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TOTAL ABSOLUTE CURVATURE
AND EMBEDDED MORSE NUMBERS

R. W. SHARPE

Abstract

In this paper we use techniques of Morse theory to compute, under
mild hypotheses, the infimum of the total absolute curvatures
inf τ(Mm C Kw) for the smooth embeddings M m C Kw in a given
isotopy class.

1. Introduction

In 1929, W. Fenchel [8] showed that a circle immersed in R 3 has (nor-
malized) total absolute curvature (cf. §2 for the definition) at least 2 with
equality only for the boundary of a convex planar disc. This was followed
in 1949 by work of Fary [7] and Milnor [19] who showed that a knot in R 3

has total absolute curvature more than 4. Since that time there has been
considerable effort to obtain lower bounds for the total absolute curvature r
of a closed manifold immersed or embedded in Euclidean space in terms of
the topological invariants of the situation and to study the consequences of
small curvature (cf. e.g. Borsuk [1], Chern & Lashof [3], [4], Ferus [9], Fox
[10], Kuiper k Meeks [15], Langevin & Rosenberg [17], Meeks [18], Pinkall
[28], Sunday [32], and Wintgen [37]).

Recall that a Morse function on a smooth compact manifold M is a smooth
real valued function on M whose critical points are all nondegenerate. The
Morse number μ(M) is the minimum of the number of critical points of the
Morse functions on M. For m φ 3, 4 or 5 this is the same as the number of
cells in the smallest CW complex with the simple homotopy type of M (cf.
Appendix 2.7). In 1958 Chern and Lashof [4] proved that for an immersion
τ(i) > μ(^)> an<3 raised the problem of determining the infimum of τ(i) as
i varies over some class of maps, such as all immersions, a regular homotopy
class of immersions, all embeddings, or an isotopy class of embeddings. In
particular they formulated:
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Chern-Lashof Conjecture, inf τ — μ(M), where the infimum is taken
over all smooth immersions i: Mm —• Rw.

In this paper we study the case of embeddings. The first result is a simple
consequence of the work of Kuiper [14], Wilson [36] and Perron [27].

Theorem 1.1. Given a smooth embedding of a closed manifold i: Mm

—• Rw, 5 < m < w — 2, then inf r = μ{M), where the infimum is taken over
all embeddings which are smoothly isotopic to the given one.

When 2ra < w, every immersion is approximated by an embedding, so we
get information about immersions too, and Theorem 1.1 implies:

Theorem 1.2. The Chern-Lashof conjecture holds when 5 < m and
2m < w.

In a subsequent paper we shall give a proof of the Chern-Lashof conjecture
for m > 5 without the codimension restriction.

The analogue of Theorem 1.1 for w — m — 2 or 1 cannot hold in general.
It is certainly false in codimension two for classical knots, since μiS1) — 2,
while r > 4 for such knots (Fary [7], Milnor [19]). In fact, Wintgen [37, p.
144] shows that every codimension two submanifold of Euclidean space whose
complement has a noncyclic fundamental group provides a counterexample.
Moreover, the normal circle bundles of these examples give counterexamples
in codimension one for each dimension, such as the example in Figure 1.1 of
the two-torus in R 3 based on the trefoil knot.

FIGURE 1.1

The next two theorems compute inf r when m > 5 in codimensions two and
one in the cases when the fundamental groups are the simplest possible. It is
convenient to fix an embedding Rw C Sw, to set X = Sw - D ^ ~ m ( M ) , where
Dw~m(M) is the normal disc bundle to M, and let X denote the universal
covering space.
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Theorem 1.3. Let Mm c R m + 2 be a smooth embedding with m > 5,
where M is one-connected, and X has infinite cyclic fundamental group.
Then inf τ = μ(X) where the infimum is taken over all embeddings which
are smoothly isotopic to the given one.

Theorem 1.4. Let Mm C R m + 1 be a smooth embedding with m > 5,
where M is one-connected. Then inf τ(M) = μ(X) where the infimum is taken
over all embeddings which are smoothly isotopic to the given one.

When Mm is simply connected with m > 5, a formula of Smale [31] gives

μ(M) = rank(fl*(M)/torsion) + 2 rank(torsion of fΓ*(Af)),

which can be used in Theorems 1.1, 1.2 and 1.4. When X is nonsimply
connected it does not seem possible to compute its Morse number except in
special cases. We provide the following for use in Theorem 1.3:

Theorem 1.5. Let Mm C R m + 2 be a smooth embedding with m > 5,
where M is one-connected, and X has the [m/2]-type of S1. Then

+ r a n k Λ HkW if m+ 2 = 2k,
2 + 2rankΛ Hk{X) if m + 2 = 2k + 1,

where Λ = Z ^ ί " 1 ] , and multiplication by t is the action in homology of
the generator of the infinite cyclic group of covering transformations (i.e. the
monodromy). By rankΛ, we mean the minimum number of generators as a
λ-module.

(Note that, by duality, the hypotheses of 1.5 imply that M is [m/2] — 1
connected.)

Now let us look at an explicit example in codimension two arising from a
polynomial / : C n + 1 —• C with, at most, an isolated singularity at the origin.
Let V(f) C C n + 1 be the zero set of /, and let Mε = V(f) Π S ε

2 n + 1 C S 2 n + \
where 5 | n + 1 is a small sphere of radius ε centered at the origin. Then X
has the (n - l)-type of S1 (Milnor [25]), so 1.3 applies when n > 4. Let
p = rankΛ Hk{X)- As is well known, Mε is a standard unknotted sphere if
and only if / is non-singular at 0 (Milnor [25]) and this in turn occurs if and
only if p = 0 (Ferus [9]). Thus / is singular at 0 if and only if p > 1. Exact
computation of the ranks in 1.5 are not easy even for Brieskorn polynomials.
However we offer:

Proposition 1.6. Ifn > 4, then for the knotted pair [S^n+1, Mε) arising
from the Brieskorn polynomial f(z) = zo° + + zfj1, we have the estimate

\ ^ - 1 ) < rankΛ i/n
0<r<n l<r<n

where d = l.c.m.{do,rfi, ,dn).
There is one special case where it is possible to give an exact answer:
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Proposition 1.7. //, in addition to the hypotheses of 1.6, all dr are
relatively prime in pairs, then mnk\Hn(X) — 1.

It follows from this that, for any number of variables greater than four, and
for any multiplicity greater than one, we can construct a Brieskorn polynomial
in the given number of variables and with the given multiplicity for which
inf T — 4. This is quite different from the case of dimension 2 in which
inf r is tied to the multiplicity by the formula inf τ — 2multo(^o° + z\ι) —
2min{<io,di} (cf. Wintgen [37, p. 145]).

We give an outline of the paper. In §2 we present some background
material concerning total absolute curvature. In particular we sketch the idea
of Kuiper [14], improved by Wilson [36], relating inf r(M C Rw) to the em-
bedded Morse number. In §3 we recall the basic ideas of smooth embedded
Morse theory due to B. Perron [27] which tells how the handle decomposition
of the submanifold of a sphere induces a handle decomposition of its com-
plement X. In §4 we refine the qualitative idea of §3 to give a quantitative
description of the chain complex of the universal cover of the complement
X. We also determine, on the chain level, the nature of the duality in this
complement. It corresponds to the combination of Alexander and Poincare
duality given by the composite Hr{X) « H^'^-^M) « # r-i(Λf) «
jj(w-i)-(r-q)^xy j n g£ w e s^U(jy t n e effect on the chain complex of varying

the Morse data, and in §6 the geometry is combined with the algebra of Ap-
pendix 2 to prove Theorems 1.3, 1.4 and 1.5. Finally, in §7, Propositions 1.6
and 1.7 are proved.

There are two appendices. In the first, we describe some of the conventions
used in this paper. In the second, we study the algebra of chain complexes
in a form suitable to our needs. The reader will find little that is really new
here (cf., e.g., Cockcroft and Combes [5] and M. Cohen [6]).

We note that in the remainder of the paper we use H*(Y), C*(Y) etc. to
denote the homology and chains of the universal cover of Y.

I would like to thank Bill Pardon for many helpful conversations during
the preparation of this work, and Andrew Nicas who read portions of the
manuscript. Thanks also go to Pierre Milman and Kunio Mursugi for their
helpful interest. Finally I would like to thank the referees for their useful
suggestions.

2. Total absolute curvature and embedded Morse numbers

Fix a smooth embedding (or immersion) i: M —• Έtw of a smooth closed
manifold into Euclidean space. Let [i] denote the class of smooth embeddings
isotopic to i (or the class of smooth immersions regularly homotopic to i). Let
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τ([i]) = inf{τ(j)\j G [i]}. In this section we recall the definition of τ(i) and
describe the idea of Kuiper [14], and Wilson [36] which reduces the calculation
of τ([i]) to Morse theory.

Let g: Sq(M) —> Sw~1 be the Gauss map from the unit normal sphere
bundle of M to the unit sphere in Rw arising from the embedding (or immer-
sion) j : M —• Rw. The total absolute curvature of j is defined to be

r(j) = I
Js

where ω is a rotation invariant volume form on Sw~x of unit total volume.
A change of variables to the sphere Sw~1 yields the formula:

is™-1

where v(e) — tf{z G M\g(x) = e}. If e is a regular value of g (which holds
for almost all e G S™"1 (cf. Chern-Lashof [4, p. 8])), then he = (e, )|M is a
Morse function and v(e) + i/(—e) = C(he) =the number of critical points of
he. Hence

τ(j) = ί C(he)ω.
Js™-1

Now define the embedded (or immersed) Morse number 7 = η([ί\) to be
inf{C(:ri o j\M)\j G [i]}. It follows immediately that r > 7 > μ(M) (cf. [4,
P 8]).

Here is the observation due essentially to Kuiper.
Theorem 2.1. Let i: Mm —* R™ be a smooth embedding (or immersion)

of a smooth closed manifold in Euclidean space. Then τ([i]) = 7([Ϊ])

Sketch of Proof. Choose j : Mm —> R^ isotopic (or regularly homotopic)
to i so that C(x\ o j\M) = 7. Now "stretch out" the x\ direction by means
of the isotopy Dt(xi,X2,' ,xw) — (^1^2, * ,%w)<> 1 < ί < 00, so that the
critical point structure of hei becomes predominate, i.e., Vε > 0 3to > 1 such
that Vί > to, and Ve G Sw~x with \e ex\ > ε we have C((e,-)\Dt(M')) =
C((eU')\Ct(Mf)). It follows that

ί
Js™-1

lim ί C((e, )\Dt(M'))ω = C((eu )\M') = Ί. q.e.d.
t-^°° Js™-1

Now let us consider an analogous circumstance in which we are given
a smooth embedding (or immersion) i: M —+ Sw. Fix a Morse function
f:Sw —> R with just two critical points and define 7 = 7([i]) to be
inf{C(/ o j\M)\j G [i]}. When w > 6 this definition is independent of the
particular choice of Morse function /, for given any two such functions, /1
and /2, they are related by an equation of the form /1 = / ι o / 2 o Φ (cf. Cerf
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[2, p. 189]), where h is a diffeomorphism of R, and Φ is a diffeomorphism of

Sw isotopic to the identity.

On the other hand, but only in the case of embeddings, we can define the

embedded Morse number 7 = η([i]) = inf{C(/ o i)\ where / varies over all

Morse function on Sw with just two critical points}. By the isotopy extension

theorem (cf. Thorn [33]) this depends only on the isotopy class [i] of the

embedding i: M —• Sw, and not on the particular representative given. It

follows that the two definitions of the imbedded Morse number are equivalent.

Now let us compare the embedded Morse numbers of M C R™ and M C

Sw, using the embedding <p: R™ C S™ as illustrated in Figure 2.1. Let

x\: Sw C R™"1"1 —• R be the standard first coordinate function, so that the

composite / = x\ o <p is (left equivalent to) the standard first coordinate

function of R™. Note that Sw — <p(Rw) is a great semicircle J joining ±eχ.

Rw =Rχ [Sw~ι -p] C Sw

FIGURE 2.1

Proposition 2.2. Given α smooth embedding i: Mm —• Rw with w >

ra + 1 the embedded Morse numbers η{[i}) αndη([<poi\) are equal. In the case

w = m -h 1, they are still equal provided we restrict the isotopies of φ o i so

ikat their images avoid the point e\ G Sw.

Proof. Choose ϊ: Mm -• R^ isotopic to i with C(xχ o if) = η([i]). Then

η([i]) = C{x\ o i') = C(xχ o φ o i1) > η([φ o i]). To obtain the inequality in

the other direction choose j : Mm —• Sw isotopic to φo% so that C[x\ o j) =

l{[P° i]) By general position (or by assumption in the case w = m -f 1) we

may assume that the image of the isotopy joining (poi and j does not meet e\.

In fact we can deform the isotopy so that it does not meet J either by pushing

it off J away from e\. Since j and the isotopy joining it to <p o % now lie in

Sw - J = tp{Rw) it follows t h a t C{xλ o j) > η([%]). Hence η{[<p o i}) = η{[i}).

Remark 2.3. The proof of 1.4 can be regarded as showing that for M

simply connected, and m > 5, an imbedding i: M m —> S171^1^ with both ±ei

in the same component of the complement S171^1 — M m , is isotopic within

_ | ± e i j t 0 a n imbedding with C{xι o f ) = μ{M). Since μ(M) is the
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minimum number of critical points possible, the restriction of the isotopies of
φ o % in 2.2 does not change the value of η([φ o i]) in this case.

3. Relative Morse theory of a pair

In this section we give an informal review of how the handles of a subman-
ifold give rise to handles in its complement in the ambient manifold. For the
details we refer the reader to B. Perron [27].

To set the stage for the definitions we begin with the example of the stan-
dard torus Γ 2 C R3. In this example T2 acquires its handle decomposition
from the height function (cf. Milnor [21]). From Figure 3.1 it is clear that
the portion of the complement of an open tubular neighborhood N(T2) of T2

given by Xt = {x G R 3 - iV(jΓ2)|x3 < t} changes topological type each time
t passes through a critical value of Z3IT2. Figures 3.2 and 3.3 show how a
1-handle or a 2-handle is attached to Xt as t passes through a critical point
of index one or two on T2.

indices of critical

points ofjc3|Γ
2

FIGURE 3.1

The idea that one can write down the cell structure of the complement in
terms of the cell structure for an embedded circle has existed in the folklore
of topology since the early days. It is the idea behind the Wirtinger presenta-
tion of the fundamental group of a classical knot. In higher dimensions, this
basic idea has been studied in various forms by Rourke [29], Kearton [13] and
Wintgen [37] as well as Perron [27]. We now pass to a general description of
this phenomenon.
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1-handle D1 x D2

FIGURE 3.2

2-handle D2 x

FIGURE 3.3

Let (VF, 9_H^, 9+VF) be an oriented smooth manifold of dimension w, and
(M, d_M, d+M) c (H ,̂ (9_py, d+W) an oriented submanifold of dimension m.
Let

be a Morse function on W with no critical points on M, and assume that

f\M: (M,d-M,d+M) -> ([a,6],a,6)
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+ 1

D m—r-\

\r-q

Dq
D1

βm-r+q

d

q>0
FIGURE 3.4

is also a Morse function. Then we shall say that / is a Morse function for the
pair (IV, M).

A vector field ξ on W is said to be gradient-like for / if it satisfies:

(3.1) ξ is gradient-like for / except at the critical points of f\M.

(3.2) ξ is tangent to M, and ξ\M is gradient-like for f\M in the usual
sense (cf. Milnor [21])

(3.3) For each critical point c of / |M, there is a neighborhood U of c in
W with a coordinate system (u, υ, x, y) G Rq x R x Rs x R m ~ 2 such that:

(i) M Π U is given by u = 0, v = 0.

(ii) / = /(c) +v — x2 +y2 in U (where x2 — x x etc.).

(iii) ξ = (0, u2 + v2, -x, ί/) in U.

Such a pair (/, ξ) we shall call Morse data for the pair (VF, M).

Given a pair (W, M), the usual general position arguments apply to show
that Morse data exist for it. Moreover, the usual Morse theory (cf. e.g., Milnor
[22]) applies to show that (/|M, ζ\M) gives rise to a handle decomposition of
M based on d_M, with each critical point of index r giving rise to a handle
(hr,a_ftr) = (D^S*-1) x Dm~r. We denote by Br{M) the set of /ι-handles
on M.

As mentioned above in the case of T2 C R3, we also obtain a handle
decomposition of X = W — M. In this decomposition, the r-handles are of
two types. A type I r-handle (denoted hr) is just the usual one corresponding
to a critical point of / of index r. A type II r-handle (denoted ί)r) corresponds
to a critical point of f\M of index r — q. We denote by BT{X) the set of r-
handles on X. Note the canonical inclusion Λ : Br-q(M) —• Br(X).

The general picture of the core (Perron's cupola) of a type II handle ί)Γ

is shown in Figure 3.4. In each of the cases in the figure the second factor
(the square) with coordinates (x, y) is the standard Morse theory picture for
a neighborhood of the critical point c in M (with Dr~q and Dm~r+q corre-
sponding to the negative and positive eigenspaces of the Hessian of / at c on
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ascending membrane descending manifold

Dm-r

ascending manifold

D r-q

descending membrane

FIGURE 3.5

D* = coattaching sphere

C* = coattaching disc

B* = ascending manifold = core of Λ*

A * = ascending membrane = cocore of ί)

A = descending membrane = cocore of fj*

B = descending manifold = core of h

C = attaching disc

D = attaching sphere

FIGURE 3.6

M (cf. Milnor [21])). The first (disc) factor corresponds to the remaining co-

ordinates (it, v), with v the vertical coordinate, and gives the fiber coordinates

for the normal disc bundle to M on a neighborhood of c. The dual Morse

data (—/, —ξ) gives rise to a handle (Λr)* of dimension m — r dual to hr, and

a handle (f)r)* of dimension u> - (r + 1 - q) dual to ί)r.

In addition to the usual ascending manifold, descending manifold, attach-

ing sphere and co-attaching sphere of c on M we also have the ascending

membrane, descending membrane, and their attaching discs (Perron's projec-

tions). These features are indicated in Figure 3.5. We can and shall always

assume that these features are in general position with each other.

Figure 3.6 is a highly schematic diagram of these features. It also indicates

our orientation conventions:

dA = B - C, = dC = D dA* = β* - C\ dB* = dC* = D

where we follow the standard orientation convention for a manifold with

boundary (Milnor [24, p. 27]): (Outward normal vector)xdY = Y. We shall

also assume that B B* = 1, r/ A* = ( - l ) r + 1 and A (ϊ)r)* = (-ljrt '-O+i

so that once an orientation is chosen for B, all the others are determined.
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\

= attaching sphere

FIGURE 3.7

In particular the orientation of f) is given by the orientation of Sq x h (with
which it coincides along an open set), and similarly the orientation of f)* is
given by Sq x h*.

Now let us consider the handle ff in greater detail. Referring to Figure 3.7,
the dark portion Dq x Dr~q is the core of ff (where the Dq here refers to the
upper hemisphere of an ε-sphere in Dq+λ surmounting the cylinder Sq~ι x I).

The attaching sphere of ff can be described as follows. Assume f(c) = 0,
and set

Xs = {xeX\f(x)<s},

Vs = {(z, y)eDqx Dr~q\ - x2 + y2 < *},

Dq+λ = {(tι, υ) G Dq x Dx\υ < s}.

Then Xs-ε DYε = Dq+ι x Vs_2e U Dq_Xl x F s + ε , which is the shaded region
in Figure 3.7. In the same figure the r-handle ff is the union of the products
of the black regions and the attaching sphere d\f = d(Dq x Dr~q) in the level
f(c) — ε is indicated.

It is not difficult to show that X s + e has X s_ eUϊf as a deformation retract.
In fact, after rounding the corners, they are diffeomorphic.

Since the number of handles on X — number of type I handles+number
of type II handles=number of handles on VF+number of handles on M, we
recover Wintgen's inequality η(M C W) > μ{X) - μ{W) (cf. [37]).

Let us return to the oriented attaching sphere 5 9 " 1 x Dr~q U {-ΐ)qDq x
Sr~q~1, in the case when q > 0. The first portion forms part of the boundary
of a certain D\ x Dr~q which lies in the level of the attaching sphere as in
Figure 3.8. In fact, this D\ x Dr~q provides a homology between the attaching
sphere of ff and the cycle z = {-l)qSq x S7*"1"9 where Sq x S7"1^ is the
normal sphere bundle over the attaching sphere of the handle hr~q on M.

When q — 1 we will also need another description of the attaching sphere
itself. Let Fo be an oriented normal framing in M for the core of the associated
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X

p IIB

FIGURE 3.8

portion of the attaching
disc of \f

m-r+\

portion of the attaching
sphere of f)Γ

FIGURE 3.9

portion of the
attaching sphere

hr~ι

r — 1 handle kr *. Augment Fo to an oriented normal (in W) framing (?7o, F$)

of the ambient descending manifold along its boundary. This framing extends

uniquely (up to homotopy) over the ambient descending manifold to yield a

framing (r/, F). Figure 3.9 is a picture of η near M in the level of the attaching

sphere. (Note the new coordinates here, since we are no longer at the critical

point.)

If we let D1 be the normal circle with a small interval (—ε,ε) of angles

removed, and let Dr^1 denote the attaching disc of fjr, then we see that the

oriented attaching sphere of \f is -Dι x d{Dr^1) + η{Dr^1) - (-ry)(D^~1).

When q = 0 the situation simplifies considerably. f)r = ±σ(hr) where σ is

a normal vector field to M along the core of hr which points up at c, and the

sign compares σ to the orientation of the normal bundle to M in W. Thus

the attaching sphere dff is just ±σ(dhr).
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We now recall two fundamental results of Perron. Let us assume that
ca,Cb £ M are critical points of index a and b for f\M with f(ca) < v(cb),
and that J = [/(cα),/(cb)] contains no critical values of either / or f\M,
other than its endpoints. Then:

Ambient Rearrangement Theorem 3.4 (Perron [27]). If a > b and
the ambient ascending and descending manifolds of ca and ct, are disjoint,

then there is a deformation of f with support on a neighborhood of the portion

of the ambient descending manifold of ca in f~ι(J) to a Morse function of

the pair / i : W, M —• R such that f\ has the same critical points as f except

that h{ca) > fι{cb).

Ambient Cancellation Theorem 3.5 (Perron [27]). Assume that b =
α + 1, and that at some interior level of J the descending manifold of cb and

the ascending manifold of ca meet transversely in a single point. Assume in

addition that the corresponding ambient ascending and ambient descending

manifolds are disjoint. Then there is a deformation of f with support as in

3.4 to a Morse function of the pair f\: W, M —• R such that f\ has the same

critical points as f, except for ca and c^, which are no longer critical.

Remark 3.6. The condition that the ambient descending and ambient
ascending manifolds be disjoint follows by general position in 3.4 if q > 0, and
in 3.5 if q> 1.

Remark 3.7. In the remainder of the paper we shall have Ww = Sw, and
/ will be a Morse function on Sw with just two critical points, a maximum
and a minimum. By 3.4 and 3.5 we can, and do, assume that f\M has all its
index i critical values in the interval (i — 1/2,i + 1/2).

4. A chain complex for X

In this section we assume that we have a smooth embedding Mm C Sw of
codimension q + 1 = w — m > 1, that Mm is connected, and, if q = 1, M is
orientable.

Let C*(Y) denote the chain complex of the universal cover Y of Y aris-
ing from the handle decomposition of Y. We refer the reader to the first
appendix for our conventions concerning notation, orientations, base point
paths, intersection numbers, etc.

By the results of Perron described in §3, we have a bijection between
handles of M and handles of type II of X. The aim of the present section is to
analyze this bijection in order to realize Alexander duality and Poincare du-
ality at the level of chain complexes. That is, we show how the chain complex
for M (together with some extra structure if q + 1 < 2) determines the chain
complex, and the dual complex, of X. The case of codimension > 2 appears
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essentially in Perron [27]. It is included here not only for completeness but
because it forms the basis for the discussion of the cases of codimension < 2.

4.A. The case of codimension greater than two (q > 1).
Theorem 4.A.I. Ifq > 1, then the cores of the 0-handles and m-handles

of M can be oriented so that the chain complex (C*(X),δχ) is isomorphic to
the complex:

U —• Z —• G m ( M j <S>E Z • Cm-ι{M) (g>Ξ Z •
dim: w w—1 w — 2

... Cb ( M ) ®s Z -• 0 0 -> Z -> 0.
q 0

Here δw(l) = J^[e] <g> 1 (summation over e G Bm{M); [e] denotes the chain

corresponding to e, and εr — (—l)r.) Moreover, the dual complex, obtained

from (—/, — ξ) using the same orientations is:

0 - Z £ Hom Ξ (C 0 (M),Z) C l ( c « a i ) , H o m Ξ ( d ( M ) , Z ) i Ξ ί f ί £ ^
dim: w w — 1 w — 2

•••Homa(Cm(M)Z)->0 0
Q

where 6*(1) = Σ[έ\* {summation over e G Bo(M), and [e\* is the dual basis
of[e\).

Proof Since q > 1, X is simply connected. All the type II handles have
dimension > q > 2. By our standing assumption, X has only two type I
handles, hw and ft0, corresponding to the maximum and minimum of / on
Sw. These remarks account for the copies of Z in dimensions 0 and w, and
for the vanishing of the groups with dimensions in the range 0 < r < q.

The co-core of a type II (w — l)-handle \)w~ι is a vertical interval which
must meet the attaching sphere of hw transversely in a single point. We choose
the orientations for the cores of the associated m-handles on M so that these
intersections all yield intersection numbers +1.

Now let f) r+1 and \f be type II handles on X associated with the handles
frr+i-q a n c j hr~q on M. We want to compute the incidence number [ϊf, f)r+1],
which we can obtain as the intersection number between z and the co-core of
V (cf. §3).

Since the cycle z in X is localized near Λf, only the behavior of the co-
core of f)r near M contributes to the incidence number, where it is a collar
neighborhood of the co-core of hr~q. In Figure 4.1 we picture a neighborhood
in Sw of an intersection point (0,0) on M between the attaching sphere of
jtf+i-q a n ( j th e Co-core of hr~q and illustrate how this intersection on M
gives rise to a corresponding intersection point (P, 0) in X between z and the
co-core of ί)r. Call such an intersection of type A. Clearly every intersection
between z and the co-core of ί)r is of type A.
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FIGURE 4.1

It follows from our orientation conventions that £(p,o) = ε<?ε(o,o)> a n d from
this we get:

[If, ff+1] = εq[hr-\ hr+1-«) ® 1 G Z = Ξ ® z Z,

which finishes the proof of the first part of the theorem.
The dual complex is obtained similarly.
4.B. The case of codimension two (q = 1). In this case X is no longer

simply connected so the choice of base point paths becomes important.
Choose a base point *χ for X in the normal circle bundle S 1 (M) of M, and

choose the base point of M to be its image *M — p(*x)> where p: S1 (M) —• M
is the bundle projection. For each critical point c of f\M, choose c' G S1(M)
lying on the descending membrane below it, and select a path from it to
*x in S1(M). This yields base point paths for the descending membranes.
By composing with short paths in the fibers of SX(M), oriented positively,
running from the ascending membrane to the descending membrane, we also
obtain base point paths for the ascending membrane as well as the type II
handle associated with c. Their images under projection yield base point
paths for the handles of M. Finally we let t G πχ(51(M)) be the class of the
oriented fiber of Sι(M) over *χ. By abuse of notation we also denote the
image of t in πi (X) by t. Since M is orientable then t is central in TΓI (S1 (M)).
We note however, that t is not in general central in τri(X).

Set A' = Zπι(Sι(M)), and let C*(M)' be the (abstract) free Λ'-module
with the handles of M as basis. The canonical map A' —• Ξ induces a Ξ-
module isomorphism C*(M)' <8>Λ' Ξ = C*(M).

Let d\ denote the boundary operator d of M, but computed using the base
point paths and intersections of type A in S1(M). That is, at a point of
intersection P between the attaching sphere dhr+ι and the co-core of hr we
join the ascending membrane of hr to the descending membrane of tor+1 by the
positively oriented path in S1, and use it, together with the base point paths
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for the membranes described above, to yield an element g'P G π\(Sι(M))
lifting gp G τri(M). Thus d\ operates on C*(M)1, and

(Note that we do not claim that (C*(M)', d\) is a chain complex.)
Let (dn)r+i Cr+ι(X) —• Cr(X) denote the intersection matrix measuring

the intersections between the descending membrane and the ascending mem-
brane of critical points of f\M of adjacent indices r and r - 1. Transversality
considerations show that there are no such intersections when q > 1, so this
represents a new feature of the q = 1 case.

Theorem 4.B.I. If q = 1, we can choose the orientations of the 0-
handles and m-handles of M so that (C*(X),dχ) is isomorphic to the chain
complex:

0 _+ Λ h Cm(M)'<8>Λ - ^ + C m _i(M)'(g>Λ -> > Cm(M)'(g>A - ^ A -> 0
d i m : it; w;—1 ID —2 1 0

where the boundary operators are given by:

ί r + i = -{(dOr 0 1 + (3n) r +i(f - 1)} for 1< r + K ^

<Si[έ] = -^ e(ί - 1) for e G J?0(Λf), αnrf ge G πi(X),

ί?e {summation over e G Bm(M), and ge G πi(X)).

Moreover, the dual complex arising from Morse data (—/, — ζ) is

0 -> Λ £ HomΞ(Co(M),Λ) ̂  Homs(Ci(Λf), A) ^ HomΞ(Cm(M),Λ) ̂  Λ - 0.

We are making the identificationRomΈl(C^(M),A) « HomΛ'(C*(M);, A), and
the boundary operators are given by:

δr+i = -£r{(dι)*r 0 i + (dny^ir1 - 1)} for 1< r + 1< w,

vl[ψ = ~971{t~1-l) foreeB0{M),

δw(l) = ^ [ c ] * ^ 1 (summation over e G Bm(M)).

(In particular, in the case when t is central in πi (X) this complex and the
original one are, after removing the extreme modules, and up to the signs of
the boundary operators, algebraic duals.)

Proof. According to §3, the attaching sphere of f)r+1 is:

We divide the intersections between the attaching sphere of ί) r + 1 and the
co-core of \f into two types: those that lie on D1 x d(Dr

A) (of type A), and
those that lie on η{Dr

A) - {-η){Dr

A) (of type B).
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Let us first consider intersections of type A. We can compute the intersec-
tion of D1 x d(Dr

A) with the co-core of ff by using the cycle z instead, just
as in the proof of 4.A.1, except that we must also pay attention to the base
point paths. Our base point path conventions make g'p the correct choice.
Since the computation of the signs is just as in 4.A.1, we have accounted for
the term —{d\)r 0 1 in the boundary operator.

Now we consider the intersections of type B. These intersections arise in
pairs P+, P_ of opposite sign, one pair for each transverse intersection point
P between the attaching disc Dr^1~q of ί ) r + 1 and the co-core of ff'. Let us
assume that P has intersection number εpgp E ±πχ(X).

From Figure 4.2 it is clear that P+ and P_ have intersection numbers εpgp
and —εpgpt, giving a total intersection number for the pair of —εpgp{t — 1) £
Λ. This accounts for the term —{d\\)r(t — 1) in the boundary operator. We
leave it to the reader to check the assertions about δw and δ\.

Now we pass to the duality statement. As in 4.A the type A intersections
give rise to the term — (d\)* in the dual boundary operator, so we need only
understand the contribution of the type B intersections. Each such inter-
section point P, with intersection number εpgp G ±τri(X) as above, when
viewed dually gives the intersection number {—εr)εpg^>1. Moreover, P gives
rise to two intersections P+ and P i , one on each of the two sheets of the
co-attaching sphere of ff. As illustrated in Figure 4.3, these give a total
intersection number of (—ε^εpgp1^'1 - 1), which accounts for the term
—εr{(dn)*_{_1(t~

1 — 1)} in the dual boundary operator. Again we leave the
assertions about δw and δι to the reader.
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4.C. The case of codimension one (q = 0). Since a nonorientable
manifold will not embed with codimension one in a sphere, X = Sw — M splits
into two components, X = X+ U X-. Let us assume for definiteness that X-
contains the minimum and the maximum of / and that X+ is on the positive
side of M. This corresponds to the assumption that the embedding M m C
S m + 1 arises from an embedding Mm C R m + 1 (cf. §2). Set Λ± = Z[π1(X±)],
and let Ξ —• Λ± be the homomorphisms arising from the sections σ± of the
normal bundle of M in Sw. Let us partition £*(M) = B+(M) U B~(M)
so that the handles which are "locally below" X± lie in B^{M). Similarly
C*{M) = C+ ΘC~, where C± is the Ξ-submodule of C+(M) spanned by

). This yields a partition of the boundary map:

δ =
?11

Choose a base point *M on M, and set *χ± = σ±(*M). Similarly, take the
base point paths for the handles of X± to be the images of the base point
paths on M under σ±.

Theorem 4.C.I. Ifq = 0, we can choose the orientations and base point
paths for the handles of X so that the chain complexes are:
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forX+:

( 5 ) l ( ^ ) ^ , + ̂ 4 Λ

• Cζ ® s Ai -» 0,
0dim: "" w-l * "L~w-2 U 0

forX-:

0 —• Λ2 —• Cm ® s A 2 ——• C m - i ^ Ξ A 2

dim: iϋ w— 1 it; — 2

• (Co ® s A2) Θ Λ2 —> 0Θ

$'(1) = J3[e] Θ ge (summation over e € B^(M), and ge G π
φ([e]) = ge, eeB+{M).

The complexes obtained from (—/, — ξ) (but with the same orientations)
are:

forX+:

0
d i m :

s ( C J ,Ai) £ l ( 6 l l ) S Hom B (Cf ,Ai)
1m - 1

forX-:

0 - Λ2 C HomΞ((7+,Λ2)
di +1

() ί
dim: m+1 m m—1

Horns (G^, Λ2J Θ Λ2 —• 0
0

where δ"*(l) = X^fe]*^1, summation over e G
Proof. If hr is the handle of M corresponding to the critical point c with

X± locally above c, then σ±(ftr) = ±\)r (cf. §3). Let if and ί ) r + 1 be two
type II handles of X± corresponding to the handles hr and ftr+1 of M. Note
that the only intersections are of type A, since the ascending membrane of ί)r

and the descending membrane of ϊ ) r + 1 lie in distinct components of X. Thus

Now we pass to the duality statement. The critical points of M which are
locally below X+ when we use / as height become locally above when we use
—/as height. Thus if an r-handle hr on M gives rise to a type II r-handle \f
on ΛT+, then the dual of ff is an (m-r)-handle (ff)* on X_, arising from the
dual of hr'. Given a pair of handles fer+1 and hr on M which are locally below
X+ with a local intersection number εpgv at P G M, the associated type II
handles f) r + 1 and \f on ΛT+ have a corresponding local intersection number
εpσ+*((7p), and the dual handles (f) r + 1)* and (f)r)* have corresponding local
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intersection number εr+ιεpσ2*(gp

λ) (cf. 4.A for the sign). The case of X- is
similar.

5. Variations of / and the membranes

In the last section we saw how a Morse function / together with its mem-
branes gives rise to a chain complex (C*(X),dx). As is usual in Morse the-
ory, the fact that / and its membranes are not unique allows us to vary the
chain complex by the operations of stabilization, cancellation and Whi-simple
change of basis (cf. Appendix 2 for descriptions of these operations of type
A.2.1(r), A.2.2(r) and their inverses). The details of this investigation fall
into three cases according a,sq>l, q=lorq = 0(q = w — m — 1). We shall
study this question under the following:

Hypothesis 5.1. Let Mm c Sw be a smooth embedding of a closed
connected manifold with m > 5. If q = 0 or 1 we assume that M is simply
connected. If q = 1 we assume in addition that τri(X) = Z.

5.A. The case of codimension greater than two (q > 1). We
know by 4.A.1 that (C*(M),ΘM) determines (C*(X),dχ), which suggests
that (C*(M), dM) might be a complete invariant for our needs. The following
result is essentially proved (but not stated) in Perron [27].

Proposition 5.A.I. Let Mm C Sw satisfy Hypothesis 5.1. Then every
operation on (C*(M),<9M) of type A.2.1(r) (where 0 < r < m), A.2.2(r)
(where 0 < r < m), and their inverses is realizable by variations in f and its
membranes.

Proof Consider first the inverse of an operation of type A.2.1(r), where
0 < r < m. If dhr+1 —hr eg we can use 3.4 to put the corresponding critical
points into adjacent position, and then use the Whitney trick [34] to perform
an isotopy on ξ\M so that the attaching sphere of /ι r + 1 meets the co-core of
hr transversely in a single point, while leaving the other local intersections
untouched. By the smooth isotopy extension theorem (Thorn [33]), this can
be accomplished by an isotopy of ξ itself. Now apply 3.5 to obtain ambient
cancellation of the critical points corresponding to hr^~1 and hr. We leave to
the reader the case of the operation A.2.1(r) itself.

Now consider an operation of type A.2.2(r), where 0 < r < m. As usual,
we can perform a handle addition on (C*(M), ΘM) by an isotopy of ξ\M and,
as above, realize this by an isotopy of ξ itself.

5.B. The case of codimension two (q = 1). This case is somewhat
the reverse of 5.A in that, under Hypothesis 5.1, (C*(X),dχ) determines
( C * ( M ) , # M ) , suggesting that (C*(X),dχ) is our complete invariant. Now
it is not clear at first sight that the operations A.2.1(r) and A.2.2(r) are the
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appropriate ones for (C*(X),<9χ), since the boundary operator is composed
of two distinct parts. To remedy this situation we provide:

Proposition 5.B.I. If q = 1, and assuming Hypothesis 5.1, then
every algebraic decomposition (dχ) r+i = — {(d\)r ® 1 + {dn)r+i{t — 1)} of
the boundary operator in the range of dimensions 0 < r < m can be realized
geometrically by a variation in the gradient-like vector field ζ.

Proof Any algebraic decomposition of

can be obtained from any other by a sequence of operations of the following
type. Choose basis elements f)r+1 and ί)r. Given a local intersection between
them of type A of intersection number εgt G πί(S1(M)), replace it by two
local intersections, one of type A, of intersection number eg, and another
of type B, of intersection number εi*(g). This corresponds to the algebraic
identity i*(εgt) = εi*(g) + εi*(g)(t - 1), and can be accomplished by altering
the gradient-like field ξ by an isotopy with support in the normal disc bundle
of M in a band below the intermediate level (Milnor [23, Lemma 4.7, p. 43]).
Hypothesis 5.1 insures that we reach every local intersection number of a
type B intersection by means of this device. Figure 5.1 shows the effect of the
isotopy in an intermediate level.

coattaching disc attaching sphere

«4- attaching disc

FIGURE 5.1

Now we can verify our hunch about (C*(X), 3χ).
Proposition 5.B.2. Let Mm C 5 m + 2 be a smooth embedding of a

closed one-connected manifold with m > 6. Then every operation on
(C*(X),dχ) of type A.2.1(r) (where 0 < r < m), A.2.2(r) (where Kr <m)
and their inverses is realizable by variations in f and its membranes.

Proof Consider first the inverse of an operation of type A.2.1(r). Let
ί)7""1"1 and f)r be two handles of X whose total mutual incidence number is
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eg € ±τri (X), and let hr and hr~x be the handles of M corresponding to them.
Using Hypothesis 5.1, 5.B.1 and the Whitney trick, we may arrange that the
ascending membrane associated to the r-handle ί)r has a single transverse
intersection with the attaching sphere of the r + 1 handle, and that this
intersection is of type A. It therefore arises from a single transverse intersection
of the ascending and descending manifolds on M, and moreover the ascending
and descending membranes of f) r+1 and ff are disjoint. It follows from 3.5
that cancellation is possible.

Now let us consider operations of type A.2.2(r). Let us fix an intermedi-
ate level between two adjacent critical points p and q on M, both of index
r — 1, where 0 < r — 1 < ra, with p above q. Let hr

p~
ι, ΛJ"1 and f)£, tfq

be the corresponding handles on M and X respectively. In the intermedi-
ate level we have an attaching pair {Dr

δ{p),Sr

δ~
1{p)) C (SW,M) for tfp con-

sisting of the attaching disc in S m + 2 and its bounding sphere in M, which
is the attaching sphere of hr

p~
ι in M. Similarly we have a co-attaching pair

(D^-r(q),S^-r-1(q)) C (5-,M) for <£.

Now let us choose an isotopy of our intermediate level (respecting M, and
with support off the attaching data of the remaining ambient r-handles) so
that the pair (Dδ(p),Sδ~

1(p)) is replaced by its boundary connected sum,
"along a path in the normal sphere bundle of M C Sw" with the pair
(Dr,Sr~1), where Dr is a small normal disc of S™~r~ι(q) in M whose
interior has been pushed into X. This "path" is really an embedding of / x
Dr~ι into this level, where / x Sr~ι is a narrow tube in M, and / x int(Dr~1)
has been pushed into X. We fit this isotopy into a narrow band of levels be-
low the given intermediate level, and use it to alter the gradient-like vector
field ξ.

If we follow the small (Dr,Sr~ι) down along trajectories to a level below
<7, it becomes a parallel copy of (Dl(q)^Sl~1(q)). Thus the effect on the
attaching pair of the critical point p is to replace it by its boundary connected
sum with the attaching pair for q along a path in the normal disc bundle of
M (cf. Perron's accident du type (B) [27, p. 306]). Since a similar analysis
holds also for the dual handles, we see that the effect on the chain complex
C*(X) is an elementary change of basis in dimension r where 1 < r < m.

Hypothesis 5.1 insures that this handle addition can be used to replace \fv

by f)p ± f)JJ 0, where g is an arbitrary element of τri(ΛT) = Z.

Remark 5.B.3. Perhaps the restrictive conditions on τri(M) and τri(X)
can be relaxed somewhat if the chain complex of Sι(M) is used as the invariant
(this complex has twice as many cells as M). However the allowable operations
on it are of course more complicated than merely A.2.1(r) and A.2.2(r).
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5.C. The case of codimensions one (q = 0). This case is analogous
to the case q > 1 in that (C*(M), ΘM), together with its partition of handles,
is our complete invariant. We have:

Proposition 5.C.I. Let Mm C 5 m + 1 satisfy Hypothesis 5.1. Then all
the operations on (C*(M),ΘM) of type A.2.1(r) (where 0 < r < ra, and both
handles belong to the same side of M), A.2.2(r) (where 0 < r < m, and both
handles belong to the same side of M), and their inverses, are realizable by
variations in f and its membranes.

Proof The proof is exactly the same as the proof of 5.A.1, except that for
realizing the operations A.2.1(r) the disjointness required by 3.5 is automatic.
This is because the two handles belong to the same side of M, and hence their
ascending and descending membranes lie on opposite sides of M, and so lie
in different components of X.

6. The Proof of Theorems 1.1, 1.3, 1.4 and 1.5

We begin by proving Theorem 1.1. Given / and its membranes for the
pair Mm C Sw, the restriction of this data to M is the usual Morse data
associated to M, and so there is a sequence of handle rearrangements, handle
additions, stabilizations and cancellations replacing / by a Morse function
with μ(M) critical points. Now all of these operations can be realized ambi-
ent ly: handle rearrangements by means of 3.4, handle additions by means of
the smooth isotopy extension theorem, stabilizations obviously, and cancel-
lations by means of 3.5 (this requires codimension greater than two). Thus
η(Mm C Sw) < μ(M), and since the reverse inequality is clear, we obtain
η(Mm C Sw) = μ(M). q.e.d.

We now prove Theorem 1.4. As before let X = X+ U X- C 5 m + 1 , where
X_ι_ corresponds to the "inside" of M in R m + 1 . Note that πi(X±) = 0 since
under Hypothesis 5.1 M is simply connected, and hence by Van Kampen's
theorem so are X+ and X-.

The correspondence of handles described in 4.C.I shows that

2 + (({handles of M} = {({handles of X+} + |){handles of X-}.

But in fact the explicit form of the boundary operator on the top dimensional
handle of X- shows that two of its handles can be cancelled (nonambiently).
This implies that η(M) > μ(X+) + μ(X~). Now we prove the reverse in-
equality. Let us consider the sequences of operations of types A.2.1 and A.2.2
on C*(X+) and C+(X~) reducing the numbers of cells to μ(X+) and μ(X-).
Since our treatment of these is similar we work with C* (X-) only.
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Let us consider the class D of all finitely generated Z-free chain complexes
which are chain homotopy equivalent to a chain complex arising from a CW
structure on X-. For example, the chain complex C*(X-) of 4.C.I lies in D.
Because of the explicit form of the boundary oeprator in 4.C.I we have:

α , ( x - ) « { o - + z ^ z ^ o } ; { }
dim: ™+l ™ 1 0

Now C£ can be nonzero in dimensions 0 through m only. Choose D* € D with
minimal total Z-rank μ. In particular μ < μ(X-). Set

£* = {0-^ Z ^ Z - > 0 } θ £ > * θ { 0 ^ Z ^ Z ^ 0 } .
dim: wι+1 m 1 0

Clearly there is a (simple) chain equivalence θ: C*(X_) —• E* which is an
isomorphism outside the range 0 < r < m. By A.2.6 we can change C*(X_)
to (an isomorphic copy of) E* by a sequence of operations of type ,A..2.1(r),
0 < r < m, and A.2.2(r), 0 < r < m. Now all these operations arise from the
corresponding algebraic operations on C* (M) involving handles of M on the
X- side only. According to 5.C.I, all of these operations arise from variations
in / and its membranes for the pair ( 5 m + 1 , M m ) . Since similar remarks
apply to X+, it follows that η(M C 5 m + 1 ) < μ(X+) + μ(X-), and yields the
equality of Theorem 1.4. q.e.d.

Now we prove Theorem 1.3 in an analogous way. Let us consider the
class V of all finitely generated Λ (= Z[ί, i-1])-free chain complexes which are
chain homotopy equivalent to a chain complex arising from the CW structure
on X. (Note that Whi(A) = 0, so that every chain equivalence is simple.)
For example, the chain complex C* of Theorem 4.B.I lies in D. Since X is
connected, of dimension ra + 2, and not closed, from A.2.8 and A.2.9 it follows
that

C « {0-> A -U> A - 4 0 } θ ^ θ { 0 - ^ Λ - ^ A ^ 0 }
dim: rn+2 m + 1 J * L 1 0 }

where C'r φ 0 only in the range 1 < r < ra+1. It follows that the top two of the
handles of X can be cancelled (nonambiently), so that Wintgen's inequality
(cf. §3) μ(X) - 2 < Ί{Mm C S m + 2 ) is improved to μ(X) < η{Mm C S m + 2 ) .

Now choose D* G D with minimal total A-rank μ. In particular μ < μ{X).
Again by A.2.8 and A.2.9,

D* = Df, θ {0 — A - ^ A -> 0}
dim: 1 0

where D'r φ 0 only in the range 1 < r < ra + 1. Note that C* and DJ, are
chain equivalent. Let

dim:
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so that rankΛ E* = μ + 2. Clearly we can find a chain equivalence φ± : C* —+

E+ which is an isomorphism outside the range 1 < r < m + 1. By applying

A.2.6 with a — 1 and b = m + 1 we can alter C* by algebraic stabilization (in

dimensions 1 < r < m), cancellation (in dimensions 1 < r < m), and handle

additions (in dimensions 1 < r < m) to obtain a chain equivalence <p*: C* —•

£?* which is a split epimorphism, and an isomorphism except in dimensions m

and m + 1. By 5.B.2 each of these operations may be realized geometrically

by changing / and its membranes. Turning the situation upside down so that

C*{M) is replaced by its dual C*(M) (cf. 4.B.I) we get a chain equivalence

<p*: E* —• C* which is a split monomorphism, and an isomorphism except

in dimensions 1 and 2. The left inverse for φ* gives a chain equivalence

θ*: C*(M) —• E* which is a split epimorphism, and an isomorphism except

in dimensions 1 and 2. Now apply A.2.6 as above, but with a = 1 and 6 = 3

to make θ* an isomorphism, and realize this (5.B.2) by geometric changes in

/ and its membranes so that we have η(M C Sw) < μ < μ(X). Combining

this with the reverse inequality given above shows all these inequalities are

equalities, and proves Theorem 1.3. q.e.d.

Now consider Theorem 1.5. Since its hypotheses include those of Theorem

1.3, we can retain the notation and conclusions given above. Thus we have

membranes for / giving rise to a chain complex:

C*{X) « {0-+ A ^ Λ - > 0 } Θ l > ί Θ { 0 - * Λ — A - * ( ) } .
dim: ™+2 m+1 J l 1 0 J

Now since X has the [m/2]-type of S 1 , it follows that Hr(Df*) = 0 for r < m/2.

We claim that in fact D'r = 0 for r < m/2. For otherwise, choose r < m/2

minimal such that D'r Φ 0. Then Df

r_^_1 —• D'r is epic, and hence split. Thus

D+ splits off a direct summand of the form 0 —> D'r —> D'r —• 0, contradicting

the minimality of D+.

Now by 4.B.1, turning the situation upside down replaces C* by the com-

plex

{0 - A ΐ£ A -+ 0} Θ D'* θ {0 -> A ^ A -» 0},

so D/r also vanishes for r < m/2.

If m + 2 = 2fe, then [m/2] = k - 1 so that D'k = Hk(X) is the only

nonvanishing module in D+, and hence μ = 2 + rankΛ Hk{X).

If m + 2 = 2fc + 1, then [m/2] = k - 1, so that D ^ + 1 and D'k are the only

nonvanishing modules of D+. Now by (Milnor [25]) Hk+\{X) — 0, so we have

a short exact sequence:

0 - D'k+1 ^D'k^ Hk(X) - 0.

By duality we also have

0 - D'k* - Ztf+1 - tffc(X) - 0,
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and hence xχ(Hk(X)) = 0. Moreover, the fact that D* is minimal, together
with A.2.10, shows that dim&D'k+1 = d i n u ^ = rankΛiϊfcPO, and hence
μ = 2 + 2rank\ Hk{X). These calculations finish the proof of Theorem 1.5.

7. Brieskorn varieties

Let Ne = Z[z]/(1 + x + + x^1), and set Nά = Ndo® Ndl ® - - - <g> Ndn

with Λ-module structure given by t ao <S> αi ® ® αn = zαo ® zαi ® ® xαn

It is known (Milnor [25]) that the "knot" arising from the Brieskorn polyno-

mial f(z) = 2o°+*i1 \~znn has complement X with homology Hn(X) = iVd
as a A-module. Thus Propositions 1.6 and 1.7 follow from:

Proposition 7.1. (a) Let d = l.c.m.(do,di, ,d n ). T/ien:

0<r<n l<r<n

(b) 7/do,di, * ,dn are relatively prime in pairs, then rankΛ AΓd = 1.

Proo/. First we obtain the upper bound of (a) by noting that Ne is gen-
erated by a single element, and if gt , 1 < i < s, generate TVd then ^ ® x°,
1 < i < s, 0 < y < e — 2, generate N^® Ne. The upper bound

rankΛ iVd< J ] (dr - 1)
l<r<n

follows by induction. In case all the dr are relatively prime in pairs, the
surjection Z[x]/(xd — 1) « 0 Z [ i ] / ( i d r — 1) —• Λ̂ d shows that one generator

r

is enough, proving (b).
To obtain the lower bound, we study the complex representation TVd ®

C of CfM" 1]. Since td acts by the identity, we have, in fact, a complex
representation:

f(τ) =
0<r<n

where d = erdr. Since each irreducible representation of Z/d occurs exactly
once in a rank one free Z/d module, the rank of N^ is at least as large as the
maximum coefficient of /(r). Moreover:

1 1 TT

max. coeff. of f(τ) > average coeff. of f(τ) = -jf{\) = ~j J\ (dr - 1)
0<r<n

which gives the lower bound.
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Appendix 1. Various conventions

In this section we review the various conventions used in this paper. These
are somewhat complicated in view of the fact that we need to compare many
orientations and paths. If (Y, *) is a (nice) pointed space, then its universal
covering space is Y = {homotopy classes of maps a: (/, 1) —* (Y, *), where
the homotopies fix α(0)}. Using the standard multiplication of paths:

l), 1/2 < ί < 1,

we obtain the group structure on τri(Y), as well as the right action of τri(Y)
as the group of covering transformations on Y. Letting C*(Y) and iί*(Y)
denote the chains and homology of the universal cover Y of Y, they become
right Λ = ZTΓI (Y)-modules. For right modules, linear maps are written on the
left, composed from right to left, and composition corresponds to the usual
composition of matrices. That is, if we are given homomorphisms

Λc £> A6 £ Λα

and if {e*}, {f3} and {gk} are the standard bases for Λc, A6 and Λα respec-
tively, so that B(fj) = Σ9khj and C(e*) = Σfjb3i, then

(B o C)(ei) = B(£ ϊ3cjτ) = Σ B{f3)c3i = Σ 9kbkjc3i = Σ Λ ( Σ 6*ici )

Now let Y be a handlebody [30]. We have in mind the handle decomposi-
tion arising from Morse data (/, ξ) on a smooth manifold M. However most of
our remarks apply equally well to any handle decomposition, such as the one
for X described in §3. Now recall the description of the chain complex C*(Y)
associated to the handle decomposition. One first chooses orientations for the
cores and paths to the base point for each of the handles (the resulting struc-
tures are called "based handles"). The co-core is then oriented so that (core)
• (co-core) = 1, with respect to the ambient orientation. (If Y is not orientable
we use the orientation at the base point of M carried along the base point
path to the intersection point.) Given these choices, the based r-handles lift
uniquely to give a set Br(Y) of based handles of Y. Regarding Br(Y) as a set
of chains in the free right Λ-module Cr (Y) one sees that they yield a basis for
it. Moreover the boundary map is given by <9r+i/ir+1 = Σ hr[hr", Λ r+1], where
the sum takes place over all r-handles hr and the incidence number [Λr, ftr+1]
is itself a sum Σ £P9P

 o v e r ^ n e local intersection numbers corresponding to all
the intersection points P (assumed transverse) between the attaching sphere
of /ι r + 1 and the co-core of hr. The sign εp = ±1 is computed according to
the formula:

(Attaching sphere of /ι r + 1 at P) (co-core of hr at P) = εp.
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The fundamental group element gp is the class of the loop which passes
from the base point along the inverse of the base point path to h r, up the
co-core of hr to P, change to the core of hr+*, and then return along the base
point path of hr+1 to the base point, as indicated in the schematic Figure
A.I.I.

?7 cocore of hr

core of hr

FIGURE A.1.1

Now let us consider "handle addition," which "adds εh\ to fc" along a
path λ joining h\ to hTy The path λ together with the base point paths of the
handles provides an element g £ TΓI (M), and the handle addition has the effect
of replacing the boundary operator dr by E~ιdrE, where E is the elementary
matrix eij(εg). Thus such a handle addition can equally well be thought of
as a simple change of basis among the r-handles. In the particular case when
the handle decomposition arises from Morse data (/, ξ) on M, such a "handle
addition" can always be arranged by an isotopy of ξ (cf. Milnor [22]).

We recall [24] that if

0 -> Cm(M) d(Af) ^ C0(M) - 0

is the chain complex arising from the Morse data (/, ξ), then the dual complex
(i.e. the one arising from (-/, — £)) is given by

0 - HomΞ(C0(M),Ξ) ̂  Homs(CΊ(Λf ),Ξ) ^

where εr = (—l)r.

HomΞ(Cm(M),Ξ) -+ 0
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Appendix 2. Simplifying chain complexes

Let k be a commutative ring and G be a group. We set Λ = kG, the group

algebra, and consider finitely generated, free, based right chain complexes

(C*, d) over Λ. We study the following two operations on (C*, d):

A.2.1(r). Algebraic stabilization in dimension r. This operation
replaces (C*,d) by its direct sum with the canonically based chain complex:

0 Λ Λ 0 .
dim: r+1 r

The inverse operation is called algebraic cancellation in dimension r.

A.2.2(r). Algebraic handle additions in dimension r. This opera-
tion replaces the basis of Cr by another which is Whi(G)-simply equivalent

to it.

We note in passing that neither of these operations alter the Whi (G)-simple

chain homotopy type of the complex.

Our first remarks about these operations corresponds to the basic simplifi-

cation ideas of the s-cobordism theorem. In A.2.4, A.2.5, and A.2.6, we make

the following standing assumption:

Hypothesis A.2.3. C* and D* are finitely generated, free, based chain

complexes over A, and φ±: C* —• D* is a Whi-simple chain equivalence.

Lemma A.2.4. Assume φr is an isomorphism for r < n and an epimor-

phism for r — n.

(i) // n + 1 = b, then φn+ι is an epimorphism.

(ii) Ifn + 1 < b, then we can stabilize C* by operations of type A.2.1(n + 1)

so that φ* extends over the stabilization to yield an epimorphism in dimension

n + 1.

Lemma A.2.5. Assume φr is an isomorphism for r < n and an epimor-

phism for r — n and r = n + 1.

(i) If n = b, then ιpn is an isomorphism.

(ii) // n — b — 1, then there is a combination of operations on C* consist-

ing of stabilizations and their inverses of type A.2.1(n) together with simple

changes of base of type A.2.2(n), so that φ* extends and restricts to give an

isomorphism in dimension n, and is still an epimorphism in dimension n + 1.

(iii) Ifn<b—1, then there is a combination of stabilizations and their in-

verses of types A.2.1(n) and A.2.1(n + 1), together with simple changes of base

of type A.2.2(n + 1), so that φ* extends and restricts to give an isomorphism

in dimension n, and is still an epimorphism in dimension n + 1.
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Proof of A.2.4. Consider the diagram:

Then (i) follows from a diagram chase. We obtain (ii) by induction on the

number of basis elements of Dn+1 in the image of £>n+i If & basis element

e G J9n+i is not in this image we can include it by a single stabilization as

follows: de = ύ = φn{y) and φn-ι(du) = dύ = 0. Thus du = 0 so u is

a cycle. Since <£>*: Hn(C*) « /ίn(£>*), and <Pn(^) = #e, it follows that u

is a boundary, say u — de. Hence d{φn+ι(e) — e} = 0. Moreover, since

φ*\ Hn+ι(C+) « f ί n + i ( I?*) , there is a cycle z € Cn+i such that
) -e + dά,άe Dn+2

Now extend φ+ over the stabilized version of C* by:

Clearly the extended map is still a simple chain equivalence, but now its

enlarged image contains e, completing the induction argument for A.2.4.
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Proof of A.2.5. Consider the diagram:

0 0

1 I
> -Kn+1

0

Again (i) comes from a diagram chase. Similar diagram chases show that

in case (ii), d: K n + i ^ Kn, while in case (iii) d: Kn+\ —*• Kn is split by a

map s: Kn —• ΛΓn+i, so that Kn+ι = P φ 5(ϋCn), where P = Ker9. Clearly

iίΓn, /Γn+i, and hence P , are stably free. Stabilizations of type A.2.1(n) will

make Kn and UΓn+i free, and in case (iii) additional stabilizations of type

A.2.1(n + 1) will make P free.

Choose a basis for Kn (and hence for s(/fn)), and for P so that i f n +i =

P Θ s(/ϊ"n) is based, and the sequences 0 —• Kr —• Cr —• £>r —• 0 (for r = n

and r = n + l ) have no torsion. (If n < b — 1 we may assume by stabilization

that P ^ 0, and is indeed large enough to contain a basis to do the job. On

the other hand if n = 6 - 1 , then P = 0, and we have an exact sequence

of based chain complexes 0 —> K* —• C* —• D* —* 0. Since <p* is simple it

follows that if* has no torsion.) Thus we can make a simple base change

for Cn and Cn+ι so that subsets of these bases give bases for Kn and s(Kn)

which correspond under d. Now we can destabilize to remove Kn. This makes

<pn an isomorphism, and completes the proof of A.2.5.

Corollary A.2.6. Assume, in addition to Hypothesis A.2.3, that

<p*: C* —• D* is an isomorphism outside the range of dimensions a < r < b.

Then there is a sequence of operations on C*, consisting of stabilizations (in

dimensions a < r < b — 1), cancellations (in dimensions a < r < b — 1),

and handle additions (in dimensions a < r < b — 1), and a corresponding

sequence of extensions and restrictions of the chain equivalence which yields

a new chain equivalence φ*: C* —• D* which is a split epimorphism such that

K+ = Ker<£>* is a free, based, acyclic complex with vanishing Whi torsion

which is nonzero only in dimensions 6—1 and b.
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Proof. Apply A.2.4 and A.2.5 inductively to obtain an epimorphism

<p*: C* —• D* such that K* = Ker φ* is nonvanishing only in dimensions

6—1 and 6. Since φ* is a Whi-simple chain equivalence, it follows that K* is

a stably free, acyclic, torsion free complex. Make it free by stabilizing C* in

dimension 6 — 1. The splitting comes from a diagram chase.

Corollary A.2.7. // Mm is a smooth manifold of dimension m > 6,

then every CW complex of the same simple homotopy type as M has at least

μ(M) cells. (And of course this minimum is attained by the CW complex

corresponding to the minimal handlebody structure.)

Proof. Fix a handlebody structure on M. Let X be a finite CW complex

simple homotopy equivalent to M and choose a simple homotopy equivalence

f\M~-*X inducing a simple chain equivalence /*: C* (Λf) -> C* (X) on the

corresponding chain complexes. By A.2.6 (using a — 0 and 6 = m) there is

a sequence of operations on C*(M), all realizeable by geometric operations

on handles, by means of which /* can be converted to a split epimorphism

whose kernel is a free based acyclic complex in dimensions m — 1 and m

with vanishing Whitehead torsion. The dual map /* : C* (X) —• C* (M) is

a split monomorphism, and the splitting yields a simple chain equivalence

g*: C*(M) —• C*{X) which is again a split epimorphism. Its kernel is a

free based acyclic complex in dimensions 0 and 1 with vanishing Whitehead

torsion. Now C*(M) is the chain complex corresponding to the dual handle

decomposition, so we can again invoke A.2.6 (This time using a = 0 and

6 = 2) to alter the handle decomposition so as to push the free acyclic kernel

into dimensions 2 and 3. Finally in these dimensions we can use the fact that

the kernel has vanishing Whitehead torsion to kill it by a geometric change

in the handlebody. This yields an isomorphism C*(M) —• C*(X), and hence

μ(M) < number of cells of X.

L e m m a A.2.8 (Wall). Let C* be a Λ projective chain complex with

i / r + 1 ( 6 * , i ? ) = 0 for all coefficients B. Then Br is a direct summand of

Cr.

Proof The hypothesis yields the exact sequence:

Hom(CV+2,£r) < H o m ( C r + i , β r ) < H o m ( C r , £ r )

0 < d

Hence there exists φ: Cr —> Br such that φd — 9, i.e., φ\Br = id. This

gives the required splitting.

Now we specialize to the case Λ = Z[ί, t~x\. In particular, this insures that

all projective modules are free, and all bases are stably equivalent (cf., e.g.,

[16]).
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L e m m a A.2.9. Let C* be a A free chain complex with CQ = A, H\(C*)

= 0, and HQ(C*) = Z (with the trivial A module structure). Then

α « c: Θ {o - A ^ A -* o}.

Proo/. The short exact sequence 0—> Bo —» A —• Z —• 0 identifies £ o

with the augmentation ideal in A, which is a free rank one A module. Hence

C\ —• Bo splits, and we obtain our result.

L e m m a A.2.10. IfC* and D* are finitely generated, A free, chain equiv-

alent chain complexes, with n = dim C* > dim J9*, then

C* w d Θ {0 -> C n ^ 5 C n - 0}.

Proo/. Hn{C*,B) = Hn{D*,B) = 0 for all coefficients J5. By A.2.8,

<9Cn is a projective, and hence free, summand of C n _ i . Since Hn(C*,B) =

Hn(D*,B) = 0, we get C n « <9Cn+i, and hence the lemma.

L e m m a A . 2 . 1 1 . Let N be a A module with rankΛ N = g, Euler charac-

teristic χ\(N) — g — h, and h.d.\N = 1. TTien any free resolution 0 —•• Aα —>

Λb —• Λ̂  —• 0 can be altered by a sequence of stabilizations, cancellations and

handle additions to a resolution of the form 0 —• Ah —> A9 —> iV —>• 0.

Proof Since rankΛ N = g, there is an epimorphism A^ —• iV, and since

h.d.ΛA^ = 1, the kernel is projective, and hence free. Since the Euler char-

acteristic of N is g — ft, the rank of the kernel must be ft, so we obtain a

resolution 0 —• Ah —• Ag —• Λ̂  —* 0 for JV. The lemma now follows from

A.2.6.
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