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GROMOV'S COMPACTNESS OF PSEUDO-HOLOMORPHIC
CURVES AND SYMPLECTIC GEOMETRY

J. G. WOLFSON

In a beautiful recent paper [6] M. Gromov has introduced into symplectic
geometry some new and ingenious techniques. In particular he associates to
a symplectic structure a distinguished family of almost complex structures.
Certain pseudo-holomorphic curves, that is, certain maps of a Riemann sur-
face into the symplectic manifold which are "holomorphic" with respect to
one of these almost complex structures, then provide global invariants of the
symplectic structure. In this way, for example, Gromov proves that the open
round ball BR C R2n of radius R cannot be symplectically diffeomorphic to
an open subset of an ε-neighborhood of a nondegenerate (2n — 2) plane in
R2n, unless R < ε (see [6, Theorem 0.3.A]). The difficult analytic step in this
work is the proof of the existence of suitable pseudo-holomorphic curves. As
in any existence proof for a nonlinear elliptic partial differential system (or
equation) the proof divides into two parts: (i) a proof of the openness of the
space of solutions (often this part is accomplished using an "inverse function
theorem") and (ii) a proof of the closeness or compactness of the space of
solutions. Gromov accomplishes (i) using an index theorem computation and
the Sard-Smale Implicit Function Theorem. The proof of (ii) involves some
of the most delicate and beautiful parts of the paper. Although the space of
pseudo-holomorphic curves is not, in any suitable topology, compact, by en-
larging the space to allow for certain singularities Gromov proves the required
compactness theorem. The proof of this result in [6] is rather brief and quite
difficult. Fortunately, Pansu [9] has written notes clarifying and expanding
the details of this proof. The proof's most interesting feature is that it is
entirely geometric and at no time refers to results in differential equations.
This has the unfortunate consequence of making the paper difficult for many
mathematicians. Both to make Gromov's compactness result more accessi-
ble and to unify it with the many other compactness results in differential
geometry, we give a new proof of this result using some ideas in partial dif-
ferential equations due to Schoen and Uhlenbeck [11]. This work appeared
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in preprint form under the title A P.D.E. proof of Gromov's compactness of
pseudo-holomorphic curves and comprises Part I of this paper. Following the
suggestion of the editors of this journal, in Part II we apply the compactness
result of Part I and outline Gromov's proof of the symplectic rigidity of the
open round ball.

We are indebted to many mathematicians for their help with this work. In
particular, it is a pleasure to thank S. Kerchoff, M. Struwe, M. Gromov and
P. Pansu. The bulk of the research described in Part I of this manuscript
was carried out at the Max-Planck-Institut Fur Mathematik in Bonn, West
Germany. We are indebted to MPI for its support. Part II is, at least partially,
the outcome of a seminar on symplectic geometry which was organized at
Tulane University in the spring of 1987. We are grateful to the participants
of that seminar for all their help.

PARTI
A P.D.E. PROOF OF GROMOV'S COMPACTNESS

OF PSEUDO-HOLOMORPHIC CURVES

1. Formulation of the problem

In the introduction we briefly indicated the role Gromov's compactness
of pseudo-holomorphic curves theorem plays in symplectic geometry. It is
interesting to note that this result can be formulated and proved without
reference to symplectic geometry. In this section following Pansu [9] and
Gromov [6] we carry out this formulation.

Let (F, μ) be a compact Riemannian manifold equipped with an almost
complex structure J, and M be a compact Riemann surface of genus g with
complex structure JM.

Definition. A map /: (M, JM) —» (F, J) is called a pseudo-holomorphic
curve (or a J-holomorphic curve) if df o JM = J o df.

Let {Jj} be a sequence of almost complex structures on V, which is uni-
formly bounded in C / c + α . Given A > 0, let {fj} be a sequence of Ck pseudo-
holomorphic curves fj\ (M,JM) —> (V,Jj) of μ-area less than or equal to
A.

Question 1. Does there exist a subsequence of the {fj} which converges
in Ck to a pseudo-holomorphic curve / 0 : (M, JM) —• (V, Jo)?

Now suppose that the complex structures on M are varying. That is,
suppose that J™ is a sequence of complex (or conformal) structures on M
and that {fj} is a sequence of Ck pseudo-holomorphic curves fj: (M, Jj
(F, Jj) of /i-area less than or equal to A. The Jj are bounded as above.
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Question 2. Does there exist a subsequence of the {fj} which converges

in Ck to a pseudo-holomorphic curve /o: (M, J™) —• (M, Jo)?

It turns out that the answer to both questions is "no". However, the failure

of compactness can be measured precisely and by enlarging the space suitable

compactness theorems can be formulated. We begin with Question 1.

Theorem 1.1. Let (V,μ) be a compact Riemannian manifold and let Jj

be a sequence of almost complex structure uniformly bounded in CkJta, k > 2.

Suppose that fj . (M,JM) —• {V,Jj) is a sequence of Ck pseudo-holomorphic

curves whose area is uniformly bounded by A> 0. Then there is a subsequence

of the {fj} (still denoted by {fj}) and a finite number of points {x\ •••£/}

such that fj —> /oo in M — Uί=i UXi where UXi is any neighborhood of X{.

The convergence is in the Ck topology and /oo is a pseudo-holomorphic map

of M — {x\ - xi} into V, for some almost complex structure JQO

The negative answer to Question 1 results from the failure of Ck (or even

C1) convergence at the points x\ x\. This failure can be precisely under-

stood. Let [y be a hermitian metric on M and let H/yllc1 denote the C1

norm of fj determined by v and μ. Set bj = sup D δ ( X l ) ll/jllc1^ where δ > 0

is small. Let Xj be the point of D$(xi) where the value bj is taken. Then

as j" —• oo, x3• —• x\ and bj —• oo. By rescaling the maps fj in a smaller

neighborhood of X\ and using conformal invariance it can be shown that the

blow-up of the //s results, in the limit, in the point x\ being replaced by a

pseudo-holomorphic curve /oo,i: S2 —>V. A pseudo-holomorphic two-sphere

"bubbles" up from the curve M at x\. Similar results apply to the points

X2?" ,xι- Thus the "limit" of the sequence fj is not the curve /oo, but

rather a map /o: M U(J α = = 1 S2 —• (F, Jo) from M with a two-sphere attached

at each xa, a = 1, , /, to V. We denote M U Uα=i ^ 2 by M) and define

/o on M o by sending x e M - {x\ xι} to foo(x) and x € S2 (the two-
sphere attached to xa) to /oo,α(z) The formation of the pseudo-holomorphic

two-sphere "bubbles" is called "bubbling".

Turning to Question 2 it is clear at the outset that the "bubbling" phe-

nomenon can occur. Moreover, since we are now allowing the complex struc-

ture on M to vary, consideration of the moduli space of conformal structures

on a Riemann surface should be necessary. To do this we follow Pansu [9, §§1

and 2] in enlarging the space of pseudo-holomorphic curves (also see Gromov

[6, §1.5]).

Definition. A cusp-curve in (F, J) is a disjoint union of Riemann surfaces

M α , together with an identification of a finite number of points (called cuspidal

points) and a pseudo-holomorphic map / : \Ja Ma —> V compatible with the

identifications.
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Definition (The Ck topology on cusp-curves). Let /: \JaMa —> V be
a cusp-curve. For ε > 0, a hermitian metric v on Ma and a neighborhood
U of the cuspidal points of /, the set of cusp-curves / : \Ja Ma —• V is a
neighborhood of the cusp-curve / if the following hold:

(i) There is a continuous map

a diffeomorphism except at the cuspidal points, such that, for x cuspidal,
σ~1(x) is either a simple closed curve or a cuspidal point.

(ii) | |/ — / o σ " 1 ^ * < ε outside of U where the norm is determined by
the metric v on Ma and the given metric μ on V.

(iii) II JM — &*JM \\ck < £ outside of U where the norm is as above.

(iv) |area(/) - area(/)| < ε.

It is clear that a special class of cusp-curve arises from the "bubbling"
phenomena. Such a curve is an arbitrary Riemann surface M with a finite
number, say A;, of two spheres attached at k distinct points and a pseudo-
holomorphic map / : M U UίUi s 2 ~* V'

We will call such curves simple cusp-curves. From Gromov's point of view
cusp-curves arise by collapsing simple closed curves ηi in a Riemann surface
to points X{. Simple cusp-curves, in this view, arise when the curves ηi are ho-
motopically trivial. Thus for Gromov bubbling corresponds to the collapsing
of homotopically trivial simple closed curves. We have (compare [9, Theorem
5] and [6, Theorem 1.5.B]).

Theorem 1.2 (Compactness of cusp-curves. I). Let (V,μ) be a compact
Riemannian manifold equipped with a sequence of almost complex structures
Jj uniformly bounded in Ck+a. If fji (M,JM) —• (V, Jj) is a sequence of
Ck pseudo-holomorphic curves of uniformly bounded μ-area, then there is a
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subsequence which converges in Ck to a simple cusp-curve /o: \Ja Ma —•

{V,Jo) Topologically \JaMa = M with a finite number of homotopically

trivial simple closed curves collapsed to points.

If the complex structure on M is permitted to vary then in the limit the

curve can approach the boundary of moduli space. This means that certain

simple closed curves on M which are homotopically nontrivial are collapsed

to points. We have

Theorem 1.3 [Compactness of cusp-curves. II). Let (V, μ) be a compact

Riemannian manifold equipped with a sequence of almost complex structures

Jj uniformly bounded in CkJta. Let M be a Riemann surface and J^ be

a sequence of complex {or conformaΐ) structures on M. If fji (M,J™) —•

{V,Jj) is a sequence ofCk pseudo-holomorphic curves of bounded μ-area, then

there is a subsequence which converges in Ck to a cusp-curve /o: \Ja Ma —»

{V,Jo). Topologically \Ja Ma = M with a finite number of simple closed

curves collapsed to points, and so

where g denotes the genus.

We remark that in [9] and [6] versions of Theorems 1.2 and 1.3 for pseudo-

holomorphic curves with boundary are formulated and proved. The techniques

we will develop to prove the above theorems apply, without difficulty, to the

versions with boundary. For the sake of brevity, we leave the details to the

reader. In §§2-5 we will prove Theorems 1.1 and 1.2. In §6 we show how to

modify these techniques to prove Theorem 1.3.

Gromov calls the results of Theorem 1.2 and 1.3 weak compactness for

pseudo-holomorphic curves. To obtain Ck compactness results for pseudo-

holomorphic curves it is necessary to consider families of curves satisfying

certain topological and geometric conditions. These conditions eliminate the

possibility of cusp-curves developing and thus the weak compactness of The-

orem 1.2 or 1.3 implies the Ck compactness of the family in the usual sense

(see, for example, Proposition 7.5 and 7.11).

2. Some related problems and an outline of the proof

The appearance of "bubbles" in compactness problems in geometry is by

now a well-known phenomenon. It's importance was first recognized by Sacks

and Uhlenbeck [10]. In recent years a number of different geometric objects

(e.g. minimal surfaces, harmonic maps) have been studied using a uniform

bound on a related geometric functional. In the following chart we list some
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of these objects, the names of some workers and the geometric functional.

Geometric Object
(a) pseudo-holomorphic

curves
(b) harmonic maps of

surfaces
(c) minimal surfaces

Worker (s)
Gromov [6]

Functional
area

Sacks-Uhlenbeck energy
[10]
Choi-Schoen [3] L2 norm of the second

fundamental form
(d) minimal submanifolds M. Anderson [1] Ln norm of the second

fundmanetal form
(e) Yang-Mills connections Uhlenbeck [15] L2 norm of the curvature

In all of the above works a compactness theorem is proved under the as-
sumption of a uniform bound on the geometric functional. The phenomenon
of "bubbling" either appears or can be eliminated by careful study. In any
case it is a phenomenon which must be dealt with.

Another interesting feature is that the proofs of compactness in the works
(b)-(e) have many features in common. Allowing for some deviations these
proofs contain the following three key steps:

(1) The derivation of a formula for the Laplacian of the functional inte-
grand. In (b) the formula is due to Eells-Sampson [4], in (c) and (d) the
formula is due to J. Simons [12] and is known as Simons' equation, and in (e)
the formula is due to Bourguigon-Lawson [2],

(2) Combining the formula of (1) with Morrey's mean value theorem [8]
to derive uniform C1 estimates under the assumption of suitable smallness of
the functional.

(3) The use of a covering (or patching) argument to uput the pieces" of step
(2) together. This argument is due to Sacks-Uhlenbeck [10] and now bears
their name.

It is the purpose of Part I to provide a proof of Gromov's compactness of
pseudo-holomorphic curves by following the above three steps. In this way
the above problems (a)-(e) can be seen from a unified point of view.

3. A Bocher-type formula

Suppose that (V, J) is an almost complex manifold. Choose a metric μ on
V, hermitian with respect to J. The triple (F, J, μ) is usually called an almost
hermitian manifold. We begin by studying the geometry of (V, J, μ).
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In T(1>0)V, the cotangent bundle of (1,0) forms with respect to J, choose

a unitary coframe {ωι ωn}. The first structure equation is

(3.1) dωa = ωaβΛωβ + θa,

where (ωaβ) is the connection one-form and θa is the torsion 2-form. (ωaβ)

has values in tz(n), that is,

(3.2) ώaβ = -ωβa.

As θa is a 2-form we can write it as a sum of three 2-forms,

(3.3) θa = θg>V+θg>V+θg>2\

where θa

2:0\θa

1Λ) and 0i°'2) are (2,0), (1,1) and (0,2) forms respectively.

Recall that θa = 0 are the necessary and sufficient conditions for the inte-

grability of J. Write

(3.4) θg>V=Σ

Then set

It follows that

(3.5) ώaβ = -ώβ&

and that

(3.6) dωa =ώQ^Λα; / 3 + <9α,

where θa = 0 . This shows that we can choose a connection compatible with

J and μ whose (1,1) torsion vanishes. It is easy to verify that this connection

is unique. We will call this connection compatible and denote it by ωaβ

(i.e. we will henceforth drop the tilde). The construction of the compatible

connection follows the standard procedure in the theory of G-structures of

"absorbing the torsion into the connection". Set

(3.7) dωaβ - ωaη Λ ωηβ = VLaβ.

Ωα^, the curvature of the compatible connection, is a 2-form with values in

u(n). Denote by Ω^ 1 * the (1,1) part of VLaβ and write

(3.8) " Ϊ
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Let / : (M, JM) —• (V, J) be a pseudo-holomorphic curve. Let φ be a (1,0)

form on M for the complex structure JM. The condition that / is pseudo-

holomorphic can be expressed as

(3.9) f*ωa=aaφ, α = l, ,n,

where the aa are complex valued functions on M. The energy of / is, by

definition,

(3.10) E(f)= ί
JM

Note that E(f) depends only on the conformal class (or complex structure)

of M. The area of the curve / with respect to the metric μ is

(3.11) area(M,/*μ) = f Σ\aa\
2φΛφ.

It follows that area bounds give energy bounds. Moreover, energy is a more

convenient object to work with since it is conformally invariant in the domain

manifold. We will call the function Σ | α α | 2 ^ n e ener9y integrand. Of course

this function depends on a choice of metric on M in the conformal class defined

by φ. At this time we make such a choice and call this metric v.

Set

(3.12) e{f) = Σ\aa\\

Step (1) of the outline of the proof in §2 indicates that we must compute the

quantity Δe(/), where Δ is the Laplace-Beltrami operator on (M, v). To do

this we return to (3.9), and take the exterior derivative

(3.13) dωa = (daa - iaap) A φ,

where p is the connection 1-form of v. By (3.6) the torsion form θa is a sum

of forms of type (2,0) and (0,2) and so θa vanishes on M. It follows that

(3.14) dωa = ωaβ Λ aβφ.

(3.13) and (3.14) yield

(3.15) (daa — icLap ~ aβωaβ) Λ φ = 0.

By Cartan's Lemma we have

(3.16) Daa = daa — iaap — dβθJaβ = baφ.

Taking the exterior derivative of (3.16) and using (3.7),

(3.17) (dba — 2ipba — bβωaβ) Λ φ = —iaadp — aΊΩaη.
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The covariant derivative of ba is

(3.18) Dba = dba - 2ipba - bβωaβ.

The Gauss curvature K of the metric v satisfies

(3.19) dp = -i(K/2)φΛ φ.

Using (3.8), (3.18) and (3.19), (3.17) becomes

(3.20) DbaΛφ = -{K/2)aaφ Λ φ + aΊάβaδRaηβEφ Λ φ.

Thus

(3.21) ΔαQ = {K/2)aa - aΊaβ

and hence

It follows that there exist positive constants C\ and C2 where C\ depends on

v and Ci depends on μ and J such that

(3.23) Δe(/) > - d e ( / ) - C2(e(/))2,

which is the required formula.

4. Ck estimates

The following theorem and its proof are modelled on analogous work on

harmonic maps due to R. Schoen [11].

Theorem 4.1. Let (V, J,μ) be an almost hermitian manifold and let v

be a hermitian metric on Dr = {x E C: \x\ < r} which satisfies L~1(δij) <

v < L(δij). If f: Dr —• V is a C1 pseudo-holomorphic curve then there exists

an εo > 0 such that if fD e(f) < εo, then f satisfies

(4.1) max σ1 sup e(f) < Co-

in particular,

(4.2) s u p e ( / ) < ^ .
Dr/2 T

εo and Co depend on the geometry ofV and on L but are independent of f.

Proof. Let σo E (0, r] be chosen such that

GQ sup e(f) = max σ2 sup e(/).
Dr-σo *€(0,r] Dr-σ
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Let XQ G Dr-σo be chosen so that

e(f)(x0) = sup e(/),

and hence

(4.3) sup e(f) <

If σle(f){xo) < 4 then (4.1) is true, so we may assume that

(4.4) e(/)(z o )>4σ o - 2 .

Set e0 = e(f)(x0) and r 0 = e^2σ0/2. Define a mapping g: Dro —• V by

^(y) = /((y — χo)/eQ2). g is a rescaled version of / chosen so that e(^)(0) =

1, supD r Q e{g) < 4 (by (4.3)), r 0 > 1 (by (4.4)). Therefore from (3.23) we

have on Dro

(4.5) Ae(g) > C3e(g).

Applying the mean value theorem of Morrey [8] (or [5, Theorem 9.20]) on D\

we have

(4.6) l = e(g)(0)<C4 ί e(g).

But

(4.7) / e(g) = ί e(f) < ί e(f) < ε0.
JDi JD _i/2(xo) JDr

e o

By choosing εo sufficiently small (depending on C4) we get a contradiction

from (4.6) and (4.7). q.e.d.

Suppose now that {Jj} is a sequence of almost complex structures uni-

formly bounded in Ck+a, k > 2, and suppose that fj: (M, JM) -* (F, Jj) is

a sequence of Ck pseudo-holomorphic curves. For each j we choose a metric

μj on V, hermitian with respect to Jj, such that

(4.8) \\μj\\C2<B and \\μjι\\co<B,

where the norm || || is taken using the given metric μ. The curvatures of the

μj are, then, uniformly bounded in C°.

Recall that the energy integrand depends on both the domain and target

metrics. We will denote the energy of fj with respect to μj by eμj(fj). The

metric v on M is fixed.

Corollary 4.2. Let v and Dr be as in Theorem 4.1, and suppose that

fj\ Dr —• (V,Jj,μj) is a sequence of pseudo-holomorphic curves, where the

Jj are bounded in Ck^a, k > 2, and the μj are hermitian metrics adapted to
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the Jj as above. Then, for all j = 1,2, , there exists an ε0 > 0 such that if

ΪD eμj(fj) — £o then f3 satisfies

(4.9) suve^KiCo/r2,
Dr/2

where εo and Co are independent of j .

Proof Using the uniform C° bounds on the curvatures of the μ3- the
constant C<ι of (3.23) can be chosen uniformly. It follows that the constants
Cz and C4 of (4.5) and (4.6) are independent of j and so εo and Co are also
independent of j .

Remark. Theorem 4.1 and Corollary 4.2 provide C1 estimates under an
assumption of small energy. The pseudo-holomorphic map equations are a
first order nonlinear elliptic system with coefficients satisfying uniform Ck+a

bounds. Using classical Schauder theory the C1 estimates (4.9) can be boot-
strapped up to give uniform Ck estimates for the maps f3i

(4.10) ll/;llσ*(μ,) < C5.

Here C5 is independent of j , but the Ck norm of fj depends on the metric
μj. The metrics μ3 and their inverses μ~ι are uniformly bounded in C°. In
particular, there is a constant λ such that for all j we have

(4.11) λ" V < H < λμ.

It follows that there is a constant C depending on Co and λ and an ε > 0
depending on εo and λ such that, for all /^, if

(4.12)

then

(4-13) Wf

This is the required Ck estimate.

5. The Sacks-Uhlenbeck covering argument and bubbling

We begin by proving Theorem 1.1.
Lemma 5.1. Under the hypotheses of Theorem 1.1 the condition areaμ(/7)

< A implies that there is a constant A' independent of j such that

(5.1) energyμ(/i) = / eμ(f3) < A'.
JM
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Proof. Choose metrics μ ,̂ hermitian with respect to Jj, as in §4. In

particular there is a constant λ, independent of j\ such that for all j

(5.2) λ~V < μj < Xμ.

We observed in §3 that

(5.3) areaμ> (ft) = energyμj (ft).

Using this and inequality (5.2) twice yields the result.

Proof of Theorem 1.1. Choose r 0 > 0 and set rm = 2~mr0, m G Z+. For

each m take a finite covering ffm - {Drm(ya)} of M such that each point of

M is covered at most h times by discs in 8^, where h depends on M only,

and such that {Drm/2(ya)} is still a covering of M. For each j\

Σ I eM) < hA'
aJDrm(ya)

Thus for each j there are at most hA'/ε discs on which

eu(fi) > εL
The center points of these discs make at most hA'/ε sequences of points of

M (by letting j = 1,2, ). Since ^ is a finite covering and M is compact

we may assume these center points are fixed by passing to a subsequence of

{ft} (which we will continue to denote {ft})- For each m, call these center

points {xi,m, , x/,m} where / is an integer and I < hA'/ε + 1. By our Ck

estimates and the Ascoli theorem we can successively choose a subsequence of

{ft} which converges (in Ck) in every disc Drrn/2(ya) for each Drm (ya) e^m

except for at most I discs of Wm. Let m —• oo. We can choose a subsequence

of {m} such that {xi,m}, , {x/,m} converge to points xi, * ,%ι- Choosing

a diagonal subsequence of {ft} finishes the proof.

Remark. The above proof is due essentially to Sacks-Uhlenbeck [10].

The version given here was adapted from a similar argument in [3].

It remains to determine what happens at the points xβ, s = 1, , Z. This

is where the phenomenon of bubbling occurs. We will need the following:

Removable Singularity Theorem. Let (V, μ) be a compact Rieman-

nian manifold equipped with an almost complex structure J of class C f c + α , k >

1. Let f: D — {0} —*V be aCk pseudo-holomorphic map. If f has finite area,

then f can be extended to a Ck pseudo-holomorphic map D —• V.

For a proof of this result see [9].

The work of Sacks and Uhlenbeck applies directly and essentially without

modification to our situation. The reader can simply read Lemma 4.5 and
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Theorem 4.6 of [10] and substitute "pseudo-holomorphic" for "harmonic".
However for completeness we briefly summarize this work.

First note that the pseudo-holomorphic curves fj converge in C1 to /0 in
a neighborhood of x s, s = 1, ,/, unless eμ(fj)(x) —• oo as j -* oo and
x —• xs. This follows easily from our C 1 estimates. Assume now that at
x s, C1 convergence fails. For some sufficiently small δ > 0 we set

j eμ(fj),
x€D6(xs)

and let Xj be the point in Ds(xs) where this maximum is attained. Then
bj —• oo and Xj —• xs as j —• oo. Set fj = /j (Xj H- x/bj). Then /^: Z)^ (0) —>
(V, Jj) is a pseudo-holomorphic curve, eμ(fj)(x) < 1 for x E 1)^.(0), and
eμ(fj)(O) = 1. The discs on which the fj are defined have radii going to oo as
j —• oo and consequently the metrics on these discs converge to the euclidean
metric. By Theorem 1.1 for any R > 0 we can find a subsequence of the fj
which converge in Ck to a pseudo-holomorphic curve /o: ^Dβ(O) —• (V, Jo).
This convergence is Cfc on all of DR(0) since by the choice of the subsequence
we can suppose eμ(fj) < 1 on DR(0). Since eμ(/o)(0) = 1, /o cannot be a map
to a point. Since R is arbitrary we get a pseudo-holomorphic map /0 from
R2 into (V, Jo). But R2 = S2 - {p} conformally, so f0: S2 - {p} -> (V, Jo)
is pseudo-holomorphic. Using the removable singularity theorem we get a
pseudo-holomorphic curve /o: S2 -^ (V, Jo). Thus at each point xs where C1

convergence fails a pseudo-holomorphic curve of genus zero "bubbles" off.

Recall the description of bubbling given in §2 as the collapsing of a homo-
topically trivial simple closed curve 7 in M to a point. In the above notation
the curve 7 is dDs\)j - 1{XJ). As j —• 00 the curve 7 converges to the point
p E S2, the south pole; while x s becomes the north pole.

This is bubbling.
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6. The case of varying conformal structure

Suppose now that the sequence fj are Ck pseudo-holomorphic maps
(M,jM) —• (V,Jj) where the Jj are bounded as above, the Jf1 are a se-
quence of complex structures on M and genus (M) > 2. In each conformal
class determined by Jf1 choose the metric Vj of constant curvature - 1 . If as
j —• oc the Riemann surfaces (M, J^1, Vj) approach the boundary of moduli
space, then on M we can find homotopically nontrivial simple closed curves
Ίw" > Ίt which are geodesies for the metrics Vj and whose Vj lengths go to
zero as j —> oo. Denote M — Uβ=i Ίs by M and let X C M be a compact
subset. On X the hyperbolic metrics Vj converge in C°° to a smooth hyper-
bolic metric v^. Denote by Aί/j the Laplace-Beltrami operator of the metric
Vj. On X the operators Δ^. are strictly elliptic and their coefficients are
uniformly bounded. To utilize the results of §3 we must compute the energy
integrand of fj using the metrics Vj and μj. Denote this by ^^.(fj). Then
by (3.23)

(6.1) Δe^to) > -C^^fj)) 2

where C\ is a constant independent of j (since the metrics Vj are all of con-
stant curvature —1) and C<ι is a constant also independent of j (as shown
in §4). Tracing through the proof of Theorem 4.1, the constant C3 can be
taken independent of j . Since the coefficients of Δ^. are uniformly bounded,
Morrey's theorem implies that the constant C4 can be taken to be indepen-
dent of j . It follows that there is an εo > 0, independent of j \ such that if
Dr C X and

(6-2) f eUjiN{fj)<e^
JDr

then

(6-3) Dr/2 '

where Co is a constant independent of j and the radius r is computed using
the metric Vj. Using Schauder theory, as in §4, this C1 estimate can be boot-
strapped to yield uniform Ck estimates for the maps fj under the "small
energy assumption" (6.2),

C5 is independent of j . On X the metrics Vj converge in C°° to v^ so by
taking a subsequence, if necessary, there is a constant τ independent of j so
that

(6.5) r~1voo < Vj < TVOQ.
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(6.5) and (4.11) together imply that there is a constant C depending on Co, λ
and τ and an ε > 0 depending on εo, λ and τ such that, for all /y, if Dr c X
and

JDr

then

(6-7) ll/illc*(^,M) < C,

where r is computed with respect to the metric v^. The argument of §5 now
completes the proof of Theorem 1.3 when genus (M) > 2. We have the case
where genus (M) = 1 to the reader.

PART II
APPLICATIONS TO SYMPLECTIC GEOMETRY

In this part we outline the proof of one of Gromov's theorems in symplectic
geometry. In §7 we first show how Gromov uses the taming condition to
provide area bounds. These bounds, the J-simplicity condition (a homotopy
condition) and the results of Part I then yield compactness results. In §8
the compactness results are framed in the language of infinite dimensional
manifolds. Finally the main theorem is proved in §9.

7. Taming, J-simple curves and compactness

Let (iV, ω) be a compact symplectic manifold of dimension 2n and let μ be
a Riemannian metric on TV. The symplectic form ω is, by definition, a closed
nondegenerate 2-form on N.

Definition 7.1. An almost complex structure J on N is said to be tamed
by ω if ω(v, Jv) > 0 for each x e N and each v G TXN. That is, J is tamed
by ω if ω is positive on each J-complex line of TXN for all x G N.

Suppose J is an almost complex structure on N tamed by ω.
P r o p o s i t i o n 7.2. Let M be a Riemann surface and f:M-+Nbea

J-holomorphic curve which represents a homology class β G ί/̂ CΛΓ Z). Then

a r e a μ ( / ) < A, where A is a constant depending on ω,β,μ and | | J | | c ° but is

independent of f.
Proof. Using the compactness of N we can suppose that the metric μ is

hermitian with respect to J and we can find a constant c depending on μ and
o so that

ω(υ,Jυ) > c~1μ(υ,v)
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for all v E TXN and x E N. Thus

areaμ / c(/) <
JM

where [ω] denotes the cohomology class represented by ω. The result follows.
Definition 7.3 [6, 1.5.E2]. A homotopy class β of maps S2 -> (JV, J) is

called J-simple if every J-holomorphic cusp-curve in /?,

i

/ :

is nonconstant on at most one of the two-spheres, S 2, i = 1, , /.
Example 7.4. A homotopy class β is J-simple if it admits no decompo-

sition
i

for I > 2,

where each βi can be realized by a nonconstant rational J-holomorphic curve.
For fc > 1, let

jfβ = {J: J is an almost complex structure on N

tamed by ω and satisfies || J\\c<*+k < B}.

Let β be a homotopy class in TV, which is J-simple for each J E ,/B- Choose
three distinct points Si E S2, i = 1,2,3, and δ > 0.

Proposition 7.5 [6,1.5.E'2]. The space of Ck maps f: S2 -• N in the
homotopy class β and satisfying

(i) / is J-holomorphic for some J E ̂ , and

(ii)dist(/(β<),/(«,-))>«/or . ,έ/,
iβ compact.

Remark 7.6. Condition (ii) is necessary. If / is J-holomorphic and
g is an element of the group of conformal self-maps of S2, then / o g is J-
holomorphic. As the conformal self-maps of S 2 form a noncompact group, the
set of J-holomorphic maps S2 —• N, {fog:f:S2-+Nϊs J-holomorphic and
g: S2 —+ S2 is conformal}, is noncompact. However if Si E S 2, i = 1,2,3, are
distinct points and dist(sz, Sj) > ε, i φ j>, for some ε > 0, then the subgroup
{g: g: S2 —• S 2 is conformal and dist(y(^), ^(s7)) > e for i ^ y} is compact.

Proof If / satisfies the hypotheses of the proposition then by Proposition
7.2 areaμ(/) < A, where A depends on ω,/?, μ and B. Let {fj} be a sequence
of J^-holomorphic curves S2 —> N satisfying the hypotheses of the theorem,
where Jj E ̂ B We can extract a subsequence, which we still denote by {fj},
such that the {J3} converge in CA;+Oί to an almost complex structure JQO E ,/B
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and using Theorem 1.2 such that the {f3} converge to a Joo-holomorphic cusp-

curve /oo Write
i

/oo: U S2 -,7V.

/oo represents the class β and so by the J-simplicity of /?, /©o is nonconstant

on at most one of the S2, i = 1, , /. By (ii) /oo is nonconstant so we can

assume that /oo is nonconstant only on, say, S2. If S2 is a "bubble" then the

images of two of the Si have converged together in the limit. This violates

(ii). Hence the {f3} converge in Ck to a Joo-holomorphic curve /oo: S2 —• N.

Example 7.7 [6,2.3.C]. Let N = CPr x V and ω = ωi Θ ω2, where ωx

is the Kahler form for the Fubini-Study metric on C P r , r > 1, and where the

symplectic form ω2 on V satisfies the following integrality condition:

For any smooth mapping x: S2 —» V

(7.8) / ω2 = k [
Jχ(S2) JCi

where k is an integer depending on the homotopy class of x.

Let β be the homotopy class of maps

(7.9) S2 - ^ CP1 C CPr x v υe V,

where C P 1 C C P r x v is the linear embedding.

Lemma 7.10. // ω2 satisfies the integrality condition (7.8), then the

homotopy class β (7.9) is J-simple for any almost complex structure J on

N tamed by ω\ (&ω2.

Proof. Let J be an almost complex structure on N tamed by ω\ ®ω2 and

suppose that β admits a decomposition β = Σ<=i β%, I > 2, where each βi can

be realized by a nonconstant rational J-holomorphic curve. Set fcpl ω\ = α.

For each i, using the positivity of J-holomorphic curves and (7.8),

0 < [ωι®ω2]{βi) = M ( f t ) + [ω2]{βi) = rma + ma,

where πii and Ui are integers. Thus, for each i, rrii -f Πi is a positive integer.

But by (7.9) [ωx ® ω2](β) = a so

a =
2 = 1

This is impossible if I > 2. q.e.d.

We impose a compactness condition in this example as follows: Let v EV

and choose three embedded disjoint submanifolds Σ t of N which transversally

intersect CPr x υ C N and satisfy:
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(a) Σi Π CPr x v is a single point for i = 1,2,
(b) Σ 3 Π CPr x v has codimension two in CPr x υ = CPr and is not

homologous to zero in ϋf2r-2(CPr;Z2).
Choose three distinct points Si G S2, ί = 1,2,3.
Proposition 7.11. The space of Ck maps / : S2 -+ CP r x V m ίAβ

homotopy class β (7.9) and satisfying
(i) / ώ J-holomorphic for some J tamed by ω\ φW2 w /̂i ||«/||c7«+* ^ ̂ >
(ii)/(^)GΣ,, i = 1,2,3,

ώ compact.
Proof. Immediate from Proposition 7.5.
In the next two sections we will need the following
Proposition 7.12 [6,2.3.C2]. If (N,ω) is a symplectic manifold, not

necessarily compact, then the space of almost complex structure on N tamed
by ω is contractible. In particular, this space is connected.

Remark. The space of almost complex structures on N tamed by ω is
nonempty. For a proof see [16, Lecture 2].

8. The global set-up

In this section we follow, for the most part, the work of D. McDuίϊ [7].
Let β e H2{N; ΐ) and let M be a Riemann surface of genus g. Let F = Fβ

be the set of all Ck maps, k > 1, f:M^>N which represent the class β and
are immersions except possibly at a finite number of points. Let J = <f

k+Oί be
an open connected subset of the space of all C f c + α almost complex structures
on N. F and ^ are Banach manifolds. Define

Jtβ = ̂  = {(/, J) e F x f: / is J-holomorphic}.

Proposition 8.1. Jίβ is a Banach manifold.
Proof. See [7, Lemma 4.1].

Now consider the projection Pβ: J£β —> ̂ \

Proposition 8.2. Pβ is Fredholm.
Proof. See [7, Proposition 4.2].
In fact it follows from McDufFs work that the index of dPβ is equal to the

index of a first order elliptic linear differential operator.
Proposition 8.3. The index of Pβ is 2(c+n(l — g)), where 2n = dimR TV

and c is the value of the first Chern class of N, Cχ(N), evaluated on the
homology class β.

Proof. Apply the Atiyah-Singer index theorem. Also see [6, 2.1.A].
It follows from the Sard-Smale theorem [13] that, for a generic almost

complex structure J G ̂ f, Pβl{J) is a smooth manifold of dimension
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2(c 4- n(l — g)). To utilize the full power of the Sard-Smale theorem it is
necessary to show that the Fredholm map Pβ is proper. Properness implies,
for example, that PJ1(J) is a compact manifold. We have seen in Remark 7.6
that, in general, this is not the case. To show that Pβ is proper requires a com-
pactness theorem. How this theorem is formulated depends on the application
at hand.

Example 7.7 {continued). Let β be the homology class which represents
the image of (7.9). Let F = Fjj be the set of all Ck maps, k > 1, / : S 2 ->
CPr x V which represent /?, are immersions except possibly at a finite number
of points and satisfy /(β») G Σ», i = 1,2,3. Let f = fk+a be the set of
almost complex structures on TV tamed by ω\ Θ u>2 Define

Jtβ = Jtβ — {(/, J) G F X /: / is J-holomorphic}.

As above Λίβ is a Banach manifold and the projection Pβ: Jίβ —• ^ is
Fredholm. By choosing the submanifolds Σj, i = 1,2,3, generically, the con-
ditions f(sι) G Σi and /(S2) — Σ2 each impose 2r linear conditions on ker dPβ
and the condition f(s^) G Σ3 imposes two linear conditions on kerdPβ. Since
c — r + 1, we have

ΊndexPβ = 2(n — r).

Moreover, Proposition 7.11 implies that Pβ is a proper mapping.

9. An application to symplectic geometry

We continue with Example 7.7.

Theorem 9.1 [6,2.3.C]. Given any point σ\ G Σi and any almost com-
plex structure J on CPr x V tamed by ω\ Θω2, there exists a J-holomorphic
map f: S2 ->CPrxV homotopic to S2 -=> CP' cCPrxvCCPrxV such
that f(si) G Σi, i = 1,2,3, and f(sχ) = σ x .

Proof. Let J1 denote the Kahler complex structure on CPr and J" denote
any almost complex structure on V tamed by ω^- Then Jo = J1 Θ J" is an
almost complex structure tamed by ωi Θ u)2- Let I: S2 -^ CP1 C CPr =
CPr x v C CPr x V be the linear embedding. We remark that there is a
unique linear CP 1 —> CPr which passes through the two points Σi Γ\CPr x υ
and Σ 2 Π CPr x v. Because Σ 3 Π CP r x υ is not homologous to zero in
#2r-2(CP r; Z2) for generic choice of the Σ '̂s this line also intersects Σ 3 in a
single point. Now choose Si G 5 2 , i = 1,2,3, such that l(si) = Σi Π CP r x v.
This shows that P^"1(Jo) is n o t empty.
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It is a classical computation that the tangent space to the space of complex
curves in CPr at / can be identified with H°(CP1;T*CPr/T+CP1) and this
space has complex dimension 2(r - 1). It follows that the tangent space
to the space of J0-holomorphic curves in CPr x V at I has real dimension
4(r - 1) + 2(n - r). (The manifold V of real dimension 2(n - r) plays the
role of a parameter space.) If the Σ t , i = 1,2,3, are chosen generically then
requiring that the (unparametrized) Jo-holomorphic curves intersect Σi and
Σ2 imposes 4(r — 1) linear conditions on the tangent space. The condition
that the curves intersect Σ 3 holds automatically. Hence diniR keτ(dPβ)μtj0) =
2(n - r). Comparing this with Proposition 8.3 shows that (/, Jo) is a regular
point and Jo is a regular value of Pβ in the sense of Sard-Smale. We can
conclude, in particular, that PΓ1(Jo) is a nonempty compact manifold of real
dimension 2(n — r).

Let J\ be any generic (i.e., regular, in the sense of Sard-Smale) almost

complex structure on CPr x V tamed by ω\ Θ α;2 Since Jo is also generic

there is a path 7: [0,1] —• ^ joining J o to J\ which is transverse to Pβ. It

follows that Pβ1 (ηf[O,1]) is a submanifold of F of dimension 2(n-r) + l. Under

the evaluation map e: F —> Σi, e(f) = /(si), the homology class [Pβl{Jo)) G

#2(n-r)CF;22) goes to [Σi] G jff2(n-r)(Σi;Z2). As PβX{Jι) is cobordant to

Pβl{Jo) t n e homology class [P^"1(Ji)] G #2( n _ r )(F;Z 2 ) also goes to [Σi]

under e. But this implies that e: PβX{Ji) —> Σi is onto. Hence there is a

Ji-holomorphic map / : 5 2 —• CP r x F satisfying /(βi) = σi, /(β^) G Σj, i =

1,2,3, and / is homotopic to the linear embedding CP 1 ^ CPr.

Now let J be any almost complex structure on CPr x V tamed by ωi Θĉ 2
Choose a sequence {Jj} of generic almost complex structures which converge
to J in C Λ + α . For each j let f3 be a Jrholomorphic map S 2 -> CP r x V
constructed above. The simplicity of the class β implies that a subsequence
of the {fj} converges to the required map.

Lemma 9.2. Let (AT, ω) be a compact symplectic manifold and let U C N

be an open submanifold equipped with a Ck+a almost complex structure JJJ

tamed by ω. Then allowing arbitrarily small pertubations of Ju near dU we

can extend Ju to a Ck~^~a almost complex structure J on N tamed by ω.

Proof. Without loss of generality we can suppose dU is a compact codi-
mension one submanifold of N. Let TQV be a tubular neighborhood of dU.
Parametrize the fibers of TQU Π U by the unit interval so that the map

p: [0,l]xdU^TduΠU

is the identity on {1} x dU. After choosing a metric on N there is a "canon-
ical" C°° almost complex structure Jω on N tamed by ω [16]. Consider
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the almost complex structures 3χj and Jω restricted to TQU Π U and choose a
path 7: [0,1] —> βrdυr\υ in the space of almost complex structures on
tamed by ω, such that 7(0) = J\j and 7(1) = Jω. Then for x £ N, set

i , x€U-Tdu,

Ί(t)(x), xep({t}xdU),

, xeN-U.

Moreover for suitable choice of 7, J can be made Ck~*~a smooth, q.e.d.

We now consider the special case of Example 7.7 with r = 1 (i.e., N =
S2xV).

Proposition 9.3 [6,0.3.A]. Let U be an open submanifold ofN = S2xV
and let JJJ be a C f c + α , k > 1, almost complex structure on U which is tamed
by the symplectic form ω \ u = ωi θ ω2 \ u Then for every point u GU there
is a connected JJJ -holomorphic curve C which passes through u and for which

Jcω\u <fS2U1.

Proof Extend J\j to a C f c+α almost complex structure J onS2xV tamed
by ωiφw2. By Theorem 9.1 there is a J-holomorphic map f:S2-^S2xV
such that f(sχ) = u and ff/S2\U = /52/*(ω) = ίs2UJl' ^ 0 Γ ^ ^ a^ e ^ e

connected component of u in the intersection f(S2) Π U. q.e.d.

Let (xi, , z n, 2/i, , ί/n) be coordinates on R2n and consider R2n as a
symplectic manifold with symplectic form ωo = ΣΓ=i ^x* ^ ̂ »

Theorem 9.4 (The symplectic rigidity of the round ball [6, Corollary
0.3.A]). Let BR C R2n denote the open round ball of radius R. Let U C R2n

be an open subset of the ε-neighborhood of the subspace R2n~2 c R2n defined
by xn —Vn = 0. // (Bfl,ω0 | BR) and [U,ωo \ u) are symplectically dijfeomor-
phic, then R < ε.

Proof Suppose (BR,UJQ | BR) and (£/,α o | u) are symplectically diffeomor-
phic and denote the diffeomorphism by h: BR —• U. Without loss of gen-
erality we can suppose that U has compact closure, since for any ό, R >
δ > 0, h(BRs) = Us C U has compact closure and is symplectically dif-
feomorphic to BR-$. The theorem then implies R — δ < ε for all δ > 0
and hence R < ε. It follows that U can be symplectically embedded into
(S2 x T2n~2,ωι 9^2) for the 2-form ω\ on S2 such that Js2 ωι = πε2 and for
the 2-form ω2 = Nπε2 Σ7=l dxi Λ dVi on the torus T 2 n " 2 = R 2 n " 2 / Z 2 n " 2

where AT is a sufficiently large integer. The symplectic form ω2 satisfies the
integrality condition (7.8) and so for any almost complex structure J on U
tamed by ω\ φ ω2 and any point u£U there is a J-holomorphic curve C in
U passing through u such that / c ^ i Θω2 < πε2. As BR is symplectically
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diffeomorphic to ί/, for any almost complex structure J on BR tamed by ωo
there is a J-holomorphic curve C in BR passing through the center of BR
such that fc ωo < πε2. But for the standard complex structure on Cn = R2n,
every holomorphic curve through the center of BR has area = fc ωo > πR2.
Hence R < ε.

Definition 9.5. The symplectic radius of a symplectic manifold N is the
least upper bound of the radii of the balls BR C R2n which admit symplectic
imbeddings into TV.

Example 9.6. Let URi cIR2, i = 1,2, be the open round disk of radius
Ri in R2 with symplectic form dx Λ dy. Then the symplectic radius of N =
DRX x DR2 is min(i?i, J?2)

Corollary 9.7. The symplectic manifolds DRl x DR2, RI < R2, and
DR3 XDR4, i?3 < i?4, are symplectically diffeomorphic if and only if R\ = Rs
and i?2 = i?4.

Proof. If DRX x DR2 and DR3 X DR4 are symplectically diffeomorphic,
then R1 = R3. But volume(£>*t x DRj) = π2R2R2, {i,j) = (1,2) or (3,4),
is a symplectic invariant and hence i?2 = R±>
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