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SO(3)-CONNECΠONS AND
RATIONAL HOMOLOGY COBORDISMS

GORDANA MATIC

1. Introduction

The main purpose of this paper is the study of rational homology cobor-
disms of rational homology 3-spheres. In particular it is shown that the
pα-invariants of Atiyah-Patodi-Singer [2] which can be defined as spectral
invariants are, under some extra conditions, integral homology cobordism
invariants of rational homology spheres.

Related to this study is the question of when a rational homology sphere Σ
bounds a rational homology ball. This can also be answered in some cases in
terms of pα-invariants. In turn, these invariants can then be used to answer
questions concerning sliceness of knots. Casson and Gordon [3] have con-
structed an invariant that detects when a two-bridge knot is not ribbon. This
invariant is actually the pα-invariant for the double branched cover Σ of S3

branched over K <z S3 and character a.H^Σ)-* U(l). For characters of
prime power order Casson and Gordon [3] also show that this is a slice
invariant. Namely, if pa(Σ) = σ(K, a) Φ + 1 then K is not ribbon, and if a is
of prime power order they can also conclude that it is not slice. In the case that
Σ is a spherical space form, Fintushel and Stern [7] remove the condition that
a be a prime-power order. In this paper the condition that Σ be a spherical
space form is replaced by a weaker condition that Hι(Σ, La) = 0, where Lα is
the flat complex line bundle induced by the character a.

More specifically, let X be a compact, smooth 4-manifold with boundary
dX. Let a: π^X) -> U(l) be a nontrivial character. It defines a complex line
bundle Lα on X by Lα = X X α C where X is the universal cover of W. Let
signα( X) denote the signature of the hermitian form induced on H2(X, Lα) by
the cup-product. Then ρa(dX) = sign(X) - signα(X) is a differential in-
variant of the boundary [2].
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Theorem 1.1. Let X be a compact, smooth 4-manifold with boundary compo-

nents dXλ, - -,dXn which are rational homology spheres. Assume that X has

rational homology of an n-punctured 4-sphere. Let a:Hλ(X) —> U(l) be a

nontriυial character, and let α, be the induced characters on the boundary,

α,: H^dX;) -> U(l). Denote by m the number of dXt for which αz is nontriυial.

Suppose that, for some i, H2(X,dXj', Z) has no 2-torsion and ai has order

greater than 2. Let ea e H2(X,Z) be the Euler class of the bundle La and

define

μ(X,a) =#[{ee H2(X,Z)\j*(e) = ±j*(ea) Vi}/e ~ -e].

IfHι(dX,ha) = 0, then the following are true:

(a)m = pa(dX)(moά2).

(b) // \pa(dX)\ > 3 - m, then μ(X,a) = 0(mod2).

The above theorem was first proved in [7] for the case when boundary

components are spherical space forms. The technique used was to study the

moduli spaces of solutions to perturbed self-duality and anti-self-duality

equations in a F-manifold setting. The F-manifold used was obtained by

coning off the boundary components of W. In the case when boundary

components are not spherical space forms this procedure does not give us a

F-manifold. In order to use the same idea of applying the gauge-theoretic type

arguments ([4], [5]) we need to be able to deal with manifolds with boundary.

To do that, we elongate the manifold by adding cylinders dXt X [0, oo) along

the boundary and use the Fredholm theory and gauge theories on end-periodic

4-manifolds as introduced by C. Taubes in [15].

§2 gives a sketch of the proof of Theorem 1.1 and will, it is hoped, lead the

reader through the more technical §§2-5 in which the theorems needed to

translate the formalism from the compact manifold case to cylindrical end case

are given. §6 gives the complete proof of the theorem. In §7 the applications to

homology cobordisms and sliceness of knots questions are described. The

Appendix gives details of some technical points which were deferred to the end

so as not to interrupt the flow of the argument.

I would like to express my gratitude to my advisor, Professor Ronald J.

Stern, for advice, help, and encouragement during the course of my studies and

work on this paper. I also wish to thank Professor Clifford H. Taubes for

patiently explaining his work to me and for suggesting a proof of Theorem 3.1.

The author has been informed that D. Ruberman has obtained similar

results.
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2. Strategy of proof

Let X be a 4-manifold with boundary components dXl9- -,dXn. A char-
acter a : Hλ(X) -> U(l) defines a flat complex line bundle Lα with a canonical
flat connection vα. On each boundary component, a induces a representation
α, : H^Xi) -> U(l) by setting α, = α ° y,,, where y,* : H^dXJ -> i/χ(X) is the
inclusion induced homomorphism. The restrictions of Lα to boundary compo-
nents 9 ^ are exactly the flat bundles Lα defined by characters α;.

Define M = X U dX(dX X [0, 00)). Give X a Riemannian metric which is
product near the boundary and extend it to M as a product metric on
End M = 9 X X [0, 00). Extend the bundle La to End M as product Lα X [0, 00)
and the connection v α as Vα = d/dt + vα. on dXt X [0, 00). Note that the
same bundle and connection could be obtained by considering a:Hλ(M) =

To prove Theorem 1.1 we will study as in [7] the space of SO(3)-connections
on E = Lα Θ ε, where ε is the trivial real line bundle. We give E the natural
Riemannian metric coming from the real part of the hermitian metric on Lα

and the canonical Riemannian metric on ε. Connection v 0 = Vα θ ε is an
SO(3)-connection giving E a structure of a flat SO(3)-bundle. We will use this
connection as the center of an affine space of SO(3)-connections on E.

Let P denote the principal SO(3)-bundle associated to E and let gE denote
the associated bundle of Lie algebras. Let Ad P denote the bundle of groups
associated to P by conjugation, Ad P = P X A d SO(3). Then both Ad P and gE

can be viewed as subbundles of the bundle g I(E). Ad P has fibers consisting of
orthogonal transformations and gE has fibers consisting of skew-symmetric
transformations. Sections of Ad P are naturally identified with automorphisms
of P (and E). These sections are called gauge transformations. They form a
group, called the gauge group, under pointwise multiplication, which is de-
noted by ^°° = C°°(AdP). The space of smooth SO(3)-connections on P has
an affine space structure. Two connections Vo, Vx differ by a 1-form with
values in gE, v x - Vo Ξ C°°(T*M ® gE). The space of connections can
therefore be identified as #°° = Vo + C^iT^M ® gE). The gauge group ^°°
acts on the space of connections by Vg = g"1 ° V ° g. If described in affine
coordinates C°°(T*M <8> gE) centered at v 0 , the action of ^°° is given by
e(g,a) = g"1 © V0(g) + g"1 °a ° g. Vo here denotes a connection on gl(E)
defined by V0(Φ)(σ) = V0(Φ(σ)) - Φ(V0(σ)) for ψ e C°°(flI(E)), σ e C°°(E).

The Riemannian metric on M defines an involution on the space of 2-forms,
the Hodge *-operator * : Λ 2 ( Γ 4 M ) ^ Λ2(Γ*M). It extends to the space of
2-forms with values in a bundle by acting by * on the form part and by
identity on the bundle part. Since * is an involution it defines a splitting of Λ2
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into a direct sum of ± 1 eigenspaces Λ2 = Λ+Θ Λ2_. For a 2-form φ we will
denote the projections on Λ2

+ and Λ2_ by φ+ and φ_. Every SO(3)-connection
V on E has a curvature form JRV G C°°(Λ2(Γ*M) φ gE) associated to it. We
will call a connection self-dual if *RV = # v , i.e. RZ = 0, and anti-self-dual if
*RV = - # v , i.e. R7+ = 0. Connection is flat if Rv = 0.

On a compact closed manifold, the Pontrjagin class of the bundle E is
independent of the connection and the formula

(2.1) Pι(Έ) = J-iί t r ^ Λ t f v ) 1 r | Λ v | 2 _ | Λ v | 2

implies that a connection in a bundle with px = 0 is flat if and only if it is
self-dual, and if and only if it is anti-self-dual. On a noncompact manifold the
integral

/ (JM

depends on V. For example, on R4 any integer can be obtained as pλ{v). To
be able to make the same argument as in the closed manifold case we need to
resrict ourselves to a smaller space of connections. An appropriate space to
consider is

the space of connections that differ from the base connection v 0 by a
compactly supported form. It is easy to show that Pι(V) = Pι(V0) = 0 for

In the closed manifold case the right space of connections for gauge theory is
obtained by completing #0°° = Ή00 in appropriate Sobolev norms, which
make the fundamental complexes of Yang-Mills theory

0 -» Γ ( f l E ) C r ( Γ * Λ f β 8 E ) r f 4°r(Λ 2

± (Γ*M) ® gE) -> 0

Fredholm. The space of connections becomes an affine Banach space and the
gauge group a Banach Lie group which acts smoothly on the space of
connections.

In the case of a noncompact manifold, completing the compactly supported
sections in ordinary Sobolev norms will not produce a Fredholm complex. In
[15] Taubes constructed a Fredholm theory for manifolds with periodic ends
by generalizing a theory of Lockhart and McOwen [13] for manifolds with
cylindrical ends. The appropriate norms turn out to be weighted Sobolev
norms. They are defined as follows.
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Let T : M -> [0, oo) be a smooth function such that τ(y, t) = / for y e 3Z

and t > ε > 0 and τ(x) = 0 for x G I , i.e., T is a smoothing of the cylinder

coordinate t to a function that is 0 on the compact part X. For S ε R define

the weighted Lp spaces of sections of E, denoted LP

δ(Έ), as completions of

C0°°(E) in the norm

σμ ί =
VM

Space LP

kδ(Έ) are defined as completions of C0°°(E) in the norm

+ |voσf

where V 0

w = V 0

o ••• ° V 0 ( i times) is the kth differential defined as com-
position of

(g) Γ*M<8> E ) .

It is actually possible to choose a different weight δ for each boundary

component <dXi of 3X In that case we think of δ as an n-tuple of real numbers

δ = (δ 1 , , δ " ) , one for each component, and think of τ as a R-valued

function ( τ \ , τ Λ ) where

/, x e dXi9

0, x £ dXi9

and Tδ is the scalar product of δ and T.

Theorem 3.2 of [15] applied to the fundamental complexes of Yang-Mills

theory implies

Theorem 2.1. There is a discrete set ® c R " without accumulation points

such that

and

0 -> L\ S(QE) -> L\δ{T*M $ Q E ) -i Li δ(Λ2

+(Γ*M) ® Q E ) -» 0

are Fredholm for δ (=

In §3 we describe the gauge theory on M as developed by C. Taubes in [15].

The space of connections # and the gauge group ^ are chosen so that the

arguments in [7] can be applied to the present situation. The orbit space

i s given a Banach manifold structure. The set of ^-reducible
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connections is described in §4. In §5 the indices of two fundamental Fredholm

complexes needed for further discussion are computed. In §6 we prove the

following

Proposition 2.2. Suppose d_ = -3 4- m - ρa(dX) > 0. Under the assump-

tions of Theorem 1.1, there is a compact submanifold Jt'_c 38 which is a smooth

d_-dimensional manifold with a finite number

μ = μ(X9a) = #[{e e H2(W, X)\j*(e) = ±j*(ea) Vi}/e ~ -e]

of singular points. Each singularity has a structure of a cone on a complex

projectiυe space, and it corresponds to a reducible flat connection in # . Suppose

d+= -3 4- m 4- pa(dX) > 0. Then there is a compact submanifold Jί+<z 38 of

dimension d+ with μ singular points whose neighborhoods are cones on complex

projectiυe spaces.

The manifold Jt'_ is obtained by perturbing the self-duality equations and

Jt\ is obtained by perturbing the anti-self-duality equations. Both of them are

compact as perturbations of the compact moduli space of flat connections

J£"c 38 which can be viewed as the zero set of both the sqlf-duality and

anti-self-duality equations. Dimensions d+ and d_ of these perturbed moduli

spaces are obtained from indices to two fundamental complexes computed in

§7. As in [5], [6] a cobordism argument shows that Jt\ and Jf__ cannot exist

inside 38 unless μ is even. Therefore, if μ is odd both J + and d_ have to be

< 0 which proves statement (b) in Theorem 1.1. Statement (a) follows from a

simple observation that both d_ and d+ have to be odd.

3. Gauge theory on M

Recall that we have defined a bundle E = Lα Θ ε on M and a connection

Vo = Vα θ ε. We complete the space of connections

in the Sobolev L\ s norm and denote the new space by

if = Vo + Llδ(T*M ® flE) = Vo + sf.

To define the appropriate gauge group we first consider the following space of

sections of fll(E). Define

Here v 0 is the connection defined by Vo on βl(E) and L\8 is the weighted

Sobolev norm on the bundle T*M 0 flί(E). The following theorem, which

gives a Banach space structure to 0t, will be proved in the Appendix.
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Theorem 3.1. Let 3tf denote the subspace of Si consisting of harmonic
sections, i.e.,

tf= {φ e @\e-τ8Vo*eτδVoΦ = 0}.

Then there is a direct sum decomposition

Furthermore, there is a well-defined map r \0t -> Kerv9 given by

r(φ)(y) = lim φ(y9t).
t-*oo

Here Ker Va denotes the set of parallel sections of the bundle g I(E | dx) with
respect to the connection v 9 (recall that v 0 = d/dt + V8 on End(M)). Also
r~ι(0) = L\ δ(gί(E)) and r\3tf-* Kerv 8 is an isomorphism. The norm

gives St a Banach space structure in which the projections π0: $1 -> L | δ( g I(E))
and 7r: ̂  -> ̂ f are continuous.

In the Appendix we will also show that pointwise multiplication : 9t X 9%
-> ^ is well defined and continuous, and that r\$% -> Kervθ is a continuous
homomorphism.

( φ* = id, detφ = 1)

is a closed submanifold of ^ which is a Banach Lie group with Lie algebra

β = { φ G ^ | φ * = -φ} = { φ e L 3

2

i l o c ( g E ) | | | v 0 φ | L l δ < oo).

The restriction of r \@ -> Ker v θ to ^ is a smooth homomorphism from ^ to

G = { g e kerv θ | g °g* = l,detg = 1}

= the stabilizer of V3 in the gauge group for E | l)x.

On each component on which αi,:H^dXj) -> U(l) is trivial, Va is a trivial flat
connection on a trivial bundle and the stabilizer is an SO(3) of constant gauge
transformation. For components 3 ^ for which α, is nontrivial, v 9 is a
nontrivial reducible flat connection v a = Vα θ d and the stabilizer is an Sι

of rotations for a constant angle in the Lα component of E/ΘΛf, = Lα θ ε if α,
does not have order 2, and an 0(2) if α, has order 2. Let ΓV ) denote the
stabilizer of v a . Then
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Denote by © 0 the Lie algebra Lie(G). Then © 0 = Kerv 9 on sections of
Qv/dX. Since r: Q -> G is a restriction of the linear map r: ^ -> Kerv9, its
differential is Dr = r: g -> ©0. Let β be a cutoff function on End M, namely
a smooth function β: M -> [0,1] such that β( t) = 0 f o r χ E l and β(x) = 1
for x e dX X [ε, oo) for some ε > 0. Let σ e ©0. Than β σ defines a section
of Q I(E) which is in g and

r(j8 σ)(j>) = lim β σ(y, t) = σ(y).
ί->oo

Therefore Dr is surjective and r\ <& -» G is a submersion. Denote by ^ 0 the

kernel of r, ^ 0 = r" 1 (^) . ^ 0 is a closed Lie subgroup of ^ with Lie algebra

Let G = im(r. ^ -> G). G contains the identity component of G and has the
same Lie algebra. If we assume that H2(X,Z) has no 2-torsion or that all α,
have order greater than 2 then

X SO(3))x("χ S1),

where k is the number of boundary components for which the representation
at is trivial.

In the Appendix we will also show that the Lie group ^ acts smoothly on
the space of connections # by the usual action (g,V)-*V g = g~ l oV°g.
Lemma 7*5 in [15] shows that the definition of <g= Vo + L\8(T*M Θ Q E )
does not depend on the choice of V ^ ^. In other words, the norms induced
on C0°°(E) by V and Vo are equivalent, and hence define equivalent norms on
L\8. Theorem 3.1 then shows that the norms || | |# defined on 3% are
equivalent.

It is important to note that the action of ^ 0 on ̂  is free. Suppose, namely,
that V g = V f o r v e ? , g G ^ 0 . Then Vg = 0. Equation (7.13) in [15] says
that

/ i g |
Έnd M •'End M

It follows that g = r(g) = id on End M. But then g = id since V(g) = 0.
Let # * denote the set of irreducible connections, i.e., connections V Ξ #

such that V g = V implies g = id for g e <S. <& acts freely on # * . We want to
give a Banach manifold structure to the quotient spaces ^ 0 = ^ / % a n ^
^ * = #*/4?. Note that ^ * = ^ * / ^ = ^ * / % / ^ / ^ o = ̂ o*/^ where G
acts on ̂ f as the quotient group
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Theorem 3.2. @0 = # / ^ 0 is a Banach manifold. The tangent space to
[ V ] ^ &0 is isomorphic to

χ v = [a e Lld(T*M ® gE) \e~*d*e*a = 0}

= h\-orthogonal complement of dv (g 0 ) M L2 δ (Γ*M 0 g E ) .

τr0: #-> ,3?0 is a principal @0-bundle.

Proof. The proof is a direct translation of the proof in the compact case
(cf. [12], [8]). The use of the group % makes the standard boot strapping
argument work. It is important to be able to estimate the norm ||g-id||# in
terms of ||Vg||L2g in order to show that local slices χ v ε = { α G χ v | llαllL2

2δ

 <

ε} are actually slices. This is the reason we cannot use ^ in this standard
argument.

To give a Banach manifold structure to ^ * = ^ * / ^ we consider the
residual &/V0 = G action on # * = #*/^o defined by [e]([g],[a]) =
[e(g, a)]. Identify the tangent spaces T[iά]G and T{v^ξ with g/g0 and
stf/dv(Q0) respectively. With this identification the differential of the action
map [e] at ([id], [V]) is

L [a]) = [dvΊ + a]

A neighborhood of [ V ] Ξ J*O is given by

^^, = ^X^,ε)={[a]\a±dv(Qo),\\a\\<e

Let <5V ε c ^ v e be a closed submanifold defined by

0 V e = {[<?] e ^ v ε |[α] has a representative α ± J

Then Γ [ v ] 0 v , e = {[α]|α ± έ/v(β)}. The differential of [e]: G X Θv e -> ^ 0

at ([id], [ V ]) is an isomorphism. Assume, namely, that

% I H V ] > M ( [ Y L M ) = [ ^ Y + β] = 0 e j / / j v ( α 0 )

for [α] G Γ [ v ] ^ v e. Then there is γ' e g0 such that J v γ + Λ = ί/vγ
r. Let a

be the representative of [a] perpendicular to <iv(c$). Since a = dv(y' - γ) =
d v ( γ ) we have α = 0, dv(y) = 0. V is irreducible, which implies γ = 0.
Therefore γ' = γ e Q0, ([γ], [β]) = (0,0), and D[e] is injective. It is obviously
surjective. The open mapping theorem and inverse function theorem imply that
[e] is a local diffeomorphism. So, for small enough ε, Θv F is a local slice for
the G action. Since G is compact, we can find εr < ε small enough such that
Θv e, is a slice for the G action. This proves

Proposition 3.3. 3#* = 3$*/G = <€*/<# has a manifold structure with coor-
dinates given by Θv e. The quotient map πG: £8$ -> ̂ * is a principal G-bundle.
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Note that we have actually found the slice for the ^ action on # * . Let

al9 a2 e Θ^ε = VQ\ΦV^)9 and let a2 = e(g, aλ). Then on the quotient space

^o* we have [a2] = [<?]([g],KD and since (PV f β is a slice for the G = <3/%

action, [g] = ί d e G and hence g e ^O . NOW al9 a2 G ^o'H^v.ε) c Xv,ε which

is a slice of the ^ 0 action. Therefore g = id and a2 = av We can summarize

the above results in Theorem 3.4.

Theorem 3.4. Lei ίί * c ^ denote the space of irreducible connections in *€.

Than the quotient spaces @0 = <£/% and @* = # * / ^ are Banach manifolds

with tangent spaces at [V ] G ^ O α«J [v ] e ^ * described as

(βo)}

We still need to show that the graph Γ = {(V, V g ) | V <Ξ tf,g <Ξ &} is

closed in order to prove that the quotient space ^ * is Hausdorff. Assume that

a sequence (Vπ, Vπ) ^ Γ converges in V X V to (V, V). We need to show that

there is g G ^ such that V = Vg. Write V, VM, and v π in coordinates

centered at V as V = V + a, Vw = V + an, and Vn = V + bn. Since

(VW,VW) e Γ there is a sequence {gw} in ^ such that Vn = Vξ% i.e., an =
ev(8n> K) = ^ " l o V g n + g; 1 ° bn o gn. A standard boot strapping argument

(cf. [12], [8]) gives an estimate

(3-2) llvgJUlί<Jp(||αJUlδ,||fcJ|il8)

and since an -> a, bn -> b this shows that {||VgJ|L2g} is uniformly bounded.

Therefore, the sequence gn is uniformly bounded in || H L ^ ^ for each

compact MN = ^ ( [ O , N]) c M. The Sobolev embedding theorems for com-

pact domains give a weakly convergent subsequence {g^} converging to

SN G L3,δ(MΛr) ώ the L ^ ( M v) norm. Since Vgn = gπfln - 6πgπ, Sobolev

multiplication theorems say that Vg^ -> Vg/v in L ^ ί M ^ ) , hence g^ -> g^ in

Ljδ(MN). Using standard diagonalization procedure we obtain a subsequence

{gk} of the original sequence converging to gN in Ljδ(MN). Since L\8

convergence implies pointwise convergence, gN+x\ MN = gN and we can define

a gauge transformation g by setting g | MN = gN. Continuity of multiplication

on MN implies that V = V8 on MN. Therefore, V = Vg. Equation (3.2) gives



SO(3)-CONNECTIONS 287

As in the case of compact closed M, we can identify the neighborhood of a

reducible connection in 38 = ^fS with

Γ v

4. Reducible connections

The singular points in Si = */S? are the gauge equivalence classes of

connections with nontrivial isotropy group Γ v = { g e | v g = V } The situa-

tion here is parallel to the compact case and most of the proofs are the same.

The difference is in the extra information about V and g on the cylindrical

part of M.

We will say that V is a topologically reducible connection on E if there is a

splitting E = L θ e o f E a s a sum of a complex line bundle L and a trivial real

line bundle ε such that V = V L θ d, where V L is an SO(2) connection on L

and d is the trivial connection on ε.

The classification of SO(3)-bundles over a 4-complex tells us that E topologi-

cally reduces to L θ ε if and only if

w2(E) = w2(L Θ ε) = q ( L ) (mod 2).

By assumption, X has the rational homology of an w-punctured 4-sphere.

The second cohomology H2(X,Z) is therefore torsion and H4(X,Z) = 0. So

L θ ε = E = L α Θ ε i f and only if

(4.1) c1(L) = c 1 ( L j (mod 2).

In order to identify the singular points in Si we need to identify the

topological reductions that result from a nontrivial isotropy in (S. We will call

connections V e # such that Γ v = { g e | V g = V } ^ i d ^-reducible. Then,

as in the proof of Proposition 3.1 in [5], the splitting E = Lg Θ ηg can be

constructed where ηg is the 1-eigenspace bundle for g e Aut(E). If there is a

component such that the order of α, is greater than 2, then η(g) G. ker v a = S1

and, in the limit at that end, ηg coincides with ε. This is because ε is the unique

line fixed by a nontrivial element of ker v 9 / . Therefore, if j): dXt? -* X denotes

the inclusion and jj* the induced homomorphism on cohomology, j*(wι(Ί)g))

= 0. Since H2(X,dXi9Z) odd torsion implies (by universal coefficient theo-

rem) that H\X, dXi9 Z 2 ) = 0, the exact sequence

0 -> Hι(X,dXi9Z2) -> H\X,Z2) % Hι(dXi9Z2)
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implies that 3* is 1-1 and therefore wλ(ηg) = 0. Hence, no reduction coming

from g G ^ can be nonorientable and we have the following proposition.

Proposition 4.1. For V e Ή the following are equivalent.

(a)Γv = {ge AutP|V* = V}*id.

(b) V is topologically reducible.

(c) Γ v ^ S\

(d) J v : Γ(g E ) -> Γ(Γ*M Θ Q E ) λαs nontriυial kernel.

We are interested in identifying the set of gauge equivalence classes of

reducible flat connections in %\ It is a well-known fact that a flat connection is

determined, up to gauge equivalence, by its holonomy representation

[ α v ] e Hom(τ71(X),SO(3))/SO(3)

which is independent of the choice of JC0 e X. Let jj\ dXt ^ 3X, X {/} c M

be the inclusion jf(x) = (x, t). jf pulls back V to a flat connection v/ on

E/ΘΛ^ . The holonomy representation of v/ is given by

since it is given by a parallel transport along the loops, which are naturally in

X. For a different cylinder coordinate we get a conjugate representation, since

we are only changing the base point for πv Therefore the connections v/

give the same [α v / ] e HomίTΓ^a^-), SO(3))/SO(3). Since V e ^ , v/ -^ Vθ.

as / -> oo and hence [av<] = [ α v ] = [J>J, where ^ is the composition

7^(3*,) ^ 5 1 -> SO(3).

This shows that on the cylindrical end, any flat connection is reducible and

gauge equivalent to the reducible connection v 0

 = Vα + d. Therefore, for any

reducible flat connection reducing to V = VL + d on E = L + ε, we know

that cι(L\dXι)= ±^i(LαlθA-,) (± s iS n results from the fact that holonomy

representations are conjugate to each other by an element of SO(3) which may

change the orientation of line bundles). This shows that a topological reduction

E = L -f ε associated with a reducible flat connection in # satisfies

(4-2) Λ*(q(Lα))=±y*(

Note that since H2(X,dXj,Z) has no 2-torsion, a reduction E = L + ε

satisfying (4.2) automatically satisfies (4.1). We can thus prove the following

theorem.

Theorem 4.2. Under the conditions of Theorem 1.1 the set

S={c<Ξ H2(X,Z)\j*(c) = t λ ί c Λ L j ) , i = 1, -,n}/c - -c

is in 1-1 correspondence with the set of ^-equivalence classes of ^-reducible flat

connections in <€.
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Proof. Let V be a ^-reducible flat connection. We have shown that there is
a c G ί such that E = Lc + ε and V = Vc + d. Each complex line bundle on
X supports a unique gauge equivalence class of flat connections since

{a: πλ(X) -> S1}/conjugation « Hom(i/ 1(^,Z), Sι) - Hλ(X,Z)

X,Z) « H2(X,Z).

Therefore, if there is a reducible flat connection producing a splitting corre-
sponding to a c G S, it is unique up to gauge equivalence.

On the other hand, let c e S and let Vc be a flat connection on Lc. The
same argument as before shows that there is a unique gauge equivalence class
of flat connections on any complex line bundle over dXf X [0, oo). Therefore,
Vc\dXi is gauge equivalent to Vα. on 3 ^ X [0, oo) since c e S implies that
Lc = Lα up to orientation. Let Vα = gΓ l oV c °g7 on dX^ X [0, oo), g, e
C°°(AdLc| 9^ x [ O ί O O ) ) . Note that AdL = M x S 1 since S2 is commutative and
the Ad action is trivial. Therefore we can think of gi as functions g7:
3Λ, X [0, c») -> S1. Let us consider the restriction g, θ: dXt-+ S1. Recall that
'dXi is a rational homology sphere. Since (g/?9)*: ir^dXf) -> ^(S11) = Z factors
through ^ ( Θ ^ . J Z ) and Hx(dXi9Z) is torsion, (g/<a)* is a 0-map. Therefore,
there is a lifting g 9 -> R of gid which shows that g, 8 is homotopic to a
constant. Using this homotopy we can extend the gauge transformation gi to a
gauge transformation on all of Lc, and define Vx = g"1 ° Vc ° g. The connec-
tion v = Vi + d is then a reducible flat connection in ^ which corresponds

tO C G S.

Hence, for every c e S there is a unique ^-equivalence class of reducible flat
connections such that Lc θ ε is the associated topological splitting. On the
other hand, if V is ^-reducible, it induces a splitting corresponding to c e S.

5. Index computations

In this section we will compute indices of Fredholm complexes which we will
use for the proof of Theorem 1.1 in §6, and relate these indices to pa invariant
of 9X

Recall that g = (φ e ^i o c (g E ) | | |V 0 Φ|| L 2 s < oo} can be split as β = α0 Φ
Jί^, where g0 = L |$(Q E ) and ^ = Jί^π β. We have also shown that there is
an isomorphism

- r{τ*(dX) β
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where n is the number of boundary components and k is the number of
boundary components such that at is trivial on H^dX^Z). Therefore, the
complex

(FC) ± 0 -> zd^Ll8(T*M X 9 E ) C L ^ ( A 2

± ( Γ * M ) ® gE) -> 0

is Fredholm if and only if the complex

(5.1)± 0 - L 3

2

? δ ( g E ) C L ^ ( Γ * M ® g E ) ^ ° L ^ ( Λ ± ( Γ * M ) ® gE) - 0

is Fredholm. This can, by Theorem 2.2, be obtained for a proper choice of S.
Note that, since g = L2,δ(gE) θ Rw+2* we have index(FC)±= (n + 2k) +
index(5.1) ±.

Since gE — E = L α θ ε and Vo

 = VΛ + d, the complexes (FC) ± split into
the direct sum

(1) ± 0 - # ( ε ) 4. L ^ ( Γ * M ) ^ L?,S(Λ2

±(Γ*M)) - 0

(2)± 0 - Λ(Lβ)^*L| i β(Γ*A/ ® Lβ)^"L?,β(A2

±(Γ*Λf) β Lβ) -» 0

and Index(FC) ± = indexR(l) ± + 2 indexc(2) ±. Here

β) = (σ e L?,loc(Lα) | | | v o σ| | 4 s < oo}.

Denote by i/'(l) + the cohomology groups of complex (1) ± and by Hι(2) ± the
cohomology groups of complex (2) ±.

Lemma 5.1. dim H°(l) ±= 1, dim H°(2) ±= 0.
Proof. Let / e L2

4 o c(M), d/ = 0. Then / = const e L 2

l o c (M) so ff°(1) ±
= {/cί ^) = c|c G R}. Let σ e L2

l o c(Lα). Since Lα is a nontrivial 1-dimen-
sional complex bundle, there are no parallel sections, hence H°(2) ±= 0.

Lemma 5.2. Let n be the number of boundary components for X. Assume
each boundary component 3 ^ is a rational homology sphere. Let k be the number
of dXi such that at: Hx(dXi9Z) -> S1 is trivial. Assume also that H^dX^LJ =
0, Vi. Then

(a) dimR JϊHl) + = dimRH ι

comv{M) - n + 1,
(b) d i m c H \ 2 ) ± = d i m c H ^ M , L β ) - *.
Proof. We will do the computation for fl"1^)- ^ r s t The computation for

Hι(l)+ is exactly the same. Let [ω] e ^ x ( l ) _ . Then (rfco)_= 0 and since ί/co is
integrable, as in the case of compact manifolds, 0 = f\(dω)_\2 = \j\dω\2 and
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hence dω = 0. Therefore

Since dXt is a rational homology sphere, for each / = 1, , w,

and ω | a ^ x [ 0 i O θ ) = d/,. Let ft be smooth cutoff functions on ends, ft:M
[0,1], such that

10, x^X,

and define / = Σ, ft /•. Since <//18A-x[l j00) = ω |\ d x x [ h o o ) we see that / e <#(ε).
Therefore, co' = ω - d/ is another representative of [ω]^i(1) but <o' is com-
pactly supported. This shows that the natural map i: H^omp(M) -> i/^l) given
hy '["li/ίomp = Iω]^(D i s S U Γ J e c t i v e

Define the set K = {/c = Σftcjc = (c1?- , c j e Rn} and let y: AT ->

^comp(^) be given by y(/c) = [rf/JifU T h i s i s w e l 1 d e f i n e d s i n c e J ^ ( x ) = °
for x G. dX X [1, oo). We will prove that the sequence

(5-2) K^H1

cop

is exact and that dim(kery') = 1. Then

dimfί 1 (l)-= dimHΪomp(M) - dim(imy)

= dimH^omp(M) - dimK + dim(keτy)

Since fc e ^(ε) and / o y(/c) = /[J/J = [dfc]Hι(l) = 0, imy c ker/. On the
other hand, let [ω]^i e ker/. Then ω = df for / G ̂ (ε). Since ω is com-
pactly supported, df = 0 outside a compact set C and for large enough C"
(such that M/C r c End M) there is an fc G # such that / = /c on M/Cr. Let
g = fc - f. g is compactly supported and

df]Hlomp = [ω + Jg]// ί o m p = [ ω ] ^ o m p .

Therefore Ker / c im j , and (5.2) is exact.
Let fc e kery. [#c]//iom = 0 implies that J/c = dg for a compactly sup-

ported g. Therefore fc- g = const = A:. Since g is compactly supported this
implies that c = (A:, , k) and hence dim(ker7) = 1. We have proved state-
ment (a) of Lemma 5.2.
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Proof of statement (b) follows in exactly the same way. Let iα:

#comP(M 'L«) ~* H ^ b e Si v e n a s b e f o r e τ h e assumption H^X^ Lα.) = 0
replaces the fact that H^R(dXi9 Z) = 0 in proving that ia is onto. Let

= |σ = Σ

Let k denote the number of boundary components dXt such that
i, Z) -> Sι is trivial. Than dim Ka = A:. Defining 7α:ϋΓα ->

, Lα) as before, we get an exact sequence

(5.3) Ka 4 HΪomp(M,La) 4 ffi(2) -> 0,

which is exact. The proof is the same as for (5.2).
For σ G Ka, ja(o) = [do]H\ = 0 implies dVa(a) = dVa(ρ) for a com-

pactly supported p. Therefore J V β ( σ - p ) = 0 and since Lα is nontrivial,
σ = p. Hence, σ E ^ β n Q?mp(Lα) = 0 and keryα = 0. The computation

dimcH
ι(2) = dimcH

ι

comp(M,La) = dimc(keriβ)

= dimcHcOmp(M,Lα) - dimc(imyα)

= dim c // ( i o m p (M,Lj-A:

proves statement (b).

Lemma 5.3. Under the assumptions of Lemma 5.2,
(a)dimR7/2(l)+=Z>2

+(M),
(b)dim ci/ 2(2)+=f> 2

+(M,Lα),
where b\(M) = dim(Jf2(M) Π Ω2

±) and b2

±(M,La) = dim(Jf2(M,La) Π
Ω2

±(La)). Here Jί?2(M) and 3V2{M, La) denote the spaces of harmonic 2-forms
and Q\ the space of anti-self-dual (self-dual) 2-forms.

Proof. Let [ω] e H2(1) ±. There is a unique representative such that

CO = + C 0 "I ί * C O = ± C O

y*(eτ 5co) = 0j ^ \j(^ τ δω) = 0J

Since the boundary components are rational homology spheres, the proof of
Lemma 5.3 in [15] applies to our situation. Therefore, for small enough choice
of δ, for a representative of [ω] e H2(\) + which satisfies (5.4) we have
f\eτδω\2< oo. We can define a mapping /: H2(\) ±-> J f 2 (M) Π Ω2

± by
setting ^[ω] / / 2 ( 1 ) = ^τδco, co being a representative of [co] satisfying (5.4).

Injectivity of the map is clear from the definition. Surjectivity follows from
the fact that for φ e tf 2(M) Π Ω2

± the form ω = ε'τ8φ satisfies equation (5.4),
co e L\ δ(Λ2

±Γ*M), and φ = /(co).
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Exactly the same proof works for complexes (2)±. The assumption that
Hι(dXi,La) = 0 makes the proof of Lemma 5.3 in [15] work for the forms
with values in Lα.

Atiyah, Patodi, and Singer show in [1], [2] that there is a connection between
ZAharmonic forms on M and cohomology of X. The space Jf*(M) of
ZΛharmonic forms on a manifold M obtained from a compact X by adding
cylinders along the boundary is naturally isomorphic with the image ίϊ*(X) =
im(H*(X, dX, R) -> H*(X, R)). Since the kernel ker(#2(X, dX, R) -*
H2(X, R)) is exactly the radical of the cup-product induced pairing on the
second cohomology, b\(M) are exactly the dimensions of positive and nega-
tive definite parts of H2(X). Hence sign(X) = b\(M) - b2_(M) and
dimH2(X) = b2

++ b2_. The statements are exactly the same for cohomology
with local coefficients (see [1, §4] and [2, §2]). Since Hι(dX,R) = 0 and
H\dXi9 L J = 0, the pairings on H2(X, R) = H2(X, dX, R) and H2(X; L J =
H2(X, dX; Lα) are nondegenerate and

b2(X) = dimH2(X,R) = dim^ 2 (M) = b\{M) + b2_(M),

b2(X,La) = dimH2(X,La) = dim^2(Lα, M) = b2

+(M,La) + b2_(M,La).

We can now prove the following
Theorem 5.4. For small enough δ > 0, the indices of the complexes

(FC) ± 0 -> g - L l δ ( Γ * M Θ g E )^°L^ δ (Λ 2

± (Γ*M) ® QE) - 0

index(FC) + = 3 - m -

index(FC)_= 3 - m 4- pβ(8ΛΓ),

pα(3X) = sign X — signα(AΓ) w ^ diffeomorphism invariant of dX and a:
Hι(dX, Z)-* Sι. m is the number of boundary components for which α7:
H\dXi) -+ S1 is nontriυial

Proof.

indexR(FC)±= indexR(l)±+ 2 indexc(2)±

= 1 - (dimRffimp(Λf) - n + l) + b\{M)

+ 2{-(dim c// c

1

o m p(M,Lj -{n - m)) + Z>2

±(M,Lj).
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Since H^omp(M) = H\X9 dX, R), the exact sequence of the pair gives

rrO / v ϋ V O\ t/0 / v n\ I/O / Q v Ό\ \ t/1 / V Λ V DΛ \ rτl / v "Q\ > rrl / α y ij\
ti i Λ , uΛ , K ) * // ( Λ , K ) • Γί yυΛ , K . ) r Γt yΛ,OΛy K.j r Π \ Λ , l\j *" Π y 0Λ , K.j

II II II II II II
0 • R R" •7/1(Λr,3Λr,R)—*Hι(X,R) • 0

and, since X has rational homology of an ^-punctured 4-sphere,

dimH\X,dX,R) = n - 1. Also, H2(X,R) = 0 and hence b\(M) = 0. If m
denotes the number of boundary components for which α,: Hλ(dXh Z) -• Sι is

nontrivial, H°(dX,La) = ®H°(dXi9Laj) = Cn~m. The exact sequence

H°(X; LJ -> i/°(3ΛΓ; Lj ^ Hι{X,dH; L j ^ J ϊ H ^ L j - Hι(dX,La)

II II II II II
0 »C"-m Ήι(X9dX'9La) ^ Hι(X,La) 0

gives that

dimcH
ι(X,dX\ La) = dimHc(X,La) + n — m.

Since H\X9dX; LJ = Hlmp(M,La) s //3(M,LJ*,

indexR(FC)±= 1 - 2 d i m C i / ^ p ^ L j + 2(/ι - m) 4- 2Z)2

±(M,Lα)

= 1 - d\mcH
ι(X,Lα) — n + m - dimcH

3(X,Lj

+ 2w - 2m 4- 262

±(M,LJ

= 1 + Ai - m + χ(Jf,Lj - dimc//2(X,Lj + 2Z)2

+(M,Lj

- / i ) T ( s i g n ^ - s ign α

) .

N o t e that i n d e x R ( F C ) ± is odd since i n d e x R ( F C ) ± = 1 + 2 7 .

6. The proof of Theorem 1.1

Using the explicit formula for the difference of Pontrjagin forms (found for

example in [18, Chapter III, §3]) it can be shown that px{V) = pλ(Vo) = 0 for

every V e # . Therefore, as in the compact manifold case, IV7 = 0 <=> R + = 0

<=» ΛY = 0 and hence the set of flat connections can be described as the set of

solutions of either of the two equations

(6.1) dYa +[a,a]_= 0,

or

(6.2) </7fl+[<i,fl] + = 0 .
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It is important to note that, for V Ξ # , the complex

(6.3) 0 —> g 0 —> L2 $yT*M ® g E ) —> L l δ ( Λ +(T*M) <S> g E ) —> 0

is Fredholm. Since d v has closed image, the complex (6.3) is Fredholm if and

only if the operator

— > Lls{A2

±(T*M) ® gE)

(6.4) ± D ±{v): L\ S(T*M 0 gE) θ θ

is Fredholm. Also, index(6.3) = -index(Z)±(v)). Theorem 2.2 shows that the

corresponding operators D ± ( v 0 ) are Fredholm. Since V = Vo + a for a e

Ll8(T*M Θ Q E ) , the two maps differ by a compact operator and therefore

£> ± ( V ) is Fredholm and index D ± ( V ) = index D ±(v °). The complex

(6.5) ± 0 -> fl - L | i β (Γ Af β) flE) 5 L ^ ( Λ 2

± (

is then also Fredholm with index(6.3) ± = 3 - k + pα(

Let J ^ c ^ denote the space of ^-equivalence classes of flat connections in
cβ. Considering & as the set of solutions of (6.1) and (6.2) and applying the

standard Kuranishi argument (see proof of Theorem III, 2.1 in [12]) we get the

following theorem.

Theorem 6.1. Let V Ξ # be aflat connection. Then there are neighborhoods

& + of 0 in the first cohomology H^ ± o/ (6.5) ± απJ differentiable maps φ+ and

w/7Λ φ +(0) = 0 wA/c/z βre Tv-equiυariant if V w reducible such that

(a) J^Π Φ V ( β s φ-^0) // V is irreducible,

(b) J^Π ((P v e / Γ v ) έ φ - ±

1 ( 0 ) / ^ 1 // V is reducible.
p

Here = denotes a homeomorphism defined by some ambient diffeomorphism

P o/( ί/ v (g)) ± C L\ ^(Γ*M(8)0E) which contains both @v>ε and H^ ± inter-

preted as kerrfj n (rfv(g))-L.

For a ^-reducible connection V the bundle and the connection split as

E = L θ ε , v = V L + d, and Γ v is the group of rotations for a constant



296 GORDANA MATIC

z G Sι inside L. The complexes (6.5) ± split as a direct sum

(6.6)± 0 - Λ(e) - Lla( ^ (

(6.7)± O^»(L)C^(r*M®L)^(A2

±(r*M) ® L) -* 0.
In the proof of Theorem 5.4 we have shown that the first and second
cohomologies of complexes (6.6) ± vanish. Therefore H^t± and H^ ± have a
structure of a complex vector space and the Γ v action induces an action of
Sι = U(l) by multiplication.

If H^ + = 0 this gives fF a structure of a smooth manifold of dimension
d + = -index(FC)+ = -3 + m ± ρa(dX) in a neighborhood of an irredudible
V, and a structure of a cone on CPι±, I±= (-2 + m ± ρa(dX))/2, in a
neighborhood of a ^-reducible V. This, however, is not possible if H2(X9ha)
Φ 0. In order to obtain a manifold we need to perturb the equations to
regularize 3F. Before we do that we need to make the following observation.

Theorem 6.2. The space IF of ^-equivalence classes of flat connections in Ή

is compact.

Proof. It is a standard result that the space of equivalence classes of flat
G-connections on a principal G bundle can be identified with an open and
closed subset of Hom{iτι{X\G)/G via the holonomy representation (see [10,
§1]). Since πx(M) is finitely generated and SO(3) is compact, this is a compact
space. If we denote by vt the composition π>

1(3,Xl )--iS'1-> SO(3) the discus-
sion in §4 shows that the gauge equivalent classes of flat connections in ̂  are
in 1-1 correspondence with the closed subset

Π Ui*)~\["i]) c Hom(τ71(^),SO(3))/Sθ(3),

where j * : HomίTΓ^X)1SO(3))/SO(3) -» Hom^SX,), SO(3))/SO(3) is given
by Λ*([«]) = [α° y*] and y*: 7^(3^) -» ^(-Y) is the inclusion induced mor-
phism. Therefore, J^ is compact.

Note that by using Theorem 6.2 we can avoid the use of compactness
theorems of K. Uhlenbeck [17], [18] in the rest of the argument.

We have shown in Theorem 4.2 that

μ=#[{ceH2(X9Z)\j?(c)=±j*(c(La))}e__c]
is the number of ^-equivalence classes of ^-reducible flat connections in <€.

Since 9 acts on if and L\(A2
±(T*M) Θ gE) by conjugation and IV7* =

g " l o ^ v ° g , the maps V -> R\ define sections &>± of the bundles Se±-+ Si
where JS?±= WX#L2(A2

±(T*M) Θ Q E ). By Theorem 6.1 J^c Si is the zero
set of both sections 9 +: ^ -> J^+.
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We start perturbing the equations ^ ± ([V]) = 0, as in [12, IV], by first
perturbing them in the neighborhood of a ^-reducible flat connection V ^ ^ .
Compact perturbations can be chosen Γv-equivariantly so that the zero set of
the perturbed section S°± has a structure of a cone on CPι± in the neighbor-
hood of [v ].

After doing this perturbation around each of the μ classes of ^-reducible
connections we get a compact perturbation S\ of @> ±. We still need to
regularize S ι

± on the complement of the cones. Since & was compact, the zero
sets Jί\ of S\ are also compact. We need to regularize them outside the μ
cones. Since complement of the open cones is a compact set, we can cover it by
finitely many ΰv ε and as in [12, IV, §4] produce a compact perturbation S±

of Sι

± such that the zero sets M ± of S± are compact d ±-dimensional
manifolds with μ singular points.

Note that we have just proved Proposition 2.2.
We now follow an argument of Fintushel and Stern ([5], [6]) to show that if

either one of d+ and d_ is positive, the number μ has to be even. Define
^i = {S G ^ l r i (g) = i d e q(E)/'dXi}, where dXt is a boundary component
for which a. has order greater than 2. Then % c 9λ and ^ / ^ Q = G / Γ v θ

 =

Gγ is a compact group. As in the proof of Theorem 3.4, we can show that
38? = 38* /^^ has a Banach manifold structure, and that πλ: %>* -+ 38? is a
principal &x-bundle. Moreover, the projection τ7Ci: 38? -+38* is a principal
G/Gλ = ΓV9i = S^bundle.

If either d\ or d_ is positive, the above perturbation argument produces a
manifold Jt c 38 with isolated conical singularities. Let Jί' = Jί\ cones. Jl
has μ boundary components each of which is CPι. The bundle πGι: 38? -+38*
restricts to a bundle with wx = 1 e H2(CPι,Z2) on each CP' (see [5], [6]).
Since an odd number of such bundles cannot bound, μ has to be even.

Since d±= -3 + m + ρa(dX) the condition that J ± < 0 translates into
\ρa(dX)\ < 3 - m. Therefore if \ρa(dX)\ > 3 - m, μ has to be even, which
proves statement (b) in Theorem 1.1. Since d± is odd, m ± ρa(dX) = 0
(mod 2) which shows statement (a) in Theorem 1.1.

7. Applications

An immediate corollary of Theorem 1.1 is the integral homology invariance
of the invariants pα(Σ).

Theorem 7.1. Suppose that Σx and Σ2 are rational homology spheres which

are Z-homology cobordant. Let a: Hx(Σi9Z)-^ Sι be a character of order

greater than 2 such that H\Σi9 Lα) = 0. Then
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Proof. Let X denote the Z-homology cobordism. Since H2(M3) is free for

any 3-manifold, H2(Σi) = 0 and hence H2(X) = 0 (all homologies are with Z

coefficients). The exact homology sequence of the pair shows that H2(X,Σ) =

Hγ(X, Σ) = 0. The universal coefficient theorem implies that H2(X, Σ) = 0.

Therefore j]*: H2(X) -» # 2 ( Σ , ) is injective and μ(X,a) = 1 for every a. If

Hι(Σi9La) = 0, Theorem 1.1. applies and shows that \pa(dX)\ < 3 - 2 = 1.

Statement (a) in Theorem 1.1 shows that pa(dX) = 2 (mod 2), and therefore

Pa(dX) = 0. Since dX = Σ, U (-Σ 2), 0 = Pa(dX) = p ^ Σ J - P α ( Σ 2 ) .

Remark. This theorem was originally proved by Gilmer and Livingston in

[9] in the case that a is of prime power order. This condition was removed in

the case of spherical space forms in [7].

Remark. Suppose that the α-induced cyclic cover Σ of Σ is also a rational

homology sphere. Let the image of a be Zd c S1. Then Zd acts on Σf. freely

and

(7-1) H\Σ,,C)= Σ H^,Lp)
p character

oϊZj

(see Lemma 2.5 in [2]). Therefore, if Σ is a rational homology sphere, then

// 1 (Σ,L p ) = 0 for every p.

Example. It is clear from the above remark that lens spaces satisfy the

condition // 1(L,Lα) = 0 for any representation a: Hλ(L) -> S1. Another

family of examples can be obtained by looking at Brieskorn spheres

Σ(α 1 ? , an). They are Seifert fibered manifolds with exceptional fibers of

orders al9- , an (cf. [14]). Take an integer d prime to each aλ, , an. Then

Ίjd c Sι acts freely on Σ ^ , - , an) and the quotient Σ = Σ ^ , - , an) \1d

is a rational homology sphere with HX(Σ) = Zd of the type described above.

We next discuss the question of when a rational homology sphere bounds a

rational homology ball. Let X be a rational homology ball and dX = Σ be a

rational homology sphere. Since //2(Σ) = 0, the exact homology sequence of

the pair (X,Σ)

0 -» H2(X) -* H2(X,Σ) -> H^Σ) -+ Hλ{X) -* Hλ(X,Σ) -> 0

shows that

, ( Σ ) , WX)\
\H2(X)\

Duality and universal coefficients theorems show that

=\H\X,Σ)\ =\Exl(H2(X,Σ),Z)\ =\H2(X,Σ)\,

=|Ext(//2(Λ-),Z)| =\H2{X)\.
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Therefore,

The necessary condition for Σ to bound a rational homology ball is that
|#x(Σ)| = m2 and m = \im(H^) -> Hτ(X))\.

We are interested in representations aΣ: i/x(Σ) -> S1 which will factor
through α: Hλ(X) ^ S1:

HX(Σ) »Zd ς Sι

( 7 - 2 >

If we assume that Hλ(Σ) = Zm2, then, for any d dividing m, all representa-
tions αΣ: HX(Σ) -> Z^ c S1 factor through i/χ(X) in the sense of (7.2) for any
rational homology ball X such that dX = Σ. Therefore, the following theorem
is true.

Theorem 7.2. Let Σ be a rational homology sphere with cyclic first homology

group Hλ{Σ) = Zm2. Assume that Σ bounds a rational homology ball with

H2(X,Σ) having no 2-torsion. Then, for every nontrivial character a\ Hλ(Σ) -»

S1 of order d > 2 dividing m for which H\Σ, Lα) = 0,

P.(Σ)= ± 1 .
Proof. Theorem 1.1 applies and shows that |pα(Σ)| < 2 and pα(Σ) = 1

(mod 2).
Remark. Theorem 7.2 was originally proved in [3] for d a prime power. In

the case of a spherical space from Σ it was proved in [7] by applying their
version of Theorem 1.1.

The question of when a rational homology sphere bounds a rational homol-
ogy ball is closely connected with the question about sliceness of knots. We say
that a knot K c S3 is slice if there is a disc D2 c B4 such that dD2 = K. Let
Σ denote the double cover of S3 branched over K and X the double cover of
B4 branched over D2. Then Σ is a Z2-homology sphere and I is a Z2-
homology ball. Casson and Gordon [3] have defined an invariant σ(K, a) for a
knot K with the double branched cover Σ satisfying Hγ(Σ) = Zm2 and α:
HX(Σ) -» Sι by setting σ(K, a) = pα(Σ). They have shown that, for any a of
order d dividing m, the fact that a knot is ribbon (i.e., a special type of slice
exists, cf. [3]) implies that σ(K, a) = ±1 . They have also shown that, for a of
prime power order pk dividing m, σ(K, a) = ±1 if a knot is slice. Fintushel
and Stern in [7] prove that when Σ is a lens space L(m2, q\ σ(K,a) = ±1 for
any character a. Theorem 7.2 has the following corollary.
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Corollary 7.3. Let K a S3 be a knot such that the double branched cover Σ
satisfies H^Σ) = Zmi and that the m-fold cyclic cover Σ of Σ is a rational
homology sphere. Then for any character a: Hλ(Σ) -> Sι of order d > 2 dividing
m, σ(K,a) = ±\ if K is slice.

8. Appendix

In this appendix we will, for the sake of completeness, prove Theorem 3.1
which gives a Banach space structure to

) ) | | | 0 φ | U l s } < oo.

Recall that Vo was defined by a connection v 0 = Vα + d on E = La Θ ε,
where a: Hλ{X) -> Sι = U(l) and La = X Xα C for homology cover X. We
want to define the limit

r(σ) = lim σ
n—*• oo ΘA'X { w}

for a section σ G f. To make this precise we will use Lemma 5.2 in [15].
Let φ e <% Π C°°. For each boundary component dXi we can consider the

homology cover dXr This is a finite cover and the pullback of Lα from 3 ^ is a
trivial complex line bundle on dXt. Therefore pullbacks of E and gl(E) are
also trivial. The pullback of the section φ gives

φ e C°°(7r*(EndE/3X. X [0, oo))) = C°°(3A;. X [0, oo), gί(3,R))

such that

/8X; X[0,oo) JdXiX[0,oo)

Applying Lemma 5.2 in [15] the section φ = βέφ on the trivial gί(3,R)-bundle
over the manifold M\ = 7(J 9 j ^ 3χ. x [0, oo), where 7 is any 4-manifold
with 37 = 31, and β,: 3^ ; X [0,'oo) -> [0,1] is a cutoff function

, /<l/2,

we get that there is a constant Aφ e Q 1(3, R) such that

lim φ ( x , « ) = lim φ(x,n) = Aφ.
> oo

Passing to the quotient, ^4φ gives a locally constant section of o)l(E/dXi)
denoted r.(φ) = Aφ e Kerv 9 . Here V9 is the canonical flat connection on
QI(E) defined by the canonical flat connection on E/dXt = (3I ; X α C ) θ ε .
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Lemma 8.1. Let φ G i Let Ho denote the completion of C0°°(gI(E)) in the

norm | |σ|| = fMeτ8\Voσ\2. Then there is a unique ξ(φ) e Ho such that φ +

e 0t is harmonic, i.e.,

(8.1) e-τδVo*eτδVo(φ + €(Φ)) = °

Proof. Note that ||ψ|| = fMeτ8\V0σ\2 is a norm on C0°°(gI(E)) since, for a

compactly supported section, Voσ = 0 implies σ = 0. For each φ E ^ w e can

define a functional α φ on C0°°(gI(E)) by

aφ(ξ) =

and extend it to Ho by continuity. It is easy to check that aφ is strictly convex.

Therefore, it has a unique minimum point. On the other hand, for a convex

differentiable functional, every critical point is an absolute minimum point (cf.

[11, IV, §7]). Hence, aφ has a unique critical point £(φ). Since the differential

of aφ is

aφ(ξ + TO) = 2 [ eτS(v0o,V0(φ + {)>
r = 0 J

the unique critical point ξ(φ) e H° satisfies (8.1).

The fact that ||Vφ||L2 < oo, V0*^τδV0(Φ + £(Φ)) = 0, and integration by

parts show that ξ(φ) e 0t. On the other hand, integration by parts shows that

there is a constant c > 0 such that

(8.2) / | 0 | / | | /
•'M JM JM

for ξ G / / 0 (cf. equation 5.30 in [15]). Therefore, ξ(φ)

Lemma 8.2. Let J^ denote the subspace of 9t consisting of harmonic sections,

i.e.,

JT= {φ(Ξ@\e-τ8Vo*eτ8Voφ} = 0 .

Then 0t decomposes into a direct sum

Proof. Lemma 8.1 shows that 9t = L | δ (g ί (E)) + Jf. Suppose φ G

L2

ϊθ(βl(E)) Π Jf. Since on L2

8($l(E)) we have that the formal /^-adjoint of

VQ, e~τ8v*eτ8, is the Hubert adjoint, it follows that

τ δ<φ,e- τV ( )*e τ δVoφ> = 0,
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and by (10.5)

Hence, φ e LJ8(QI(E)) IΊ 9t implies φ = 0.
Recall that we have defined rf. 9t Π C00 -> Ker v 9. for each i. Define

n n

r= 0 η: 9t Π C00 -> V = φ kerv 8 .
/ = 1 z = l

L e m m a 8 . 3 . r: J^f -> F w β « isomorphism with inverse l\V -* Jtf defined by

y X [0, oo) -> [0,1] is a cutoff function such that

Proof. By definition, /(σ) GJf since Vσ is compactly supported. For a
section ξ e L3 δ(gI(E)), Lemma 5.2 in [15] and definition of r show that
rt(£) = 0 V/. Hence, for any σ e K

= σ.

So, r is surjective. On the other hand, suppose that ψ e ^ ί and r(ψ) = 0.
Then eδn/2ξ(-, n) -> 0 in C° by the last statement in Lemma 5.2 in [15]. Since
ψ is harmonic

0 = ί <Ψ, V0*eτδV0Ψ> = - ί ^ τ δ (V 0 Ψ, V0Ψ> + / ^ τ δ ( Ψ , Λ V0Ψ>-

Therefore,

(
\l/2/ \l/2

/ eτδ|ψ|2 / e"|voψ|
Since the restriction to the codimension 1 submanifold induces a continuous

map L\(M) -> L2(iV), / τ = ^ τ δ | v o ψ | 2 is abounded sequence. / τ = n ^ τ δ |ψ | 2 -> 0
since ^ τ δ / 2 |ψ | -> 0 in C° and dXt is compact V/. This shows that fM ^τδ |V0Ψ|2

= 0. V0Ψ = 0 implies that |ψ| is constant and r(ψ) = 0 then shows ψ = 0.
Therefore, r is injective on 3/f.

We can now define r: @l -> V by setting r(φ) = r(ττ^(φ)) where π^φ) =
φ + £(φ) G J^7, and introduce a norm on ^ by
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This is obviously a seminorm. To show that it is actually a norm, suppose

= 0. Then, jdx\e(φ)\2 = 0, hence r(φ) = 0. Therefore, φ G L2

δ, \\φ\\L2s

IIVoΦILi, + IΦILJ < 2 | |VoΦ||L l δ = 0, and φ = 0.

Lemma 8.4. The projections

( and τ r o : ( ^ ,

are continuous. (0ί, || || <#) w a Hubert space with inner product defined by

<Φ,Ψ>^ = ί eτδ{<VoVoVoΦ,VoVoVoΨ> + <VoVoΦ,VoVoΨ> + <V0Φ,V0Ψ>}

Note that (Φ,ψ>^ is well defined for φ, ψ e ^ and that || | | Λ is the

associated norm. Since for φ e L3 δ(gI(E)) we have r(φ) = 0, equation (8.2)

implies that

+ ί eτ8\φ\2

J M

<llv 0 Φ||i i 8 + c f e τ S | v 0 Φ| 2 < (1 + c)||v0Φl|2Li s.

Therefore, | | φ | | ^ < | |φ||L2 f i < 2||φ||, i.e., norms || | | Λ and || | |L2 g are equivalent

on L\ δ(gI(E)). Since ^ is a finite dimensional vector space, any two norms

on J? are equivalent. With this in mind, we proceed to prove continuity of

projections:

which shows continuity of ττ0. Continuity of ττ> follows from

I M Φ ) lU = II Φ + €(Φ) IU = «/(KΦ)) lU < ?(/ a j r k(Φ) |2) < ?||Φ||*.

The fact that ( ^ , || | |^) is complete follows from the continuity of projec-

tions and completeness of (LJS(QI(E)), || | | ^ ) a n d ( ^ , || | | Λ ) .

Note that we have just proved Theorem 3.1.

Lemma 8.5. Pointwise multiplication, 3% X ^ -> 01, is well defined and

continuous.

Proof. Suppose φ, ψ G ̂ . We need to show that φ ° ψ G * The Sobolev

multiplication theorems for compact domains show that φ ° £ e L3 l o c(gI(E)).
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We need to estimate ||Φ ° ψ||# in terms of ||φ||# and ||ψ||#. This will be done

term by term.

^ 2 / 6 [ IvΦ ° ψI + | Φ ° v ψ I )

"cLeTS

Since φ, ψ e Z,3loc and L | >̂ C° on compact 4-manifolds, φ and ψ are

continuous functions. They are bounded since eτS/2φ(-, t) -> r(φ) and

eτδ/2\P(-, t) -> r(ψ) in C°. Let σ G L\,δ(gί(E)) and denote by Mn the compact

4-manifold Λfn = τ~ι[n, n + 1]. Then

|σ | |oo= s u p | | a | ^ J | L e e ( A # ( | ) < sup
n " u

< c 2 sup ||σ||/.2(Λ/;ί) < c 2

1

= c

For ψ e ^ w e then have

I I Φ L = Iko(Φ) + % ( Φ ) L < K ( Φ ) L + I I ^

< cII ̂ o(Φ) IILi, + ^lkjr(φ)ll (by continuity of projections)

This gives

ί e τ 8 | v o ψ| 2

The estimates for the terms fMeτ8\V0V0(Φ ° ψ ) | 2 and /Λ/^τδ|VoVoV()(Φ ° ψ ) | 2

are done exactly in the same manner

J[ k ( φ ° Ψ ) l 2 = / k(Φ)o/-(ψ)|2 = f( k(Φ)l

< ( / k(Φ)Γ) 1 / 2 (/ k(Ψ)l
\ 1 / 2

4 )
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Adding the estimates for all four terms we get that

l l Φ o Ψ l l ^ f 2 ||Φl|2^ ||Ψlli
and therefore the multiplication is well defined and continuous.

Lemma 8.5 shows that 8% has a structure of Banach algebra with respect to

pointwise multiplication. We are interested in a subgroup of 8% defined as

^ = (φ e ^ l φ o φ * = id, detφ = 1}.

We want to show that ^ is a closed Hubert submanifold of 8%. To prove this,

we characterize ^ as the zero set of a smooth submersion. Note that <& = F~ι(0)

for F\0t -> 9t given by F(u) = u ° w* — id. This map itself is not a submer-

sion. However, if we define £ = { φ e ^ ? | φ * = φ} it is clear that F(u) =

u o u* — id e S for every u e 8#. Therefore, we can think of F as F:8i -> S.

Lemma 8.6. The smooth map F\8% -> ,5 given by F(u) = u ° u* — id w a

submersion at every point a e ^ .

H- th)°(a + /A)* - id)

a ~\~ t ( a ° n ~\~ n ° a ) ~l~ / n ° n — i d )

= a © A* + A ° α * .

T o s h o w t h a t D(F)(a) is sur jective for every ί i E ^ w e will c o n s i d e r t h e

o p e r a t o r

where ra\$% -* 01 is the operator of right multiplication by a, ra(φ) = φ ° a.

Since multiplication in 0t is continuous, rw is a continuous homomorphism of

^ . If a e ^ , rtt« is the continuous inverse of ra. Therefore, if Ψa is surjective,

so is D(F)(a). However,

%(h) = D{F)(a)(hoa) = a °(A o a)* +(A ° a)<> a*

= a ° a* ° h* + h° a° a* = h* + A.

Since for any ί £ S , ^ ( i Ό = 5, Ψa is surjective and so is D(F)(a).

Since F: ^ -* S is a smooth mapping between Hubert manifolds and for

every point a e F " 1 ^ ) , D(F)(a) is surjective, # = F " 1 ^ ) is a Hubert sub-

manifold of <% with tangent space

Ta(9) = kerD(F)(fl) = ^ ( Ϋ

for

= -φ) =
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The multiplication 9 X 9 -> 9 is a smooth function since it is a restriction
of a smooth function on ^ X 01. Since for α e ^, α"1 = #* and ( )* is a
smooth function on ^ , ()~ ι: 9-* 9 is also smooth. Therefore, 9 is a Hubert
Lie group with Lie algebra g = T^(^). If we denote by gE the bundle of
antisymmetric operators gE c QI(E) it is clear that

We have stated in Theorem 3.1 that 9 acts smoothly on the space of
connections <6. We prove this statement in the following lemma.

Lemma 8.7. The Lie group 9 acts smoothly on the space of connections by the

usual action

(g ,v) -* v g = g~lov °g.

Proof. The action of 9 on # is described in coordinates # = Vo +

Since g -* g~ι is smooth as a restriction of φ -> φ* on # , and Vo: 31 ->
Llδ(T*M ® βI(E)) is a continuous R-linear homomorphism, we only
need to know that the pointwise products °: Six L\8{T*M ® gI(E))->
L^ δ(Γ*MΘ βI(E)) and o : L^(Γ*M® gIE) X Λ ^ Lj8(T*M O gIE) are
smooth. Estimates done in the proof of Lemma 8.5 actually show that both °
are continuous. Since continuous bilinear maps are smooth, e is smooth as a
composition of smooth maps.
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