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MANIFOLDS OF ALMOST NONNEGATIVE
RICCI CURVATURE

TAKAO YAMAGUCHI

To investigate relations between Ricci curvature and topology of a
Riemannian manifold is one of the main subjects in differential geometry.
In this paper, we study the global structure of manifolds of almost nonnega-
tive Ricci curvature by means of the convergence and collapsing phenomena
of Riemannian manifolds.

Let M be a compact connected C°° Riemannian manifold of dimension n.
A classical theorem of Bochner states that if the Ricci curvature Ric(M) of M
is nonnegative, then the first Betti number b\(M) of M satisfies b\{M) < n,
where the equality takes place if and only if M is isometric to a flat torus. In
[14], Gromov extended this result as follows: There is an ε > 0 depending on
n and a given constant D > 0 such that if the diameter d(M) and the Ricci
curvature of M satisfy d(M) < D and Ric(M) > —ε, then the first Betti
number of M is still bounded by n. Gallot [10] also gave an analytic proof.

Under an additional condition, an upper bound of sectional curvature, we
determine the topological and global geometric structure. Let M(n, D) denote
the family of compact Riemannian n-manifolds M with sectional curvature
K(M) < 1 and diameter d(M) < D. Our first result is a topological classifi-
cation by first Betti numbers.

Theorem 1. There is an ε > 0 depending on n and D such that if
M G Λl(n, D) satisfy Ric(M) > —ε, then M is a fiber bundle over a b\(M)-
torus. In particular, ifb\{M) =n — l, then M is diffeomorphic to an infranil-
manifold, and ifbι(M) = n, then M is diffeomorphic to an n-torus.

A manifold M is called an infranilmanifold if a finite covering space of M
is a quotient of a simply connected nilpotent Lie group by its lattice. The
special case b\ (M) = n of Theorem 1 gives a partial affirmative answer to a
conjecture of Gromov [14] (see the end of §2).

Our next goal is to describe the global geometric structure. To do this,
we shall collapse Riemannian manifolds in the situation that the greatest
lower bound of Ricci curvature tends to zero. In general cases, limit spaces
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may have complicated singularities. In our situation, however, we obtain a

stability theorem in the cases of large first Betti number.

Theorem 2. Let {Mi}iejsj be a convergent sequence in M(n,D) for the

Hausdorff distance such that Ric (Mi) > — 1/i, 61 (Mi) > n — 1. Then the limit

space X is isometric to the quotient space of a flat torus by an isometric {not

necessarily free) Z2 action. In the case when each Mi is orientable, X itself

is a flat torus.

As a result of Theorem 2, we obtain from Gromov's compactness theorem

[14] that if Mi does not collapse, then the orientable double covering space Mi

of Mi converges to a flat n-torus for the Lipschitz distance, and from the fiber

bundle theorem of Fukaya [9] that if Mi collapses, then there exists an almost

Riemannian submersion from M2 to a flat torus with an infranilmanifold as a

fiber.

The main method in the proof which we employ is the C1^ convergence

of Riemannian metrics with respect to harmonic coordinates developed by

Greene and Wu [12] and Peters [23]. We shall recall it in §1 as preliminaries.

The convergence method, in particular, in noncollapsing situations, has been

used by some authors to obtain results about pinching problems ([2], [7], [8],

[18], [19] etc.). We have to consider the collapsing situation, however. The

key to the proof is to show the convergence of harmonic 1-forms. This is done

in §2 with the proof of Theorem 1. The proof of Theorem 2 is deferred to §3.

The author would like to thank Professor Hajime Sato for his kind advice.

1. Preliminaries

In [14], Gromov introduced the notion of Hausdorff distance between metric

spaces. For subsets A and B in a metric space Z, we denote by dfj(A, B) the

infimum of positive ε such that the ε-neighborhoods of A and B include B

and A respectively. The Hausdorff distance between two metric spaces X and

Y is, by definition

dH(X,Y)= inf dz

H(f(X),g(Y)),
Z,f,g

where / : X —• Z and g: Y —• Z are isometric imbeddings.

The Lipschitz distance between X and Y is defined as the infimum of num-

bers L such that

e-L<d(f(Xl)J(x2))/d(xux2)<eL

for all x\ φ x2 in X, where / runs over the set of all bi-Lipschitz home-

omorphisms of X onto Y. The convergence for the Hausdorff distance is

characterized in terms of the Lipschitz convergence of discrete subsets: A
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subset N in X is called an ε-net if and only if for any x in X there is xf in N

such that d(x, x') < ε.

Proposition [14, 3.5]. (a) If a sequence {Xi} of metric spaces converges

to X for the Hausdorff distance, then for every positive ε and ε' > ε, every

ε-net of X is the limit for the Lipschitz distance of a sequence N{ where 7V2 is

an ε1 -net of Xi.

(b) Conversely, if X and Xi have uniformly bounded diameters, and if for

every ε > 0 there exists an ε-net of X which is the limit for the Lipschitz

distance of a sequence of ε-nets Ni of Xi, then Xi converges to X for the

Hausdorff distance.

Here we exhibit only a few examples which imply that the assumptions in

Theorem 2 are optimal.

Example 1.1 (Klein bottle). For each positive ε, consider a Klein bottle

Mε defined by the distance subgroup of isometries of the flat plane R2 with

the generators 71, 72:

ηi(x,y) = (z + 1,2/), 72(2,2/) = (-x,y + ε).

Then Mε converges for the Hausdorff distance to the interval S1 jZ<ι = [0,1/2]

as ε —• 0.

Example 1.2 (Three-dimensional nilmanifold). Let N be the Heisenberg

group and Γ the integer lattice:

1 z x\ Λ ί /1 c <Γ

y ;x,y,zeR\, Γ= I 0
, 0 0 1 ; ) [\o 0 1,

Then the quotient space M = T\N is orientable, and b\(M) = 2. For every

ε > 0, define the left invariant metric gε on M by

'0
1 € TeN,

where e is the identity element of N. The sectional curvature and diameter
of gε satisfy \K(gε)\ < 24ε2, d(gε) < 2 and (M,ge) converges to a flat torus

T 2 with respect to the Hausdorff distance.

Now we briefly sketch the C 1 ? Q ! convergence of Riemannian metrics de-

veloped by Greene and Wu [12] and Peters [23] (see also [14] and Katsuda

A coordinate system (ft1, , hn) defined on an open subset of a Rieman-

nian manifold (M, g) is called a harmonic coordinate system if and only if

Δft* = 0, i = 1, , n, where Δ is the Laplacian of (M, g). For positive con-

stants Λ, J9, ε, let C = C(n, Λ, D, ε) be the family of Riemannian n-manifolds
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M such that \K{M)\ < A2, d(M) < D, i(M) > ε. Let α, 0 < a < 1, be
a fixed constant. By Jost and Karcher [16], there exists positive constants
R1 = R'(n, Λ, ε) and C = C(n, Λ, ε, a) such that for each (M, g) in C and x in
M, there is a harmonic coordinate system {ft2} on the metric ball BR*(X,M)

in M around x of radius R' such that

l&ilc^lέ^lci.* < c,

where ^ = g(d/dhι,d/dh^) and the (l,α) norms are taken in the ft* coor-
dinates. Furthermore, the eigenvalues of (g%j) are uniformly bounded from
below and from above by positive constants. Let Hr(z,M) be a harmonic
r-ball around z, namely,

for harmonic coordinates ft* on BR>(X,M).

Let (M/c f̂c) be a convergent sequence in the family C for the Hausdorff
distance. Then the limit space X carries a C1'** Riemannian metric in the
following way: There exist positive numbers R < R' and Q' G Z+ depending
on n, Λ, D, ε such that each [Mk,Qk) in C is covered by Q(k) harmonic R-
balls {<fffl(2f,Mi)}i=1>...,£(£) with Q(A ) < Q'. By passing to a subsequence,
we may assume Q(k) = Q for all fc. Further, by passing to a subsequence
and by using a center of mass technique, we obtain, for a fixed large i and
every k > z, a diffeomorphism F = F^: M —> M^, M := Mi, which is
C 2 ' α uniformly bounded in harmonic coordinates. Then for each HR(ZI,M),

1 < I < Q, with harmonic coordinates {ftp},

ί1*^ = 9{k)ab(dFa/dhη(dFb/dhηdht>dh«,

where Fa = ftαoF, {ftα} being harmonic coordinates in M = M^, and (̂/c)α6 is
the components of (fa with respect to {ft°} Each of g{k)ab-> dFa/dhp, dFb/dhq

is uniformly bounded in C1)Q! norm. Hence by passing to a subsequence
Q times, F * ^ converges to a C 1 '* metric. We note that d{F-ι)p/dha is
also uniformly bounded in Cι'a norm with respect to ha coordinates, where

2. Convergence of harmonic 1-forms

In the nonnegative Ricci curvature case, every harmonic 1-form is parallel
[3]. Together with this, the Hodge theory yields Bochner's result in the in-
troduction. We look at the Bochner technique again from the viewpoint of
convergence of Riemannian metrics.
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Let (Aft, Qi) be a sequence in the family M(n, D) such that 61 (Mi) φ 0 and
Rιc(Mi) > —Λ2 for a constant Λ > 0. Notice that the absolute value of the
sectional curvature of Mi is uniformly bounded. Let pi be a fixed point of Mi
and let B and B1 be the metric balls in Rn around the origin of radii 1 and 2
respectively. Let /»: B' —• M» be the composition of a linear isometry of B'
onto £2(0, TViMi) and the exponential mapping of Mi at p .̂ By the curvature
assumption, fo has maximal rank, let & denote the metric of B1 induced from
fi. Since the "injectivity radius" of (B,(ji) in (B',(ji) is uniformly bounded
below by a positive constant, we can apply the CljOC convergence as in §1
to the sequence (B,cji): Cover (B,cn) by harmonic balls in (B',gi) whose
centers lie in B. By passing to a subsequence, we obtain, for a fixed large
i and every k > i, a diffeomorphism F = Fk of {B,gn) into (B',fa) which
is C 2 ' α uniformly bounded in harmonic coordinates. Then on each preferred
harmonic ball in (B',(ji) with coordinates {Λp},

fa = ~g{k)ab(dFa/dhp)(dFb/dh«)dhi> dh\

where fa = F*fa, Fa = /ιαoF, {ha} being harmonic coordinates with respect
to fa. Passing to a subsequence, fa converges to a C1^ metric g.

Notation. For 1-forms ω, η on a Riemannian manifold M, we define its
inner product (ω,η) by

(ω,η) =vo\(M)-1(ω,η)L2 =vo\(M)-1 ί (ω,η)dv,
JM

where dv is the canonical measure of M.
Let ωk be a harmonic 1-form of (Mk,gk) such that {ω,η) = 1, and let ώk

be its lift to B by G/c, where we set Gk = fk° F^.
Proposition 2.1. A subsequence of ώk converges to a C 1 > a 1-form

on B.
Proof. By the Poincare Lemma, there exists a function fk such that dfk =

ώ*. Then Δ/ fc = δώk = 0, where £ is the coboundary operator of (B,gk).
Namely, on each preferred harmonic ball in (B\gi) with coordinates {/ιp}, fk

satisfies

gp

{

q

k)(d2fk/dhvdh«) + (dgp

{

q

k)/dh* + ±gfi)d{logGk)/dh*)dfk/dh< = 0,

where g^ is the inverse of g(k)pq, 9(k)Pq = fa{d/dhv,d/dhq), and G/t =

det(^(/b)PQ). From £(fc)pς = gi<k)ab(dFa/dh?)(dFb/dhq), we obtain uniform

G°'α bounds of dg?%Jdhp, d(\ogGk)/dhp and a uniform positive bound from

below for the minimal eigenvalue of ( ^ O It follows from the classical

Schauder interior estimate that
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where and hereafter, we denote by C{ some uniform constants. By adding a

constant to fk, we may assume that \fk\c° < C2|ώfc|c° ^ C2\ωk\c°- According

to Li [20, Lemma 8] and Gallot [10, Proposition 3.2], we have

It follows \fk\c2,a < C1C2C3 = c 4, and hence |ώ£|ci,α < C4 for ώk — ώkdhp.

Thus, by Ascoli's theorem, a subsequence of ώk converges to a C 1 > α 1-form.

Now we further assume for the sequence (M*,^) that the Ricci curvature

of Mi is greater than — 1/i.

Proposition 2.2. The limit 1-form is parallel with respect to the limit

metric.

Proof. Let ώ be the limit C l ϊ Q 1-form of ώk. By the Weitzenbόck formula,

- i Δ ( μ f c | 2 ) = \Dkωk\2 + Ric(Mk)(tωk, tfω

fc),

where Dk is the covariant derivative with respect to gk and §ωk is the vector

corresponding to ωk. Integrating this, we have

ί
JMMk

where

liminfvol(Mfc)-1 / Ric(Mfc)(tfu;fc,tlc*;*) dυ = 0,
k^°° JMk

from the assumption for Ricci curvature. Hence, by passing to a subsequence,

we may assume

(*) lim vo^M/e)-1 f \D
k-*°° JMk

f \ k ω k \ 2 dv = 0.
Mk

Now suppose that ώ is not parallel with respect to the limit metric g.

We set Ak — l^ό^ώ^l2, A = I^Dώl2, where Dh and D denote the covariant

derivative with respect to gk and g. Then there is a point m in B such that

i > α o n B$(m, (£?, g)) for positive constants a and δ. It turns out

(**) Ak>a/2 on Bδ{m,{B,gk))

for large k. We set Ak = \Dkωk\2. Together with this, the Bishop and Gromov

volume comparison theorem [14] implies

1 - vo\{Ak < a/2}/vo\(Mk) > vo\Bδ(qk,Mk)/vo\(Mk) > b(δ)/b(D),

where qk = Gk(m) and b(δ) denotes the volume of the <S-ball in the simply

connected space of constant curvature —1. Therefore,

γo\{Ak < α/2}/vol(Mfc) < 1 - b{δ)/b{D)
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for all large k. However, (*) yields, for every fixed b > 0,

lim
A;—> o o

This is a contradiction.

Proof of Theorem 1. We suppose the contrary. Then there exists a se-

quence {Mk} in M(n, JO) such that Rιc(Mk) > -1/fc, and that each Mk does

not admit any fibering over a 6i(M/c)-torus. We may assume bι(Mk) = s ^ 0

for all fc. Let {ωf }i<;< s be harmonic 1-forms of Mk giving a basis of the de

Rham cohomology group such that (uf,u!j) — <Ŝ , 1 < i,j < s. Cover Mk by

metric balls {£/C,/?}I</3<ΛΓ(/C) of radius 1, where we may assume N(k) = N

for all k. For each fixed i, 1 < i < s, and /?, 1 < β < N, let ώ*β be the lift

of ωj\Bk,β to B as in the previous construction. Applying the previous argu-

ment to {ώ*^}* we obtain a parallel C1^ 1-form ώitβ on B with respect to a

Cι'a Riemannian metric. It is easily seen that the constant Cij = (ώ^/^ώy,/?)

does not depend on β. It follows from the following calculation that c^ = δiji

\δtJ - ci3\ < lim vol(Mfc)"1 f
k-^°° JMk

< lim sup \(ω^ω1^) — Cij\
fc-+«> Mk

 J

= lim sup\{ω^β,ω^β) - c^ | = 0.
k—>oo B

It turns out that {^i)ι<i<s are pointwise linearly independent for large fc.

By an argument of Tischler [25], (also compare Lichnerowicz [21]), w£ can

find differentiable functions ψi: Mk —• 5 1 , 1 < i < s, such that <p*(d )̂ = CJ^.

The mapping £> = (^i, ,<pa) is a submersion of Mk onto an 5-torus T s ,

and Mjt is a fiber bundle over T8.

It remains to show that an Sλ-bundle M over Tn~ι is diffeomorphic to an

infranilmanifold. Let ft be a flat metric on Tn~ι. From the bundle structure,

in a standard way, we can construct a metric gε on M for each ε > 0 so

that the projection (M,ffe) —> ( T 7 1 " 1 ^ ) is a Riemannian submersion, the

fibers are closed geodesic of length ε and that the sectional curvature of gε is

uniformly bounded as ε —• 0. Since the diameter of #ε goes to zero as ε —• 0,

Gromov's almost flat manifolds theorem [13] implies that M is diffeomorphic

to an infranilmanifold.

More generally, an S1 -bundle over an infranilmanifold is an infranilmanifold

as the last part of the above proof shows.

In our proof of Theorem 1, of course, the condition for sectional curvature

is essential. One might hope to eliminate it by using some methods different

from ours, however. In fact, the most acceptable conjecture would be the

following one (due to Gromov [14, 5.22] for the case b\(M) = n).
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Conjecture. There is an ε > 0 depending on n and D such that if M
satisfies d(M) < D and Ric(M) > —ε, then M is a fiber bundle over a 61 (M)-
torus.

3. Proof of Theorem 2

Let {Mk,9k) be a sequence in Λt(n, D) such that Ric(Mfc) > —1/fc and
b\{Mk) > n — 1, and assume that it converges to a metric space X with
respect to the Hausdorff distance. For a given x in X, choose pk in M^
such that \ϊmk->oo dH(Br(pk,Mk),Br(x,X)) = 0 for all r. Let £' , £ and
Gfc: B —• Mfc be as before. The metric ^ = G£<7fc converges to a C1)Q! metric

9
Lemma 3.1. {B,g) is a C°° fiat Riemannian manifold.
Let u/f, ,Un-ι be harmonic 1-forms on Mk such that (ω^ω^) = δij,

1 < hj < n - 1. We set V;* = $u*. Let V;fc be the lift of Vτ

k to the unit
ball B by the map G&, as in §2. By Proposition 2.2, for a subsequence,
V* converges to a C1^ parallel vector field Vi with respect to g. Let Vn

be a unit vector field orthogonal to {VΊ, ,^-1} , which is also parallel.
Let (pft and fiij, 1 < i < n, be the flow transformations generated by V^
and Vi, where a priori φ^t is only of class C1. It is easily seen, however,
that (p\t gets close to an isometry as i —• 00. Hence, ^ j t is an isometry,
so has C2 differentiability by Calabi and Hartmann [5], which insures by a
standard argument the existence of a coordinate system {x1} on B such that
d/dxι = V{. Since g(d/dxι,d/dx3) = δij, g is a flat metric.

The above argument together with Gromov's compactness theorem shows
that if Mk does not collapse, then X is a flat n-manifold with 61 (X) > n — 1.

Now suppose that Mk collapses, namely, the injectivity radius of Mk goes
to zero. We follow the argument in [14, 8.33-8.36]. For r = 1/5, let Bo C B
be the concentric ball of radius r, and let Γ^ be the pseudogroup of iso-
metric imbeddings 7 of {B0,gk) into (B,gk) such that Gk o 7 = Gfc Then
Br{pk,Mk) — Γk\B0. Let Z be the set of imbeddings φ of Bo into B such
that

where d is the distance induced from g. By Ascoli's theorem, Z with the
compact open topology is compact. By taking a subsequence, we may assume
that Γ{ converges to a closed set Γ of Z, which is a pseudogroup of isometric
imbeddings of {Bo,g) into [B,g). Since Γfc\i?o converges to T\BQ for the
Hausdorff distance, it turns out that Γ\Bo is isometric to Br(x,X).

Now assume that each Mk is orient able. Then we have
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Lemma 3.2. X is a flat manifold.

Proof. Let V* be the unit vector field orthogonal to {Vk, , Vk_x} so
that {Vj*, ••• ,V£} gives the positive orientation, and let Vk be the lift to
B. For every u = (uι) in Rn, the vector field Vk = Σ?=iutVik converges
to a parallel field V. For small £, let φ\ and <pt be the flow transformations
of Vk and V respectively. From the Γ^ equivariance of φ\, we obtain the Γ
equivariance of φt, namely, Ί°Φt — Φt°Ί > Ί ̂  Γ. It follows from the fact that
<pt is a translation of the direction Σ uιVi, that Γ consists of translations. Let
f be the extension of Γ as a closed subgroup of the vector group i?n, which
is isomorphic to Zk x Rι for some fc, Z, k + I < n. Thus there is a natural
imbedding of Γ\i?o onto a neighborhood of the flat manifold T\Rn. Hence X
admits the structure of a flat manifold.

To prove X is a flat torus, it suffices to show that X is homogeneous. Let z,
y be any points in X with d(x, y) < 1/10. We have only to show the existence
of an isometry carrying x to y. By the definition of the Hausdorff distance,
we may assume that X and Mk are isometrically imbedded in a metric space
(Zk.dk) so that dπZk(X,Mk) < ε*, limεfc = 0. Take Xk, yk in Mk such
that dk{xk,x) < £k, dk(yk,y) < £fc5 and let x*, ijk be points in Bo such that
Gfc(xfc) = Xk, Gk{vk) = Vk By passing to a subsequence, we may assume
that ϊk and yk converge to x and y respectively. Choose (uι) in Rn and s so
that the flow transformation φt of ΣuιVi satisfies φa(x) = y. Then we have
d{<pk(xk),ί)k) < δk, Wmδk = 0, and hence d{<p*(xk),yk) < δk, where φ\ and
φ\ are the flow transformations of Σ uιVk and Σ u<lVk respectively. We set
<Pk = <Ps' ^ follows from the lifting argument that <pk is an almost isometry
of Mfc, that is,

\d{<Pk{p), <Pk{q)) - d ( p , q ) \ < μ k

for all p, q in Mk, where lim/ijt = 0.

We next define a (not necessarily continuous) map ψk: X -+ X. For any z
in X, take Zk in M* and ^ in X such that dfc(2fc, z) < ek, dk{<Pk{zk), z1) < Sk-
Then we set ψk(z) = z'. The map ψk just defined satisfies

< \d((pk{zk), <Pk{wk)) - d(zk, wk)\ + ±εk < μk + 4εfc

for every 2:, w in X, where w^ is a point in M^ with dk{wk,w) < εk, and

d(ψk{x), y) < dk(ψk(x), φ>k{xk)) + d{(pk(xk), Vk) + dfc(2/it, y)
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Interpolating ψk by, for instance, a center of mass technique, we can con-
struct a diίϊerentiable mapping Φk: X —> X so as to satisfy the following:

\d{Φk(z),Φk{w)) - d(z,w)\ <ak,

d(Φk(z),ψk(z)) < βk, ||dΦ f c | |<c,

wherfe lim ak = 0, lim βk = 0 and c is a constant. By Ascoli's theorem, we may
assume Φ^ converges to an isometry Φ of X satisfying Φ(x) = y. Therefore,
X is homogeneous, so a flat torus.

We should remark that, in the above proof, the diagonal method is also
useful for the construction of Φ.

Finally, we consider the nonorientable case. Suppose that each Mk is
nonorientable, and take the orientable double covering space Mk of Mk. By
applying the previous argument to Mk, and by passing to a subsequence if
necessary, we may assume that Mk converges to a flat torus T for the Haus-
dorff distance. Let ηk be the deck transformation of Mk. By the definition of
Hausdorff distance, we may assume that Mk and T are isometrically imbedded
in a metric space (Zk,dk) in such a way that dπZk(Mk,T) < εk, limε/c = 0.
By applying the previous argument to 7^ instead of <pk, we can construct a
differentiate mapping Φk: T —• T so as to satisfy

(i) dfc(Φfc(x), Ίk{xk)) < δk for xeT,xkeMk with dk{x, xk) < εfc,

(ii) |d(Φfc(x), Φ*(j/)) - φ , y)\ < μk,

(iv) | |dΦ* | |<c,
where δk, μk and vk tend to zero as k —• 00. By Ascoli's theorem, we may
assume that Φ^ converges to an involutive isometry Φ of T. It remains to
prove that X is isometric to the quotient space T/Φ. This is done in the
following

Assertion, lim/c—oo dπ{Mk, T/Φ) = 0.
Let TΓ: T —• T/Φ and πk: Mk —» Mk be the projections, and let ε be a

positive number. Let iVe = {yj} be a maximal set of points in T/Φ such
that any two distinct points have distance greater than ε. Set τr~1(yj) =
{XJ,Φ(XJ)}, and take pj in Mk with dk(pj,Xj) < εk. Then N* = {τr (py)} is
a 2ε-net in Mk for large k, and ΛΓ̂  converges to Nε for the Lipschitz distance.
Hence Mk converges to T/Φ for the Hausdorff distance.
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