H®""1) < CHvm

[1, Proposition 11]. Thus by Theorem 1.1, we have

/ cjj£ < mlCπ,
J MH

which completes the proof of the lemma.
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Lemma 2.6.

Proof. Let η be an element of ff^2)(Mjj,/rjg£). Then by the Holder
inequality, we have

oo.

Therefore, if we can show that η extends to a meromorphic section over M

of Kη^i it will follow from the fact that M — M has measure 0 (Lemma 2.1)

together with [18, p. 243, Theorem 2.1] that

Now we show that η extends to a meromorphic section over M of K^. Note
that η is meromorphic on M by [18, p. 243, Theorem 2.1]. Let ψ be any
nontrivial meromorphic section over M of K^. Then η/ψ is a meromorphic
function on M, and we are reduced to proving the following claim:

Claim. Every meromorphic function on M extends to a meromorphic
function on M (cf. [3, Proposition 10, p. 103]).

Proof of Claim. Let Jf(M) (resp. JK{M)) denote the field of meromorphic
functions on M (resp. M). Restriction gives an inclusion Jt{M) «-• Jt(M);
it is our task to show this map is surjective. By pseudoconcavity, J?(M)
has transcendence degree m over C, as does Jί{M) since M is projective
algebraic. Hence every element of Jί{M) is algebraic over ^#(M). It is now
elementary that Jt{M) = */#(M). This completes the proof of the Claim and
the lemma.

By Yau's Schwarz lemma, we see that

On the other hand, by construction,

/ (ω*ε)
JM-H

Hence

(5) / ωΉ
JMH

since M - M has measure 0. We note that Kjg + D + H is an ample divisor.
Then by Lemma 2.6 and Theorem 1.1, we obtain

(6) f ω™<{KΉ + D + H)m.
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By (5) and (6), we obtain

since M - M is measure 0. Then by (4), we find ω^ = {ω*E)m on MH.

Since OJE and α;^ are Kahler-Einstein metrics, ωE — ω*E on M#. Thus the

completeness of ωE yields that M H = Af£. Since if is an arbitrary_ample

divisor satisfying conditions 2.2(a), (b), (c), we conclude that M = M - D.

This completes the proof of Theorem 0.1.

By the same argument as above, we obtain the following theorem.

Theorem 2.1. Let M be a quasiprojective manifold with complete Kάhler

metric ω such that Ric^ < — ω. Then M is of log-general type.

3. Compactification of Kahler manifolds with cusps

In this section we shall give a differential geometric condition for a complete

Kahler manifold of finite volume to be quasiprojective.

Let M be a noncompact complete Riemannian manifold of finite volume.

We assume that the sectional curvature of M is nonpositive and greater than

or equal to —1. Let M be the universal covering of M and let Γ be the

fundamental group of M. Then Γ acts on M as the group of covering trans-

formations. Let d be the distance function on M. For a point p on M, we

set

(7) δ(p)= inf d(p,g(p)).
g£Γ-{l}

δ is invariant under Γ and hence descends to a function on M which we also

denote δ. For a point p of M and a positive number ε, we set

(8) Γε>p = the subgroup of Γ generated by {g G Γ | d(p, g(p)) > ε},

(9) Mε = {peM\δ{p)<ε}.

We denote by S\, 52, all components of Mε and let Si be the inverse image

of Si by the universal covering projection. Then it is easy to see that Γε>p,

to be denoted by I\, is independent of the choice of p E Si. We note that

if we take ε smaller than Margulis' constant, every I\ is quasinilpotent by

Margulis' lemma. Let 7: [0,00) —• M be a ray (parametrized by arclength).

We define the Busemann function GΊ associated with 7 by

(10) BΊ(p)=
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A level set of a Busemann function is said to be a horosphere. Let dM be the
differential geometric ideal boundary of M (cf. [7]).

Definition 3.1. We say that S% is a cusp if there exists a unique point
on dM invariant under I\ such that every horosphere centered at the point
is invariant under IV

Definition 3.2. Let M be as above. We say that M has only cusps if
there exists a positive number e such that every Si is a cusp.

It is well known that if M satisfies the visibility axiom or has negative
curvature, then M has only cusps (cf. [7], [13]).

Now let us return to the case in which M is a Kahler manifold.

Definition 3.3. A Kahler manifold (M,ω) is said to have very strongly
2-negative sectional curvature if the sectional curvature of M is nonpositive
and

RΪC{X,X)-R{X,Y,X,Y)

is negative for every pair of unit tangent vector X,Y with X _L Y, where R
denotes the curvature tensor of M.

For example every Kahler manifold of dimension > 2 with negative curva-
ture has very strongly 2-negative curvature, and a hermitian bounded sym-
metric domain without one-dimensional de Rham factors has very strongly
2-negative curvature.

The main result of this section is the following.

Theorem 3.1. Let (M,ω) be a complete Kahler manifold of finite volume
which has only cusps. Assume that M has very strongly 2-negative curvature.
Then M is biholomorphic to a quasiprojective manifold.

We note that the universal cover of M is Stein by [11, Proposition 1.17, p.
15]. Then Theorem 3.1 follows from the following proposition together with
Theorem 0.1.

Proposition 3.1. Let W be a simply connected complete Kahler mani-
fold. Assume that W has very strongly 2-negative curvature. Then for every
ray η, BΊ is very strongly (m — 2)-plurisubharmonic, i.e. the complex Hessian
of BΊ has at least two positive eigenvalues everywhere on M in the sense of
distributions.

Proof. This proposition follows immediately from the Hessian formula for
the distance function as in [21, p. 364, Proposition 1] (the formula is on p.
365).

Note added in proof. The authors sincerely thank Professor Mok for
pointing out an error in an earlier version of this paper, which necessitated
the addition of the third hypothesis to Theorem 0.1.
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